
HAL Id: inria-00548637
https://inria.hal.science/inria-00548637v1

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aggregating local descriptors into a compact image
representation

Hervé Jégou, Matthijs Douze, Cordelia Schmid, Patrick Pérez

To cite this version:
Hervé Jégou, Matthijs Douze, Cordelia Schmid, Patrick Pérez. Aggregating local descriptors into a
compact image representation. CVPR 2010 - 23rd IEEE Conference on Computer Vision & Pattern
Recognition, Jun 2010, San Francisco, United States. pp.3304-3311, �10.1109/CVPR.2010.5540039�.
�inria-00548637�

https://inria.hal.science/inria-00548637v1
https://hal.archives-ouvertes.fr


Aggregating local descriptors into a compact image representation
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Abstract

We address the problem of image search on a very large

scale, where three constraints have to be considered jointly:

the accuracy of the search, its efficiency, and the memory

usage of the representation. We first propose a simple yet

efficient way of aggregating local image descriptors into a

vector of limited dimension, which can be viewed as a sim-

plification of the Fisher kernel representation. We then show

how to jointly optimize the dimension reduction and the in-

dexing algorithm, so that it best preserves the quality of vec-

tor comparison. The evaluation shows that our approach

significantly outperforms the state of the art: the search ac-

curacy is comparable to the bag-of-features approach for

an image representation that fits in 20 bytes. Searching a

10 million image dataset takes about 50ms.

1. Introduction

There are two reasons why the bag-of-features image

representation (BOF) is popular for indexation and catego-

rization applications. First, this representation benefits from

powerful local descriptors, such as the SIFT descriptor [12]

and more recent ones [13, 28, 29]. Second, these vector rep-

resentations can be compared with standard distances, and

subsequently be used by robust classification methods such

as support vector machines.

When used for large scale image search, the BOF vec-

tor representing the image is advantageously chosen to be

highly dimensional [16, 20, 10], up to a million dimensions.

In this case, the search efficiency results from the use of in-

verted lists [23], which speeds up the computation of dis-

tances between sparse vectors. However, two factors limit

the number of images that can be indexed in practice: the

efficiency of the search itself, which becomes prohibitive

when considering more than 10 million images, and the

memory required to represent an image.

In this paper, we address the problem of searching the

most similar images in a very large image database (ten mil-

lion images or more). We put an emphasis on the joint op-

timization of three constraints: the search accuracy, its effi-

ciency and the memory usage. The last two are related [24],

as search efficiency can be approximated by the amount

of memory to be visited. Most similar to our work is the

approach of [9], which proposes an approximate nearest

neighbor search for BOF vectors. However, this method is

limited to small vocabulary sizes, yielding lower search ac-

curacy compared to large ones. Moreover, an image still re-

quires more than a hundred bytes to reproduce the relatively

low search accuracy of a low-dimensional BOF vector.

The efficiency problem was partially addressed by the

min-Hash approach [2, 3] and the method of Torresani et

al. [25]. However, these techniques still require a significant

amount of memory per image, and are more relevant in the

context of near-duplicate image detection, as their search

accuracy is significantly lower than BOF. Some authors ad-

dress the efficiency and memory constraints by using GIST

descriptors [17], and by converting them to compact binary

vectors [5, 11, 24, 27]. These approaches are limited by the

low degree of invariance of the global GIST descriptor, and

none of them jointly fulfills the three aforementioned con-

straints: [24, 27] still requires an exhaustive search while

[11] is memory consuming due to the redundancy of the

LSH algorithm. In contrast, our approach obtains a signif-

icantly higher accuracy with, typically, a 20-byte represen-

tation. This is obtained by optimizing:

1. the representation, i.e., how to aggregate local image

descriptors into a vector representation;

2. the dimensionality reduction of these vectors;

3. the indexing algorithm.

These steps are closely related: representing an image by a

high-dimensional vector usually provides better exhaustive

search results than with a low-dimensional one. However,

high dimensional vectors are more difficult to index effi-

ciently. In contrast, a low dimensional vector is more easily

indexed, but its discriminative power is lower and might not

be sufficient for recognizing objects or scenes.

Our first contribution consists in proposing a represen-

tation that provides excellent search accuracy with a rea-

sonable vector dimensionality, as we know that the vector

will be indexed subsequently. We propose a descriptor, de-

rived from both BOF and Fisher kernel [18], that aggregates

SIFT descriptors and produces a compact representation. It
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is termed VLAD (vector of locally aggregated descriptors).

Experimental results demonstrate that VLAD significantly

outperforms BOF for the same size. It is cheaper to com-

pute and its dimensionality can be reduced to a few hun-

dreds components by principal component analysis (PCA)

without noticeably impacting its accuracy.

As a second contribution, we show the advantage of

jointly optimizing the trade-off between the dimensionality

reduction and the indexation algorithm. We consider in par-

ticular the recent indexing method of [7], as we can directly

compare the error induced by PCA with the error resulting

from the indexation, due to the approximate reconstruction

of the vector from its encoded index.

After presenting two image vector representations that

inspired ours, BOF and the Fisher kernel [18], we intro-

duce our descriptor aggregation method in Section 2. The

joint optimization of dimensionality reduction and indexing

is presented in Section 3. Experimental results demonstrate

the performance of our approach in section 4: we show that

the performance of BOF is attained with an image represen-

tation of about 20 bytes. This is a significant improvement

over the state-of-the-art [9], both in terms of memory usage,

search accuracy and efficiency.

2. Image vector representation

In this section, we briefly review two popular approaches

that produce a vector representation of an image from a set

of local descriptors. We then propose our method to aggre-

gate local descriptors.

2.1. Bag of features

The BOF representation groups local descriptors. It re-

quires the definition of a codebook of k “visual words” usu-

ally obtained by k-means clustering. Each local descriptor

of dimension d from an image is assigned to the closest cen-

troid. The BOF representation is obtained as the histogram

of the assignment of all image descriptors to visual words.

Therefore, it produces a k-dimensional vector, which is sub-

sequently normalized. There are several variations on how

to normalize the histogram. When seen as an empirical

distribution, the BOF vector is normalized using the Man-

hattan distance. Another common choice consists in using

Euclidean normalization. The vector components are then

weighted by idf (inverse document frequency) terms. Sev-

eral weighting schemes have been proposed [16, 23]. In the

following, we perform L2 normalization of histograms and

use the idf calculation of [23].

Several variations have been proposed to improve the

quality of this representation. One of the most popu-

lar [21, 26] consists in using soft quantization techniques

instead of a k-means.

2.2. Fisher kernel

The Fisher kernel [6] is a powerful tool to transform an

incoming variable-size set of independent samples into a

fixed size vector representation, assuming that the samples

follow a parametric generative model estimated on a train-

ing set. This description vector is the gradient of the sam-

ple’s likelihood with respect to the parameters of this distri-

bution, scaled by the inverse square root of the Fisher infor-

mation matrix. It gives the direction in parameter space into

which the learnt distribution should be modified to better

fit the observed data. It has been shown that discriminative

classifiers can be learned in this new representation space.

Perronnin et al. [18] applied Fisher kernel in the con-

text of image classification. They model the visual words

with a Gaussian mixture model (GMM), restricted to diag-

onal variance matrices for each of the k components of the

mixture. Deriving a diagonal approximation of the Fisher

matrix of a GMM, they obtain a (2d + 1) × k − 1 dimen-

sional vector representation of an image feature set, or d×k-

dimensional when considering only the components associ-

ated with either the means or the variances of the GMM.

In comparison with the BOF representation, fewer visual

words are required by this more sophisticated representa-

tion.

2.3. VLAD: vector of locally aggregated descriptors

We propose a vector representation of an image which

aggregates descriptors based on a locality criterion in fea-

ture space. It can be seen as a simplification of the

Fisher kernel. As for BOF, we first learn a codebook

C = {c1, ...ck} of k visual words with k-means. Each

local descriptor x is associated to its nearest visual word

ci = NN(x). The idea of the VLAD descriptor is to accu-

mulate, for each visual word ci, the differences x−ci of the

vectors x assigned to ci. This characterizes the distribution

of the vectors with respect to the center.

Assuming the local descriptor to be d-dimensional, the

dimension D of our representation is D = k × d. In the

following, we represent the descriptor by vi,j , where the

indices i = 1 . . . k and j = 1 . . . d respectively index the

visual word and the local descriptor component. Hence, a

component of v is obtained as a sum over all the image de-

scriptors:

vi,j =
∑

x such that NN(x)=ci

xj − ci,j (1)

where xj and ci,j respectively denote the jth component of

the descriptor x considered and of its corresponding visual

word ci. The vector v is subsequently L2-normalized by

v := v/||v||2 .

Experimental results show that excellent results can be

obtained even with a relatively small number of visual
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Figure 1. Images and corresponding VLAD descriptors, for k=16 centroids (D=16×128). The components of the descriptor are represented

like SIFT, with negative components (see Equation 1) in red.

words k: we consider values ranging from k=16 to k=256.

Figure 1 depicts the VLAD representations associated

with a few images, when aggregating 128-dimensional

SIFT descriptors. The components of our descriptor map

to components of SIFT descriptors. Therefore we adopt the

usual 4 × 4 spatial grid representation of oriented gradients

for each vi=1..k. We have accumulated the descriptors in 16

of them, one per visual word. In contrast to SIFT descrip-

tors, a component may be positive or negative, due to the

difference in Equation 1.

One can observe that the descriptors are relatively sparse

(few values have a significant energy) and very structured:

most high descriptor values are located in the same cluster,

and the geometrical structure of SIFT descriptors is observ-

able. Intuitively and as shown later, a principal component

analysis is likely to capture this structure. For sufficiently

similar images, the closeness of the descriptors is obvious.

3. From vectors to codes

This section addresses the problem of coding an image

vector. Given a D-dimensional input vector, we want to

produce a code of B bits encoding the image representa-

tion, such that the nearest neighbors of a (non-encoded)

query vector can be efficiently searched in a set of n en-

coded database vectors.

We handle this problem in two steps, that must be opti-

mized jointly: 1) a projection that reduces the dimension-

ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent

approximate nearest neighbor search method of [7], which

is briefly described in the next section. We will show the

importance of the joint optimization by measuring the mean

squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,

15, 24, 27] are required to handle large databases in com-

puter vision applications [22]. One of the most popu-

lar techniques is Euclidean Locality-Sensitive Hashing [4],

which has been extended in [11] to arbitrary metrics. How-

ever, these approaches and the one of [15] are memory con-

suming, as several hash tables or trees are required. The

method of [27], which embeds the vector into a binary

space, better satisfies the memory constraint. It is, how-

ever, significantly outperformed in terms of the trade-off

between memory and accuracy by the product quantization-

based approximate search method of [7]. In the following,

we use this method, as it offers better accuracy and because

the search algorithm provides an explicit approximation of

the indexed vectors. This allows us to compare the vector

approximations introduced by the dimensionality reduction

and the quantization. We use the asymmetric distance com-

putation (ADC) variant of this approach, which only en-

codes the vectors of the database, but not the query vector.

This method is summarized in the following.



ADC approach. Let x ∈ ℜD be a query vector and

Y = {y1, . . . , yn} a set of vectors in which we want to

find the nearest neighbor NN(x) of x. The ADC approach

consists in encoding each vector yi by a quantized version

ci = q(yi) ∈ ℜD. For a quantizer q(.) with k centroids,

the vector is encoded by log2(k) bits, k being a power of 2.

Finding the a nearest neighbors NNa(x) of x simply con-

sists in computing

NNa(x) = a- arg min
i

||x − q(yi)||
2. (2)

Note that, in contrast with the embedding method of [27],

the query x is not converted to a code: there is no approxi-

mation error on the query side.

To get a good vector approximation, k should be large

(k = 264 for a 64 bit code). For such large values of k,

learning a k-means codebook as well as assignment to the

centroids is not tractable. Our solution is to use a prod-

uct quantization method which defines the quantizer with-

out explicitly enumerating its centroids. A vector x is first

split into m subvectors x1, ... xm of equal length D/m. A

product quantizer is then defined as function

q(x) =
(

q1(x
1), ..., qm(xm)

)

, (3)

which maps the input vector x to a tuple of indices by sepa-

rately quantizing the subvectors. Each individual quantizer

qj(.) has ks reproduction values learned by k-means. To

limit the assignment complexity O(m × ks), ks is a small

value (e.g., ks=256). However, the set k of centroids in-

duced by the product quantizer q(.) is large: k = (ks)
m.

The squared distances in Equation 2 are computed using

the decomposition

||x − q(yi)||
2 =

∑

j=1,...,m

||xj − qj(y
j
i )||

2, (4)

where yj
i is the jth subvector of yi. The square distances

in this summation are read from look-up tables computed,

prior to the search, between each subvector xj and the ks

centroids associated with the corresponding quantizer qj .

The generation of the tables is of complexity O(D × ks).
When ks ≪ n, this complexity is negligible compared with

the summation cost of O(D × n) in Equation 2.

This quantization method was chosen because of its ex-

cellent performance, but also because it represents the in-

dexation as a vector approximation: a database vector yi

can be decomposed as

yi = q(yi) + εq(yi), (5)

where q(yi) is the centroid associated with yi and εq(yi) the

error vector generated by the quantizer.

Notation: ADC m × bs refers to the method when using

m subvectors and bs bits to encode each subvector (bs =
log2 ks). The total number of bits B used to encode a vector

is then given by B = m bs.

3.2. Indexationaware dimensionality reduction

Dimensionality reduction is an important step in approx-

imate nearest neighbor search, as it impacts the subsequent

indexation method. In this section, for the ADC approach1,

we express the compromise between this operation and the

indexing scheme using a single quality measure: the ap-

proximation error. For the sake of presentation, we assume

that the mean of the vectors is the null vector. This is ap-

proximately the case for VLAD vectors.

Principal component analysis (PCA) is a standard

tool [1] for dimensionality reduction: the eigenvectors as-

sociated with the D′ most energetic eigenvalues of the em-

pirical vector covariance matrix are used to define a matrix

M mapping a vector x ∈ ℜD to a vector x′ = Mx ∈ ℜD′

.

Matrix M is the D′×D upper part of an orthogonal matrix.

This dimensionality reduction can also be interpreted in the

initial space as a projection. In that case, x is approximated

by

xp = x − εp(x) (6)

where the error vector εp(x) lies in the null space of M . The

vector xp is related to x′ by the pseudo-inverse of M , which

is the transpose of M in this case. Therefore, the projection

is xp = M⊤Mx. For the purpose of indexing, the vector x′

is subsequently encoded as q(x′) using the ADC approach,

which can also be interpreted in the original D-dimensional

space as the approximation2

q(xp) = x − εp(x) − εq(xp) (7)

where εp(x)∈Null(M) and εq(xp)∈Null(M)⊥ (because

the ADC quantizer is learned in the principal subspace) are

orthogonal. At this point, we make two observations:

1. Due to the PCA, the variance of the different com-

ponents of x′ is not balanced. Therefore the ADC

structure, which regularly subdivides the space, quan-

tizes the first principal components more coarsely in

comparison with the last components that are selected.

This allocation introduces a bottleneck on the first

components with respect to the quantization error.

2. There is a trade-off on the number of dimension D′ to

be retained by the PCA. If D′ is large, the projection

error vector εp(x) is of limited magnitude, but a large

quantization error εq(xp) is introduced. On the oppo-

site, keeping a small number of components leads to a

high projection error and a low quantization error.

Balancing the components’ variance. In [27], this issue

was addressed by allocating different numbers of bits to the

different components. The ADC method does not have this

1Note that [7] did not propose any dimensionality reduction.
2For the sake of conciseness, the quantities MT q(x′) and MT εq(x′)

are simplified to q(xp) and εq(xp) respectively.
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Figure 2. Effect of the encoding steps on the descriptor. Top: VLAD vector x for k=16 (D=2048). Middle: vector xp altered by the

projection onto the PCA subspace (D′=128). Bottom: vector q(xp) after indexing by ADC 16 × 8 (16-bytes code).

flexibility. Therefore, we address the problem by perform-

ing an orthogonal transformation after the PCA. In other

terms, given the dimension D′ and X a vector to index, we

want to find an orthogonal matrix Q such that the compo-

nents of the transformed vector X ′′ = QX ′ = QMX have

equal variances. It would be optimal to find the matrix Q̃
minimizing the expected quantization error introduced by

the ADC method:

Q̃ = arg min
Q

EX

[

||εq(QMX)||2
]

. (8)

However, this optimization problem is not tractable, as the

objective function requires to learn the product quantizer

q(.) of the ADC structure at each iteration. Finding a matrix

Q satisfying the simplified balancing objective is done by

choosing it in the form of a Householder matrix

Q = I − 2vv⊤, (9)

with the optimization performed on the D′ components

of v. A simple alternative is to avoid this optimization by

using, for Q, a D′×D′ random orthogonal matrix. For high

dimensional vectors, this choice is an acceptable solution

with respect to our balancing criterion. This will be con-

firmed by our experiments in Section 4, which show that,

for VLAD descriptors, both choices are equivalent.

Joint optimization of reduction/indexing. Let us now

consider the second problem, i.e., optimizing the dimen-

sion D′, having fixed a constraint on the number of bits B
used to represent the D-dimensional VLAD vector x, for

instance B=128 (16 bytes). The square Euclidean distance

between the reproduction value and x is the sum of the er-

rors ||εp(x)||2 and ||εq(xp)||2, which both depend on the

selected D′. The mean square error e(D′) is empirically

measured on a learning vector set L as

e(D′) = ep(D
′) + eq(D

′) (10)

=
1

card(L)

∑

x∈L

||εp(x)||2 + ||εq(xp)||2. (11)

This gives us an objective criterion to optimize directly the

dimensionality, which is obtained by finding on the learning

set the value of D′ minimizing this criterion. For VLAD

vectors (k=16, D=2048) generated from SIFT descriptors,

we obtain the following average projection, quantization

and total mean square errors:

D′ ep(D′) eq(D
′) e(D′)

32 0.0632 0.0164 0.0796

48 0.0508 0.0248 0.0757

64 0.0434 0.0321 0.0755

80 0.0386 0.0458 0.0844

It is important to compute the measures several times

(here averaged over 10 runs), as the ADC structure depends

on the local optimum found by k-means, and leads to vari-

able quantization errors. The optimization selects D′=64

for k=16 and B=128. We will confirm in the experimental

section that this value represents an excellent trade-off in

terms of search results.

Remarks.

• The choice of D′ is constrained by the structure of

ADC, which requires that D′ is a multiple of m. For

instance, by keeping D′=64 eigenvalues, the valid set

of values for m is {1,2,4,8,16,32,64}.

• The optimization is solely based on the mean squared

error quantization criterion. For this reason, it is not

clear how our framework could be extended to another

indexation method, such as LSH [4], which does not

provide an explicit approximation vector.

• We apply the projection Q × M before the L2 nor-

malization of the aggregated representation (see Sub-

section 2.3). This brings a marginal improvement in

terms of image search accuracy.

The impact of dimensionality reduction and indexation

based on ADC is illustrated by the VLAD pictorial repre-

sentation introduced in Section 2. We can present the pro-

jected and quantized VLAD in this form, as both PCA pro-

jection and ADC provide a way of reconstructing the pro-

jected/quantized vector. Figure 2 illustrates how each of

these operations impacts our representation. One can see

that the vector is only slightly altered, even for a compact

representation of B=16 bytes.



Descriptor k D Holidays (mAP) UKB (score/4)

D → D′=128 → D′=64 → D′=32 D → D′=128 → D′=64 → D′=32

BOF 1 000 1 000 0.401 0.444 0.434 0.408 2.86 2.99 2.91 2.77

20 000 20 000 0.404 0.452 0.445 0.416 2.87 2.95 2.90 2.78

Fisher (µ) 16 2 048 0.497 0.490 0.475 0.452 3.07 3.05 2.98 2.83

64 8 192 0.495 0.492 0.464 0.424 3.09 3.09 2.98 2.75

VLAD 16 2 048 0.496 0.495 0.494 0.451 3.07 3.05 2.99 2.82

64 8 192 0.526 0.510 0.477 0.421 3.17 3.15 3.03 2.79

Table 1. Performance comparison of BOF, Fisher and VLAD representations, before and after dimension reduction: the performance is

given for the full D-dimensional descriptor, and after a dimensionality reduction to D′=128, 64 and 32 components. Note that for UKB,

the best score reported by Nister and Stewénius is 3.19, for a 1M vocabulary tree [16] learned on an independent dataset.

4. Experiments

In this section, we first evaluate our VLAD descriptor

and the joint dimensionality reduction/indexing approach.

We then provide a comparison with the state of the art and

measure the accuracy and efficiency of the search on 10 mil-

lion images.

4.1. Evaluation datasets and local descriptors

To extract local features, we have used the experimen-

tal setup of [9] and the feature extraction software available

online3. More precisely, the regions of interest are extracted

using the Hessian affine-invariant region detector [14] and

described by the SIFT descriptor [12]. We have used an

independent image set for all the learning stages. The eval-

uation is performed on three datasets:

• The INRIA Holidays dataset [8]. This is a collection

of 1491 holiday images, 500 of them being used as

queries. The accuracy is measured by the mean Aver-

age Precision (mAP).

• The University of Kentucky Benchmark (UKB). This

set comprises images of 2550 objects, each of which

is represented by 4 images. The most commonly used

evaluation metric for this dataset counts the average

number of relevant images (including the query itself)

that are ranked in the first four positions when search-

ing the 10 200 images.

• To evaluate the behavior of our method on a large

scale, we have downloaded 10M images from Flickr.

The Holidays dataset is merged with this set, as in [9],

to provide ground truth matches.

4.2. Image vector representations

Table 1 compares the different local aggregation meth-

ods described in Section 2: BOF, Fisher kernel, and our

VLAD aggregation technique. These representations are

all parametrized by a single parameter k. It corresponds

to the number of centroids for BOF and VLAD, and to the

3http://lear.inrialpes.fr/people/jegou/data.php

number of mixture components in the Fisher kernel repre-

sentation. For Fisher, we have only used the components

associated with the mean vectors (µ), as we observed that,

although the variance components improve the results, they

provide comparable results after dimensionality reduction

to the same D′.

The evaluation is performed without the indexing

scheme at this stage. Here, we put an emphasis on the per-

formance obtained after dimensionality reduction, as these

vectors will be indexed afterwards. Despite its simplicity,

the VLAD descriptor equals or outperforms the Fisher ker-

nel on both Holidays and UKB, and significantly outper-

forms BOF. Note that surprisingly the dimension reduction

improves the accuracy for BOF. The scores of BOF are

slightly different from those reported in [9], because we use

Euclidean distances to compare representations instead of

the cosine measure. These choices are not strictly equiva-

lent, because idf weights are applied after the L2 normal-

ization.

Higher dimensional representations, which usually pro-

vide better accuracy, suffer more from the dimensionality

reduction. This is especially true for Fisher kernel and

VLAD: for D′=32, using only 16 centroids/mixtures is

significantly better than larger values of k. On average,

VLAD outperforms the Fisher kernel representation. For

only D′=64 dimensions VLAD attains an excellent accu-

racy of mAP=0.494 on Holidays.

Note that in a very recent work [19], Perronnin et al. fur-

ther improved the Fisher kernel in several ways, obtain-

ing mAP=0.593 on Holidays with a mixture of k=64 Gaus-

sians. Hopefully, our VLAD representation would also ben-

efit from the proposed techniques.

4.3. Reduction and indexation

Balancing the variances. Table 2 compares the search

performance obtained by applying the ADC indexing af-

ter 1) PCA dimension reduction, 2) PCA followed by an

orthogonal transformation optimizing the variance balanc-

ing criterion (see Subsection 3.2), and 3) PCA followed by

a random orthogonal transformation. The need for a rota-

tion is clear. However, using a random one provides results



Method mAP

No transformation 0.445

Balancing optimization 0.457

Random orthogonal transformation 0.457

Table 2. Comparison of different orthogonal transformation matri-

ces, with VLAD, k=16, D′=64, ADC 16× 8. These measures are

averaged over 10 runs on the Holidays dataset.
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Figure 3. Search accuracy on Holidays with respect to reduction

to different dimensions D′ with ADC 16×8. Experiments are av-

eraged over 5 learning runs. The error bars represent the standard

deviations over those runs.

comparable to those obtained by optimizing the matrix. Our

explanation is that the random rotation sufficiently balances

the energy.

Choice of the projection subspace dimension. For a fixed

image representation with a vector of length D and a fixed

number B of bits to encode this vector, Figure 3 confirms

the analysis of Section 3: there is an important trade-off on

D′. The optimum limits the loss introduced by the projec-

tion and the quantization step. The best choice of D′ corre-

sponds to the one found by our optimization procedure. For

instance, for VLAD with k=16, we obtain the same opti-

mum (D′=64) as the one estimated in Section 3.2 based on

our objective error criterion.

4.4. Comparison with the state of the art

Our objectives are comparable to those of [9] in terms

of memory usage and desired degree of invariance (rota-

tion/scale invariance). Table 3 and Figure 4 compare the

accuracies obtained by [9] and our approach on the bench-

marks Holidays and UKB. Our approach obtains a com-

parable search quality with at least an order of magnitude

less memory. Equivalently, for the same memory usage,

our method is significantly more precise.

Figure 4 also illustrates the trade-off between search

quality and memory usage. An interesting observation is

Method bytes UKB Holidays

BOF, k=20,000 (from [9]) 10.364 2.92 0.446

miniBOF [9] 20 2.07 0.255

80 2.72 0.403

160 2.83 0.426

VLAD, k=16, ADC 16 × 8 16 2.88 0.460

VLAD, k=64, ADC 32 × 10 40 3.10 0.495

Table 3. Comparison with the state of the art on UKB (score/4)

and Holidays (mAP). D′=64 for k=16 and D′=96 for k=64.
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Figure 4. mAP for search on Holidays. For a given number of

bytes, the optimal choice of D′ is computed and only the results

of the best codebook size (k=16, 64 or 256) are reported. The error

bars represent the standard deviation over 5 runs. miniBOF results

of [9] are reported for reference.

that the choice of the number of centroids k depends on the

number of bits B chosen to represent the image. It shows

that we attain competitive accuracy, with respect to BOF,

using only 16 bytes. Note that small (resp. large) values of

k should be associated with small (resp. large) values of B:

large ones are more impacted by dimensionality reduction.

4.5. Large scale experiments

Figure 5 evaluates our approach on a large scale (up to

10 million images). It gives the mAP performance as a

function of the dataset size for the full VLAD vector (k=64,

D=8192), after it is reduced by PCA to D′=64 dimensions,

and after the reduced vector is indexed with ADC 16× 8 in

16 bytes of memory.

For this experiment, we have also used IVFADC, the non

exhaustive search variant of ADC proposed in [7]. IVFADC

combines ADC with an inverted file to restrict the search to

a subset of vectors. Consequently, it stores the image iden-

tifiers explicitly (4 bytes per image), and therefore requires

20 bytes of memory with the selected parameters. It gives

comparable results, depending on the operating point (bet-

ter and more efficient for very large sets).
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Figure 5. Search accuracy as a function of the database size.

Overall, our results are significantly better than those re-

ported in [9], where a mAP of 0.066 is reported for 1 million

images and a 20-bytes representation, versus mAP=0.193 or

0.241 in our case, depending on the ADC variant.

Timings: Timing experiments have been performed on a

single processor core. Searching our 10 million dataset for

VLAD vectors with k=64 reduced to D′=64 dimensions

takes 7.2 s when Euclidean distances are exhaustively com-

puted. Searching with ADC 16 × 8 takes 0.716 s, while

using the IVFADC 16×8 variant takes 0.046 s. This timing

is better than the one reported in [9], and this for a signifi-

cantly better accuracy.
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