
HAL Id: hal-01249091
https://inria.hal.science/hal-01249091v1

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preemptive Uniprocessor Scheduling of
Mixed-Criticality Sporadic Task Systems

Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo d’Angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne van Der Ster, Leen Stougie

To cite this version:
Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo d’Angelo, Haohan Li, Alberto Marchetti-Spaccamela,
et al.. Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems. Journal of
the ACM (JACM), 2015, 62 (2), pp.14. �10.1145/2699435�. �hal-01249091�

https://inria.hal.science/hal-01249091v1
https://hal.archives-ouvertes.fr

14

Preemptive Uniprocessor Scheduling of Mixed-Criticality
Sporadic Task Systems

SANJOY BARUAH, University of North Carolina
VINCENZO BONIFACI, IASI – Consiglio Nazionale delle Ricerche
GIANLORENZO D’ANGELO, Gran Sasso Science Institute (GSSI)
HAOHAN LI, University of North Carolina
ALBERTO MARCHETTI-SPACCAMELA, Sapienza Università di Roma
SUZANNE VAN DER STER, Vrije Universiteit Amsterdam
LEEN STOUGIE, Vrije Universiteit Amsterdam & CWI

Systems in many safety-critical application domains are subject to certification requirements. For any given
system, however, it may be the case that only a subset of its functionality is safety-critical and hence
subject to certification; the rest of the functionality is non-safety-critical and does not need to be certified,
or is certified to lower levels of assurance. The certification-cognizant runtime scheduling of such mixed-
criticality systems is considered. An algorithm called EDF-VD (for Earliest Deadline First with Virtual
Deadlines) is presented: this algorithm can schedule systems for which any number of criticality levels are
defined. Efficient implementations of EDF-VD, as well as associated schedulability tests for determining
whether a task system can be correctly scheduled using EDF-VD, are presented. For up to 13 criticality
levels, analyses of EDF-VD, based on metrics such as processor speedup factor and utilization bounds,
are derived, and conditions under which EDF-VD is optimal with respect to these metrics are identified.
Finally, two extensions of EDF-VD are discussed that enhance its applicability. The extensions are aimed at
scheduling a wider range of task sets, while preserving the favorable worst-case resource usage guarantees
of the basic algorithm.

General Terms: Algorithms

Additional Key Words and Phrases: Mixed criticality, sporadic task system, preemptive scheduling

Some of the results in this article have previously appeared in preliminary form in Proceedings of the 24th
Euromicro Conference on Real-Time Systems, IEEE, pp. 145–154, and in Proceedings of the 19th European
Symposium on Algorithms, Springer, pp. 555–566.
Baruah’s research was supported in part by NSF grants CNS 1016954, CNS 1115284, CNS 1218693, and
CNS 1409175; and ARO grant W911NF-09-1-0535.
Authors’ addresses: S. Baruah, The University of North Carolina, CB 3175, Department of Computer Science,
Sitterson Hall, Chapel Hill, NC 2759-3175; V. Bonifaci, Istituto di Analisi del Sistemi ed Informatica “Antonio
Ruberti”, Consiglio Nazionale delle Ricerche, Via dei Taurini, 19, 00185 Roma, Italy; G. D’Angelo, Gran
Sasso Science Institute (GSSI), Viale Francesco Crispi 7, 67100, L’ Aquila, Italy; H. Li, Google, Inc., 1600
Amphitheatre Parkway, Mountain View, CA 94043; A. Marchetti-Spaccamela, Dipartimento di Ingegneria
Informatica Automatica e Gestionale “Antonio Ruberti”, Università di Roma “La Sapienza”, Via Ariosto25,
00185, Rome, Italy; S. van der Ster and L. Stougie, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081
HV Amsterdam, The Netherlands. Correspondence email: baruah@cs.unc.edu.

1. INTRODUCTION
In implementing safety-critical embedded systems, there is an increasing trend to-
wards integrated computing environments, in which multiple functionalities are im-
plemented on a shared computing platform; this trend is evident in industry-driven
initiatives such as Integrated Modular Avionics (IMA) [Prisaznuk 1992] in aerospace
and AUTOSAR (AUTomotive Open System ARchitecture – see www.autosar.org) in
the automotive industry. It is often the case that not all functionalities implemented in
this manner upon a shared platform are equally important (or critical) to the overall
system; such systems are called mixed-criticality (MC) systems.

In some application domains, critical functionalities are subject to mandatory certi-
fication by statutory certification authorities (CAs). In conjunction with the increasing
trend towards computerized control of functionalities, including non-safety-critical ones
such as entertainment and comfort features, the trend towards integration of multiple
functionalities upon a shared platform means that even in highly safety-critical sys-
tems, typically only a relatively small fraction of the overall system is actually of highly
critical functionality and subject to certification; the rest of the system does not need
to be certified, or is certified to lower levels of assurance. For instance, the RTCA DO-
178B software standard specifies several different criticality levels, with the system
designer expected to assign one of these criticality levels to each task — Figure 1 lists
the criticality levels, and intended interpretations, that are specified in this standard.

In order to certify a system as being correct, the CA must make certain assumptions
about the worst-case behavior of the system during run time. CAs tend to be very con-
servative and require that the safety-critical functionalities be shown to be correct at a
very high level of assurance; the remaining (non-safety-critical) functionalities are usu-
ally validated correct by the system designer/ integrator at lower levels of assurance.

Worst-Case Execution Time. The worst-case execution time (WCET) abstraction plays
a central role in the analysis of real-time systems. For a specific piece of code and a
particular platform upon which this code is to execute, the WCET of the code denotes
the maximum duration of time the code would take to execute upon the platform.
Determining the exact WCET of an arbitrary piece of code is clearly a provably unde-
cidable problem. However, even when severe restrictions are placed upon the structure
of the code (e.g., loops bounds must be known at compile time), sophisticated features
that are found upon the powerful processors used in embedded systems today (such
as multi-level cache, deep pipelining, speculative out-of-order execution, etc.) are hard
to analyze and make it extremely difficult to determine WCETs precisely. Devising
analytical techniques for obtaining tight upper bounds on WCETs is currently a very
active and thriving area of research, and sophisticated tools incorporating the latest
results of such research have been developed (see Wilhelm et al. [2008] for an excellent,
if slightly dated, survey).

One consequence of the different levels of assurance of correctness sought by the CA
and the system designer is that the same piece of code may be characterized by different
WCET parameters for the purposes of certification, and for design validation. This is
because different tools for determining WCET bounds may be more or less conservative
than one another: a more conservative tool determines an upper bound on the actual
WCET of a piece of code at a higher level of assurance than a less conservative tool. The
upper bound determined by the more conservative tool is larger – sometimes by several

Fig. 1. DO-178B is a software development process standard, Software Considerations in Airborne Systems
and Equipment Certification, published by RTCA, Incorporated. The United States Federal Aviation Au-
thority (FAA) accepts the use of DO-178B as a means of certifying software in avionics applications. RTCA
DO-178B assigns criticality levels to tasks, categorized by effects on commercial aircraft.

orders of magnitude – than the one determined by the less conservative tool. Although
it may be necessary (i.e., mandated by a statutory Certification Authority) to use a
very conservative tool for validating the correctness of safety-critical functionalities,
less conservative tools should suffice for validating the correctness of less critical func-
tionalities. Based on this observation, Vestal [2007] proposed that multiple different
WCET values be specified, with the different values being determined at different lev-
els of assurance. These different values are obtained by using different execution-time
analysis tools; we expect that the tool used by the CA is more conservative than the
one used by the system engineer, and hence the CA’s WCET estimates are larger than
the estimates used during the design process.

Multiple Criticality Levels. We have considered two criticality levels – needing certi-
fication, and not needing certification – in the previous discussion. However, in many
safety-critical application domains, more than two criticality levels are specified; for
instance, the DO-178B standard that is widely used in the avionics domain specifies
five different criticality levels (A:-catastrophic/ B:-hazardous/ C:-major/ D:-minor/ E:-no
effect – the adjectives denote the potential consequences of failure at the corresponding
level) and mandates that each functionality be assigned one of these levels. Function-
alities at higher criticality levels (A is the highest level, and E the lowest) are then
subject to more rigorous validation requirements.

Context and Related Work. In traditional (e.g., not mixed-criticality) real-time sys-
tems, a sporadic task [Mok 1983; Leung and Whitehead 1982] τi is characterized by a
WCET ci, a relative deadline di, and a period pi; such a task generates an unbounded
sequence of jobs, with successive jobs arriving at least pi time units apart, and each
job needing up to ci units of execution by a deadline that occurs di time units after
the job’s arrival. As already mentioned, Vestal [2007] proposed generalizing the model
to mixed-criticality systems by allowing for several WCETs to be specified for each
task, and studied the fixed-priority scheduling of such mixed-criticality sporadic task
systems on a preemptive uniprocessor.

The preemptive uniprocessor scheduling of collections of mixed-criticality indepen-
dent jobs was studied in Baruah et al. [2010a, 2010b, 2012]. An efficient scheduling
algorithm and associated polynomial-time schedulability test was proposed that makes
the following guarantee: any 2-level mixed-criticality system that can be scheduled by
a clairvoyant exact algorithm on a given processor can be scheduled by this algorithm

on a processor that is (1 + √
5)/2 ≈ 1.618 times as fast. In Li and Baruah [2010], this

result was extended to mixed-criticality sporadic task systems: a scheduling algorithm
and associated pseudopolynomial-time schedulability test was proposed that gives the
same guarantee. Guan et al. [2011] subsequently proposed an algorithm called PLRS
that only has quadratic runtime complexity, able to schedule a wider range of instances.

Earlier work of the authors introduced the scheduling algorithm EDF-VD, that will
be presented in Section 3. The idea is that higher-criticality tasks have their dead-
lines reduced as long as the system is in lower criticality levels, to ensure schedu-
lability across a criticality change. Roughly, if there are two criticality levels, then
high-criticality tasks have two deadlines. One deadline is defining the real deadline of
the task, the other is a virtual earlier deadline that is used to increase the likelihood
that EDF schedules high-criticality tasks before low-criticality ones.

Subsequently, virtual deadlines have been studied by other authors. Ekberg and
Yi [2012, 2014] also scale relative deadlines, but their approach is somewhat differ-
ent. They extend the concept of demand bound function to the mixed-criticality setting
and provide a schedulability test. Namely, in the case of two levels, they consider to
what extent the deadline of each high-criticality task can be lowered without violat-
ing the schedulability condition. Since there are exponentially many possibilities, a
pseudopolynomial-time heuristic is proposed that is essentially greedy. The approach
has then been extended [Ekberg and Yi 2014] assuming that criticality levels are rep-
resented by a directed acyclic graph. Easwaran [2013] introduces a different technique
for determining the virtual deadlines, which also tries to decrease the deadlines of the
high-criticality tasks separately. This technique, combined with the new schedulability
test, seems to be able to schedule a larger fraction of randomly generated instances
than the algorithm of Ekberg and Yi [2014]. As observed by Burns and Davis [2013], it
is unclear whether the approach of Easwaran [2013] scales to more than two criticality
levels. The downside of Easwaran [2013] and Ekberg and Yi [2012, 2014] is that the
proposed preprocessing algorithms are not polynomial-time, no speedup bounds are
provided and the authors’ claim that their tests outperform EDF-VD is only supported
by results on synthetic task sets.

Su and Zhu [2013] consider two criticality levels and a model in which low-criticality
tasks can be released early. In this model they propose to exploit elastic scheduling, in
which the period of a task can change. They propose a minimum service requirement for
low-criticality tasks, expressed by a maximum period. The system is schedulable if the
high-criticality tasks have a high-criticality execution time and for the low-criticality
tasks the maximum period is considered. The intuition is to exploit the slack left by
high-criticality tasks to execute the low-criticality tasks more frequently. Simulation
results again show that (for certain parameters settings) an improvement over EDF-VD
can be obtained. The downside of the model is that it relaxes the model of Vestal [2007]
by assuming early release. We also observe that the proposal has higher overhead and
it is unclear whether the approach can be effectively extended to more criticality levels.

We refer to Burns and Davis [2013] for an extensive survey of the research that
has been conducted within the real-time scheduling community on mixed-criticality
scheduling problems.

This Research. We study the scheduling of mixed-criticality sporadic task systems
upon a single preemptive processor. An important special case of sporadic task systems
are task systems in which each task τi satisfies the property that di = pi — such sys-
tems are called implicit-deadline or Liu & Layland task systems, to distinguish them
from general, arbitrary-deadline task systems. We derive results for both implicit-
deadline and arbitrary-deadline mixed-criticality sporadic task systems. Specifically,
we propose a scheduling algorithm called EDF-VD, and establish the following.

(1) We show that any 2-level (respectively, 3-level) implicit-deadline task system that
can be scheduled by a clairvoyant exact algorithm on a given processor, can be
scheduled by EDF-VD on a processor that is 4/3 (respectively, 2) times as fast.

(2) We show that any K-level implicit-deadline task system that can be scheduled by
a clairvoyant exact algorithm on a given processor can be scheduled by EDF-VD
on a processor that is fK times as fast, where fK is the solution of a nonlinear
optimization problem. Using a global nonlinear continuous optimization solver, we
compute the speedup bound fK for up to 13 criticality levels.

(3) We also show that no non-clairvoyant algorithm can guarantee to always meet
all deadlines on a processor that is less than 4/3 times as fast as the processor
available to the clairvoyant exact algorithm, thereby proving that EDF-VD is an
optimal non-clairvoyant algorithm for 2-level implicit-deadline systems from the
perspective of the processor speedup metric.

(4) For 2-level arbitrary-deadline task systems, we prove a speedup bound of 1+√
3/2 ≈

1.866. That is, we show that any 2-level arbitrary-deadline task system that can be
scheduled by a clairvoyant exact algorithm on a given processor can be scheduled
by EDF-VD on a processor that is 1 + √

3/2 times as fast.
(5) We provide a schedulability test for EDF-VD having polynomial-time complexity,

and also show that the time complexity per scheduling decision is logarithmic in
the number of tasks. Based on these runtime properties, it is evident that EDF-VD,
in contrast to the algorithms in Li and Baruah [2010] and Guan et al. [2011], can
be considered suitable for implementation in actual systems.

(6) Algorithm EDF-VD sets virtual deadlines in a uniform way for all tasks. In the case
of a 2-level task system with implicit deadlines, the results in (1) and (3) show that
EDF-VD has speedup 4/3 and that in the worst case a speedup of 4/3 is necessary
for any algorithm. Despite this optimality result, it is of interest to investigate
whether defining virtual deadlines nonuniformly might allow to schedule task sets
that are not deemed schedulable by EDF-VD. We show that this is the case and
present an algorithm, EDF-NUVD, that also allows scaling the deadlines non-
uniformly by considering a different schedulability condition than the one used
in (1). We show that, by optimizing the scaling parameters in EDF-NUVD, the
resulting schedulability test recognizes a superset of the task sets schedulable by
EDF-VD.

Organization. The remainder of this article is organized as follows. In Section 2, we
formally describe the mixed-criticality model that we will be using in the remainder of
this article. In Section 3, we consider implicit-deadline tasks; we provide a high-level
description of EDF-VD (Section 3.1) and a formal analysis of its properties and behavior
for implicit-deadline task sets (Sections 3.2–3.4). Then, in Section 4, we move on to
analyze EDF-VD for arbitrary-deadline tasks. The efficient implementation of the run-
time dispatching procedure is discussed in Section 5, while Section 6 discusses more
optimistic runtime dispatching rules and analyzes how to extend EDF-VD to consider
nonuniform scaling factors. We summarize our findings and conclude in Section 7.

2. MODEL AND DEFINITIONS

MC Task Systems. Let K ≥ 1 be an integer. A K-level MC sporadic task system
τ consists of a finite collection (τ1, . . . , τn) of MC sporadic tasks. In the following, let
[n] def= {1, 2, . . . , n}.

MC Tasks. An MC sporadic task τi of a K-level system is characterized by a criticality
level χi ∈ [K] and a triple (ci, di, pi) ∈ Q

χi
+ × Q+ × Q+, where

—ci = (ci(1), ci(2), . . . , ci(χi)) is a vector of worst-case execution times (WCET), one for
each criticality level less than or equal to χi. We assume that ci(1) ≤ ci(2) ≤ · · · ≤
ci(χi). It will be convenient to extend the definition of ci to a K-dimensional vector,
by letting ci(k) = ci(χi) when χi < k ≤ K;

—di is the relative deadline of the jobs of τi;
—pi is the minimum interarrival time (or period) between two jobs of task τi.

MC Jobs. Task τi generates a sequence of jobs (Ji1, Ji2, . . .). An MC job Jij of task τi
is characterized by two parameters: Jij = (aij, γi j), where

—aij ∈ R+ is the arrival time of the job;
—γi j ∈ (0, ci(χi)] is the execution requirement of the job;

—the (absolute) deadline of job Jij is dij
def= aij + di.

It is important to notice that neither the arrival times nor the execution requirements
are known in advance. A collection I = (aij, γi j)i∈[n], j≥1 of arrival times and execution
requirements is called a scenario for the task system.

The notation is summarized in Table I.

Semantics. The MC task model has the following semantics. Task τi generates an
unbounded sequence of jobs (Ji1, Ji2, . . .), with successive jobs being released at least
pi time units apart. Job Jij arrives at time aij , has a deadline at time dij , and needs
to execute for some amount of time γi j . The value γi j is not known in advance; it is
discovered by executing the job until it signals that it has completed execution.

The values of γi j for a given scenario of the system define the kind of behavior
exhibited by the system under that scenario. The criticality level (or simply level) of a
scenario is defined as the smallest integer k (1 ≤ k ≤ K) such that γi j ≤ ci(k) for all jobs
Jij . Note that such an integer always exists, since γi j is assumed to be at most ci(χi).

The level of a scenario is always between 1 and K. In a scenario of level k, only
the jobs from tasks of criticality at least k are required to be completed before their
deadlines; all other jobs can be ignored and discarded.

In this article, we assume that there is only one processor to execute the jobs. We
assume the processor to be preemptive: executing jobs may have their execution inter-
rupted at any instant in time and resumed later, at no additional cost.

Definition 2.1. A schedule for a scenario of level k is feasible if every job Jij with
χi ≥ k receives execution time γi j during its time window [aij, dij). A task system τ is
(clairvoyantly) feasible if for every scenario of τ there exists a feasible schedule.

An online (or non-clairvoyant) scheduling policy for an MC task system τ discov-
ers the criticality level of the scenario only by executing jobs. At each time instant,
scheduling decisions can be based only on the partial information revealed thus far.

Definition 2.2. An online scheduling policy A is correct for a feasible task system
τ if for any scenario of τ the policy generates a feasible schedule. A task system τ is
A-schedulable if A is a correct online scheduling policy for τ .

Notice that it is always safe to ignore jobs whose criticality is less than k whenever
the scenario has already exhibited a level of at least k. The level exhibited by a scenario
can only increase, or remain constant, over time.

3. IMPLICIT-DEADLINE TASKS

In this section, we deal with implicit-deadline task systems. This means that the period
of each task equals its relative deadline: pi = di for all i ∈ [n]. We define the utilization

Table I. Notation

Symbol Meaning
K number of criticality levels
n number of tasks

[n] {1, 2, . . . , n}
i task index
j job index

k, l level indices
τ task set
τi ith task of τ

χi criticality of τi

ci(l) lth level WCET of τi

di relative deadline of τi

pi period of τi

Jij jth job of τi

aij arrival time of Jij

dij absolute deadline of Jij

γi j execution requirement of Jij

of task τi at level k as

ui(k) def= ci(k)
pi

i = 1, . . . , n, k = 1, . . . , χi.

Then, the total utilization at level k of tasks that are of criticality level l is

Ul(k) def=
∑

i∈[n]: χi=l

ui(k) l = 1, . . . , K, k = 1, . . . , l.

For implicit-deadline systems, it is well known that, in the case of a single criticality
level (i.e., K = 1), a task system is feasible on a speed-σ uniprocessor if and only if
U1(1) ≤ σ [Liu and Layland 1973]. This yields the following necessary condition for
feasibility in mixed-criticality systems.

PROPOSITION 3.1. If τ is feasible on a unit-speed processor, then

max
k=1,...,K

K∑
l=k

Ul(k) ≤ 1. (1)

PROOF. For each k = 1, . . . , K, consider a scenario where each task τi with χi ≥ k
releases jobs with execution requirement ci(k).

In the sequel, we call a job active if it has been released but not yet completed. In
the case of a single criticality level and a single processor, it is well known that the
Earliest Deadline First (EDF) algorithm, which schedules the active job with earliest
(absolute) deadline, is optimal [Liu and Layland 1973; Dertouzos 1974].

PROPOSITION 3.2. If K = 1, then the Earliest Deadline First algorithm is a correct
scheduling policy for a processor of speed σ if and only if U1(1) ≤ σ .

In the presence of multiple criticality levels, EDF does not necessarily produce a
feasible schedule, even if the total utilization at each level is less than 1. Consider the
following example.

Example 3.3. Consider a task system τ = (τ1, τ2) with the following parameters.

τi χi ci(1) ci(2) pi

τ1 1 2 2 4
τ2 2 1 5 6

Note that the total utilization at level 1 is U1(1) + U2(1) = 2/3, while at level 2 it
is U2(2) = 5/6. However, EDF may fail to meet deadlines, as follows: Assume jobs are
released as early as possible. At time 0, EDF schedules the first job of τ1. At time 2, the
job finishes and EDF starts running the first job of τ2. However, if it turns out that this
job exhibits level-2 behavior, it will execute for five time units and miss its deadline at
time 6. If we had started the other way around, either the first job of τ2 would have
finished after one time unit and there would have been enough time to schedule the
job from τ1, or the scenario would have exhibited level-2 behavior and we could have
discarded the job from τ1.

The scheduling algorithm that we propose is called EDF with Virtual Deadlines
(EDF-VD) and is an adaptation of EDF that handles the problem sketched previously,
while maintaining some of the desirable properties of EDF. In the remainder of this
section, we first introduce the algorithm EDF-VD and give a corresponding schedula-
bility condition for a system of K criticality levels. Then, we assess the quality of the
algorithm using the notion of speedup factor.

3.1. Overview of EDF-VD for Implicit-Deadline Tasks

Let τ denote the MC implicit-deadline sporadic task system that is to be scheduled
on a unit-speed preemptive processor. Algorithm EDF-VD consists of an offline prepro-
cessing phase and a runtime scheduling phase. The first phase is performed prior to
runtime and executes a schedulability test to determine whether τ can be successfully
scheduled by EDF-VD or not. If τ is deemed schedulable, this phase also provides two
output values that will serve as input for the runtime scheduling algorithm: an integer
parameter k (with 1 ≤ k ≤ K); and, for each task τi of τ , a parameter d̂i, called virtual
deadline, which is never larger than di. The second phase performs the actual runtime
scheduling and consists of K variants, called EDF-VD(1), EDF-VD(2), . . . , EDF-VD(K).
Each of these is related to a different value of the parameter k that was provided by
the first phase; that is, at runtime, the variant EDF-VD(k) is applied. Intuitively, if
the scenario is exhibiting a level smaller than or equal to k, then jobs are scheduled
according to EDF with respect to the virtual deadlines (d̂i)n

i=1. As soon as the scenario
exhibits a level greater than k, jobs are scheduled according to EDF with respect to the
original deadlines (di)n

i=1. In the following, we give more details on the two phases.

Offline Preprocessing Phase. The algorithm for the first phase is given in pseudocode
form in Algorithm 1. If

∑K
l=1 Ul(l) ≤ 1, then all jobs can be scheduled for their worst-

case execution times at their own criticality level. Therefore, in this case, the virtual
deadlines of all the tasks are set to be equal to the original deadlines (see lines 1–5).
Otherwise, at line 7, we test whether there exists a 1 ≤ k ≤ K satisfying condition (3),
which is given in Section 3.2 along with its correctness proof. If no such k exists, then
τ is deemed unschedulable (line 9). If there exists a k satisfying condition (3), then the
virtual deadlines of all tasks having criticality level 1, . . . , k are set to be equal to the
original deadlines (line 14), while those of tasks having criticality level k + 1, . . . , K
are scaled by a factor x (line 16). The value of x is specified at line 11 and will be
explained later in Section 3.2. Note that if condition (3) is satisfied, then x is well
defined. Moreover, since

∑K
l=1 Ul(l) > 1, then x < 1.

ALGORITHM 1: EDF with Virtual Deadlines (EDF-VD) – Offline preprocessing phase (for
implicit-deadline task systems)

Input: task system τ = (τ1, . . . , τn) to be scheduled on a unit-speed preemptive processor

1: if
∑K

l=1 Ul(l) ≤ 1 then
2: k ← K
3: for i = 1, 2, . . . , n do
4: d̂i ← di
5: end for
6: else
7: Let k (1 ≤ k < K) be such that (3) holds
8: if no such k exists then
9: return unschedulable
10: else

11: Let x ∈
[∑K

l=k+1 Ul(k)

1−∑k
l=1 Ul(l)

,
1−∑K

l=k+1 Ul(l)∑k
l=1 Ul(l)

]
12: for i = 1, 2, . . . , n do
13: if χi ≤ k then
14: d̂i ← di
15: else
16: d̂i ← x di
17: end if
18: end for
19: end if
20: end if
21: return (schedulable, k, (d̂i)n

i=1)

Runtime Scheduling Phase. A pseudocode describing the runtime phase is given in
Algorithm 2. The function current_level() returns the level exhibited by the scenario
so far, that is,

current_level() = min{l ∈ [K] : γ̃i j ≤ ci(l) for all jobs Jij (partially) executed so far},

where γ̃i j is the part of γi j that has been observed thus far. (When current_level() =
l, we also say that the system is in level l.)

Algorithm 2 takes as input the integer k and the virtual (relative) deadlines d̂i com-
puted during the preprocessing phase. As long as the system is in level 1, 2, . . . , k, the
tasks having level greater than or equal to current_level() are scheduled accord-
ing to EDF with respect to these virtual deadlines, while tasks of level smaller than
current_level() are discarded (lines 1–5). When the system is observed to reach a
level greater than k, all jobs from tasks of criticality k or below are discarded and the
original deadlines of the tasks of criticality k + 1 and higher are restored. The priority
ordering of the jobs that are active at the time when the system turns to a level greater
than k is computed according to the original deadlines at lines 6–7 and the jobs are
scheduled accordingly. From this moment onwards, EDF is applied to all the tasks
having level greater than or equal to current_level() (lines 9–14). Note that if k = K,
then Algorithm 2 is simply EDF, as no scaling of the deadlines occurs in Algorithm 1.

The efficient implementation of Algorithm 2 is discussed in Section 5.
Note that once the parameter k is fixed, when applying EDF-VD(k), the criticality

levels are divided into two sets, where the levels in the same set are treated homoge-
neously, as if there were only two levels. The parameter k determines the boundary
between these two sets.

ALGORITHM 2: EDF with Virtual Deadlines (EDF-VD) – Runtime scheduling

Input: task system τ = (τ1, . . . , τn), integer k (1 ≤ k ≤ K), virtual deadlines (d̂i)n
i=1

1: loop
2: on job arrival:
3: if a job of task τi arrives at time t, assign it a virtual absolute deadline equal to t + d̂i
4: on job arrival/completion:
5: schedule the active job, among the tasks τi such that χi ≥ current level(), having earliest

virtual absolute deadline (ties broken arbitrarily);
6: on current level() > k:
7: schedule the active job, among the tasks τi such that χi > k, having earliest absolute

deadline (ties broken arbitrarily); then break from the loop
8: end loop

9: loop
10: on job arrival:
11: if a job of task τi arrives at time t, assign it an absolute deadline equal to t + di
12: on job arrival/completion:
13: schedule the active job, among the tasks τi such that χi ≥ current level(), having

earliest absolute deadline (ties broken arbitrarily)
14: end loop

3.2. Schedulability Conditions

THEOREM 3.4. Given an implicit-deadline task system τ , if either
K∑

l=1

Ul(l) ≤ 1 (2)

or, for some k (1 ≤ k < K), the following condition holds:

1 −
k∑

l=1

Ul(l) > 0 and
∑K

l=k+1 Ul(k)

1 − ∑k
l=1 Ul(l)

≤ 1 − ∑K
l=k+1 Ul(l)∑k

l=1 Ul(l)
, (3)

then τ can be correctly scheduled by EDF-VD.

PROOF. If condition (2) holds, then all jobs can be scheduled for their worst-case
execution times at their own criticality level. Hence, EDF-VD(K), that is, EDF without
deadline scaling, will yield a correct schedule. Therefore, from here on, the proof focuses
on the case that (2) does not hold and (3) holds for some k < K.

The proof consists of two steps. In the first step, we show that if there is an x ≤ 1
such that the following two inequalities hold:

k∑
l=1

Ul(l) +
K∑

l=k+1

Ul(k)
x

≤ 1 (4)

x
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(l) ≤ 1, (5)

then EDF-VD(k) is a correct scheduling policy for τ .
In the second step, we show that if (3) holds for some k < K, then there exists x ≤ 1

such that (4) and (5) hold. We discuss later in this section how the scaling parameter x
is determined . For the first step , we determine an upper bound on the “virtual
utilization”; the utilization of the system as long as the virtual deadlines are applied, if
EDF-VD(k) is

the scheduling algorithm we apply. We will slightly abuse notation and write p̂i for the
“virtual period” that equals the virtual deadline d̂i for all tasks τi, in order to define
the “virtual utilization.” Assume for all tasks τi with χi at most k, that all jobs are
executed at their own-criticality execution requirement. For all tasks τi with χi > k,
the jobs are executed at criticality level k. This clearly gives an upper bound on the
utilization for as long as the system is in criticality levels 1, 2, . . . , k. Also note that by
this assumption, no complications can occur at criticality changes before level k + 1 is
reached. The “virtual utilization” of this task system in levels 1, 2, . . . , k is at most

Û (k) :=
∑
i∈[n]

ci(k)
p̂i

=
∑
i∈[n]

ci(k)
d̂i

=
∑

i∈[n]: χi≤k

ci(χi)
di

+
∑

i∈[n]: χi>k

ci(k)
xdi

=
∑

i∈[n]: χi≤k

ci(χi)
pi

+
∑

i∈[n]: χi>k

ci(k)
xpi

=
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(k)
x

.

Note that a sufficient condition for correctness in levels 1, 2, . . . , k is that Û (k) ≤ 1.
Hence, we find that (4) ensures correctness in levels 1, 2, . . . , k.

For any level l > k, assume by contradiction that a deadline miss occurs in some
scenario. We bound the execution requirement of all tasks until the time of the first
deadline miss, which is denoted by tf . Let I denote a minimal collection of jobs released
by τ on which a deadline is missed (by minimal, we mean that EDF-VD(k) would meet
all deadlines if scheduling any proper subset of I). We assume that (4) and (5) hold
and, without loss of generality, that the first job arrival is at time zero. Hence, the job
that misses a deadline is of level l > k, because at time tf the system is at least in level
k + 1. Let t∗ denote the time where behavior of level k + 1 is first exhibited.

CLAIM 3.5. All jobs receiving execution in [t∗, tf) have deadlines at most tf .

PROOF. Suppose there is a job that has deadline larger than tf and receives some
execution between t∗ and tf , say in the interval [t1, t2). This means that during [t1, t2)
there are no jobs pending with deadline at most tf . Then, the set of jobs obtained by
considering only jobs with arrival time at least t2 will also miss a deadline at tf , which
contradicts the assumed minimality of I.

We define the quantity ηi(t) as the cumulative execution requirement of jobs of task
τi until time t and derive upper bounds for it, for all tasks. Among all jobs executing in
[t∗, tf), let J0 be the job with the earliest arrival time. Denote by a0 its arrival time and
by d0 its absolute deadline.

CLAIM 3.6. For any task τi having χi ≤ k, it holds that

ηi(tf) ≤ (a0 + x(tf − a0))ui(χi).

PROOF. Note that no job of τi will receive execution after t∗. If such a job executes
after a0, it must have a deadline no larger than the virtual deadline of J0, which is
a0 +x(d0 −a0). Since tf ≥ d0 by Claim 3.5, this means that no job of task τi with deadline
greater than a0 + x(tf − a0) will execute after a0.

Suppose now that a job with χi ≤ k and deadline larger than a0 + x(tf − a0) was
executed for some time before a0. Let tl denote the latest instant at which any such job

executes. This means that at this instant, there were no jobs with absolute deadline at
most a0 + x(tf − a0) awaiting execution. Hence, the set of jobs obtained by considering
only those jobs in I that have arrival time at least tl also misses a deadline. This
contradicts the assumed minimality of I.

This implies that there are at most (a0 + x(tf − a0))/pi jobs of τi until time tf ; each
of them requires an execution time of at most ci(χi). Therefore, the total execution
requirement of τi is bounded by (a0 + x(tf − a0))ui(χi).

CLAIM 3.7. Any task τi with χi > k has

ηi(tf) ≤ a0

x
ui(k) + (tf − a0)ui(χi).

PROOF. We distinguish two cases.
Case 1. Task τi Does not Release a Job at or after a0. Each job of τi has a virtual

deadline of at most a0 + x(tf − a0). Otherwise, consider a job with a larger virtual
deadline and let tl denote the latest time instant at which this job executes. The job
sequence consisting of only those jobs with an arrival time larger than tl also misses
a deadline and this is in contradiction with the assumed minimality of I. Hence, each
job of τi has an actual deadline of at most a0/x + tf − a0 and there are at most a0/x+tf −a0

pi

of them. Since these jobs do not execute in [t∗, tf) (else, J0 would not be the one with
earliest release), the execution requirement per job is at most ci(k). Combining these
observations, we bound the execution requirement of jobs from task τi by(a0

x
+ tf − a0

)ci(k)
pi

= a0

x
ui(k) + (tf − a0)ui(k)

≤ a0

x
ui(k) + (tf − a0)ui(χi).

Case 2. Task τi Releases One or More Jobs at or after a0. Let ai denote the first release
of a job from τi greater than or equal to a0. The previously released job of τi did not
execute in [t∗, tf), by definition of ai and a0. Therefore, it is safe to assume that until
ai the execution requirement per job from τi was bounded by ci(k) and after that it is
bounded by ci(χi). Hence, the cumulative requirement of all jobs from τi is bounded by

aiui(k) + (tf − ai)ui(χi) ≤ a0ui(k) + (tf − a0)ui(χi)

≤ a0

x
ui(k) + (tf − a0)ui(χi),

where the first inequality comes from the facts that a0 ≤ ai and ui(k) ≤ ui(χi) and the
second one from x ≤ 1.

Summing the cumulative requirements over all tasks gives∑
i:χi≤k

ηi(tf) +
∑

i:χi>k

ηi(tf)

≤
∑

i:χi≤k

(a0 + x(tf − a0))ui(χi) +
∑

i:χi>k

(
a0

x
ui(k) + (tf − a0)ui(χi)

)

= a0

(
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(k)
x

)
+ (tf − a0)

(
x

k∑
l=1

Ul(l) +
K∑

l=k+1

Ul(l)

)

≤ a0 + (tf − a0)

(
x

k∑
l=1

Ul(l) +
K∑

l=k+1

Ul(l)

)
,

where the last inequality comes from the assumption that (4) holds. The assumed
deadline miss implies

a0 + (tf − a0)
(

x
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(l)
)

> tf

⇔ (tf − a0)
(

x
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(l)
)

> tf − a0

⇔ x
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(l) > 1.

But this directly contradicts (5).
Now that we have shown that (4) and (5) are sufficient for the correctness of EDF-

VD(k), it remains to show that if (3) holds, then (4) and (5) also hold. Rewriting (4)
gives

k∑
l=1

Ul(l) +
K∑

l=k+1

Ul(k)
x

≤ 1

⇔ x
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(k) ≤ x

⇔
K∑

l=k+1

Ul(k) ≤ x

(
1 −

k∑
l=1

Ul(l)

)

⇔
∑K

l=k+1 Ul(k)

1 − ∑k
l=1 Ul(l)

≤ x, (6)

where in the last step we used that 1 − ∑k
l=1 Ul(l) > 0. Rewriting (5) gives

x
k∑

l=1

Ul(l) +
K∑

l=k+1

Ul(l) ≤ 1

⇔ x
k∑

l=1

Ul(l) ≤ 1 −
K∑

l=k+1

Ul(l)

⇔ x ≤ 1 − ∑K
l=k+1 Ul(l)∑k

l=1 Ul(l)
. (7)

Hence, if (3) holds, there must exist an x that satisfies both (6) and (7). This concludes
the proof of Theorem 3.4. Note that any x satisfying (6) and (7) suffices as a scaling
parameter.

3.3. Speedup Bounds

Between the sufficient condition for schedulability given by (3) and the necessary
condition (1), there is a gap. To analyze this gap, we consider a task system satisfying
the necessary condition given in (1) and determine how much faster the processor
should be to correctly schedule the task set by EDF-VD.

The speedup factor of a scheduling algorithm A is the smallest real number f such
that any task system τ that is feasible on a unit-speed processor (in the sense of
Definition 2.1) is correctly scheduled by A on a speed- f processor. The speedup factor
is a convenient metric for comparing the worst-case behavior of different algorithms
for solving the same problem: the smaller the speedup factor, the closer the behavior
of the algorithm to that of a clairvoyant exact algorithm.

We show how to derive tight speedup bounds for EDF-VD for any number K of
criticality levels. When K equals 2 or 3, we analytically derive closed-form expressions
for the speedup bounds. When K > 3, the computation of the speedup bound is an
analytically challenging problem; we solve it numerically for all K ≤ 13.

3.3.1. Two Levels

THEOREM 3.8. If a 2-level task system τ satisfies

max{U1(1) + U2(1),U2(2)} ≤ 1,

then EDF-VD correctly schedules τ on a processor of speed 4/3. In particular, if τ is
schedulable on a unit-speed processor, then it is EDF-VD-schedulable on a processor of
speed 4/3.

PROOF. For a 2-level system, the schedulability condition (3) is

U2(1)
1 − U1(1)

≤ 1 − U2(2)
U1(1)

, (8)

and 1 − U1(1) > 0. To prove the claim, we find the largest q such that, if

U1(1) + U2(1) ≤ q (9)
U2(2) ≤ q,

then the sufficient condition (8) still holds. The required speedup then equals 1/q. Note
that since U2(2) only appears with a negative sign on the right-hand side of (8) and
U2(1) only appears on the left-hand side, the worst case in terms of tightness of the
condition is that U2(2) = q and U2(1) = q−U1(1). Henceforth, this assumption is made.
Further, we define y def= 1 − q. Then, sufficient condition (8) becomes

1 − y − U1(1)
1 − U1(1)

≤ y
U1(1)

. (10)

This condition is satisfied if and only if U1(1)2 −U1(1)+ y ≥ 0 (here we used 1−U1(1) >
0). This inequality holds for all U1(1) ∈ [0, 1) if and only if y ≥ 1/4. Hence, the largest
q such that (9) implies (8) is q∗ = 3/4, and the required speedup is 1/q∗ = 4/3.

The second part of the statement follows from the first and Proposition 3.1.

3.3.2. Three Levels

THEOREM 3.9. If a 3-level task system τ satisfies

max
k=1,2,3

K∑
l=k

Ul(k) ≤ 1, (11)

then EDF-VD correctly schedules τ on a processor of speed 2. In particular, if τ is feasible
on a unit-speed processor, then it is EDF-VD-schedulable on a processor of speed 2.

PROOF. We recall the schedulability conditions for a 3-level system from (3) for i =
1, 2:

U2(1) + U3(1)
1 − U1(1)

≤ 1 − U2(2) − U3(3)
U1(1)

(12)

U3(2)
1 − U1(1) − U2(2)

≤ 1 − U3(3)
U1(1) + U2(2)

, (13)

where for (12) we also assume that 1−U1(1) > 0 and for (13) that 1−U1(1)−U2(2) > 0.
We find the speedup in a similar way as in Section 3.3.1. That is, we search for the
largest q, such that if

U1(1) + U2(1) + U3(1) ≤ q
U2(2) + U3(2) ≤ q

U3(3) ≤ q

hold, then at least one of the inequalities in (12) and (13) holds. Note that the worst-
case speedup is obtained when the previous inequalities hold with equality. To see this,
we reason as follows.

The term U3(3) only appears in the right-hand side of (12) and (13) and the expres-
sions are monotonically decreasing in U3(3). Hence, the worst case (lowest right-hand
side value) is when U3(3) is largest, that is, U3(3) = q.

Since U3(2) appears only in the left-hand side of (13) and this side is monotonically
increasing in U3(2), the worst-case is if U3(2) = q − U2(2).

Since U2(1) and U3(1) appear only in the left-hand side of (12) and this side is
monotonically increasing in U2(1)+U3(1), the worst-case is if U2(1)+U3(1) = q−U1(1).

Now we substitute these expressions in the inequalities (12) and (13) to obtain the
following two conditions

q − U1(1)
1 − U1(1)

≤ 1 − q − U2(2)
U1(1)

q − U2(2)
1 − U1(1) − U2(2)

≤ 1 − q
U1(1) + U2(2)

.

In these two equations, we substitute y def= 1 − q, and after rewriting we find

(1 − U1(1))(U1(1) + U2(2)) ≤ y
(1 − U2(2))(U1(1) + U2(2)) ≤ y.

It is easily verified that the minimum of these two left-hand sides attains its maximum
value when U1(1) = U2(2). After substituting, we obtain

2U1(1)2 − 2U1(1) + y ≥ 0.

This inequality holds for all U1(1) ∈ [0, 1) if and only if y ≥ 1/2, which gives q∗ = 1/2;
the resulting speedup bound is therefore 2.

Again, the second part of the claim follows from the first and Proposition 3.1.

3.3.3. Arbitrary Number of Levels. The problem of determining the minimum speedup
factor fK such that any K-level task system that is feasible on an unit-speed processor
is correctly scheduled by EDF-VD on a fK-speed processor can be formulated as follows:
Find the largest q (q ≤ 1) such that the following implication holds for all Ul(k),
k = 1, 2, . . . , K, l = k, k + 1, . . . , K:

K∑
l=k

Ul(k) ≤ q ∀k = 1, 2, . . . , K ⇒

either
K∑

l=1

Ul(l) ≤ 1 or ∃k ∈ {1, 2, . . . , K − 1} s.t.

⎧⎪⎪⎨
⎪⎪⎩

1 −
k∑

l=1

Ul(l) > 0 and

∑K
l=k+1 Ul(k)

1−∑k
l=1 Ul(l)

≤ 1−∑K
l=k+1 Ul(l)∑k

l=1 Ul(l)
.

If the largest such value of q is q∗, the speedup factor is then fK = 1/q∗. Equivalently,
we want to find the smallest q such that this implication does not hold, that is, the
premise is true but the conclusion is false; in other words, the largest value of the
speedup for which one can still construct a counterexample. This leads to the following
formulation:

min q (NLP)

s.t.
K∑

l=k

Ul(k) ≤ q ∀k = 1, 2, . . . , K;

K∑
l=1

Ul(l) > 1

¬
(

1 −
k∑

l=1

Ul(l) > 0 ∧
∑K

l=k+1 Ul(k)

1 − ∑k
l=1 Ul(l)

≤ 1 − ∑K
l=k+1 Ul(l)∑k

l=1 Ul(l)

)
∀k = 1, 2, . . . , K − 1.

Formulation (NLP) involves disjunctions (the negated conjunctions in the last set of
constraints), which are typically disallowed by numerical solvers. We prove that solving
(NLP) is equivalent to finding q∗ def= min j=1,2,...,K−1 q∗

j , where each q∗
j is the solution to

the following nonlinear program:

q∗
j = min qj (NLP j)

s.t.
K∑

l=k

Ul(k) ≤ qj ∀k = 1, 2, . . . , K;

K∑
l=1

Ul(l) > 1

∑K
l=k+1 Ul(k)

1 − ∑k
l=1 Ul(l)

>
1 − ∑K

l=k+1 Ul(l)∑k
l=1 Ul(l)

∀k = 1, 2, . . . , j;

1 −
j∑

l=1

Ul(l) > 0

1 −
j+1∑
l=1

Ul(l) ≤ 0.

We denote the constraints of these nonlinear programs as follows:

C def=
{

K∑
l=k

Ul(k) ≤ q ∀k = 1, 2, . . . , K ∧
K∑

l=1

Ul(l) > 1

}
,

Ak
def=

{ ∑K
l=k+1 Ul(k)

1 − ∑k
l=1 Ul(l)

≤ 1 − ∑K
l=k+1 Ul(l)∑k

l=1 Ul(l)

}
,

Bk
def=

{
1 −

k∑
l=1

Ul(l) > 0

}
,

for each k = 1, 2, . . . , K − 1. Then, the constraints of program (NLP) can be written as

C ∧
K−1∧
k=1

¬ (Ak ∧ Bk) ,

while those of program (NLP j) can be written as

C ∧
(j∧

k=1

¬Ak

)
∧ Bj ∧ ¬Bj+1.

The equivalence is shown in the next lemma.

LEMMA 3.10. For any K-level feasible task system, the set of values Ul(k), k =
1, 2, . . . , K, l = k, k + 1, . . . , K satisfies

C ∧
K−1∧
k=1

¬ (Ak ∧ Bk) (14)

if and only if it satisfies
K−1∨
j=1

(
C ∧

(j∧
k=1

¬Ak

)
∧ Bj ∧ ¬Bj+1

)
. (15)

PROOF. First, observe that condition Bj implies condition Bj ′ for any j ′ < j and that
condition C implies condition ¬BK. Moreover, condition B1 holds since the task system
is assumed feasible. Therefore, for K = 2, conditions (14) and (15) are both equivalent
to C ∧ ¬A1.

By induction, let us assume that conditions (14) and (15) are equivalent for task
systems of K − 1 levels. We rewrite conditions (14) and (15) for K-level systems as
follows, respectively:

¬ (AK−1 ∧ BK−1) ∧ C ∧
K−2∧
k=1

¬ (Ak ∧ Bk) (14’)

and (
C ∧

(
K−1∧
k=1

¬Ak

)
∧ BK−1 ∧ ¬BK

)
∨

K−2∨
j=1

(
C ∧

(j∧
k=1

¬Ak

)
∧ Bj ∧ ¬Bj+1

)

=
(

C ∧
(

K−1∧
k=1

¬Ak

)
∧ BK−1

)
∨

K−2∨
j=1

(
C ∧

(j∧
k=1

¬Ak

)
∧ Bj ∧ ¬Bj+1

)
. (15’)

We distinguish the cases that BK−1 does and does not hold. If BK−1 holds, then Bj
holds for each j = 1, 2, . . . , K − 1. It follows that (14’) and (15’) are equivalent to

C ∧
(

K−1∧
k=1

¬Ak

)
.

Table II. Minimum Speedup Factor for K ≤ 13
Levels

Number of levels K Speedup factor fK

2 1.3333
3 2.0000
4 2.6180
5 3.0811
6 3.7321
7 4.2361
8 4.7913
9 5.3723
10 5.8551
11 6.4641
12 6.9487
13 7.5311

If BK−1 does not hold, the two conditions are equivalent to

C ∧
K−2∧
k=1

¬ (Ak ∧ Bk)

and
K−2∨
j=1

(
C ∧

(j∧
k=1

¬Ak

)
∧ Bj ∧ ¬Bj+1

)
,

respectively, and the lemma holds by the inductive hypothesis.

We solve program (NLP j), for each j = 1, 2, . . . , K − 1, to find the minimum speedup
factor fK = 1/q∗, where q∗ = min j=1,2,...,K−1 q∗

j . After clearing the denominators in
program (NLP j), we obtain a system of multivariate polynomial inequalities in the
variables Ul(k) and qj . As such, it can be solved by a (numerical) global nonlinear
continuous optimization solver. In this case, we used COUENNE [Belotti et al. 2009].
COUENNE was able to find the optimum for any K ≤ 13. The resulting speedup factors
are reported in Table II.

THEOREM 3.11. Let τ be a K-level task system with 2 ≤ K ≤ 13. If τ is feasible on a
unit-speed processor, then it is EDF-VD-schedulable on a processor of speed fK, where
fK (±10−4) is as in Table II.

3.4. Optimality of EDF-VD for Two Levels

We now show that – at least in the case of 2-level implicit-deadline systems – EDF-VD
is an optimal algorithm in terms of the speedup factor metric.

THEOREM 3.12. No non-clairvoyant algorithm for scheduling 2-level implicit-
deadline sporadic task systems can have a speedup bound better than 4/3.

PROOF. Consider the example task system τ = (τ1, τ2), with the following parameters,
where ε is an arbitrary small positive number.

τi χi ci(1) ci(2) pi

τ1 1 1 + ε 1 + ε 2
τ2 2 1 + ε 3 4

This system is feasible according to Definition 2.1: EDF would meet all deadlines in
scenarios of level 1 (since U1(1) + U2(1) ≤ 1), while only jobs of τ2 would get to execute
in scenarios of level 2 (and U2(2) ≤ 1).

To see that τ cannot be scheduled correctly on a unit-speed processor by any online
scheduler, suppose both tasks were to generate jobs simultaneously. It need not be
revealed prior to one of the jobs receiving (1 + ε) units of execution, whether the level
of the scenario is 1 or 2. We consider two cases.

(1) τ1’s job receives (1 + ε) units of execution before τ2’s job does. In this case, the
scenario is revealed to be of level 2. But now there is not enough time remaining
for τ2’s job to complete by its deadline at time instant 4.

(2) τ2’s job receives (1 + ε) units of execution before τ1’s job does. In this case, the
scenario is revealed to be of level 1, in that τ2’s job signals that it has completed
execution. But then, there is not enough time remaining for τ1’s job to complete by
its deadline at time 2.

We have thus shown that no non-clairvoyant algorithm can correctly schedule τ . The
theorem follows, based on the observation that max(U1(1) + U2(1),U2(2)) exceeds 3/4
by an arbitrarily small amount.

The optimality of EDF-VD for 2-level implicit-deadline task systems follows by com-
bining the analysis in this example with Theorem 3.8. A speedup bound of 4/3 holds
for EDF-VD and, by the previous argument, a lower speedup is not possible for any
non-clairvoyant algorithm.

4. ARBITRARY-DEADLINE TASKS

We now study the case in which deadlines do not necessarily equal periods of the cor-
responding tasks (arbitrary deadlines). In this section, we only consider task systems
that consist of two criticality levels.

4.1. Overview of EDF-VD for Arbitrary-Deadline Tasks

In the case that deadlines are independent of the periods, the notion of utilization is
insufficient to characterize schedulability. In conventional real-time scheduling theory,
the notion of load takes this role. The load of a collection of jobs denotes the maximum,
over all time intervals, of the cumulative execution requirement by jobs of the scenario
due in the interval, divided by the interval length. Informally speaking, the load of a
scenario represents the minimum speed of any processor that can meet all deadlines
in that scenario.

Recall that a sporadic task system τ can generate infinitely many different scenarios.
Each scenario I can be seen as a collection of independent jobs, where the arrival time
of job Jij of task τi is aij and its absolute deadline is dij = aij + di. Then, for a scenario
I of a mixed-criticality system, we can define three notions of load, analogous to the
aforementioned concept.

Definition 4.1. The load λ(I), the level-1 load λ1(I) and the level-2 load λ2(I) of
a mixed-criticality scenario I with two criticality levels are defined according to the
following three formulas:

λ(I) def= max
0≤t1<t2

∑
Jij∈I: t1≤aij ∧ dij≤t2 ci(χi)

t2 − t1

λ1(I) def= max
0≤t1<t2

∑
Jij∈I: t1≤aij ∧ dij≤t2 ci(1)

t2 − t1

λ2(I) def= max
0≤t1<t2

∑
Jij∈I: χi=2 ∧ t1≤aij ∧ dij≤t2 ci(2)

t2 − t1
.

Informally, λ(I) bounds the load of the scenario in the absence of any prior infor-
mation; λ1(I) bounds the load when the level of the scenario is a priori known to be 1
(i.e., no job exceeds its level 1 WCET); and λ2(I) bounds the load when the level of the
scenario is a priori known to be 2. In particular, λ2(I) disregards the tasks with χi = 1.

The load λ(τ) of a task system τ is defined to be the largest value that λ(I) can
have, over any scenario I generated by τ . We define λ1(τ) and λ2(τ) similarly. For
any task system τ , the values λ(τ), λ1(τ) and λ2(τ) can be computed by determining
the loads of “regular” (i.e., non-MC) sporadic task systems. Namely, λ(τ), λ1(τ) and
λ2(τ) are, respectively, the loads of regular sporadic task systems {(ci(χi), di, pi)|τi ∈ τ },
{(ci(1), di, pi)|τi ∈ τ } and {(ci(2), di, pi)|τi ∈ τ ∧ χi = 2}.

The values λ(τ), λ1(τ), λ2(τ) can either be computed exactly, or they can be effi-
ciently approximated with arbitrarily small error, using well-known techniques (see,
e.g., Baruah et al. [1993] and Albers and Slomka [2004]). In the sequel, it will be
convenient to abbreviate λ(τ), λ1(τ) and λ2(τ) to λ, λ1 and λ2, respectively.

The synchronous arrival sequence of τ is the job sequence in which each task τi
generates its jth job at time aij = (j − 1)pi. It is well known [Baruah et al. 1993] that,
on a preemptive uniprocessor, the largest demand of a non-MC sporadic task set over
any time interval is achieved by the synchronous arrival sequence; this is one of the
key facts used when computing the load.

The following immediate observation gives a necessary condition for any scheduling
algorithm to be correct for a 2-level task system.

PROPOSITION 4.2. Let τ be a 2-level task system. If λ1 > 1 or λ2 > 1, then τ is not
feasible.

A relationship between the three loads is given in the next observation, which follows
immediately from the definitions.

PROPOSITION 4.3. Let τ be a 2-level task system. Then λ ≤ λ1 + λ2.

We consider the EDF-VD algorithm for scheduling a sporadic MC system with ar-
bitrary deadlines. As in the case of implicit-deadline task systems, EDF-VD consists
of two phases: an offline preprocessing phase and a runtime scheduling phase. The
runtime scheduling is exactly as in Algorithm 2 (with K = 2). The offline preprocessing
phase test is, however, somewhat modified as it is based on a different schedulability
test.

We give here an overview of the preprocessing phase, which is described exactly
in Algorithm 3, whereas details and justifications are given in Section 4.2. We start
by computing λ, λ1, λ2 at line 1 – either exactly, as in Baruah et al. [1993], or more
efficiently but approximately using, for example, the approach in Albers and Slomka
[2004]. To facilitate the exposition, we work with the exact values of λ, λ1 and λ2,
keeping in mind that we may have only approximate values for them – we revisit this
issue in Section 4.4.

Since there are only two criticality levels, there are only two different cases. If λ ≤ 1,
then the deadlines are not scaled and the runtime algorithm will coincide with EDF
(lines 2–6). Otherwise, a certain condition involving λ1 and λ2 is checked at line 8;
if the condition does not hold, the schedulability test reports a failure (line 9). If the
condition holds, modified deadlines are computed based on an appropriately chosen

ALGORITHM 3: EDF with Virtual Deadlines (EDF-VD) – Offline preprocessing phase (for
arbitrary-deadline task systems)

Input: task system τ = (τ1, . . . , τn) to be scheduled on a unit-speed preemptive processor

1: Compute λ, λ1, λ2
2: if λ ≤ 1 then
3: k ← 2
4: for i = 1, 2, . . . , n do
5: d̂i ← di
6: end for
7: else
8: if λ1 + λ2/2 > 1 or λ1 + λ2 − λ1λ2/4 > 1 then
9: return unschedulable
10: else
11: k ← 1
12: x ← 1 − λ2/2
13: for i = 1, 2, . . . , n do
14: if χi ≤ k then
15: d̂i ← di
16: else
17: d̂i ← x di
18: end if
19: end for
20: end if
21: end if
22: return (schedulable, k, (d̂i)n

i=1)

scaling parameter x (lines 10–20) and used as before for assigning virtual deadlines
to jobs, as long as the scenario exhibits level 1. As before, once the scenario exhibits
level 2, the original deadlines are restored.

4.2. Schedulability Conditions

We now prove the correctness of Algorithm 3. At a high level, the proof is very much
in line with the proof of Theorem 3.4, but details are more complicated and the results
are therefore presented as three separate lemmata.

LEMMA 4.4. If a 2-level task system τ satisfies λ ≤ 1, then τ is schedulable by
EDF-VD.

PROOF. Notice that it is always possible to regard τ as an ordinary, non-MC task
system where the WCET of task τi is ci(χi) (this is the “worst-case reservations” ap-
proach). The load λ then coincides with the standard notion of load for ordinary task
systems. Since (for ordinary task systems) EDF is an optimal scheduling strategy on a
preemptive uniprocessor, the task system is EDF-schedulable if λ ≤ 1.

LEMMA 4.5. If a 2-level task system τ satisfies λ1 ≤ 1, then a scaling parameter x
such that λ1 ≤ x ≤ 1 guarantees that no deadline is missed in a level-1 scenario.

PROOF. To prove that there is no deadline miss, we assume the opposite, which is
that a job J′ misses its deadline in a level-1 scenario. Let I denote a minimal collection
of jobs released by τ on which a deadline is missed. The deadline of job J′ is denoted
by d′. Now, due to the minimality of I, criticality-1 jobs have deadlines no greater
than d′, and criticality-2 jobs have virtual deadlines no greater than d′ (otherwise,
the removal of such a job would yield a smaller collection I on which a deadline is

missed). Notice that all virtual deadlines of criticality-2 jobs can be represented as
d̂i j = aij + xdi ≥ x(aij + di) = xdij . This together with d̂i j ≤ d′ implies that all criticality-
2 jobs have actual absolute deadline no later than d′/x. Therefore, the cumulative
execution requirement of the system until time d′ is at most λ1 · d′/x in a level-1
scenario. Because J′ misses its deadline d′, it must hold that

d′

x
λ1 > d′

⇔ λ1 > x. (16)

Since we assumed that job J′ misses its deadline in a level-1 scenario, the contrapositive
of (16),

x ≥ λ1, (17)

yields a sufficient condition for schedulability of level-1 scenarios.

LEMMA 4.6. If a 2-level task system τ satisfies λ1 +λ2/2 ≤ 1 and λ1 +λ2 −λ1λ2/4 ≤ 1,
then setting x = 1 − λ2/2 as the scaling parameter in EDF-VD guarantees that no
deadline is missed in a level-2 scenario.

PROOF. To prove that there is no deadline miss, we argue by contradiction and assume
that a job J misses its deadline at time tf . Let I denote a minimal collection of jobs
for which a deadline miss occurs. Therefore, by Lemma 4.5, job J must be of criticality
level 2, since the condition λ1 + λ2/2 ≤ 1 (checked in Algorithm 3) ensures that x =
1−λ2/2 ≥ λ1, so no deadline miss can occur while the scenario exhibits level-1 behavior.
Denote by time t∗ the time instant at which the scenario first exhibits level-2 behavior.
The following claim is equivalent to Claim 3.5 and so is its proof.

CLAIM 4.7. All jobs receiving execution in [t∗, tf) have deadlines at most tf .

We see from Claim 4.7 that all jobs that receive execution after t∗ have priority
higher than or equal to the priority of J after t∗. Let S∗ be the set of jobs which receive
execution after t∗. Then J ∈ S∗ and all jobs in S∗ are of criticality level 2.

Let J0 be the job in S∗ that is released earliest. Let a0 and d0 be its arrival time and
absolute deadline, respectively. Thus, d̂0 = a0 + x(d0 − a0) is the virtual deadline of J0.

CLAIM 4.8. Any job Jij that is in the minimal job sequence I and only receives
execution before t∗ must have an absolute deadline dij ≤ a0 + x(tf − a0) if it is a level-1
job, and absolute virtual deadline d̂ij ≤ a0 + x(tf − a0) if it is a level-2 job.

PROOF. Note that no criticality-1 job Jij with dij > d̂0 will execute at or after a0;
since Jij will only receive execution time before t∗, this would imply that J0 should be
finished before t∗ (contradicting the definition of J0).

Suppose there is a criticality-1 job Jij with dij > d̂0 that executes somewhere before
a0. Denote by tl the latest moment in time where it executes. At this point there are
no available jobs with deadline at most d̂0 and the job sequence obtained by only
considering jobs released after tl also misses a deadline. That contradicts the assumed
minimality of I.

So, any criticality-1 job Jij in I must have a deadline dij ≤ d̂0 = a0 + x(d0 − a0) ≤
a0 + x(tf − a0), using Claim 4.7 saying that d0 ≤ tf .

If a level-2 job Jij ∈ I does not receive execution after t∗, we have the following
possible cases.

(1) aij ≥ a0. Then d̂i j ≤ d̂0, since otherwise Jij would not receive any execution after
a0, implying that it does not receive any execution before t∗, which combined with

Jij not receiving any execution after t∗, would make that the instance I without Jij
would also see a deadline miss of J at tf , contradicting the minimality of I.

(2) aij < a0. If dij ≤ tf , then d̂i j = aij + x(dij −aij) ≤ a0 + x(tf −a0). Otherwise, if dij > tf ,
then again d̂i j ≤ d̂0 must hold, since otherwise we can remove Jij from I without
affecting the deadline miss of J, thus contradicting the minimality of I.

The proof is completed by noting that d̂i j ≤ d̂0 = a0 + x(d0 − a0) ≤ a0 + x(tf − a0).

Following Claim 4.8, we define S1 to be the set of criticality-1 jobs of I, and S2 to
be the set of criticality-2 jobs of I that only receive execution before t∗. Therefore, the
collection of jobs I is the disjoint union of S1, S2 and S∗.

Let C1 be the sum of execution requirements of jobs in S1; C2 the sum of execution
requirements of jobs in S2; and C∗ the sum of execution requirements of jobs in S∗. Let
δ

def= tf − a0, the length of the time interval in which there are pending jobs from S∗.
Then, Claim 4.8 yields the following two inequalities:{

C1 ≤ λ1(a0 + xδ)
C1 + C2 ≤ λ1(a0/x + δ).

(18)

The second inequality holds because aij+xdi = d̂i j ≤ a0+xδ implies that dij ≤ (a0+xδ)/x,
similar to the conclusion we had in the proof of Lemma 4.5.

By definition of λ2, we also obtain another set of inequalities{
C∗ ≤ λ2δ

C∗ + C2 ≤ λ2(a0/x + δ).
(19)

Since J misses its deadline tf = a0 + δ, as we assumed, we have C1 + C2 + C∗ > tf ,
which is equivalent to C1 +C2 +C∗ −a0 > δ. Without loss of generality, we assume that
δ is constant (since all other values can be scaled proportionally). Then, the maximum
value of C1 + C2 + C∗ − a0 over all possible a0 will be greater than δ.

In order to find this maximum value, we replace a0 by t and study the function
o(t) def= C1 + C2 + C∗ − t. From inequalities (18) and (19), we get{

o(t) ≤ f (t) def= λ1(t + xδ) + λ2(t/x + δ) − t

o(t) ≤ g(t) def= λ1(t/x + δ) + λ2δ − t.
(20)

Note that since λ1 + λ2 > 1 (otherwise, it must be the case that λ ≤ λ1 + λ2 ≤ 1,
according to Proposition 4.3) and λ1/x ≤ 1 (because of Lemma 4.5), we obtain the
following bounds on the derivatives of f and g

∂ f (t)
∂t

= λ1 + λ2/x − 1 ≥ λ1 + λ2 − 1 > 0

∂g(t)
∂t

= λ1/x − 1 ≤ 1 − 1 = 0.

Hence, when t increases, f (t) increases and g(t) does not increase, for t ∈ (0,+∞). Thus,
maxt o(t) cannot exceed the value of f and g at the point where they cross. We denote
this point by γ , that is, f (γ) = g(γ).

Straightforward calculations yield

γ = λ1(1 − x)xδ

λ2 − λ1(1 − x)
, (21)

and therefore

max
t

o(t) ≤ f (γ) = g(γ) = λ2
2 + λ1λ2x − λ1x + λ1x2

λ2 − λ1 + λ1x
δ. (22)

Hence, if J misses its deadline as we assumed, we must have o(γ) > δ, that is,

λ1x2 + (λ1λ2 − 2λ1) x + λ1 − λ2 + λ2
2 > 0. (23)

Inserting our choice of x = 1 − λ2/2 = − (λ1λ2 − 2λ1) /2λ1 in (23) leads to

− (λ1λ2 − 2λ1)2 + 4λ1
(
λ1 − λ2 + λ2

2

)
> 0,

which simplifies to

λ1 + λ2 − λ1λ2

4
− 1 > 0, (24)

contradicting the assumption of the theorem.

COROLLARY 4.9. If for a 2-level task system τ , λ1 +λ2/2 ≤ 1 and λ1 +λ2 −λ1λ2/4 ≤ 1,
then τ is correctly scheduled by EDF-VD with scaling parameter x = 1 − λ2/2.

PROOF. By Lemma 4.6, we can select x = 1 − λ2/2 to guarantee no deadline miss
while the system is in level 2. Since x = 1 − λ2/2 ≥ λ1, Lemma 4.5 guarantees that
there is no deadline miss while the system is in level 1.

4.3. Speedup Bound

THEOREM 4.10. If a 2-level task system τ is feasible on a unit-speed processor, then it
is schedulable by EDF-VD on a processor of speed 1 + √

3/2 ≈ 1.866.

PROOF. If a 2-level task system τ is feasible on a unit-speed processor, by
Proposition 4.2, λ1(τ) and λ2(τ) are both no greater than 1. Thus, on a (1 + √

3/2)-
speed processor, the load-to-speed ratios λ1/(1+√

3/2) and λ2/(1+√
3/2) are no greater

than 1/(1 + √
3/2) = 4 − 2

√
3. We complete the proof by showing that any task set is

schedulable by EDF-VD on a unit-speed processor whenever max(λ1, λ2) ≤ 4 − 2
√

3.
Define L(λ1, λ2) = λ1 + λ2 − λ1λ2/4 − 1. Basic arithmetic shows that choosing λ1 =

λ2 = 4 − 2
√

3 yields L(λ1, λ2) = 0 and also λ1 + λ2/2 ≤ 4 − 2
√

3 + 2 − √
3 = 6 − 3

√
3 ≤ 1.

Thus, Corollary 4.9 asserts that such a system is EDF-VD schedulable, with scaling
parameter x = 1 − λ2/2. For values of λ1 and λ2 satisfying λ1 + λ2 ≥ 1, λ1 ≥ 0 and
λ2 ≥ 0, we have

∂L(λ1, λ2)
∂λ1

= 1 − λ2

4
> 0

∂L(λ1, λ2)
∂λ2

= 1 − λ1

4
> 0,

which implies the schedulability of any system with max(λ1, λ2) ≤ 4 − 2
√

3.

This analysis of EDF-VD is tight for arbitrary-deadline systems, as shown by the
following.

THEOREM 4.11. Let ε > 0. There exists a 2-level task system τ with λ1 = λ2 = 4 −
2
√

3 + ε that cannot be scheduled by EDF-VD on a unit-speed processor.

PROOF. We define α
def= 4−2

√
3, and let T , N and M be large integers with T � M �

N; for concreteness, say T = M2 = N4. Then, we choose N large enough, such that

N(
√

α−α) ≥ 2 and (
√

α−α)/N = ν < ε. We define a task system τ = (τ1, τ2, τ3,1, . . . , τ3,M)
as follows.

τi χi ci(1) ci(2) di pi

τ1 1 α α α/(α + ε) T
τ2 2 0 α + ε 1 T
τ3,1 2 (

√
α − α)/N (

√
α − α)/N 1 + (1/

√
α − 1)/N T

τ3,2 2 (
√

α − α)/N (
√

α − α)/N 1 + 2(1/
√

α − 1)/N T
...

...
...

τ3,i 2 (
√

α − α)/N (
√

α − α)/N 1 + i(1/
√

α − 1)/N T
...

...
...

τ3,N 2 (
√

α − α)/N (
√

α − α)/N 1/
√

α T
...

...
...

τ3,i 2 (
√

α − α)/N (
√

α − α)/N 1 + M(1/
√

α − 1)/N T

In the sequel, we will frequently use that
√

α−α = α(1/
√

α−1). We verify that λ1 and
λ2 of τ are both α + ε, by considering the synchronous arrival sequences of τ for level 1
and level 2 separately. Let λ1(t) and λ2(t) be the load at level 1 and 2, respectively, over
the interval [0, t):

λ1(t) def= 1
t

∑
τi

⌊
t
pi

⌋
ci(1),

λ2(t) def= 1
t

∑
τi :χi=2

⌊
t
pi

⌋
ci(2).

As argued before, λ1 and λ2 are determined by maxt λ1(t) and maxt λ2(t). Clearly,
λ1(α/(α + ε)) = α + ε and λ2(1) = α + ε. Since T is very large, we only need to further
consider λ1(1 + i(1/

√
α − 1)/N), for i = 1, . . . , M:

λ1(1 + i(1/
√

α − 1)/N) = α + i(
√

α − α)/N
1 + i(1/

√
α − 1)/N

= α ≤ α + ε.

Similarly, λ2(1 + i(1/
√

α − 1)/N) ≤ α + ε. Hence, λ1 and λ2 are both equal to α + ε.
Now let us assume that a scaling factor x has been selected. We would like to show

that the system is not schedulable by EDF-VD with this (arbitrary) x.
Given x, assume that τ2 releases its first job at time 1− x, and all other tasks release

their first job at time 0. Then, the actual deadline of the first job of τ2 (denoted as J2) is
d2 = 1 − x + 1 = 2 − x, and the virtual deadline will be d̂2 = (1 − x) + x × 1 = 1. Because
the virtual deadline is greater than the deadline of the first job of τ1 (denoted as J1),
which is d1 = 1 − ε, J2 will wait until J1 finishes.

If x is so small that x(1+M(1/
√

α−1)/N) < 1, then all first jobs from τ3,1, . . . , τ3,M have
priority over J2. Their total execution requirement is M(

√
α − α)/N = N(

√
α − α) ≥ 2,

by the choice of M and N.
Otherwise, there exists a largest number i such that x(1 + i(1/

√
α − 1)/N) ≤ 1. Let

this number be ix. Then all first jobs of τ3,1, . . . , τ3,ix have priority over J2. Their total

worst-case execution time is

ix(
√

α − α)/N = (ix + 1)(
√

α − α)/N − (
√

α − α)/N
= (ix + 1)α(1/

√
α − 1)/N − ν

≥ α

(
1
x

− 1
)

− ν.

This, together with the WCET of J1 and the level-2 WCET of J2 itself, yields a total
execution requirement of

α + α + ε + α

x
− α − ν = α + α

x
+ ε − ν.

Now, by the choice of N we have ε′ def= ε − ν > 0 and

α + α/x + ε′ − (2 − x) = α + α/x + x − 2 + ε′ ≥ α + 2
√

α − 2

= 4 − 2
√

3 + 2(
√

3 − 1) − 2 + ε′ = ε′ > 0.

Hence, for this arbitrarily given x, we can always find a scenario in which J2 misses its
deadline, implying that it is impossible to schedule τ using EDF-VD.

4.4. Effect of the Approximation Error when Computing the Loads

Theorem 4.10 presumes that the load λ, the level-1 load λ1, and the level-2 load λ2
are computed exactly in Algorithm 3 (line 1). However, for improved efficiency – for
example, if a polynomial-time schedulability test is desired – it may be necessary to
resort to approximations of such loads. The approach of Albers and Slomka [2004], for
example, guarantees that one can find, in polynomial time for any fixed ε > 0, values
λ̃1, λ̃2 such that

λ1 ≤ λ̃1 ≤ (1 + ε)λ1,

λ2 ≤ λ̃2 ≤ (1 + ε)λ2.
(25)

We observe that if one defines further

λ̃
def= λ̃1 + λ̃2 (26)

and uses λ̃, λ̃1, λ̃2 in place of λ, λ1, λ2, respectively, then all the claims in Sections 4.1
and 4.2 continue to hold. This is due to the fact that such approximate loads never
underestimate the correct load values. For example, Lemma 4.4 used the hypothesis
λ ≤ 1, but since λ̃ ≥ λ1 + λ2 ≥ λ (Proposition 4.3), the hypothesis λ̃ ≤ 1 implies λ ≤ 1.
Similarly, the hypotheses of Lemma 4.5 and Lemma 4.6 are stronger when expressed in
terms of the approximated loads. Proposition 4.2, on the other hand, is easily adapted
using the fact that λk ≥ λ̃k/(1 + ε), for k ∈ {1, 2}.

PROPOSITION 4.12. Let τ be a 2-level task system and ε > 0. If λ̃1 > 1+ε or λ̃2 > 1+ε,
then τ is not feasible.

We conclude that one needs simply generalize the statement of Theorem 4.10 by
increasing the stated speedup from 1 + √

3/2 to (1 + ε)(1 + √
3/2).

THEOREM 4.13. Let ε > 0. If a 2-level task system τ is feasible on a unit-speed
processor, then it is schedulable by EDF-VD on a processor of speed (1 + ε)(1 + √

3/2)
whenever the loads λ, λ1, λ2 are approximated as in (25)–(26).

PROOF. Let σε
def= (1 + ε)(1 + √

3/2). Reasoning as in the proof of Theorem 4.10 yields
that the normalized estimated loads λ̃1/σε and λ̃2/σε are both not larger than 4 − 2

√
3,

and the proof of Theorem 4.10 already establishes that a task set is schedulable by
EDF-VD on a unit-speed processor whenever the largest of its (normalized) estimated
loads does not exceed 4 − 2

√
3.

5. EFFICIENT IMPLEMENTATION OF THE RUNTIME DISPATCHING

For traditional (non-MC) sporadic task systems consisting of n tasks, uniprocessor
EDF can be implemented efficiently to have a runtime complexity of O(log n) per event,
where an event is either the arrival of a job, or the completion of the execution of a
job (see, e.g., Mok [1988]). A direct application of such implementations can be used to
obtain an implementation of the runtime dispatching of EDF-VD that has a runtime of
O(log n) per job-arrival and job-completion event. However, EDF-VD potentially needs
to deal with an additional runtime event: the change in the criticality level of the
behavior from at most k to more than k (this is the event that is triggered at the
instant that current level() > k). Since this event requires that each subsequent
scheduling be done according to each task’s original deadline, explicitly recomputing
priorities according to these original deadlines would take time linear in the number
of tasks of criticality more than k – in the worst case, O(n) time. We now describe an
implementation of EDF-VD’s runtime system that has a worst-case runtime of O(log n)
per event for all three kinds of events: job arrival, job completion, and change in the
criticality level of the behavior from LO (i.e., at most k) to HI (more than k).

Recall that a priority queue supports the operations of inserting (insert) and deleting
the smallest item (deleteMin) in logarithmic time, and the operation of finding the
smallest item (min) in constant time. In addition, the standard priority queue data
structure can be enhanced to support the deletion of a specified item (the delete
operation), also in logarithmic time (see, e.g., Cormen et al. [2009, Sect. 6.5]). We
maintain two such enhanced priority queues, QLO and QHI. We also use a timer that
is used to indicate whether the currently executing job has executed for more than its
kth level WCET (thereby triggering the event current level() > k).

Initially, current level() = 1 and there are three kinds of events to be dealt with:
(1) the arrival of a job; (2) the completion of a job; and (3) current level() reaching
a value larger than k. We consider each separately. Suppose that the event occurs at
time-instant tc, and let Jc denote the currently executing job.

(1) A job of task τi arrives at time tc.
(a) Insert the newly arrived job into QLO, prioritized according to its virtual

scheduling deadline.
(b) If χi > k, then also insert it into QHI, prioritized according to its unmodified

(i.e., actual) scheduling deadline.
(c) If Jc is no longer the minimum job in QLO, it must be the case that the newly

arrived job has an earlier virtual deadline than Jc ’s virtual deadline. In that
case, the newly inserted job becomes Jc, and a timer for it is switched on and
set to go off after it has clocked ci(k). The timer of the interrupted job is stopped
(and resumed as soon as the job will get executed again).

(2) The currently executing job Jc completes execution at time tc.
(a) Delete this job from QLO, using the deleteMin operation supported by priority

queue implementations.
(b) If it was a job of criticality larger than k, also delete it from QHI – this would be

accomplished by a delete operation.
(c) Set the current-job indicator Jc to denote the new minimum (virtual) deadline

job – the “minimum” job in QLO; and set the timer to go off at tc + this job’s
remaining level-k WCET (when the job would exceed its level-k WCET if allowed
to execute without interruption).

(3) The timer goes off, indicating that the currently executing job has executed beyond
its level-k WCET without signaling completion. We switch to scheduling according
to QHI. Henceforth, all runtime dispatch decisions are taken as indicated by this
priority queue.

After the event current level() > k, no jobs of criticality at most k need execution,
and jobs of criticality larger than k are executed according to EDF with respect to
their original (unmodified) deadlines. Hence, subsequent runtime dispatching is done
as for traditional EDF scheduling (as described in, e.g., Mok [1988]), with QHI being
the priority queue used for this purpose.

6. EXTENSIONS

The basic algorithm EDF-VD can be extended in a number of ways that enhance its
applicability. In this section, we consider two such extensions.

6.1. Best-Effort Runtime Dispatching and Return to Low-Level Dispatching Mode

The basic algorithm EDF-VD was designed for best performance under worst-case sce-
narios; in particular, it may sometimes be overly pessimistic by completely discarding
low-criticality tasks after observing a high-criticality behavior, and by never returning
to the low-level mode of runtime dispatching (lines 1–8 of Algorithm 2) after a high-level
behavior has been observed. We briefly discuss how to modify the algorithm in order
to correctly schedule a larger number of jobs whenever possible, while maintaining the
same worst-case guarantee in terms of speedup bounds.

The first modification is straightforward: instead of completely discarding low-
criticality tasks after entering the higher-level behavior, they can simply be scheduled
with a priority lower than that of all high-criticality tasks. This, clearly, will meet the
deadlines of at least all the jobs that meet their deadlines under the basic EDF-VD
schedule; in particular, it preserves the correct scheduling of the high-criticality tasks.
On the other hand, this more optimistic schedule may meet the deadlines of many oth-
erwise ignored tasks, especially when the high-level behavior is exhibited marginally
and by only a few tasks.

Regarding the return to the low-level mode of runtime dispatching, the modification
is perhaps less straightforward. Let us limit the discussion to task systems with two
criticality levels, 1 (LO) and 2 (HI). We note that we can preserve the schedulability
guarantees with the following modification: on top of its criticality level, the runtime
dispatcher classifies at all times each job as either standard or best-effort. All stan-
dard jobs have priority over best-effort jobs; standard jobs are scheduled as before by
Algorithm 2, while the relative priorities of best-effort jobs can be arbitrary. Ini-
tially, the best-effort queue is empty and newly released jobs are always classified as
standard.

Whenever the criticality-level counter current level() is 2, but the set of active jobs
having criticality level HI is empty, the algorithm (i) resets the criticality-level counter
current level() to 1 – and consequently, returns the runtime dispatcher to its LO mode
of execution; (ii) at the same time, it demotes all active LO-criticality job to best-effort
priority. This may violate the deadline of some active LO-criticality job; in particular,
of a job demoted to the best-effort queue. However, we observe that such jobs need not
be guaranteed anyway, since current level() reaches the value 2 at some point and
so the criticality level of the scenario is HI according to the definition (Section 2). The
advantage of returning to the low-level dispatching mode is that subsequently released
jobs of LO-criticality will be correctly scheduled, at least until a HI-level behavior is
exhibited again. Note that tasks having criticality level HI are always guaranteed,

since, by construction, best-effort jobs never interfere with standard jobs (and HI-
criticality jobs are never moved to the best-effort queue).

6.2. Nonuniform Virtual Deadlines

In our basic approach, there was a single scaling factor x and the virtual deadlines for
the high-criticality tasks were defined uniformly, via the rule d̂i

def= x · di. However, in
many situations, it may be beneficial to define nonuniform scaling factors xi – one for
every high-criticality task. For concreteness, we limit this discussion to the case of two
criticality levels and implicit-deadline task systems.

Although, in light of Theorem 3.12, this will not help to achieve a better worst-case
speedup bound than 4/3, setting the virtual deadlines nonuniformly may potentially
schedule task sets that are not deemed schedulable by EDF-VD. We proceed to show
that this is indeed sometimes the case and discuss how the schedulability condition is
affected and how to set the deadline-scaling factors.

Consider the following variant of EDF-VD, called EDF with Non-Uniform Virtual
Deadlines (EDF-NUVD). Given a task system τ , we first check whether τ satisfies the
hypothesis of Theorem 3.4; if it does, we can simply apply EDF-VD. If the hypothesis
of Theorem 3.4 is not satisfied, then instead of defining d̂i

def= x · di for every high-
criticality task τi, we set d̂i

def= xi · di, where xi ∈ (0, 1) is a task-dependent scaling
parameter; we will see shortly how to set the scaling parameters and how to complete
the schedulability test. Apart from the revised definition of the virtual deadlines, the
runtime dispatching algorithm is otherwise unaffected.

As starting point of the analysis, we use the following alternative schedulability
condition. For a task set τ , let L2

def= {i ∈ [n] : χi = 2} be its set of high-criticality tasks.

LEMMA 6.1. Let τ be a 2-level task system and let 0 < xi < 1, for each i ∈ L2. If{
U1(1) + ∑

i∈L2
ui(1)/xi ≤ 1∑

i∈L2
ui(2)/(1 − xi) ≤ 1,

(27)

then τ is schedulable by EDF-NUVD.

PROOF. First observe that the condition

U1(1) +
∑
i∈L2

ui(1)/xi ≤ 1

ensures that no deadline (virtual or otherwise) is missed by EDF-NUVD while the
system exhibits level-1 behavior. Let t∗ denote the time at which the scenario first
exhibits level-2 behavior. Consider a job Jij of a high-criticality task τi that is active
at t∗. Let aij denote its arrival time. The absolute deadline of this job is dij = aij + di

and before t∗, Jij is EDF-scheduled by EDF-NUVD assuming a deadline d̂i j = aij + xidi.
Since all jobs would meet their virtual deadlines in any level-1 scenario, we know that
t∗ ≤ d̂i j ; otherwise, the job would no longer be active at t∗. Note that

dij − t∗ ≥ dij − d̂i j = di − xidi = (1 − xi)di.

In the worst case, we can therefore regard the system after time t∗ as a single-criticality
task system in which task τi has period (1 − xi)di and utilization ui(2)/(1 − xi). Then,
condition ∑

i∈L2

ui(2)/(1 − xi) ≤ 1

ensures that this system is itself EDF-schedulable.

It remains to show how to choose the scaling parameter xi for each high-criticality
task τi. We show that, when using (27) as the sufficient schedulability condition, a best
possible choice of the xi is given by

xi
def=

(
1 + λ

√
ui(2)/ui(1)

)−1
for all i ∈ L2 (28)

for some positive parameter λ. The particular form (28) is not arbitrary; its choice is
justified by the following result.

THEOREM 6.2. For a 2-level task system τ , let

S12
def=

∑
i∈L2

√
ui(1)ui(2).

If τ satisfies {
U1(1) + U2(1) + λ S12 ≤ 1,

U2(2) + λ−1 S12 ≤ 1,
(29)

for some λ > 0, then τ is schedulable by EDF-NUVD when the xi are as in (28). Moreover,
whenever (27) holds for some choice of the xi, then (29) holds for some λ > 0.

PROOF. For the first part of the theorem, by Lemma 6.1, we just need to check if
(27) holds for the given choice of the xi, which are determined up to the constant λ.
We substitute the value of λ from (28) and the definition of S12 into (29) to obtain the
condition {

U1(1) + U2(1) + ∑
i∈L2

(1/xi − 1)
√

ui(1)/ui(2) ·
√

ui(1)ui(2) ≤ 1

U2(2) + ∑
i∈L2

(xi/(1 − xi))
√

ui(2)/ui(1) ·
√

ui(1)ui(2) ≤ 1,

which is easily seen to be equivalent to (27), proving the first part of the theorem.
To prove the second part, we form the Lagrange dual function of (27) [Boyd and

Vandenberghe 2009, Sect. 5.8.1]. Since (27) has two constraints, the dual function g
involves two arguments μ1, μ2 (μ1, μ2 ≥ 0):

g(μ1, μ2) = inf
0<xi<1 : i∈L2

(μ1 f1(x) + μ2 f2(x)), (30)

where

f1(x) = U1(1) +
∑
i∈L2

ui(1)
xi

− 1,

f2(x) =
∑
i∈L2

ui(2)
1 − xi

− 1.

Since the set {0 < xi < 1, i ∈ L2} is open, the infimum with respect to x in (30) must
be achieved for values x such that ∂

∂xi

(
μ1 f1(x) + μ2 f2(x)

) = 0 for all i ∈ L2, yielding the
condition

μ1

(
−ui(1)

x2
i

)
+ μ2

ui(2)
(1 − xi)2 = 0.

Solving for xi yields

xi =
⎛
⎝1 +

√
μ2

μ1

√
ui(2)
ui(1)

⎞
⎠

−1

for all i ∈ L2,

which is equivalent to (28) after defining λ = √
μ2/μ1. The weak alternative form of

Lagrange duality implies that if the inequality system (27) is feasible, the inequality

μ1 f1(x) + μ2 f2(x) > 0

must be infeasible for any choice of μ1, μ2 ≥ 0. This in turn implies that f1(x), f2(x) ≤ 0,
which for the particular choice of x given by (28) implies (29).

Similarly as in Section 3, we can rewrite the system of inequalities (29) as a single
condition:

S12

1 − U2(2)
≤ 1 − U1(1) − U2(1)

S12
. (31)

If (31) holds, then λ can be chosen as any value in the interval[
S12

1 − U2(2)
,

1 − U1(1) − U2(1)
S12

]
,

and the values of the xi can be chosen accordingly. In summary, whenever either the
assumptions of Theorem 3.4 hold, or Condition (31) holds, then τ is schedulable by
EDF-NUVD.

Example 6.3. Consider the following task set τ = (τ1, τ2, τ3), where ε = 1/1000.

τi χi ui(1) ui(2)
τ1 1 3/4 − ε 3/4 − ε

τ2 2 1/8 1/8
τ3 2 ε 5/8

We observe that U1(1) = 3/4 − ε, U2(1) = 1/8 + ε, U2(2) = 3/4. Conditions (2) and (3)
are both violated (for ε = 1/1000), so that the system is deemed unschedulable by EDF-
VD. On the other hand, Condition (31) is satisfied since S12 = ∑

i∈L2

√
ui(1)ui(2) = 3/20.

Therefore, we can choose any λ ∈ [3/5, 5/6] and conclude that τ is schedulable by EDF-
NUVD.

7. SUMMARY AND CONCLUSIONS

Devising more cost-efficient techniques for obtaining certification for safety-critical
embedded systems has been identified as a prime research challenge [Barhorst et al.
2009]. We believe that in mixed-criticality systems, these certification considerations
give rise to fundamental new resource allocation and scheduling challenges that are not
adequately addressed by conventional real-time scheduling theory. In this article, we
consider the scheduling, upon preemptive uniprocessors, of mixed-criticality systems
that can be modeled using a mixed-criticality generalization of the sporadic task model.

We propose an algorithm called EDF-VD for scheduling such systems. We have
proved that EDF-VD is speedup-optimal by showing that (i) it has a processor speedup
factor equal to 4/3 for 2-level implicit-deadline systems (Theorem 3.8); and (ii) no non-
clairvoyant algorithm can have a smaller speedup factor (Theorem 3.12). We have also
proved bounds on the speedup factor of EDF-VD for implicit-deadline systems with up
to 13 criticality levels (Theorem 3.11), and a bound of 1 + √

3/2 on the speedup factor
of EDF-VD for 2-level arbitrary-deadline systems (Theorem 4.10).

We have shown how EDF-VD admits efficient schedulability tests and how it can be
implemented to have a runtime complexity per scheduling decision that is logarithmic
in the number of tasks for any K-level implicit-deadline task system, and thus demon-
strated the practical applicability of the algorithm. Finally, we discussed extensions

of EDF-VD by analyzing the possibility of using nonuniform scaling parameters and
more optimistic runtime dispatching rules.

For further research, we observe that the mixed-criticality model proposed by Vestal
[2007] can be extended to take into account other aspects that arise in the design of
safety-critical systems. A detailed discussion of the extensions is not the focus of this
article. We observe, however, that a very interesting contribution of Ekberg and Yi
[2014] concerns the generalization of the mixed-criticality task model to models where
not only the execution times change after a critical event, but all task parameters are
allowed to change.

ACKNOWLEDGMENTS

We thank the anonymous referees for their observations and criticisms that helped improve the presentation
and quality of this work.

REFERENCES

K. Albers and F. Slomka. 2004. An event stream driven approximation for the analysis of real-time systems.
In Proceedings of the 16th Euromicro Conference on Real-Time Systems. IEEE, Los Alamitos, CA, 187–
195.

J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. S. P. Stanfill, D.
Stuart, and R. Urzi. 2009. A research agenda for mixed-criticality systems. White paper.
http://www.cse.wustl.edu/∼cdgill/CPSWEEK09 MCAR/.

S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie. 2012.
Scheduling real-time mixed-criticality jobs. IEEE Trans. Comput. 61, 8, 1140–1152.

S. K. Baruah, R. R. Howell, and L. E. Rosier. 1993. Feasibility problems for recurring tasks on one processor.
Theor. Comput. Sci. 118, 1, 3–20.

S. K. Baruah, H. Li, and L. Stougie. 2010a. Mixed-Criticality scheduling: Improved resource-augmentation
results. In Proceedings of the ISCA International Conference on Computers and their Applications. ISCA,
Los Alamitos, CA, 217–223.

S. K. Baruah, H. Li, and L. Stougie. 2010b. Towards the design of certifiable mixed-criticality systems. In
Proceedings of the 16th IEEE Real-Time Technology and Applications Symposium. IEEE, Los Alamitos,
CA, 13–22.

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. 2009. Branching and bounds tightening techniques
for non-convex MINLP. Optimi. Meth. Softw. 24, 4–5, 597–634.

S. Boyd and L. Vandenberghe. 2009. Convex Optimization. Cambridge University Press, Cambridge, UK.
A. Burns and R. I. Davis. 2013. Mixed criticality systems - A Review. http://www-users.cs.york.ac.

uk/∼burns/review.pdf.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms 3rd Ed. MIT

Press, Cambridge, MA.
M. L. Dertouzos. 1974. Control robotics: The procedural control of physical processes. In Proceedings of the

International Federation for Information Processing Congress. North-Holland, Amsterdam, 807–813.
A. Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic tasks on one processor. In Pro-

ceedings of 34th IEEE Real-Time Systems Symposium. IEEE, Los Alamitos, CA, 78–87.
P. Ekberg and W. Yi. 2012. Bounding and shaping the demand of mixed-criticality sporadic tasks. In Pro-

ceedings of 24th Euromicro Conference on Real-Time Systems. IEEE, Los Alamitos, CA, 135–144.
P. Ekberg and W. Yi. 2014. Bounding and shaping the demand of generalized mixed-criticality sporadic task

systems. Real-Time Systems 50, 1, 48–86.
N. Guan, P. Ekberg, M. Stigge, and W. Yi. 2011. Effective and efficient scheduling of certifiable mixed-

criticality sporadic task systems. In Proceedings of the 32nd IEEE Real-Time Systems Symposium.
IEEE, Los Alamitos, CA, 13–23.

J. Y.-T. Leung and J. Whitehead. 1982. On the complexity of fixed-priority scheduling of periodic, real-time
tasks. Perf. Eval. 2, 4, 237–250.

H. Li and S. K. Baruah. 2010. An algorithm for scheduling certifiable mixed-criticality sporadic task systems.
In Proceedings of the 31st IEEE Real-Time Systems Symposium. IEEE, Los Alamitos, CA, 183–192.

C. L. Liu and J. W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment. J. ACM 20, 1, 46–61.

A. K. Mok. 1983. Fundamental design problems of distributed systems for the hard real-time environment.
Ph.D. dissertation. Laboratory for Computer Science, Massachusetts Institute of Technology. (Available
Technical Report No. MIT/LCS/TR-297.)

A. K. Mok. 1988. Task management techniques for enforcing ED scheduling on periodic task set. In Proceed-
ings of the 5th IEEE Workshop on Real-Time Software and Operating Systems. USENIX Association,
Washington, DC, 42–46.

P. J. Prisaznuk. 1992. Integrated modular avionics. In Proceedings of the IEEE National Aerospace and
Electronics Conference, Vol. 1. IEEE, Los Alamitos, CA, 39–45.

H. Su and D. Zhu. 2013. An elastic mixed-criticality task model and its scheduling algorithm. In Proceedings
of the Conference on Design, Automation & Test in Europe. EDA Consortium, San Jose, CA, 147–152.

S. Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In Proceedings of the 28th IEEE Real-Time Systems Symposium. IEEE, Los Alamitos, CA,
239–243.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley, G. Bernat, C. Ferdinand, R.
Heckmann, T. Mitra, et al. 2008. The worst-case execution-time problem - overview of methods and
survey of tools. ACM Trans. Embedded Comput. Syst. 7, 3, 36.

