N

N

Preemptive Uniprocessor Scheduling of
Mixed-Criticality Sporadic Task Systems
Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo d’Angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne van Der Ster, Leen Stougie

» To cite this version:

Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo d’Angelo, Haohan Li, Alberto Marchetti-Spaccamela,
et al.. Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems. Journal of
the ACM (JACM), 2015, 62 (2), pp.14. 10.1145/2699435 . hal-01249091

HAL Id: hal-01249091
https://inria.hal.science/hal-01249091v1

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-01249091v1
https://hal.archives-ouvertes.fr

Preemptive Uniprocessor Scheduling of Mixed-Criticality
Sporadic Task Systems

SANJOQOY BARUAH, University of North Carolina

VINCENZO BONIFACI, 1ASI - Consiglio Nazionale delle Ricerche
GIANLORENZO D’ANGELO, Gran Sasso Science Institute (GSSI)
HAOHAN LI, University of North Carolina

ALBERTO MARCHETTI-SPACCAMELA, Sapienza Universita di Roma
SUZANNE VAN DER STER, Vrije Universiteit Amsterdam

LEEN STOUGIE, Vrije Universiteit Amsterdam & CWI

Systems in many safety-critical application domains are subject to certification requirements. For any given
system, however, it may be the case that only a subset of its functionality is safety-critical and hence
subject to certification; the rest of the functionality is non-safety-critical and does not need to be certified,
or is certified to lower levels of assurance. The certification-cognizant runtime scheduling of such mixed-
criticality systems is considered. An algorithm called EDF-VD (for Earliest Deadline First with Virtual
Deadlines) is presented: this algorithm can schedule systems for which any number of criticality levels are
defined. Efficient implementations of EDF-VD, as well as associated schedulability tests for determining
whether a task system can be correctly scheduled using EDF-VD, are presented. For up to 13 criticality
levels, analyses of EDF-VD, based on metrics such as processor speedup factor and utilization bounds,
are derived, and conditions under which EDF-VD is optimal with respect to these metrics are identified.
Finally, two extensions of EDF-VD are discussed that enhance its applicability. The extensions are aimed at
scheduling a wider range of task sets, while preserving the favorable worst-case resource usage guarantees
of the basic algorithm.

General Terms: Algorithms

Additional Key Words and Phrases: Mixed criticality, sporadic task system, preemptive scheduling

Some of the results in this article have previously appeared in preliminary form in Proceedings of the 24th
Euromicro Conference on Real-Time Systems, IEEE, pp. 145-154, and in Proceedings of the 19th European
Symposium on Algorithms, Springer, pp. 555-566.

Baruah’s research was supported in part by NSF grants CNS 1016954, CNS 1115284, CNS 1218693, and
CNS 1409175; and ARO grant W911NF-09-1-0535.

Authors’ addresses: S. Baruah, The University of North Carolina, CB 3175, Department of Computer Science,
Sitterson Hall, Chapel Hill, NC 2759-3175; V. Bonifaci, Istituto di Analisi del Sistemi ed Informatica “Antonio
Ruberti”, Consiglio Nazionale delle Ricerche, Via dei Taurini, 19, 00185 Roma, Italy; G. D’Angelo, Gran
Sasso Science Institute (GSSI), Viale Francesco Crispi 7, 67100, L Aquila, Italy; H. Li, Google, Inc., 1600
Amphitheatre Parkway, Mountain View, CA 94043; A. Marchetti-Spaccamela, Dipartimento di Ingegneria
Informatica Automatica e Gestionale “Antonio Ruberti”, Universita di Roma “La Sapienza”, Via Ariosto25,
00185, Rome, Italy; S. van der Ster and L. Stougie, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081
HV Amsterdam, The Netherlands. Correspondence email: baruah@cs.unc.edu.




1. INTRODUCTION

In implementing safety-critical embedded systems, there is an increasing trend to-
wards integrated computing environments, in which multiple functionalities are im-
plemented on a shared computing platform; this trend is evident in industry-driven
initiatives such as Integrated Modular Avionics (IMA) [Prisaznuk 1992] in aerospace
and AUTOSAR (AUTomotive Open System ARchitecture — see www.autosar.org) in
the automotive industry. It is often the case that not all functionalities implemented in
this manner upon a shared platform are equally important (or critical) to the overall
system; such systems are called mixed-criticality (MC) systems.

In some application domains, critical functionalities are subject to mandatory certi-
fication by statutory certification authorities (CAs). In conjunction with the increasing
trend towards computerized control of functionalities, including non-safety-critical ones
such as entertainment and comfort features, the trend towards integration of multiple
functionalities upon a shared platform means that even in highly safety-critical sys-
tems, typically only a relatively small fraction of the overall system is actually of highly
critical functionality and subject to certification; the rest of the system does not need
to be certified, or is certified to lower levels of assurance. For instance, the RTCA DO-
178B software standard specifies several different criticality levels, with the system
designer expected to assign one of these criticality levels to each task — Figure 1 lists
the criticality levels, and intended interpretations, that are specified in this standard.

In order to certify a system as being correct, the CA must make certain assumptions
about the worst-case behavior of the system during run time. CAs tend to be very con-
servative and require that the safety-critical functionalities be shown to be correct at a
very high level of assurance; the remaining (non-safety-critical) functionalities are usu-
ally validated correct by the system designer/ integrator at lower levels of assurance.

Worst-Case Execution Time. The worst-case execution time (WCET) abstraction plays
a central role in the analysis of real-time systems. For a specific piece of code and a
particular platform upon which this code is to execute, the WCET of the code denotes
the maximum duration of time the code would take to execute upon the platform.
Determining the exact WCET of an arbitrary piece of code is clearly a provably unde-
cidable problem. However, even when severe restrictions are placed upon the structure
of the code (e.g., loops bounds must be known at compile time), sophisticated features
that are found upon the powerful processors used in embedded systems today (such
as multi-level cache, deep pipelining, speculative out-of-order execution, etc.) are hard
to analyze and make it extremely difficult to determine WCETSs precisely. Devising
analytical techniques for obtaining tight upper bounds on WCETsS is currently a very
active and thriving area of research, and sophisticated tools incorporating the latest
results of such research have been developed (see Wilhelm et al. [2008] for an excellent,
if slightly dated, survey).

One consequence of the different levels of assurance of correctness sought by the CA
and the system designer is that the same piece of code may be characterized by different
WCET parameters for the purposes of certification, and for design validation. This is
because different tools for determining WCET bounds may be more or less conservative
than one another: a more conservative tool determines an upper bound on the actual
WCET of a piece of code at a higher level of assurance than a less conservative tool. The
upper bound determined by the more conservative tool is larger — sometimes by several



Level | Failure Condition Interpretation

A Catastrophic Failure may cause a crash

B Hazardous Failure has a large negative impact on safety or performance,
or reduces the ability of the crew to operate the plane due to
physical distress or a higher workload, or causes serious or
fatal injuries among the passengers
C Major Failure is significant, but has a lesser impact than a Haz-
ardous failure (for example, leads to passenger discomfort
rather than injuries)
D Minor Failure is noticeable, but has a lesser impact than a Major
failure (for example, causing passenger inconvenience or a
routine flight plan change)
E No Effect Failure has no impact on safety, aircraft operation, or crew
workload.

Fig. 1. DO-178B is a software development process standard, Software Considerations in Airborne Systems
and Equipment Certification, published by RTCA, Incorporated. The United States Federal Aviation Au-
thority (FAA) accepts the use of DO-178B as a means of certifying software in avionics applications. RTCA
DO-178B assigns criticality levels to tasks, categorized by effects on commercial aircraft.

orders of magnitude — than the one determined by the less conservative tool. Although
it may be necessary (i.e., mandated by a statutory Certification Authority) to use a
very conservative tool for validating the correctness of safety-critical functionalities,
less conservative tools should suffice for validating the correctness of less critical func-
tionalities. Based on this observation, Vestal [2007] proposed that multiple different
WCET values be specified, with the different values being determined at different lev-
els of assurance. These different values are obtained by using different execution-time
analysis tools; we expect that the tool used by the CA is more conservative than the
one used by the system engineer, and hence the CA’s WCET estimates are larger than
the estimates used during the design process.

Multiple Criticality Levels. We have considered two criticality levels — needing certi-
fication, and not needing certification — in the previous discussion. However, in many
safety-critical application domains, more than two criticality levels are specified; for
instance, the DO-178B standard that is widely used in the avionics domain specifies
five different criticality levels (A:-catastrophic/ B:-hazardous/ C:-major/ D:-minor/ E:-no
effect — the adjectives denote the potential consequences of failure at the corresponding
level) and mandates that each functionality be assigned one of these levels. Function-
alities at higher criticality levels (A is the highest level, and E the lowest) are then
subject to more rigorous validation requirements.

Context and Related Work. In traditional (e.g., not mixed-criticality) real-time sys-
tems, a sporadic task [Mok 1983; Leung and Whitehead 1982] ; is characterized by a
WCET c¢;, a relative deadline d;, and a period p;; such a task generates an unbounded
sequence of jobs, with successive jobs arriving at least p; time units apart, and each
job needing up to ¢; units of execution by a deadline that occurs d; time units after
the job’s arrival. As already mentioned, Vestal [2007] proposed generalizing the model
to mixed-criticality systems by allowing for several WCETSs to be specified for each
task, and studied the fixed-priority scheduling of such mixed-criticality sporadic task
systems on a preemptive uniprocessor.

The preemptive uniprocessor scheduling of collections of mixed-criticality indepen-
dent jobs was studied in Baruah et al. [2010a, 2010b, 2012]. An efficient scheduling
algorithm and associated polynomial-time schedulability test was proposed that makes
the following guarantee: any 2-level mixed-criticality system that can be scheduled by
a clairvoyant exact algorithm on a given processor can be scheduled by this algorithm



on a processor that is (1 + +/5)/2 ~ 1.618 times as fast. In Li and Baruah [2010], this
result was extended to mixed-criticality sporadic task systems: a scheduling algorithm
and associated pseudopolynomial-time schedulability test was proposed that gives the
same guarantee. Guan et al. [2011] subsequently proposed an algorithm called PLRS
that only has quadratic runtime complexity, able to schedule a wider range of instances.

Earlier work of the authors introduced the scheduling algorithm EDF-VD, that will
be presented in Section 3. The idea is that higher-criticality tasks have their dead-
lines reduced as long as the system is in lower criticality levels, to ensure schedu-
lability across a criticality change. Roughly, if there are two criticality levels, then
high-criticality tasks have two deadlines. One deadline is defining the real deadline of
the task, the other is a virtual earlier deadline that is used to increase the likelihood
that EDF schedules high-criticality tasks before low-criticality ones.

Subsequently, virtual deadlines have been studied by other authors. Ekberg and
Yi [2012, 2014] also scale relative deadlines, but their approach is somewhat differ-
ent. They extend the concept of demand bound function to the mixed-criticality setting
and provide a schedulability test. Namely, in the case of two levels, they consider to
what extent the deadline of each high-criticality task can be lowered without violat-
ing the schedulability condition. Since there are exponentially many possibilities, a
pseudopolynomial-time heuristic is proposed that is essentially greedy. The approach
has then been extended [Ekberg and Yi 2014] assuming that criticality levels are rep-
resented by a directed acyclic graph. Easwaran [2013] introduces a different technique
for determining the virtual deadlines, which also tries to decrease the deadlines of the
high-criticality tasks separately. This technique, combined with the new schedulability
test, seems to be able to schedule a larger fraction of randomly generated instances
than the algorithm of Ekberg and Yi [2014]. As observed by Burns and Davis [2013], it
is unclear whether the approach of Easwaran [2013] scales to more than two criticality
levels. The downside of Easwaran [2013] and Ekberg and Yi [2012, 2014] is that the
proposed preprocessing algorithms are not polynomial-time, no speedup bounds are
provided and the authors’ claim that their tests outperform EDF-VD is only supported
by results on synthetic task sets.

Su and Zhu [2013] consider two criticality levels and a model in which low-criticality
tasks can be released early. In this model they propose to exploit elastic scheduling, in
which the period of a task can change. They propose a minimum service requirement for
low-criticality tasks, expressed by a maximum period. The system is schedulable if the
high-criticality tasks have a high-criticality execution time and for the low-criticality
tasks the maximum period is considered. The intuition is to exploit the slack left by
high-criticality tasks to execute the low-criticality tasks more frequently. Simulation
results again show that (for certain parameters settings) an improvement over EDF-VD
can be obtained. The downside of the model is that it relaxes the model of Vestal [2007]
by assuming early release. We also observe that the proposal has higher overhead and
it is unclear whether the approach can be effectively extended to more criticality levels.

We refer to Burns and Davis [2013] for an extensive survey of the research that
has been conducted within the real-time scheduling community on mixed-criticality
scheduling problems.

This Research. We study the scheduling of mixed-criticality sporadic task systems
upon a single preemptive processor. An important special case of sporadic task systems
are task systems in which each task 1; satisfies the property that d, = p; — such sys-
tems are called implicit-deadline or Liu & Layland task systems, to distinguish them
from general, arbitrary-deadline task systems. We derive results for both implicit-
deadline and arbitrary-deadline mixed-criticality sporadic task systems. Specifically,
we propose a scheduling algorithm called EDF-VD, and establish the following.



(1) We show that any 2-level (respectively, 3-level) implicit-deadline task system that
can be scheduled by a clairvoyant exact algorithm on a given processor, can be
scheduled by EDF-VD on a processor that is 4/3 (respectively, 2) times as fast.

(2) We show that any K-level implicit-deadline task system that can be scheduled by
a clairvoyant exact algorithm on a given processor can be scheduled by EDF-VD
on a processor that is fx times as fast, where fx is the solution of a nonlinear
optimization problem. Using a global nonlinear continuous optimization solver, we
compute the speedup bound fx for up to 13 criticality levels.

(3) We also show that no non-clairvoyant algorithm can guarantee to always meet
all deadlines on a processor that is less than 4/3 times as fast as the processor
available to the clairvoyant exact algorithm, thereby proving that EDF-VD is an
optimal non-clairvoyant algorithm for 2-level implicit-deadline systems from the
perspective of the processor speedup metric.

(4) For 2-level arbitrary-deadline task systems, we prove a speedup bound of 1++/3/2 ~
1.866. That is, we show that any 2-level arbitrary-deadline task system that can be
scheduled by a clairvoyant exact algorithm on a given processor can be scheduled

by EDF-VD on a processor that is 1 + +/3/2 times as fast.

(5) We provide a schedulability test for EDF-VD having polynomial-time complexity,
and also show that the time complexity per scheduling decision is logarithmic in
the number of tasks. Based on these runtime properties, it is evident that EDF-VD,
in contrast to the algorithms in Li and Baruah [2010] and Guan et al. [2011], can
be considered suitable for implementation in actual systems.

(6) Algorithm EDF-VD sets virtual deadlines in a uniform way for all tasks. In the case
of a 2-level task system with implicit deadlines, the results in (1) and (3) show that
EDF-VD has speedup 4/3 and that in the worst case a speedup of 4/3 is necessary
for any algorithm. Despite this optimality result, it is of interest to investigate
whether defining virtual deadlines nonuniformly might allow to schedule task sets
that are not deemed schedulable by EDF-VD. We show that this is the case and
present an algorithm, EDF-NUVD, that also allows scaling the deadlines non-
uniformly by considering a different schedulability condition than the one used
in (1). We show that, by optimizing the scaling parameters in EDF-NUVD, the
resulting schedulability test recognizes a superset of the task sets schedulable by
EDF-VD.

Organization. The remainder of this article is organized as follows. In Section 2, we
formally describe the mixed-criticality model that we will be using in the remainder of
this article. In Section 3, we consider implicit-deadline tasks; we provide a high-level
description of EDF-VD (Section 3.1) and a formal analysis of its properties and behavior
for implicit-deadline task sets (Sections 3.2-3.4). Then, in Section 4, we move on to
analyze EDF-VD for arbitrary-deadline tasks. The efficient implementation of the run-
time dispatching procedure is discussed in Section 5, while Section 6 discusses more
optimistic runtime dispatching rules and analyzes how to extend EDF-VD to consider
nonuniform scaling factors. We summarize our findings and conclude in Section 7.

2. MODEL AND DEFINITIONS

MC Task Systems. Let K > 1 be an integer. A K-level MC sporadic task system

7 consists of a finite collection (zq, ..., 7,) of MC sporadic tasks. In the following, let

% 1,2, n).

MC Tasks. An MC sporadic task 7; of a K-level system is characterized by a criticality
level x; € [K] and a triple (¢;, d;, p;) € QF x Q4 x Q4, where



—c; = (¢;(1),¢;(2),...,c;(x;)) is a vector of worst-case execution times (WCET), one for
each criticality level less than or equal to x;. We assume that ¢;(1) < ¢;(2) < --- <
¢;(x;). It will be convenient to extend the definition of ¢; to a K-dimensional vector,
by letting c;(k) = ¢;(x;) when y; <k < K;

—d; is the relative deadline of the jobs of 1;;

—p; is the minimum interarrival time (or period) between two jobs of task ;.

MC Jobs. Task t; generates a sequence of jobs (J;1, Ji2, ...). An MC job J;; of task 7;
is characterized by two parameters: J;; = (a;}, y;j), where

—a;; € R, is the arrival time of the job;
—yij € (0, ¢;(x;)] is the execution requirement of the job;

—the (absolute) deadline of job J;; is d; < a;j + di.

Itis important to notice that neither the arrival times nor the execution requirements
are known in advance. A collection I = (a;j, ¥ij)ieln,j>1 of arrival times and execution
requirements is called a scenario for the task system.

The notation is summarized in Table I.

Semantics. The MC task model has the following semantics. Task 7; generates an
unbounded sequence of jobs (1, g, ...), with successive jobs being released at least
p; time units apart. Job J;; arrives at time q;;, has a deadline at time d;;, and needs
to execute for some amount of time y;;. The value y;; is not known in advance; it is
discovered by executing the job until it signals that it has completed execution.

The values of y;; for a given scenario of the system define the kind of behavior
exhibited by the system under that scenario. The criticality level (or simply level) of a
scenario is defined as the smallest integer k£ (1 < k£ < K) such that y;; < ¢;(k) for all jobs
J;j. Note that such an integer always exists, since y;; is assumed to be at most ¢;(x;).

The level of a scenario is always between 1 and K. In a scenario of level %, only
the jobs from tasks of criticality at least & are required to be completed before their
deadlines; all other jobs can be ignored and discarded.

In this article, we assume that there is only one processor to execute the jobs. We
assume the processor to be preemptive: executing jobs may have their execution inter-
rupted at any instant in time and resumed later, at no additional cost.

Definition 2.1. A schedule for a scenario of level % is feasible if every job J;; with
Xi > k receives execution time y;; during its time window [a;;, d;;). A task system t is
(clairvoyantly) feasible if for every scenario of t there exists a feasible schedule.

An online (or non-clairvoyant) scheduling policy for an MC task system 7t discov-
ers the criticality level of the scenario only by executing jobs. At each time instant,
scheduling decisions can be based only on the partial information revealed thus far.

Definition 2.2. An online scheduling policy A is correct for a feasible task system
7 if for any scenario of T the policy generates a feasible schedule. A task system t is
A-schedulable if A is a correct online scheduling policy for t.

Notice that it is always safe to ignore jobs whose criticality is less than £ whenever
the scenario has already exhibited a level of at least k. The level exhibited by a scenario
can only increase, or remain constant, over time.

3. IMPLICIT-DEADLINE TASKS

In this section, we deal with implicit-deadline task systems. This means that the period
of each task equals its relative deadline: p; = d; for all i € [n]. We define the utilization



Table I. Notation

Symbol Meaning
K number of criticality levels
n number of tasks
[n] {1,2,..., n}
. task index
Jj job index
k1l level indices
T task set
7 ith task of t
Xi criticality of t;
ci(D) [th level WCET of ;
d; relative deadline of t;
pi period of 7;
Jij Jjthjob of ;
a;j arrival time of oJ;;
d;; absolute deadline of oJ;;
Yij execution requirement of J;;
of task t; at level & as

def@ i=1,....,n, k=1..., x.

u(k) =
Dbi
Then, the total utilization at level % of tasks that are of criticality level [ is
UE Y wk I=1..Kk=1...L
ielnl: xi=l

For implicit-deadline systems, it is well known that, in the case of a single criticality
level (i.e., K = 1), a task system is feasible on a speed-o uniprocessor if and only if
U1(1) < o [Liu and Layland 1973]. This yields the following necessary condition for
feasibility in mixed-criticality systems.

ProrosiTion 3.1. If T is feasible on a unit-speed processor, then

K
kfllaXKZ U(k) < 1. (1)
1=k
Proor. For each 2 = 1, ..., K, consider a scenario where each task 7; with y; > k&

releases jobs with execution requirement ¢;(k). O

In the sequel, we call a job active if it has been released but not yet completed. In
the case of a single criticality level and a single processor, it is well known that the
Earliest Deadline First (EDF) algorithm, which schedules the active job with earliest
(absolute) deadline, is optimal [Liu and Layland 1973; Dertouzos 1974].

ProrosiTion 3.2. If K = 1, then the Earliest Deadline First algorithm is a correct
scheduling policy for a processor of speed o if and only if U1(1) < o.

In the presence of multiple criticality levels, EDF does not necessarily produce a
feasible schedule, even if the total utilization at each level is less than 1. Consider the
following example.

Example 3.3. Consider a task system 7 = (11, 7o) with the following parameters.



5| (1) (2 p;i
a1l 2 2 4
T2 2 1 5 6

Note that the total utilization at level 1 is U(1) + Us(1) = 2/3, while at level 2 it
is Us(2) = 5/6. However, EDF may fail to meet deadlines, as follows: Assume jobs are
released as early as possible. At time 0, EDF schedules the first job of 7;. At time 2, the
job finishes and EDF starts running the first job of zo. However, if it turns out that this
job exhibits level-2 behavior, it will execute for five time units and miss its deadline at
time 6. If we had started the other way around, either the first job of 73 would have
finished after one time unit and there would have been enough time to schedule the
job from 77, or the scenario would have exhibited level-2 behavior and we could have
discarded the job from ;.

The scheduling algorithm that we propose is called EDF with Virtual Deadlines
(EDF-VD) and is an adaptation of EDF that handles the problem sketched previously,
while maintaining some of the desirable properties of EDF. In the remainder of this
section, we first introduce the algorithm EDF-VD and give a corresponding schedula-
bility condition for a system of K criticality levels. Then, we assess the quality of the
algorithm using the notion of speedup factor.

3.1. Overview of EDF-VD for Implicit-Deadline Tasks

Let 7 denote the MC implicit-deadline sporadic task system that is to be scheduled
on a unit-speed preemptive processor. Algorithm EDF-VD consists of an offline prepro-
cessing phase and a runtime scheduling phase. The first phase is performed prior to
runtime and executes a schedulability test to determine whether 7 can be successfully
scheduled by EDF-VD or not. If t is deemed schedulable, this phase also provides two
output values that will serve as input for the runtime scheduling algorithm: an integer
parameter & (with 1 < £ < K); and, for each task 7; of 7, a parameter d;, called virtual
deadline, which is never larger than d;. The second phase performs the actual runtime
scheduling and consists of K variants, called EDF-VD(1), EDF-VD(2), ..., EDF-VD(K).
Each of these is related to a different value of the parameter & that was provided by
the first phase; that is, at runtime, the variant EDF-VD(%) is applied. Intuitively, if
the scenario is exhibiting a level smaller than or equal to %, then jobs are scheduled
according to EDF with respect to the virtual deadlines (d; )?_,- As soon as the scenario
exhibits a level greater than £, jobs are scheduled according to EDF with respect to the
original deadlines (d;)?_;. In the following, we give more details on the two phases.

Offline Preprocessing Phase. The algorithm for the first phase is given in pseudocode

form in Algorithm 1. If Y5, U,()) < 1, then all jobs can be scheduled for their worst-
case execution times at their own criticality level. Therefore, in this case, the virtual
deadlines of all the tasks are set to be equal to the original deadlines (see lines 1-5).
Otherwise, at line 7, we test whether there exists a 1 < k < K satisfying condition (3),
which is given in Section 3.2 along with its correctness proof. If no such % exists, then
7 is deemed unschedulable (line 9). If there exists a % satisfying condition (3), then the
virtual deadlines of all tasks having criticality level 1, ..., k are set to be equal to the
original deadlines (line 14), while those of tasks having criticality level £ + 1,..., K
are scaled by a factor x (line 16). The value of x is specified at line 11 and will be
explained later in Section 3.2. Note that if condition (3) is satisfied, then x is well

defined. Moreover, since Y, U;(1) > 1, then x < 1.



ALGORITHM 1: EDF with Virtual Deadlines (EDF-VD) — Offline preprocessing phase (for
implicit-deadline task systems)

Input: task system 7 = (14, ..., 7,,) to be scheduled on a unit-speed preemptive processor
1 if Y5, U,(0) < 1 then
2: k< K
3: fori=1,2,...,ndo
4: d «d
5. end for
6: else
7:  Let k(1 <k < K) be such that (3) holds
8: if no such % exists then
9: return unschedulable
10: else
) Y Uk 1=K, @)
1: Letx ¢ [sz; U0y 0 }
12: for:=1,2,..., ndo
13: if y; <k then
14: ch <~ d;
15: else
16: d < xd
17: end if
18: end for
19: endif
20: end if

21: return (schedulable, &, (d,),)

Runtime Scheduling Phase. A pseudocode describing the runtime phase is given in
Algorithm 2. The function current_level() returns the level exhibited by the scenario
so far, that is,

current_level() = min{/ € [K] : 7; < ¢;() for all jobs oJ;; (partially) executed so far},

where 7;; is the part of y;; that has been observed thus far. (When current_level() =
[, we also say that the system is in level [.)

Algorithm 2 takes as input the integer % and the virtual (relative) deadlines d; com-
puted during the preprocessing phase. As long as the system isinlevel 1,2, ..., k&, the
tasks having level greater than or equal to current_level() are scheduled accord-
ing to EDF with respect to these virtual deadlines, while tasks of level smaller than
current_level () are discarded (lines 1-5). When the system is observed to reach a
level greater than £, all jobs from tasks of criticality % or below are discarded and the
original deadlines of the tasks of criticality £ + 1 and higher are restored. The priority
ordering of the jobs that are active at the time when the system turns to a level greater
than % is computed according to the original deadlines at lines 6—7 and the jobs are
scheduled accordingly. From this moment onwards, EDF is applied to all the tasks
having level greater than or equal to current_level () (lines 9-14). Note that if 2 = K,
then Algorithm 2 is simply EDF, as no scaling of the deadlines occurs in Algorithm 1.

The efficient implementation of Algorithm 2 is discussed in Section 5.

Note that once the parameter % is fixed, when applying EDF-VD(%), the criticality
levels are divided into two sets, where the levels in the same set are treated homoge-
neously, as if there were only two levels. The parameter k& determines the boundary
between these two sets.



ALGORITHM 2: EDF with Virtual Deadlines (EDF-VD) — Runtime scheduling
Input: task system 7 = (1, ..., 7,), integer & (1 < k < K), virtual deadlines (d;)"_,

: loop

on job arrival:

if a job of task t; arrives at time ¢, assign it a virtual absolute deadline equal to ¢ + d;

on job arrival/completion:

schedule the active job, among the tasks 7; such that x; > current_level(), having earliest
virtual absolute deadline (ties broken arbitrarily);

on current_level() > k:

schedule the active job, among the tasks 7; such that x; > &, having earliest absolute
deadline (ties broken arbitrarily); then break from the loop
8: end loop

9: loop

10: on job arrival:

11: if a job of task 7; arrives at time ¢, assign it an absolute deadline equal to ¢ + d;

12: on job arrival/completion:

13:  schedule the active job, among the tasks t; such that x; > current_level(), having
earliest absolute deadline (ties broken arbitrarily)

14: end loop

3.2. Schedulability Conditions
TuEOREM 3.4. Given an implicit-deadline task system t, if either

K
Y um=1 @
=1
or, for some k (1 < k < K), the following condition holds:
k « B
1-> U >0 and Zl:kzl Ui®) < 1 %l:kJrl Uz(l)’ @)
I=1 1->,U0) kLU

then 1 can be correctly scheduled by EDF-VD.

Proor. If condition (2) holds, then all jobs can be scheduled for their worst-case
execution times at their own criticality level. Hence, EDF-VD(K), that is, EDF without
deadline scaling, will yield a correct schedule. Therefore, from here on, the proof focuses
on the case that (2) does not hold and (3) holds for some %2 < K.

The proof consists of two steps. In the first step, we show that if thereisan x < 1
such that the following two inequalities hold:

k K
Suw+ Uk (4)
X
=1 I=k+1
k K
Y U+ Y Ub=1, (5)
=1 I=k+1

then EDF-VD(%) is a correct scheduling policy for z.
In the second step, we show that if (3) holds for some £ < K, then there exists x < 1
such that (4) and (5) hold. We discuss later in this section how the scaling parameter x

is determined . For the first step , we determine an upper bound on the “virtual
utilization”; the utilization of the system as long as the virtual deadlines are applied, if

EDF-VD(k)is



the scheduling algorithm we apply. We will slightly abuse notation and write p; for the
“virtual period” that equals the virtual deadline d; for all tasks t;, in order to define
the “virtual utilization.” Assume for all tasks r; with x; at most k&, that all jobs are
executed at their own-criticality execution requirement. For all tasks 7; with x; > &,
the jobs are executed at criticality level k. This clearly gives an upper bound on the

utilization for as long as the system is in criticality levels 1, 2, ..., k. Also note that by
this assumption, no complications can occur at criticality changes before level £ + 1 is
reached. The “virtual utilization” of this task system in levels 1, 2, ..., k is at most
. c;(k) ci(k)
0=y AW _ 5 e
ie[n] v icln] 4
ci(x:) ci(k)
_ Z ld):l T Z d[
ielnl: xi<k ielnl: xi>k x
_ Z Ci()'(i) n Z Ci(kj)
ielnl: xi<k D iclnl: xi>k *Pi
k K
U;(k)
=S un+ Y =
x
=1 l=k+1
Note that a sufficient condition for correctness in levels 1,2, ...,k is that U(k) < 1.
Hence, we find that (4) ensures correctness in levels 1, 2, ..., k.

For any level [ > k, assume by contradiction that a deadline miss occurs in some
scenario. We bound the execution requirement of all tasks until the time of the first
deadline miss, which is denoted by ¢;. Let I denote a minimal collection of jobs released
by 7 on which a deadline is missed (by minimal, we mean that EDF-VD(k) would meet
all deadlines if scheduling any proper subset of I). We assume that (4) and (5) hold
and, without loss of generality, that the first job arrival is at time zero. Hence, the job
that misses a deadline is of level [ > &, because at time ¢, the system is at least in level
k + 1. Let #* denote the time where behavior of level & + 1 is first exhibited.

Cramv 3.5. All jobs receiving execution in [t*, tr) have deadlines at most ty.

Proor. Suppose there is a job that has deadline larger than ¢, and receives some
execution between ¢* and ¢¢, say in the interval [¢, ). This means that during [¢;, t)
there are no jobs pending with deadline at most ¢;. Then, the set of jobs obtained by
considering only jobs with arrival time at least £, will also miss a deadline at ¢;, which
contradicts the assumed minimality of I. O

We define the quantity »;(¢) as the cumulative execution requirement of jobs of task
7; until time ¢ and derive upper bounds for it, for all tasks. Among all jobs executing in
[t*, t¢), let Jy be the job with the earliest arrival time. Denote by ay its arrival time and
by dj its absolute deadline.

Cramm 3.6. For any task t; having x; <k, it holds that
ni(tr) < (ap + x(tr — ao)u; (x;).

Proor. Note that no job of 7; will receive execution after ¢*. If such a job executes
after ag, it must have a deadline no larger than the virtual deadline of Jy, which is
ap+x(dyo —ap). Since t; > dp by Claim 3.5, this means that no job of task r; with deadline
greater than ap + x(¢; — ao) will execute after ao.

Suppose now that a job with x; < % and deadline larger than ay + x(¢f — ap) was
executed for some time before ao. Let t:denote the latest instant at which any such job



executes. This means that at this instant, there were no jobs with absolute deadline at
most ap + x(tf — ap) awaiting execution. Hence, the set of jobs obtained by considering
only those jobs in I that have arrival time at least # also misses a deadline. This
contradicts the assumed minimality of I.

This implies that there are at most (ap + x(¢f — ap))/p; jobs of 7; until time ¢;; each
of them requires an execution time of at most ¢;(x;). Therefore, the total execution
requirement of 7; is bounded by (ap + x(tf — ap)wi(x;). O

Cramm 3.7. Any task t; with x; > k has
nilts) < %ui(k) +(t — a0 ().

Proor. We distinguish two cases.

Case 1. Task t; Does not Release a Job at or after ay. Each job of t; has a virtual
deadline of at most ay + x(t; — ag). Otherwise, consider a job with a larger virtual
deadline and let # denote the latest time instant at which this job executes. The job
sequence consisting of only those jobs with an arrival time larger than ¢ also misses
a deadline and this is in contradiction with the assumed minimality of 1. Hence, each
job of 7; has an actual deadline of at most ag/x + ¢ — ap and there are at most ‘M

of them. Since these jobs do not execute in [t*, ¢/) (else, Jp would not be the one with
earliest release), the execution requirement per job is at most ¢;(k). Combining these
observations, we bound the execution requirement of jobs from task z; by

(R
< +ir— 0)0}() ) = %ui(k)+(tf —ap)u; (k)

< %ui(k) + @ — aoui(x).

Case 2. Task t; Releases One or More Jobs at or after ay. Let a; denote the first release
of a job from 7; greater than or equal to ay. The previously released job of 7; did not
execute in [t*, t¢), by definition of ¢; and ap. Therefore, it is safe to assume that until
a; the execution requirement per job from r; was bounded by c;(k) and after that it is
bounded by ¢;(x;). Hence, the cumulative requirement of all jobs from z; is bounded by

au (k) + (tr — a)u(x;) < aoui(R) + (¢r — ao)u;(x;)
< %ui(io + (- a)ui(x0),

where the first inequality comes from the facts that ay < ¢; and u;(k) < u;(x;) and the
second one fromx <1. O

Summing the cumulative requirements over all tasks gives

S omitp)+ Y milty)

i:xi<k i:xi>k
< Y (a0 +xltr —a)ui(x) + Y (%ui(k) +(t; — ao)ui(Xi)>
iixi<k iixi>k
k K U (k)
= a (Z un+ Yy = )+(t,» —ao)( ZU;(Z)+ Z Ul(l)>
=1 I=k+1 x I=k+1

< ap + (tr — ao) ( Z U + Z Uz(l))

I=k+1



where the last inequality comes from the assumption that (4) holds. The assumed
deadline miss implies

k K
ao+<tf—ao><xZUl(l)+ > Uz(l)> >t

=1 I=k+1
k K
& (tf — ao)<x Y UD+ Y Ul(l)> > tr —ao
=1 I=k+1
k K
& Y UM+ Y U > 1.
=1 I=k+1

But this directly contradicts (5).

Now that we have shown that (4) and (5) are sufficient for the correctness of EDF-
VD(k), it remains to show that if (3) holds, then (4) and (5) also hold. Rewriting (4)
gives

ZUZ<Z>+ 5 L

I=k+1

xZUz(ZH- Z Ui(k) < x

=1 I=k+1

& Z Ui(k) < x (1 —~ Z Uz(l))

I=k+1

N Zl:k+1 Ul(k) < x, (6)

1-Y% ., U0
where in the last step we used that 1 — Zf’:l U;(l) > 0. Rewriting (5) gives

k K
)y UM+ ) Ub=1

=1 I=k+1
& x Z U <1- Z U,0)
= k+1
Zzz1 Ui

Hence, if (3) holds, there must exist an x that satisfies both (6) and (7). This concludes
the proof of Theorem 3.4. Note that any x satisfying (6) and (7) suffices as a scaling
parameter. O

3.3. Speedup Bounds

Between the sufficient condition for schedulability given by (3) and the necessary
condition (1), there is a gap. To analyze this gap, we consider a task system satisfying
the necessary condition given in (1) and determine how much faster the processor
should be to correctly schedule the task set by EDF-VD.



The speedup factor of a scheduling algorithm A is the smallest real number f such
that any task system t that is feasible on a unit-speed processor (in the sense of
Definition 2.1) is correctly scheduled by A on a speed- f processor. The speedup factor
is a convenient metric for comparing the worst-case behavior of different algorithms
for solving the same problem: the smaller the speedup factor, the closer the behavior
of the algorithm to that of a clairvoyant exact algorithm.

We show how to derive tight speedup bounds for EDF-VD for any number K of
criticality levels. When K equals 2 or 3, we analytically derive closed-form expressions
for the speedup bounds. When K > 3, the computation of the speedup bound is an
analytically challenging problem; we solve it numerically for all K < 13.

3.3.1. Two Levels
TuEOREM 3.8. If a 2-level task system 1 satisfies
max{U;(1) + Us(1), U(2)} < 1,

then EDF-VD correctly schedules t on a processor of speed 4/3. In particular, if T is
schedulable on a unit-speed processor, then it is EDF-VD-schedulable on a processor of
speed 4/3.

Proor. For a 2-level system, the schedulability condition (3) is

U(1)  _1-Ux2)

) 8

1-U,(1) - Ui(1) ®

and 1 — U1(1) > 0. To prove the claim, we find the largest g such that, if
Ui(1)+Ux(1) <¢q 9)

Uy(2) <q,

then the sufficient condition (8) still holds. The required speedup then equals 1/q. Note
that since U3(2) only appears with a negative sign on the right-hand side of (8) and
Us(1) only appears on the left-hand side, the worst case in terms of tightness of the
condition is that Us(2) = g and Us(1) = g — U1(1). Henceforth, this assumption is made.

Further, we define y ey q. Then, sufficient condition (8) becomes

1-y-Ui(1) - y
1-U;(1) ~ U (1)

This condition is satisfied if and only if U1(1)2 — U1(1)+y > 0 (here we used 1 —U;(1) >
0). This inequality holds for all U1(1) € [0, 1) if and only if y > 1/4. Hence, the largest
q such that (9) implies (8) is ¢* = 3/4, and the required speedup is 1/¢* = 4/3.

The second part of the statement follows from the first and Proposition 3.1. O

(10)

3.3.2. Three Levels

TaEOREM 3.9. If a 3-level task system t satisfies
K
Uik) <1 11
kglg,{:a; k) =1, (v

then EDF-VD correctly schedules t on a processor of speed 2. In particular, if T is feasible
on a unit-speed processor, then it is EDF-VD-schedulable on a processor of speed 2.



Proor. We recall the schedulability conditions for a 3-level system from (3) for i =
1,2:
Up(D) +Us(D) _ 1-Us(2) - Us(3)
1-0,(1) — U:(1)
U  _ 1-Us®)
1-U:(1)—Ua(2) ~ Ui(D) + Ua(2)
where for (12) we also assume that 1 —U;(1) > 0 and for (13) that 1 —U;(1) — Ua(2) > 0.

We find the speedup in a similar way as in Section 3.3.1. That is, we search for the
largest q, such that if

(12)

(13)

Ui(1)+U(1)+Us(1) <q
Us(2)+Us(2) < q
Us(3) <q

hold, then at least one of the inequalities in (12) and (13) holds. Note that the worst-
case speedup is obtained when the previous inequalities hold with equality. To see this,
we reason as follows.

The term Us(3) only appears in the right-hand side of (12) and (13) and the expres-
sions are monotonically decreasing in Us(3). Hence, the worst case (lowest right-hand
side value) is when Uj3(3) is largest, that is, U3(3) = q.

Since Us(2) appears only in the left-hand side of (13) and this side is monotonically
increasing in Ug(2), the worst-case is if U3(2) = g — U(2).

Since Uy(1) and Us(1) appear only in the left-hand side of (12) and this side is
monotonically increasing in Ug(1)+ Us(1), the worst-case is if Ua(1)+ Us(1) = ¢ — U1 (1).

Now we substitute these expressions in the inequalities (12) and (13) to obtain the
following two conditions

qg —U.(1) - 1—q—Uy2)
1-U:(1) — U,(1)
qg—Us(2) - 1—gq
1-Ui(1) - Us(2) ~ Ui(1) + Us(2)

In these two equations, we substitute y ey q, and after rewriting we find

1 - U(D)U1(1) + Ua(2)) < y
(1 = U22)(U1(1) + Ua(2)) < y.

It is easily verified that the minimum of these two left-hand sides attains its maximum
value when U;(1) = Usx(2). After substituting, we obtain

2U1(1 — 2U:(1) +y > 0.

This inequality holds for all U1(1) € [0, 1) if and only if y > 1/2, which gives ¢* = 1/2;
the resulting speedup bound is therefore 2.
Again, the second part of the claim follows from the first and Proposition 3.1. O

3.3.3. Arbitrary Number of Levels. The problem of determining the minimum speedup
factor fx such that any K-level task system that is feasible on an unit-speed processor
is correctly scheduled by EDF-VD on a fx-speed processor can be formulated as follows:
Find the largest ¢ (g < 1) such that the following implication holds for all U;(k),
k=1,2,.... K, l=Fkk+1, ... K:



K
YUk <q VE=12,....K =

I=k
k
K 1- U()>0 and
either ZUZ(Z) <1 or 3ke{l,2, ..., K-1} s.t. ;
I=1 Y Uk _ 135, U0
Y00 = YL uo

If the largest such value of q is ¢*, the speedup factor is then fx = 1/g¢*. Equivalently,
we want to find the smallest ¢ such that this implication does not hold, that is, the
premise is true but the conclusion is false; in other words, the largest value of the
speedup for which one can still construct a counterexample. This leads to the following

formulation:

ming (NLP)
K
st. Y Ulk)<q VE=1,2,....K;
=k
K
Z Ul >1
=1

k e K
-(1-Yuw>0 ~ Zl:k*,j uiw 1 %H”l VD) k=12 K-1
1->7,U00 SF LU

=1
Formulation (NLP) involves disjunctions (the negated conjunctions in the last set of
constraints), which are typically disallowed by numerical solvers. We prove that solving
(NLP) is equivalent to finding ¢* def 1nin =12, K-1 q}‘, where each q}‘ is the solution to
the following nonlinear program:

q; =ming; (NLP,)
K
st. Y Ulk) <gq; vk=1,2,....K;
=k
K
YU =1
=1
T U®) 1= S U0 VE=1,2,....7;

k > A
1->,U00 S, Ui

J
1-— Z Ud) >0
=1
Jj+1
1-> UM <0.
=1
We denote the constraints of these nonlinear programs as follows:

X K
c ! :ZUl(k)gq VE=1.2.....K A Y UD > 1},
I=k =1



4,0 [ EEa U® 1= 35, U0
1-30, 00" Yoo |

k
Bkdéf{l—ZUl(l)> o},

=1
foreach 2 =1,2,..., K — 1. Then, the constraints of program (NLP) can be written as
K-1
Cn /\ — (A A By),
k=1
while those of program (NLP;) can be written as

J
C A </\ ﬂAk> A Bj A—=Bjy1.
k=1
The equivalence is shown in the next lemma.
Lemma 3.10. For any K-level feasible task system, the set of values Uj(k), k =
1,2,...,K,l =k k+1,..., Ksatisfies
K-1
CA /\ ~(An By (14)
k=1
if and only if it satisfies

K-1 J
\/(C/\(/\—-Ak)/\Bj/\—- j+1>. (15)
j=1 k=1

Proor. First, observe that condition B; implies condition Bj for any j' < j and that
condition C implies condition —Bg. Moreover, condition B; holds since the task system
is assumed feasible. Therefore, for K = 2, conditions (14) and (15) are both equivalent
toC A —'Al.

By induction, let us assume that conditions (14) and (15) are equivalent for task
systems of K — 1 levels. We rewrite conditions (14) and (15) for K-level systems as
follows, respectively:

K-2
~(Ag-1 ABg) AC A\ ~ (A A By (14)
k=1
and

(e (o)) 5 (e (Ava) o)

k=1 j=1 k=1
K-1 K-2 J
:(C/\(/\—'Ak>/\BK1>V\/<CA(/\—-Ak>ABjA—' j+1)- (15)
k=1 j=1 k=1

We distinguish the cases that Bx_; does and does not hold. If Bx_; holds, then B;
holds for each j = 1,2, ..., K — 1. It follows that (14’) and (15’) are equivalent to

C A (17\1 —1Ak> .

k=1



Table II. Minimum Speedup Factor for K < 13

Levels
Number of levels K | Speedup factor fx
2 1.3333
3 2.0000
4 2.6180
5 3.0811
6 3.7321
7 4.2361
8 4.7913
9 5.3723
10 5.8551
11 6.4641
12 6.9487
13 7.5311

If Bx_1 does not hold, the two conditions are equivalent to
K-2
CA /\ = (Ax A By)
k=1
and

K-2 J
\/ (C/\ (/\ﬁAk) /\Bj/\_'Bj+1> ,
j=1

k=1
respectively, and the lemma holds by the inductive hypothesis. O

We solve program (NLP;), for each j = 1,2, ..., K —1, to find the minimum speedup
factor fx = 1/q*, where ¢* = minj_1o  x_1 q}‘-‘. After clearing the denominators in
program (NLP;), we obtain a system of multivariate polynomial inequalities in the
variables U;(k) and g;. As such, it can be solved by a (numerical) global nonlinear
continuous optimization solver. In this case, we used CoUENNE [Belotti et al. 2009].
CouENNE was able to find the optimum for any K < 13. The resulting speedup factors
are reported in Table II.

TaEOREM 3.11. Let T be a K-level task system with 2 < K < 13. If t is feasible on a

unit-speed processor, then it is EDF-VD-schedulable on a processor of speed fx, where
fx (£107%) is as in Table II.

3.4. Optimality of EDF-VD for Two Levels
We now show that — at least in the case of 2-level implicit-deadline systems — EDF-VD
is an optimal algorithm in terms of the speedup factor metric.

TaEOREM 3.12. No non-clairvoyant algorithm for scheduling 2-level implicit-
deadline sporadic task systems can have a speedup bound better than 4/3.

Proor. Consider the example task system t = (z1, 12), with the foll