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Abstract. The paper is devoted to a reaction-diffusion equation with doubly nonlocal
nonlinearity arising in various applications in population dynamics. One of the integral
terms corresponds to the nonlocal consumption of resources while another one describes
reproduction with different phenotypes. Linear stability analysis of the homogeneous in space
stationary solution is carried out. Existence of travelling waves is proved in the case of narrow
kernels of the integrals. Periodic travelling waves are observed in numerical simulations.
Existence of stationary solutions in the form of pulses is shown, and transition from periodic
waves to pulses is studied. In the applications to the speciation theory, the results of this
work signify that new species can emerge only if they do not have common offsprings. Thus,
it is shown how Darwin’s definition of species as groups of morphologically similar individuals
is related to Mayr’s definition as groups of individuals that can breed only among themselves.

1 Nonlocal equations in population dynamics

Nonlocal reaction-diffusion equations arise in various applications. In population dynamics
they are widely used in order to describe nonlocal consumption of resources [14, 18, 21, 27]
or breeding with different phenotypes [8, 15, 16]. The roles of these nonlocal terms are
quite different, from the biological and from the modelling points of view. In this work
we will consider both of them at the same time and will study their mutual influence.
Their combination will allow us to make some important conclusions about the emergence
of biological species.

We consider the nonlocal reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ a(S(u))2(1− J(u))− bu, (1.1)
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where D, a and b are some positive constants,

S(u) =
1

2h1

∫ ∞

−∞
ψ(x− y)u(y, t)dy, ψ(z) =

{
1, |z| ≤ h1
0, |z| > h1

,

J(u) = r(h2)

∫ ∞

−∞
ϕ(x− y)u(y, t)dy, ϕ(z) =

{
1, |z| ≤ h2
0, |z| > h2

.

We take the kernels of the integrals in the form of step-wise constant functions in order
to simplify analysis and simulations. Other kernels can also be considered. We will set
r(h2) = 1/(2h2) or r(h2) = 1. In the first case, in the limit of small h2 we get J(u) = u similar
to the local consumption of resources in the logistic equation. In the case of asymptotically
large h2 we put r(h2) = 1. Then in the limit of large h2 we obtain global consumption of
resources with the integral I(u) =

∫∞
−∞ u(y, t)dy in the consumption term.

Various particular cases of this equation are studied in the literature (see [1, 27, 31] and
the references therein). In the limit of small h1 and h2 we obtain the classical reaction-
diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ au2(1− u)− bu. (1.2)

If b < a/4, then the nonlinearity has three zeros, u+ = 0, u0 = (1 −
√
1− 4b/a)/2 and

u− = (1 +
√
1− 4b/a)/2. In this case there is a travelling wave solution of this equation,

u(x, t) = w(x − ct) with the limits w(±∞) = u±. It exists for a unique value of c and it is
globally asymptotically stable (see [27, 34] and the references therein). This equation also
has stationary solutions in the form of pulses, that is positive solutions with zero limits at
infinity. Such solutions are unstable.

If h1 > 0 and h2 = 0, then equation (1.1) corresponds to the local consumption of
resources and breeding with possibly different phenotypes (see Appendix):

∂u

∂t
= D

∂2u

∂x2
+ a(S(u))2(1− u)− bu. (1.3)

Similar to the previous case, existence and stability of travelling waves for this equation is
proved [8, 15, 16]. The next particular case of equation (1.1) is h1 = 0 and h2 > 0:

∂u

∂t
= D

∂2u

∂x2
+ au2(1− J(u))− bu. (1.4)

Contrary to the previous equation, the maximum principle is not applicable here, and the
wave existence is proved only for h2 sufficiently small [5, 6] or in some other special cases
[3]. Propagation of periodic waves is observed in numerical simulations for the values of h2
greater than some critical value h∗2 for which the homogeneous in space solution u = u− loses
its stability resulting in appearance of stationary periodic solutions.

In the monostable stable case (u2 in the production term is replaced by u), existence
of waves is proved for all speeds greater than or equal to the minimal speed [2, 4, 12, 20],
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stability of waves is studied in [32], their dynamics in [5, 10, 18, 23, 24]. Systems of equations
are studied in [11, 25, 27, 36].

Equation (1.4) has stationary solutions in the form of pulses for all h2 sufficiently large
(r(h2) = 1) [33]. Numerical simulations show that these pulses are stable [13, 28, 29], though
their stability is not proved analytically.

Thus, equation (1.4) has travelling waves propagating with a constant speed and profile
for h2 sufficiently small. Periodic waves are observed for intermediate values of h2 and pulses
for h2 sufficiently large. Transition from periodic waves to pulses occurs through a global
bifurcation where the speed of the periodic wave converges to zero and the peaks of the wave
form the pulses [29].

Equation (1.4) is a limiting case of equation (1.1) as h1 converges to 0. In this work
we will study how dynamics of solution is influenced by the integral S(u) for positive h1.
The linear stability analysis of the homogeneous in space solutions is presented in Section
2. Dynamics of pulses and waves is discussed in Section 3. The derivation of the model and
positiveness of solutions are discussed in the appendix.

One of the important applications of nonlocal reaction-diffusion equations concerns the
theory of speciation. Nonlocal consumption of resources allows the description of the emer-
gence of biological species [17, 18, 19, 31]. The integral S(u) in the reproduction term is
determined by the relation between the phenotypes of parents. We will show that speciation
can occur only if this distribution is sufficiently narrow. This is related to Mayr’s definition
of species as a group of individuals that can breed only among themselves. We discuss these
questions in Section 4.

2 Linear stability analysis

2.1 Nonlocal consumption

We begin with the stability analysis of a homogeneous in space stationary solution. Lin-
earizing equation (1.1) about u = u∗(= u±, u0), we obtain the eigenvalue problem:

Dv
′′
+ 2au∗(1− u∗)S(v)− au2∗J(v)− bv = λv. (2.1)

Taking the Fourier transform, we find the spectrum:

λ = −Dξ2 + 2au∗(1− u∗)ψ̃(ξ)− au2∗ϕ̃(ξ)− b, (2.2)

where

ψ̃(ξ) =
sin(ξh1)

ξh1
, ϕ̃(ξ) =

sin(ξh2)

ξh2
.

In the limit of small h1 and h2, which corresponds to the local reaction-diffusion equation, we
obtain that the solution u = u− is always stable. Since ϕ̃(ξ) ≤ 1, then the function ϕ̃ moves
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Figure 1: Linear stability analysis. The eigenvalue λ in (2.2) for D = 0.2, a = 1, b = 0.1,
h2 = 5 and for different values of h1 (left). Stability region (white) and instability region
(grey) on the (h2, h1) plane.

the spectrum to the right, and it can destabilize the solution. Hence nonlocal consumption
of resources can lead to the instability of the homogeneous in space stationary solution. This
result is known from the numerous previous works [14, 18, 19, 21]. The function ψ̃ ≤ 1 moves
the spectrum to the left, and it stabilizes the solution.

The eigenvalue λ as a function of ξ is shown in Figure 1 (left). It is negative for ξ = 0 and
positive on some interval of ξ providing the instability of the stationary solution. The interval
where it is positive decreases with the increase of h1. Stability boundary is given by the values
of parameters for which the maximal value of λ(ξ) equals 0. Stability and instability regions
on the plane (h2, h1) are presented in Figure 1 (right). The instability region is below the
curve. Increase of h2 destabilizes the solution while increase of h1 stabilizes it.

2.2 Global consumption

The integral I(u) =
∫∞
−∞ u(x, t)dx is well defined only for functions u(x, t) integrable on

the whole axis. Therefore in order to study the emergence of pulses in the case of global
consumption, we will consider a similar equation

∂u

∂t
= D

∂2u

∂x2
+ au2(1− I0(u))− bu, I0(u) =

∫ L

0

u(y, t)dy (2.3)

on a bounded interval 0 < x < L with the no-flux boundary conditions: x = 0, L : ∂u/∂x =
0. To simplify the presentation, we consider the particular case where S(u) = u (h1 = 0).

We look for homogeneous in space stationary solutions of equation (2.3). If b < a/(4L),
then this problem has three constant solutions, w = 0, and two solutions of the equation

aw(1− I0(w)) = b. (2.4)

We denote them by w1 and w2 assuming that w1 < w2.
Consider next the eigenvalue problem for the equation linearized about a constant solu-

tion u∗:
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Du′′ + 2au∗(1− I0(u∗))u− bu− au2∗I0(u) = λu, u′(0) = u′(L) = 0. (2.5)

Taking into account (2.4) we can write it as follows:

Du′′ + bu− au2∗I0(u) = λu, u′(0) = u′(L) = 0. (2.6)

We will search its solutions in the form

u(x) = cos(nπx/L), n = 0, 1, 2, ...

Then we get

λ0 = b− au2∗L, λn = −D(nπ/L)2 + b, n = 1, 2, ...

Hence the presence of the integral term influences only the eigenvalue λ0. From (2.4) we get

λ0 = au∗(1− 2Lu∗).

If equation (2.4) has two solutions, then λ0 > 0 for u∗ = w1 and λ0 < 0 for u∗ = w2.
Thus, the problem linearized about solution w2 has negative eigenvalue λ0. The eigen-

value λ1 can be negative or positive. If it is negative, this solution is stable, otherwise it is
unstable and another solution bifurcates from it. We can consider D as bifurcation parame-
ter with the critical value D∗ = bL2/π2. If D < D∗, then a non-homogeneous stable solution
emerges. Since the eigenfunction cos(πx/L) corresponding to the eigenvalue λ1 has its ex-
trema at the boundary, then the emerging solution has also its maximum at the boundary
of the interval. If we consider a double interval, then this solution corresponds to the pulse
solution.

3 Waves and pulses

3.1 Wave propagation

Travelling wave solution of equation (1.1) is a solution u(x, t) = w(x−ct), where the function
w(ξ) satisfies the equation

Dw′′ + cw′ + a(S(w))2(1− J(w))− bw = 0, w(±∞) = u±. (3.1)

The constant c is the wave speed. It is a priori unknown and should be found as a solution
of the problem. We suppose here that r(h2) = 1/(2h2). In the limit of small h2 we have
J(w) = w, and we obtain equation (1.3) for which the existence of waves is proved [8, 15].
Therefore we can expect that the waves also exist for all h2 sufficiently small.

Theorem 3.1. For any h1 > 0 and for all h2 > 0 sufficiently small problem (3.1) has a
monotonically decreasing solution for a unique value of c.
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x

Figure 2: Propagation of periodic waves for equation (1.1). Solution u(x, t) as a function
of two variables (left). The same solution as levels lines of the function u(x, t) on the (x, t)
plane.

The proof of this theorem is similar to the proof of the corresponding theorem in [5, 6]. We
use here the existence of solutions for the limiting equation (1.3) and the implicit function
theorem. The spectrum of the operator linearized about the solution is completely in the
left-half plane except for a simple zero eigenvalue [16]. Therefore the operator is invertible
on the subspace orthogonal to the corresponding eigenfunction. This perturbation method
is conventionally used for travelling waves [27].

The wave existence is proved only for sufficiently small values of h2. For larger h2 we can
study wave propagation in numerical simulations. When we increase h2, the wave becomes
non-monotone with respect to x. For h2 sufficiently large, the homogeneous in space solution
u = u− becomes unstable resulting in appearance of a stable stationary space periodic
solution. For such values of h2 we observe propagation of a periodic wave where its speed
and its profile change periodically in time (Figure 2). This behavior is qualitatively similar
to the behavior of solutions of equation (1.4).

3.2 Existence of pulses

Equation

∂u

∂t
= D

∂2u

∂x2
+ au2(1− I(u))− bu, (3.2)

where

I(u) =

∫ ∞

−∞
u(x, t)dx

is the limiting case of equation (1.4) as h2 → ∞ (r(h2) = 1). It can be easily verified that it
has a pulse solution if a > ac, where the critical value ac depends on D and b [27]. Equation
(3.2) is formally obtained from equation (1.1) in the limit of small h1 and large h2. Existence
of pulses for equation (1.1) is given by the following theorem.
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Theorem 3.2. For any D, b and a > ac(D, b) equation (1.1) has a positive stationary
solution vanishing at infinity for all h1 sufficiently small and h2 sufficiently large (r(h2) = 1).

The proof of this theorem is similar to the proof of the existence of pulses for equation
(1.4) [33]. It is based on the existence result for equation (3.2), implicit function theorem
and spectral properties of the linearized operator. Existence of pulses for a system of two
equations describing male and female density distributions is proved in [30]. Example of a
pulse solution obtained in numerical simulations is shown in Figure 3 (left).

200 250 300 350 400 450 500 550 600

x
0 2 4 6 8 10 12 14 16 18 20

h
2

Periodic wave

Pulse

Wave

Figure 3: Pulse solution for equation (1.1) (left). The regions with different regimes on the
(h2, h1) plane (right).

3.3 Transition between different regimes

Depending on the values of parameters equation (1.1) can have solutions of different types.
For all other parameters fixed, usual travelling waves (with a constant speed and profile) are
observed for sufficiently small values of h2. Periodic travelling waves exist for intermediate
values and stable pulses for sufficiently large h2. Pulses exist also for other values of h2 but
they are unstable. The regions on the (h2, h1) plane where simple waves, periodic waves and
stable pulses are observed numerically are shown in Figure 3 (right).

Transition from simple to periodic waves occurs due to the essential spectrum crossing
the imaginary axis. This type of bifurcations is discussed in [29] for equation (1.4). The
homogeneous in space stationary solution u = u− loses its stability resulting in appearance
of a stationary periodic solution. The travelling wave connects the constant value u = u+ for
x = +∞ with this periodic solution for x→ −∞. Therefore the wave becomes also periodic.

Transition from periodic travelling waves to pulses occurs according to the following
scenario. The average speed of periodic travelling waves decreases when h2 increases. For
h2 sufficiently large this speed becomes zero. Instead of a periodic travelling wave we obtain
one or several pulses. If there are more than one pulse, then they slowly move from each
other with a speed decaying in time. The number of pulses depends on the initial condition
(Figure 4).

Both transitions are influenced by the value of h1. Increase of h1 stabilizes simple waves
versus periodic waves, and periodic waves versus pulses.
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Figure 4: Solutions of equation (1.1) with two and three pulses. The pulses slowly move
from each other.

4 Discussion

Nonlocal consumption of resources in reaction-diffusion equations changes dynamics of so-
lutions resulting in appearance of periodic travelling waves and stable pulses that do not
exist for the usual (scalar) reaction-diffusion equations. In this work we introduce an addi-
tional nonlocal term in the reproduction rate. From the biological point of view, it shows
that offsprings can have phenotype different from the phenotype of parents. If nonlocal
consumption of resources destabilizes solutions, the second nonlocal term stabilizes them.
This conclusion concerns the transition from the homogeneous in space solution to a periodic
solution, transition from simple waves to periodic waves, and transition from periodic waves
to stable pulses.

Spectrum, stability, bifurcations. The influence of integral terms on stability can be
studied analytically for the homogeneous in space stationary solution. Nonlocal consumption
destabilizes this solution leading to the bifurcation of periodic in space solutions due to a
real eigenvalue crossing the origin.

The situation is different in the case of global consumption where the kernel of the integral
identically equals 1. The integral I(u) is defined only for integrable functions. Therefore
we cannot consider the homogeneous in space stationary solution on the whole axis if it is
different from 0. In order to study stability of such solutions and the emergence of pulses,
we consider this equation on a bounded interval.

The origins of the instability for nonlocal and global consumption are different. Consider
first the eigenvalue problems (2.1). Since ϕ̃(ξ) = 1 for ξ = 0 and ϕ̃(ξ) can be negative
for some ξ ̸= 0, then the integral term can lead to the instability of solution with some
periodicity determined by this value of ξ. In this case the instability occurs due to the
principal eigenvalue crossing the origin from the left half-plane to the right half-plane.

On the other hand, in problem (2.6), I0(u) = 0 for ξ ̸= 0 (admissible ξ are determined
by the length L of the interval) and I0(u) ̸= 0 only for ξ = 0. Hence I0(u) changes only
the principal eigenvalue and does not influence other eigenvalues. Since b > 0, then the
principal eigenvalue of the operator Tu = Du′′ + bu is positive. The integral I0(u) moves it

8



to the left half-plane. Hence stability of solutions is determined by the second eigenvalue of
the operator T . If it is positive, then the homogeneous in space stationary solution loses its
stability resulting in appearance of the solution with a half period on the interval L (n = 1).
This solution corresponds to the pulse on the interval 2L.

Thus, the cases of nonlocal and global consumption differ not only by the origin of
instability but also by periodicity of solutions. For the nonlocal consumption, solution can
have several periods on the interval [0, L] while for the global consumption only half period.
If L increases, the period of nonlocal solution can remain the same while the period of global
solution will increase together with L. In this limit as L tends to infinity, we obtain a periodic
solution in the nonlocal case and a pulse solution in the global case.

Stability and bifurcations of solutions are determined not only by the eigenvalues but
also by the essential spectrum. It can be explicitly determined for the local and nonlocal
reaction-diffusion equations [7, 9, 26, 35]. Transition from simple to periodic waves is related
to the essential spectrum crossing the imaginary axis. Such bifurcations cannot be studied
by conventional methods of the bifurcation theory.

Another unusual bifurcation is observed for the transition from periodic waves to pulses.
It is a global bifurcation where peaks of the periodic wave become stationary or slowly
moving pulses as the speed of the wave converges to zero.

Emergence of species. One of the important applications of reaction-diffusion equations
with nonlocal consumption of resources concerns the emergence of species due to natural
selection. In this case, the space variable x corresponds to the phenotype, t is time, u(x, t)
is the density distribution with respect to the phenotype (for each t fixed).

Let us begin this discussion with equation (1.4). The first term in the right-hand side
of this equation describes small random mutations, the second term reproduction of the
population, the last term its mortality. The reproduction term is proportional to the second
power of the population density (sexual reproduction) and to available resources. Nonlocal
consumption of resources J(u) is related to the intraspecific competition. Indeed, since
each individual consumes resources in some area around its average location, then these
areas overlap and the individuals compete for resources. This nonlocal term leads to the
appearance of separated peaks of the density distribution which do not exist in conventional
local models. These peaks in the density distribution correspond to different phenotypes,
and we can interpret them as different species. This interpretation corresponds to Darwin’s
definition of species as groups of morphologically similar individuals. From this point of
view, appearance of new peaks in the process of propagation of periodic waves describes
the emergence of species [13, 18, 19]. This is sympatric speciation where species are not
separated by genetic or geographic barriers.

Emergence of species in this model is based on three assumptions: random mutations
(diffusion), intraspecific competition (nonlocal consumption) and reproduction with the same
phenotype. Let us discuss the last assumption. The density square in the reproduction term
in equation (1.4) corresponds to the product of densities of males and females taken at the
same space point x, that is for the same phenotype. Therefore this model implies that the
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phenotypes of parents are the same, and the phenotype of offsprings is the same as phenotype
of parents. This assumption is restrictive and it is not biologically realistic.

Suppose now that phenotypes of males and females in the production term can be dif-
ferent. How this assumption will influence the emergence of species? Instead of equation
(1.4) we consider now equation (1.1). In this case, males and females can have different
phenotypes. We suppose that offsprings with phenotype x can be born from males and
females with the phenotypes from the interval (x− h1, x + h1). This assumption about the
phenotypes can be different. We expect that the qualitative behavior of solutions will remain
the same.

Since the emergence of species in our model is associated with a periodic wave, then we
should determine how the integral S(u) influences the transition from simple to periodic
waves. From Figure 3 (right) we conclude that periodic waves exist if h1 is sufficiently
small. Hence if the interval of admissible phenotypes of parents is sufficiently large, then the
speciation does not occur.

Furthermore, this figure allows us to conclude that periodic waves appear if h1 < h2.
Let us recall that nonlocal consumption of resources determines periodicity of solutions.
Namely, there is one peak of the population density in the interval 2h2. Condition h1 < h2
means that the individuals from the two neighboring peaks (species) cannot have common
offsprings; species are reproductively isolated. The impossibility to have common offsprings
can be determined by morphological or by genetic differences in the individuals and not by
some imposed exterior barriers at it is the case in the allopatric speciation.

This conclusion corresponds to Mayr’s definition of species. He suggested that a species
is not just a group of morphologically similar individuals, but a group of individuals that
can breed only among themselves, excluding all others [22]. Thus we show that species in
the sense of Darwin can emerge only if Mayr’s condition is satisfied. In terms of the model
considered here this condition can be formulated as h1 < h2.

Emergence of species gives a selective advantage since the total biomass increases [27].
As we discussed above, the species emerge due to the intraspecific competition under the
condition of separation of reproduction. On the other hand, separation of reproduction
occurs due to the exclusion of the different from the process of reproduction. Therefore we
can suppose that exclusion of the different, often observed in nature, is formed in the process
of evolution as one of the mechanisms of speciation.
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5 Appendix

5.1 Derivation of the model

Let w(x, t) and v(x, t) be the density distributions of males and females depending on the
phenotype x and time t. Suppose that males with phenotype y1 and females with phenotype
y2 can have offsprings with phenotype x with probability P (x, y1, y2). Then in the case of
unlimited resources the natality rate of offspring with phenotype x is given by the integral

Q(w, v) =

∫ ∞

−∞

∫ ∞

−∞
P (x, y1, y2)w(y1, t)v(y2, t)dy1dy2.

Taking into account that natality rate depends on the available resources, we obtain the
following equations for the distributions of males and females:

∂w

∂t
= D1

∂2w

∂x2
+ a1Q(w, v)(1− J(w)− J(v))− b1w, (5.1)

∂v

∂t
= D2

∂2v

∂x2
+ a2Q(w, v)(1− J(w)− J(v))− b2v, (5.2)

where

J(w) =

∫ ∞

−∞
ϕ(x− y)w(y, t)dy, J(v) =

∫ ∞

−∞
ϕ(x− y)v(y, t)dy.

Assuming that D1 = D2, a1 = a2, b1 = b2, we get w = v (if the initial conditions are equal),
and we can reduce this system to the single equation

∂u

∂t
= D

∂2u

∂x2
+ aQ(u, u)(1− J(u))− bu, (5.3)

where D = D1, a = a1/2, b = b1.
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In order to study this equation, we need to specify the function P . We will suppose
that P (x, y1, y2) = p(x − y1, x − y2), that is the probability density function depends on
the difference between the phenotypes. We will consider p(ξ1, ξ2) as a piece-wise constant
function,

p(ξ1, ξ2) = r(N)×
{

1 , |ξ1| ≤ N and |ξ2| ≤ N
0 , |ξ1| > N or |ξ2| > N

, (5.4)

where we set r(N) = 1/N2 to get the integral of p equal 1. Then p(ξ1, ξ2) = r(N)ψ(ξ1)ψ(ξ2),
where

ψ(ξ) =

{
1 , |ξ| ≤ N
0 , |ξ| > N

,

and Q(u, u) = (S(u))2, where

S(u) =
1

N

∫ ∞

−∞
ψ(x− y)u(y, t)dy.

Hence equation (5.3) can be written as follows:

∂u

∂t
= D

∂2u

∂x2
+ a(S(u))2(1− J(u))− bu. (5.5)

The particular form of the function P considered above simplifies the analysis of this equa-
tion. We expect that the main properties of solutions remain the same for other functions.

5.2 Positiveness of solutions

We will begin with a more complete model for the density u of the population and R of
resources:

∂u

∂t
= D

∂2u

∂x2
+ a(S(u))2R− bu, (5.6)

ϵ
dR

dt
= K − f(R)

∫ ∞

−∞
ϕ(x− y)u(y, t)dy − σR. (5.7)

Here the natality term S2R is proportional to available resources. The first term is the
right-hand side of equation (5.7) describes production of resources with a constant rate.
Consumption of resources f(R)J(u) at space point x depends on available resources through
the function f(R) ≥ 0, f(0) = 0, and on the density of individuals J(u) coming from spaces
points y.

If we formally put ϵ = 0, then we get

R = (K − f(R)J(u))/σ.
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We can substitute this expression into (5.6) but it contains R, and this equation does not
represent a closed model. We set

f(R) =

{
f0 , R > 0
0 , R = 0

.

This means that the consumption rate by each individual is constant if there are available
resources, and it becomes zero when there are no resources. Then for R > 0 we get

R = (K − f0J(u))/σ.

Hence equation (5.6) can now be written as

∂u

∂t
= D

∂2u

∂x2
+ a(S(u))2(K − f0J(u))/σ − bu, (5.8)

assuming that

J(u) < K/f0. (5.9)

This equation coincides with equation (1.1) up to the change of variables.
It can be easily verified that if initial condition of system (5.6), (5.7) considered on the

whole axis is non-negative, then the solution is also non-negative. Positiveness of solution is
preserved for equation (5.8) if condition (5.9) is satisfied. If this condition is not satisfied,
then positiveness can be violated. Numerical simulations presented in this work satisfy the
positiveness condition.
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