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Determinization of transduers over in�nitewords: the general aseMarie-Pierre B�ealInstitut Gaspard Monge,Universit�e de Marne-la-Vall�eehttp://www-igm.univ-mlv.fr/~beal/Olivier CartonLIAFA,Universit�e Paris 7http://www.liafa.jussieu.fr/~arton/June 19, 2003AbstratWe onsider transduers over in�nite words with a B�uhi or a Mulleraeptane ondition. We give haraterizations of funtions that anbe realized by B�uhi and Muller sequential transduers. We desribean algorithm to determinize transduers de�ning funtions over in�nitewords.1 IntrodutionThe aim of this paper is the study of the determinization of transduers overin�nite words, that is of mahines realizing rational transdutions over in�nitewords. Transduers are �nite state automata with edges labeled by pairs of �-nite words (an input and an output label). They are very useful in a lot of areaslike oding [10℄, omputer arithmeti [11℄, language proessing (see for instane[16℄ and [13℄) or in program analysis [8℄. Transduers that have a deterministiinput automaton are alled sequential transduers [19℄ and funtional relationsthat an be realized by a sequential transduer are alled sequential funtions.They play an important role sine they allow sequential enoding. The deter-minization of a transduer is the onstrution of a sequential transduer whihde�nes the same funtion. We refer the reader to [4℄ and [18℄ for ompleteintrodutions to transduers.The determinization of an automaton over �nite words is easily solved bya subset onstrution. The determinization of a transduer is more omplexthan the determinization of an automaton sine it involves both the input and1



the output labels. In the ase of �nite words, it has been solved by Cho�rutwho gives in [6, 7℄ a haraterization of subsequential funtions and an algo-rithm that transforms a transduer whih realizes a subsequential funtion intoa subsequential transduer (see also [4, p. 109{110℄, [16, p. 223{233℄ and [2℄).Cho�rut proved that the subsequentiality of funtions realized by transduersover �nite words is deidable. A polynomial time deision proedure has beenobtained by Weber and Klemm in [22℄, see also [3℄. The determinization oftransduers over �nite words is the �rst step before a minimization proess in-trodued by Cho�rut in [6℄ and [7℄. EÆient algorithms to minimize sequentialtransduers have been desribed later in [13℄, [14℄, [5℄ and [1℄.We onsider here transduers that de�ne funtional relations over in�nitewords. The determinization of automata over in�nite words is already muhmore diÆult than over �nite words. First, not every B�uhi automaton an bedeterminized. Muller automata whih have a more powerful aeptane on-dition must be used [12℄. Seond, all determinization algorithms of automataover in�nite words that have been given so far are omplex [17℄. In [2℄, wehave oped with this diÆulty by onsidering transduers without aeptaneondition, that is, all their states are �nal. This ase is indeed muh simplerbeause the determinization of an automaton over in�nite words without anyaeptane ondition an be ahieved by a simple subset onstrution. How-ever, in this ase, the determinization of a transduer is already non-trivial andneeds new tehniques like the notion of onstant states. In [2℄, we have givena haraterization of sequential funtions, and a determinization algorithm, inthe ase where all states of the transduer are �nal.In this paper, we solve the general ase, that is, where the transduers overin�nite words have B�uhi or Muller aeptane onditions. We give harater-izations of funtions that an be realized by B�uhi or Muller sequential trans-duers. In the ase where the funtion is B�uhi or Muller sequential, we give ane�etive algorithm to onstrut a sequential transduer (i.e., a transduer witha deterministi input automaton) whih realizes the same funtion. However,this result does not ompletely over those in [2℄. Indeed, this general algo-rithm applied to a transduer without aeptane ondition yields a sequentialtransduer with an aeptane ondition although we have proved in [2℄ that asequential funtion realized by a non-sequential transduer without aeptaneondition an atually be realized by a sequential transduer without aeptaneondition.The paper uses notions already onsidered in [2℄ like the notion of a onstantstate in a transduer (a state suh that all paths going out of it have the samein�nite output label) but it also introdues new methods. The haraterizationsare based on the ontinuity of the funtion realized by the transduer and ona new notion whih is a variant of the twinning property introdued by Chof-frut [6, 7℄ that we all weak twinning property. The determinization algorithmis performed in two main steps. The �rst step onstruts a sequential trans-duer without aeptane ondition whih realizes an extension of the funtionf realized by the initial transduer. The seond step ombines, with an easyprodut onstrution, the transduer obtained at the �rst step with a determin-2



isti B�uhi (or Muller) automaton reognizing the domain of f to get a B�uhi(or Muller) sequential transduer that realizes exatly f . The problem that thedeterminization of transduers inludes the determinization of automata is thusavoided by this seond step. Roughly speaking, the �rst step mainly deals withthe outputs of the transduer whereas the seond one ignores ompletely theoutputs and deals only with the inputs.We mention that the ontinuity of funtions realized by B�uhi transduersis deidable in polynomial time [15℄. The deidability of the weak twinningproperty that we introdue is not disussed in the paper. See the Conlusionfor a further disussion.A onsequene of our haraterizations is that any funtion realized by aMuller sequential transduer is the restrition of a funtion realized by a B�uhisequential transduer. This means that the di�erene between funtions realizedby B�uhi and Muller sequential transduers is entirely due to the domains ofthe funtions and not to the outputs.The paper is organized as follows. Basi notions about transduers andaeptane onditions over in�nite words are de�ned in Setion 2. The twomain results (Theorem 3 and Theorem 4) that state the haraterizations ofB�uhi and Muller sequential funtions are given in Setion 3. Setion 4 ontainsthe determinization algorithm and an example of the onstrution of a sequentialtransduer.2 TransduersIn the sequel, A and B denote �nite alphabets. The set of �nite and in�nitewords over A are denoted by A� and A! , respetively. The empty word isdenoted by ".A transduer over A�B is omposed of a �nite set Q of states, a �nite setE � Q�A� �B� �Q of edges, a set I � Q of initial states and an aeptaneondition �. An edge e = (p; u; v; q) from p to q is denoted by p ujv��! q. Thewords u and v are alled the input label and the output label of the edge. Thus,a transduer is the same objet as an automaton, exept that the labels of theedges are pairs of words instead of letters (as usual) or words.A �nite path  in a transduer is a �nite sequeneq0 u1jv1���! q1 u2jv2���! � � � unjvn����! qnof onseutive edges. Its input label is the word u = u1u2 : : : un, its outputlabel is the word v = v1v2 : : : un and its label is the pair (u; v) (also denotedujv) of �nite words. Suh a path is sometimes denoted by q0 ujv��! qn like atransition. We say it starts at q0 and ends at qn. Similarly, an in�nite path in a transduer is an in�nite sequeneq0 u0jv0���! q1 u1jv1���! q2 u2jv2���! q3 � � �3



of onseutive edges. Its input label is the word x = u0u1u2 : : :, its output labelis the word y = v0v1v2 : : : and its label is the pair (x; y) (also denoted xjy) ofwords. Note that the input label or the output label of an in�nite path may bea �nite word beause the input label or the output label of a transition may bethe empty word. We say that the path starts at q0. We denote by lim() theset of states that appear in�nitely often along . Sine the number of states ofthe transduer is �nite, lim() is always nonempty.The aeptane ondition � determines a family of �nal paths as follows. Apath is �nal if it satis�es � and if both its input and output labels are in�nitewords. A path is suessful if it is �nal and if it starts at an initial state. Inthis paper, we onsider two types of aeptane ondition : B�uhi and Mulleraeptane onditions. In a B�uhi transduer the aeptane ondition � is aset F of states, alled �nal states, and a path  satis�es � if it goes in�nitelyoften through a �nal state, i.e., lim() \ F 6= ?. In a Muller transduer theaeptane ondition � is a family F of sets of states, and a path  satis�es� if lim() 2 F . Observe that whether or not  satis�es � depends only onthe set lim() of states that our in�nitely often along the path . Therefore,removing a �nite pre�x of a �nal path or pre�xing a �nal path with a �nitepath always yields a �nal path.In the sequel we say that a �nite yling path around a state q (i.e., startingand ending at q), also alled a loop, is aepting if the in�nite path made bylooping in�nitely often along this loop is �nal. For a B�uhi aeptane ondition,a loop is aepting if it ontains a �nal state. For a Muller aeptane ondition,a loop is aepting if the set of states that are enountered along the path belongsto the family F .A pair (x; y) of in�nite words is reognized if it is the label of a suessfulpath. The set of all reognized pairs is the relation realized by the transduer.This relation R is of ourse a funtion f if for any word x 2 A!, there existsat most one word y 2 B! suh that (x; y) 2 R. In that ase, a transduer anbe seen as a mahine omputing nondeterministially the output word y = f(x)from the input word x. We denote by dom(f) the domain of the funtion f .As in the ase of automata, nondeterministi B�uhi and Muller transduershave the same power. First, any B�uhi transduer with a set F of �nal statesan be viewed as Muller transduer whose aeptane ondition is given by thefamily F = fP � Q j P \ F 6= ?g. Conversely, any Muller transduer anbe simulated by a B�uhi transduer. This equivalent B�uhi transduer an beobtained by the same onstrution as for automata [21, p. 417℄.A transduer is trim if eah state is aessible from an initial state and ifthere is at least one �nal path starting at eah state. States whih do not satisfythese onditions an be removed. Therefore, we assume in the sequel that alltransduers are trim. Note that it an be e�etively heked whether a givenstate is aessible from an initial state. It an also be e�etively heked whetherit is the �rst state of a �nal path. Indeed a state is the �rst state of a �nal pathif an aepting loop is aessible from that state. Therefore, a transduer anbe e�etively made trim. This ation an be seen as a preproessing of thetransduer. 4



A transduer is said to be real-time if it is labeled in A � B�, that is, theinput label of eah transition is a letter. We say that a transduer T is sequentialif the following onditions are satis�ed:� it is real-time,� it has a unique initial state,� for any state q and any letter a, there is at most one transition going outof q and input labeled by a.These onditions ensure that for eah word x 2 A!, there is at most one wordy 2 B! suh that (x; y) is reognized by T . Thus, the relation realized by T isa funtion from A! into B! . A funtion is said to be B�uhi sequential (respe-tively Muller sequential) if it an be realized by a sequential B�uhi (respetivelyMuller) transduer.In the ase of �nite words, one often distinguishes sequential and subsequen-tial funtions. In a subsequential transduer, an additional �nite word depend-ing on the ending state is appended to the output label of the path. However,the notion of subsequential transduer is irrelevant in the ase of in�nite words.
0 1 20j0 1j01j1 0j00j1 1j1

Figure 1: Sequential B�uhi transduer of Example 1
0 00 1 20j0 1j00j0 1j01j1 0j00j1 1j1

F = ff0g; f0; 00; 1g; f00; 1; 2g; f0; 00; 1; 2g; f1; 2ggFigure 2: Sequential Muller transduer of Example 1Example 1 Let A = f0; 1g be the binary alphabet. Consider the sequentialtransduer T pitured in Figure 1. If the in�nite word x is the binary expansionof a real number � 2 [0; 1), the output orresponding to x in T is the binaryexpansion of �=3. If all states of this transduer are �nal, it aepts both asinput and as output label binary expansions whih are not normalized, that isof the form (0+ 1)�1!. In order to rejet these expansions as output label, this5



transduer must be equipped with the B�uhi aeptane ondition F = f0; 1gas shown in Figure 1. In order to rejet these expansions also as input label,the state 0 must be split and the transduer must be equipped with a Mulleraeptane ondition as shown in Figure 2.The following proposition allows us in the sequel to only onsider real-timetransduers. This result is due to Gire [9℄ in the more general ase of rationalrelations of in�nite words. We give below a simpler proof for rational funtions.Proposition 2 For any B�uhi transduer realizing a funtion of in�nite words,one an ompute a real-time B�uhi transduer realizing the same funtion.Proof Let T be a B�uhi transduer realizing a funtion. We an assume thateah transition is labeled by a pair "ja or aj" where a is a letter or ". Otherwise,eah transition p ujv��! q where u = a1 : : : am and v = b1 : : : bm an be replaedby n+m onseutive transitionsp a1j"��! q1 a2j"��! q2 � � � qn�1 anj"���! qn "jb1��! qn+1 � � � qm+n�1 "jbm���! q;where q1; : : : ; qm+n�1 are new states.Let Q be the set of states of T and let F be its set of �nal states. We de�nea real-time transduer T 0 as follows.Let a be a letter of the input alphabet, let p and q be two states of T , andlet e be 0 or 1. If e = 0, let V a;ep;q be the set of words v suh that there is apath p ajv��! q from p to q with input label a and output label v. If e = 1, letV a;ep;q be the set of words v suh that there is a path p ajv��! q from p to q withinput label a and output label v and whih goes through a �nal state. Notethat V a;ep;q is always a rational subset of B� and that V a;1p;q is a subset of V a;0p;q .Suppose that two nonempty words v and v0 belong to a set V a;ep;q . Wheneverthe path p ajv��! q ours in a suessful path of T , it an be replaed by thepath p ajv0��! q. Indeed, sine the transduer T realizes a funtion, the outputword of the suessful path remains unhanged. This means that it suÆes tokeep one nonempty word in eah set V a;ep;q . From V a;ep;q , we pik a subset W a;ep;q ofardinality at most 2 as follows.� If V a;ep;q ontains the empty word, the empty word is also put in W a;ep;q .� If V a;ep;q ontains at least one nonempty word, one of them is put in W a;ep;q .The set of states of T 0 is the set Q0 = Q�f0; 1g. The set of initial states isI 0 = f(q; 0) j q 2 Ig and the set of �nal states is F 0 = f(q; 1) j q 2 Qg. The setof transitions of T 0 is de�ned as follows. Let a be a letter of the input alphabetand let (q; e) and (q0; e0) be two states of T 0. There is a transition from (q; e) to(q0; e0) labeled by ajv if v 2W a;e0p;q . The transduer T 0 realizes the same funtionas T . This is independent of the hoie of the �nite subsets W a;ep;q . �The domain of a funtion realized by a B�uhi or Muller transduer is arational set of in�nite words. Reall that a set of in�nite words is said to be6



rational if it is aepted by an automaton. An automaton is a transduer wherethe edges are labeled by letters instead of pairs of words. The label of a path inan automaton is thus a word. A B�uhi (respetively Muller) automaton is anautomaton equipped with a B�uhi (respetively Muller) aeptane ondition.We refer the reader to [20℄ or [21℄ for a omplete introdution to automata onin�nite words.It is not true that any rational set of in�nite words is reognized by a de-terministi B�uhi automaton. However, any rational set of in�nite words isreognized by a deterministi Muller automaton [21, Thm 5.1℄. Furthermorean equivalent deterministi Muller automaton an be omputed from a B�uhiautomaton. Sets of in�nite words that an be reognized by a deterministiB�uhi automaton are alled deterministi. It an be e�etively heked whetherthe set of words reognized by a given B�uhi automaton is deterministi [20,Thm 5.3℄. Furthermore, if that set is deterministi, an equivalent deterministiB�uhi automaton an e�etively be omputed [20, Lem 5.4℄.A B�uhi automaton reognizing the domain of a funtion an be e�etivelyomputed from a transduer realizing the funtion. The rough idea is to removethe output labels of the edges. We refer the reader to the proof of the mainresult in [2℄.3 Charaterization of sequential funtionsThe haraterizations of B�uhi and Muller sequential funtions need the notionof ontinuity of a funtion. First reall that the set A! is endowed with theusual topology. This topology an be de�ned by the distane d given byd(x; y) = (0 if x = y2�n where n = minfk j xk 6= ykg otherwise:Intuitively two in�nite words are lose if they share a long ommon pre�x.Therefore, a sequene of in�nite words (xn)n�0 onverges to a word x if forany integer k, there is an integer nk suh that any word xn for n � nk has aommon pre�x with x of length greater than k. We reall now a de�nition ofthe ontinuity that we use later. A funtion f is said to be ontinuous if forany sequene (xn)n�0 of elements of its domain onverging to an element x ofits domain, the sequene (f(xn))n�0 onverges to f(x).The haraterizations of B�uhi and Muller sequential funtions also need thenotion of a onstant state in a transduer. We say that a state q of a transdueris onstant if all �nal paths starting at this state have the same output label.The terminology omes from the fat that the transduer in whih q is initialrealizes a onstant funtion. For a onstant state q, the ommon output labelof all �nal paths starting at q is denoted by yq. This in�nite word always existssine the transduer is assumed to be trim.In order to illuminate the notion of a onstant state, we make some remarksand we prove some easy properties. Note �rst that in the de�nition of a onstant7



state, we only onsider �nal paths. There may be other, non�nal, in�nite pathswith either a �nite output label or an in�nite output label whih is di�erentfrom the output of a �nal path.Note that if q is a onstant state and if the state q0 is aessible from q, q0 isalso a onstant state. Indeed, suppose that there is a �nite path  from q to q0whose output label is v. If 1 and 2 are two �nal paths starting at q0, the twopaths 1 and 2 are two �nal paths starting at q. It follows that the outputlabels of 1 and 2 must be equal and q0 is a onstant state. Furthermore, theoutput labels yq and yq0 satisfy yq = vyq0 .Note also that the ommon output label yq of a onstant state q is an ul-timately periodi word, that is an in�nite word of the form uv! for two �nitewords u and v. If there is a �nal path starting at q, then there is always anultimately periodi �nal path starting at q sine the number of states is �nite.Note �nally that if q is a onstant state and there is a �nite path from qto q (a loop) with a nonempty output label v, then the output label yq is equalto v!. This is true even if the loop around q is not aepting. Let  be the �nitepath from q to q with the output label v and let 1 be a �nal path starting at q.By de�nition, the output label of 1 is yq. Sine the path 1 is also a �nalpath starting at q, the equality vyq = yq holds. Sine v is nonempty, yq is equalto v!.The haraterization of sequentiality is essentially based on the followingnotion whih is a variant of the twinning property introdued by Cho�rut [7,p. 133℄ (see also [4, p. 128℄). This property is a kind of ompatibility of theoutputs of paths with the same inputs. A transduer has the weak twinningproperty if for any pair of pathsi tju��! q vjw���! qi0 tju0��! q0 vjw0���! q0;where i and i0 are initial states, the following two properties hold.� If both q and q0 are not onstant, then either w = w0 = " or there existsa �nite word s suh that either u0 = us and sw0 = ws, or u = u0s andsw = w0s. The latter ase is equivalent to the following two onditions:(i) jwj = jw0j,(ii) uw! = u0w0!� If q is not onstant, q0 is onstant, and w is nonempty, then the equalityu0yq0 = uw! holds. Note that if w0 is nonempty, then yq0 = w0!.No property is required when both q and q0 are onstant states. In thatase, the ompatibility of the outputs is already ensured by the funtionalityof the transduer. The property required when both q and q0 are not onstantis exatly the twinning property as de�ned by Cho�rut [7℄ (required for all qand q0). The weak twinning property and the twinning property only di�er inthe way onstant states are treated. 8



We now state the two haraterizations of B�uhi and Muller sequential fun-tions.Theorem 3 Let f be a funtion realized by a real-time B�uhi transduer T .Then the funtion f is Muller sequential i� the following two properties hold:� the funtion f is ontinuous,� the transduer T has the weak twinning property.Theorem 4 Let f be a funtion realized by a real-time B�uhi transduer T .Then the funtion f is B�uhi sequential i� the following two properties hold:� the domain of f an be reognized by a deterministi B�uhi automaton,� the funtion f is Muller sequential.Before proeeding to the proofs of the theorems we provide some examplesshowing that the onditions are independent.0 1aja
bj" bjb bjb

Figure 3: Transduer of Example 5Example 5 The B�uhi transduer pitured in Figure 3 is equipped with a B�uhiaeptane ondition. It realizes a nonontinuous funtion f . Indeed, the imageof an in�nite word x is f(x) = a! if x has in�nitely many ourrenes of a andit is f(x) = anb! if x has n ourrenes of a. Although the sequene xn = bnab!onverges to x = b!, the sequene f(xn) = ab! does not onverge to f(x) = b!.State 1 is onstant but state 0 is not. This transduer has the weak twinningproperty. Note also that it does not have the twinning property sine there arepaths 0 bj"��! 0 bj"��! 0 and 0 bjb��! 1 bjb��! 1. This shows that the weak twinningproperty is really weaker.Example 6 The B�uhi transduer pitured in Figure 4 realizes the ontinuousfuntion de�ned by f(a!) = a!, f(anbx) = anbx and f(anx) = a2nx forany n � 0 and x 2 fa; b; g!. However, this transduer does not have the weaktwinning property. The states 1 and 2 are not onstant but one has the followingpaths 0 aja��! 1 aja��! 1 and 0 ajaa���! 2 ajaa���! 2.9
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Figure 4: Transduer of Example 6Example 7 Let A be the alphabet fa; bg and letX = A�b! be the set of in�nitewords having �nitely many a. Let f be the identity funtion restrited to theset X . This funtion is Muller sequential but it is not B�uhi sequential sine itsdomain is not deterministi.The proofs of Theorems 3 and 4 are given in the remainder of the paper.We prove below that the onditions in Theorems 3 and 4 are neessary. Theonverse follows from the algorithm that we desribe in the following setion.We �rst prove that a funtion f realized by a Muller sequential transduer Smust be ontinuous. Suppose that the sequene (xn)n�0 of in�nite words on-verges to x and that all xn and x are in the domain of f . Sine S is sequential,eah word of the domain is the input label of exatly one path. Let n be thepath labeled by xn and let  be the path labeled by x. Sine xn onverges to x,the ommon pre�x of xn and x beomes longer and longer. It follows that nonverges to  and hene f(xn) onverges to f(x).It is almost straightforward that the domain of a B�uhi sequential funtion fis reognized by a deterministi B�uhi automaton. An in�nite word belongs tothe domain of f if it is the input label of a path whih goes in�nitely oftenthrough a �nal state and through a transition with a nonempty output label.A B�uhi automaton reognizing the domain an be easily onstruted from asequential B�uhi transduer realizing f .It remains to prove that a transduer T realizing a Muller sequential funtionhas the weak twinning property. We suppose that we have the following pathsin T . i tju��! q vjw���! qi0 tju0��! q0 vjw0���! q0;where i and i0 are initial states. Let S be a sequential Muller transduer realizingthe same funtion f as T . Let xjy be the label of a �nal path in T starting at q.10



For any integer n, the equality f(tvnx) = uwny holds. Sine S realizes f , theremust be a suessful path in S with label tvnxjuwny for any n. For n greaterthan the number of states of S, the same state appears twie. Then there isin S a path i00 tvlju00����! q00 vkjw00����! q00where l � 0, k � 1, and i00 is the initial state of S. By prolonging the path in Tfrom i to q (respetively from i0 to q0) with l iterations of the path around q(respetively around q0), we an assume without loss of generality that l = 0.By replaing the yling path around q (respetively around q0) by k iterationsof this path, we an also assume without loss of generality that k = 1.We laim that if the state q is not onstant, then the equality jwj = jw00jholds. Indeed, let xjy and x0jy0 be the labels of two �nal paths starting at qsuh that y 6= y0. There are in S two paths labeled by xjz and x0jz0 starting atthe state q00 suh that for any n � 0f(tvnx) = uwny = u00w00nzf(tvnx0) = uwny0 = u00w00nz0:If jwj < jw00j, the words y and y0 have a ommon pre�x of length ju00j � juj +n(jw00j � jwj) for any large n. This leads to the ontradition that y = y0. Ifjw00j < jwj, the words z and z0 have a ommon pre�x of length juj�ju00j+n(jwj�jw00j) for any large n. This leads to the ontradition that z = z0 and y = y0.This proves that jwj = jw00j and, if they are nonempty, that uw! = u00w00!.We �rst suppose that q0 is also not onstant. By symmetry one has jwj =jw00j = jw0j. Furthermore, if they are nonempty, one has uw! = u00w00! = u0w0!.We now suppose that q0 is onstant and that w is nonempty. This lastassumption implies that w00 is also nonempty and that the equality uw! =u00w00! holds. Let x0jyq0 be the label of a �nal path starting at q0. Then thereis a path in S with label x0jz00 starting at q00 suh thatf(tvnx0) = u0w0nyq0 = u00w00nz00for any n � 0. Sine q0 is onstant, the word w0nyq0 is equal to yq0 . Therefore,the word u0yq0 is equal to u00w00nz00 for any integer n. Thus, it is equal to u00w00!sine w00 is nonempty. This ends the proof of the neessity of the onditions inTheorems 3 and 4.4 Determinization algorithmIn this setion, we desribe an algorithm to determinize a B�uhi transduerwhih satis�es the onditions of Theorem 3 or 4. We desribe the onstrutionof a sequential transduer S from a B�uhi transduer T . The transduer Shas a trivial aeptane ondition. This means that any in�nite path in Swhih has in�nite input and output labels is �nal. If the transduer T satis�esthe onditions of Theorem 3, the funtion realized by S is an extension of the11



funtion realized by T . Then it suÆes to ombine the transduer S with aMuller automaton reognizing the domain of T to obtain a Muller sequentialtransduer whih realizes the same funtion as T . If furthermore the domainof T is reognized by a deterministi B�uhi automaton A, the transduer S isombined with A to obtain a B�uhi sequential transduer whih realizes thesame funtion as T .The sequential transduer S is obtained from T by performing a kind ofsubset onstrution. For a �xed �nite word u, all states whih an be aessedfrom the initial states by some path whose input label is u, are grouped togetherinto a state of S. To eah of these states is assoiated a word. This wordgives what remains to be output. For a nononstant state, this word is �niteand it is the suÆx of the output obtained by deleting to the left the maximalommon pre�x of the outputs labelling these paths. For a onstant state, thisword is in�nite and it equals vw where v is as in the previous ase and w isthe unique ultimately periodi output the state an produe. The onstrutionyields potentially in�nitely many omposite states onsisting of pairs (state,output word). It just happens that under the assumptions of Theorem 3 itleads to a �nite objet.We now desribe the sequential transduer S. By Proposition 2, we ansuppose that the transduer T is real-time. This means that the labels of theedges belong to A�B�. The onstrution an atually be adapted to deal withtransduers with edges labeled by A� � B� but this is a bit tehnial. Let usdenote by Q, E, I , and C the set of states, edges, initial states, and onstantstates of T respetively. A state of S is a �nite set P ontaining two kinds ofpairs. The �rst kind are pairs (q; z) where q belongs to Q n C and z is a �niteword over B. The seond kind are pairs (q; z) where q belongs to C and z isan ultimately periodi in�nite word over B. We now desribe the transitionsof S. Let P be a state of S and let a be a letter in A. Let R be equal to the setde�ned as followsR = f(q0; zv0) j q0 =2 C and 9(q; z) 2 P; q =2 C and q ajv0��! q0 2 Eg[ f(q0; zv0yq0) j q0 2 C and 9(q; z) 2 P; q =2 C and q ajv0��! q0 2 Eg[ f(q0; z) j q0 2 C and 9(q; z) 2 P; q 2 C and q ajv0��! q0 2 Eg:There are only three ases in the de�nition of R beause q0 is onstant if q isalready onstant. We now de�ne the transition from the state P with input la-bel a. If R is empty, there is no transition from P with input label a. Otherwise,the output label of this transition is the word v de�ned as follows. We de�ne vas the �rst letter of the word z if R only ontains pairs (q0; z) with q0 2 C andall the in�nite words z are equal. Otherwise, we de�ne v as the longest ommonpre�x of all the �nite or in�nite words z for (q0; z) 2 R. The state P 0 is de�nedas follows P 0 = f(q0; z0) j (q0; vz0) 2 Rg:Then there is a transition P ajv��! P 0 in S. The initial state of S is the set Jwhere J = f(i; ") j i 2 I and i =2 Cg [ f(i; yi) j i 2 I and i 2 Cg. We only keep12



in S the aessible part from the initial state. The transduer S is sequential.It turns out that the transduer S has a �nite number of states. This will beproved in Lemma 14.Some de�nitions are needed to prove the orretness of the onstrution. Weintrodue �rst a distane d on �nite words. This distane should not be mixedup with the distane that we have used at the beginning of Setion 3 to de�nethe topology on A!. For �nite words u and v, we denote by d the distane suhthat d(u; v) = juj+ jvj � 2ju ^ vj;where u^v is the longest ommon pre�x of u and v (see [4, p. 104℄). We extendthis distane when v is replaed by an in�nite word. Let u be a �nite word andlet x be an in�nite word. We de�ned(u; x) = juj � ju ^ xj;where u^x is the longest ommon pre�x of u and x. In that ase, the funtion dis not a distane but it measures how far u is from being a pre�x of x. Note thatif u and w are two �nite words and if z is a �nite or in�nite word, the equalityd(wu;wz) = d(u; z) holds. The following lemma states some relation betweenthe distane d and the weak twinning property. This is an easy property ofombinatoris of words.Lemma 8 Let v1, v2, v01 and v02 be �nite words suh that jv2j = jv02j and v1v!2 =v01v02!. For any �nite word v3 and for any �nite or in�nite word v03, one hasd(v1v2v3; v01v02v03) = d(v1v3; v01v03):Proof We �rst suppose that jv1j � jv01j. Then there is a �nite word w suhthat v01 = v1w and wv02 = v2w. Thus the word v01v02v03 is equal to v1v2wv03 andit follows that d(v1v2v3; v01v02v03) = d(v3; wv03) = d(v1v3; v01v03):The ase where jv1j � jv01j an be handled similarly. �The transduer S is sequential but it may not be omplete. For a state qand a letter a, there may be no transition going out of q and input labeled by a.For any nonempty �nite word u and any states P and P 0 of S, there is at mostone path P ujv��! P 0 from P to P 0. The following lemma and its orollary statethe main property of the transitions of S. This property omes diretly fromthe de�nition of the transitions of S. No property of T is assumed.Lemma 9 Let u be a nonempty �nite word.(a) Let P ujv��! P 0 be a path from P to P 0 in S with input label u. If (q0; z0) 2P 0, then there is a pair (q; z) 2 P and a path q ujv0��! q0 in T suh thatzv0 = vz0 if q; q0 =2 C, zv0yq0 = vz0 if q =2 C and q0 2 C, and z = vz0 ifq; q0 2 C. 13



(b) Let P be a state of S. If (q; z) 2 P and q ujv0��! q0 is a path in T , then thereis a path P ujv��! P 0 in S and a word z0 suh that (q0; z0) 2 P 0, zv0 = vz0 ifq; q0 =2 C, zv0yq0 = vz0 if q =2 C and q0 2 C, and z = vz0 if q; q0 2 C.Proof We �rst prove the statement (a). The proof is an easy indution onthe length of the word u. If u is a letter, the result follows diretly from thede�nition of the transitions of S. Otherwise, the word u is equal to u0u1 whereu0 and u1 are two nonempty words. The path from P to P 0 an be fatorizedP u0jv0���! P 00 u1jv1���! P 0where v = v0v1. For eah pair (q0; z0) of P 0, there are from the indutionhypothesis two pairs (q; z) and (q00; z00) in P and P 00 and two paths q u0jv00���! q00and q00 u1jv01���! q0 in T . We disuss on the membership of q, q00 and q0 to C.� If q =2 C, q00 =2 C and q0 =2 C, the indution hypothesis gives zv00 = v0z00and z00v01 = v1z0. This implies zv00v01 = v0z00v01 = v0v1z0, that is zv0 = vz0.� If q =2 C, q00 =2 C and q0 2 C, the indution hypothesis gives zv00 = v0z00and z00v01yq0 = v1z0. This implies zv00v01yq0 = v0z00v01yq0 = v0v1z0, that iszv0yq0 = vz0.� If q =2 C, q00 2 C and q0 2 C, the indution hypothesis gives zv00yq00 = v0z00and z00 = v1z0. Sine yq00 = v01yq0 , this implies that zv00v01yq0 = zv00yq00 =v0z00 = v0v1z0, that is zv0yq0 = vz0.� If q 2 C, q00 2 C and q0 2 C, the indution hypothesis gives z = v0z00 andz00 = v1z0. This implies z = v0v1z0, that is z = vz0.The proof of the statement (b) an be handled similarly. �The following orollary just states the result of the previous lemma whenthe state P is the initial state J of S.Corollary 10 Let u be a nonempty �nite word.(a) Let J ujv��! P be a path from the initial state J to P in S with input label u.If (q; z) 2 P , then there is a path i ujv0��! q in T suh that v0 = vz if q =2 C,and v0yq = vz if q 2 C.(b) If i ujv0��! q is a path in T , then there is a path J ujv��! P in S and a word zsuh that (q; z) 2 P , v0 = vz if q =2 C, and v0yq = vz if q 2 C.Proof The seond omponent z of a pair (i; z) in J is either the empty word ifi is not onstant or the word yi if i is onstant. Then the result follows diretlyfrom the previous lemma. �The following four lemmas are devoted to the proof that the transduer Shas �nitely many states. It is �rst proved in the next lemma that in eah state Pof S there is at most one ourrene of eah state q. Therefore, the number of14



pairs in eah state of S is bounded by the number of states in T . Then itis proved in the next two lemmas that the lengths of the �nite words whihappear in the pairs are bounded. It is �nally proved in the fourth lemma thatthe number of in�nite words whih an appear in the pairs is bounded.Lemma 11 Let T be a transduer realizing a funtion f . Let q be a state of Tand let P be a state of S. There is at most one word z suh that (q; z) belongsto P .Proof Let J ujv��! P be a path in S and let (q; z) and (q; z0) be two pairs in P .We �rst suppose that q is not onstant and thus that z and z0 are �nite.Let xjy and x0jy0 be the labels of two �nal paths starting at q suh that y 6= y0.By the previous orollary, there are two paths i ujvz���! q and i0 ujvz0���! q in T .One has f(ux) = vzy = vz0y and f(ux0) = vzy0 = vz0y0. If z 6= z0, it may beassumed by symmetry that jz0j > jzj and that z0 = zw for some �nite word w.This leads to the ontradition y = y0 = w! .We now suppose that q is onstant and thus that z and z0 are in�nite. Letxjyq be the label of a �nal path starting at q. By the previous orollary, thereare two paths i ujw��! q and i0 ujw0���! q in T suh that wyq = vz and w0yq = vz0.Furthermore, one has f(ux) = wyq = w0yq and thus z = z0. �>From now on, we always assume that the transduer T realizes a funtion f .Lemma 12 Let T be a transduer whih has the weak twinning property. Thereis a onstant K suh that for any two paths i ujv��! q and i0 ujv0��! q0 where i and i0are initial states and q =2 C, one hasd(v; v0) � K if q0 =2 Cd(v; v0yq0) � K if q0 2 CProof Let K be equal to 2n2M where n is the number of states of the trans-duer T and M is the maximal length of the output label of a transition. Weprove the inequalities by indution on the length of u. If juj � n2, then the resultfollows easily from jvj; jv0j � n2M . Otherwise, both paths an be fatorizedi u1jv1���! p u2jv2���! p u3jv3���! qi0 u1jv01���! p0 u2jv02���! p0 u3jv03���! q0where u1u2u3 = u, v1v2v3 = v, v01v02v03 = v0, ju2j > 0 and ju3j � n2. Sine q isnot onstant, p is also not onstant.We �rst suppose that p0 is not onstant. By the weak twinning propertyand by Lemma 8, one has either d(v1v2v3; v01v02v03) = d(v1v3; v01v03) if q0 is notonstant or d(v1v2v3; v01v02v03yq0) = d(v1v3; v01v03yq0) otherwise. The result followsfrom the indution hypothesis.We now suppose that p0 is onstant. Therefore, q0 is also onstant andyp0 = v03yq0 and yp0 = v02yp0 . If v2 is empty, one has d(v1v2v3; v01v02v03yq0) =15



d(v1v3; v01v03yq0) sine v02v03yq0 = v03yq0 . The result follows from the indutionhypothesis. If v2 is nonempty, the weak twinning property implies that v01yp0 =v1v!2 . Therefore, d(v1v2v3; v01v02v03yq0) � jv3j � K. �The following lemma states that the lengths of the �nite words z of thepairs (q; z) in the states of S are bounded. It is essentially due to the twinningproperty of T .Lemma 13 Let T be a transduer whih has the weak twinning property. Thereis a onstant K suh that for any pair (q; z) in a state P of S, z is in�nite ifq 2 C, and jzj � K if q =2 C.Proof Let K be the onstant given by the previous lemma. Let (q; z) be a pairin a state P suh that the state q of T is not onstant. If (q; z) is the only pairin the state P , the word z must be empty and the result holds. Otherwise, thereis another pair (q0; z0) in P suh that z and z0 do not have a ommon pre�x.One has jzj � d(z; z0) � K. �It is now possible to prove that the transduer S has a �nite number ofstates. However, the number of states of S an be exponential as in the ase of�nite words.Lemma 14 Let T be a transduer whih has the weak twinning property. Thenumber of states of S is �nite.Proof We have proved in the preeding lemma that the lengths of the �nitewords z are bounded. It remains to show that there is a �nite number ofdi�erent in�nite words z whih an appear in some pair (q; z). By de�nition ofthe transitions, any in�nite word z of a pair is the suÆx of z0wyp where (p0; z0)is a pair suh that p0 =2 C and z0 is �nite and where p 2 C and p0 ajw��! p is atransition of T . Sine the length of z0 is bounded, the number of suh wordsz0wyp is �nite and they are ultimately periodi. Then there are a �nite numberof suÆxes of suh words. �The following lemma states the key property of S. Its purpose is to guaranteethat the transduer S has the same output as T up to a bounded suÆx.Lemma 15 Let T be a transduer satisfying the onditions of Theorem 3 andlet S be the orresponding sequential transduer. Let q ujv��! q and P ujv0��! P beyling paths in T and S where the state P ontains a pair (q; z). If the pathq ujv��! q ontains a �nal state and if v is nonempty, then v0 is also nonempty.Proof By Lemma 11, there is only one word z suh that (q; z) belongs to P .Sine the state P is aessible, there is a path J tjw0��! P in S. By Corollary 10,there is a path i tjw��! q in T for some �nite word w. The paths are summarized
16



by the following diagram. i tjw��! q ujv��! qJ tjw0��! P ujv0��! PWe assume that the loop q ujv��! q around q ontains a �nal state. Sine v 6= ",the word tu! belongs to the domain of the funtion and f(tu!) = wv! .We distinguish two main ases depending on whether q is a onstant stateor not. In the ase that q is not onstant, the hypothesis that the path q ujv��! qgoes through a �nal state is not needed. This fat is used in the proof of theother ase.We �rst suppose that q is not onstant. The word z is thus �nite. ByCorollary 10 applied to the paths J tjw0��! P and J tujw0v0����! P , both equalitiesw = w0z and wv = w0v0z hold. This implies that jv0j = jvj and the word v0 isnonempty.We now suppose that q is onstant. The word z is thus in�nite. We dis-tinguish again two ases depending on whether the state P ontains at least anononstant state or not. In both ases, we use the following laim. For anypair (q0; z0) in P , there is a pair (q00; z00) in P suh that there are paths in Tand S as shown in the following diagrami0 tjw00���! q00 uk jv00����! q00 uljv000����! q0J tjw0��! P uk jv0k����! P ukjv0l����! Pwhere k is a positive integer and l is a nonnegative integer. Let (q0; z0) beany pair in P . De�ne by indution the sequene (qn; zn)n�0 of pairs in P asfollows. Let (q0; z0) be the pair (q0; z0). Suppose that the pair (qn; zn) is alreadyde�ned. By Lemma 9, there is a pair (qn+1; zn+1) in P suh that there is a pathqn+1 ujwn���! qn in T . Sine the set P is �nite, there are two integers k � 1 andl � 0 suh that qk+l = ql and thus zk+l = zl by Lemma 11. Let (q00; z00) denotethe pair (ql; zl). By onstrution of q00, there is in T a yling path q00 ukjv00����! q00and there is also a path q00 uljv000����! q0. Sine the pair (q00; z00) belongs to P , thereis, by Corollary 10, a path i0 tjw00���! q00 in T , with i0 2 I . This proves the laim.We �rst suppose that P ontains a pair (q0; z0) suh that q0 is not onstant.Let (q00; z00) be the pair given by the previous laim. Sine there is a path from q00to q0, the state q00 is also not onstant. We prove by ontradition that v00 isnonempty. Let us assume that v00 = ". Sine q00 is not onstant, there are two�nal paths starting at q00 with di�erent output labels. Let xjy and x0jy0 be thelabels of these two �nal paths with y 6= y0. The images f(tuknx) and f(tuknx0)are equal to w00y and w00y0 for any integer n. Both sequenes (tuknx)n�0 and(tuknx0)n�0 onverge to tu!. Sine the funtion f is ontinuous, both wordsw00y and w00y0 are equal to f(tu!) = wv! . This is a ontradition sine y 6= y0.This proves that v00 6= ". Sine q00 is not onstant, the proof of the �rst ase anbe applied to the paths q00 ukjv00����! q00 and P ukjv0k����! P . This proves that v0k andthus v0 is nonempty. 17



We �nally suppose that for every pair (q0; z0) in P , the state q0 is onstant.Let (q0; z0) be any pair in P and let (q00; z00) be the pair given by the laim above.We prove that z = z00. By hypothesis, the state q00 is onstant. Let xjyq00 be thelabel of a �nal path starting at q00. Sine q00 is onstant, the equality v00yq00 = yq00holds. The image f(tuknx) is equal to w00v00nyq00 = w00yq00 for any integer n.The sequene (tuknx)n�0 onverges to tu!. Sine the funtion f is ontinuous,the word w00yq00 is equal to f(tu!) = wv! = wyq . By Corollary 10 applied to thepath J tjw0��! P , both equalities wyq = w0z and w00yq00 = w0z00 hold. Combinedwith the equality w00yq00 = wyq , one gets z = z00.By Lemma 9 applied to the path P uljv0l���! P , the equality z00 = v0lz0 holds.If v0 = ", then z00 = z = z0. Sine this equality holds for any pair (q0; z0) of P ,all words z0 of the pairs (q0; z0) in P are equal. This ontradits the de�nitionof the transitions of S sine the output v0 along the path P ujv0��! P is nonemptyin this ase. This implies that v0 6= ". �The following proposition states that the funtion realized by the sequentialtransduer S is an extension of the funtion realized by the transduer T .Proposition 16 Let T be a transduer satisfying the onditions of Theorem 3and let S be the orresponding sequential transduer. Let f and f 0 be the fun-tions realized by the transduers T and S. Then the inlusion dom(f) � dom(f 0)holds and for any x in dom(f), the equality f(x) = f 0(x) holds.Proof We prove that if the in�nite word x belongs to the domain of f , it alsobelongs to the domain of f 0 and its images by f and f 0 are equal.Let x be an in�nite word whih belongs to the domain of f and let  bea suessful path in T with input label x. Therefore, this path goes in�nitelyoften through a �nal state and its output label is an in�nite word. Consider theunique path � in S with input label x.We laim that the output label along � is nonempty and that it is equal tothe output label along . Sine both transduers T and S (by Lemma 14) havea �nite number of states, both paths  and � an be fatorized = i u0jv0���! q u1jv1���! q u2jv2���! q � � �� = J u0jv00���! P u1jv01���! P u2jv02���! P � � �Sine the output along the path  is in�nite, it an be assumed that eahword vn is nonempty and sine the path  goes in�nitely often through a �nalstate, it an be also assumed that eah path q unjvn����! q ontains a �nal state.By Corollary 10, the state P of S ontains a pair (q; z) for some �nite or in�niteword z. By Lemma 15, eah word v0n is nonempty.By Corollary 10, one has for eah n, v0 : : : vn = v00 : : : v0nz if q is not on-stant and one has v0 : : : vnyq = v00 : : : v0nz otherwise. This implies the equalityv0v1v2 : : : = v00v01v02 : : : of the two outputs. �By the last proposition, the funtion realized by the sequential transduer Sextends the funtion realized by the given transduer T . To obtain a sequential18



transduer equivalent to T , one must restrit the domain of the transduer S.This is ahieved by onstruting a new sequential transduer S 0 whih is thesynhronized produt of S and of an automaton for the domain of T .Reall that the transduer S has no aeptane ondition. This means thatan in�nite path is �nal i� both its input and output labels are in�nite words.Let X be the domain of the funtion realized by T . Let A be a deterministiB�uhi automaton reognizing X if X is deterministi or let A be a deterministiMuller automaton reognizing X otherwise. In the former ase, its aeptaneondition � is a set F of �nal states and, in the latter ase, its aeptaneondition � is a family F of sets of states. As explained at the end of Setion 2,the automaton A an be omputed from the transduer T .We now desribe the transduer S 0. The state set of S 0 is Q�Q0 where Qand Q0 are the state sets of S and A. The initial state is (i; i0) where i and i0are the initial states of S and A. There is a transition (p; p0) aju��! (q; q0) i�p aju��! q and p0 a�! q0 are transitions of S and A. The aeptane ondition �0of S 0 mimis that of A. More formally, if A is a B�uhi automaton, then S 0 is aB�uhi transduer and its set of �nal states is F 0 = f(q; q0) j q0 2 Fg. If A is aMuller automaton, then S 0 is a Muller transduer and its family F 0 of sets ofstates is de�ned as follows.F 0 = ff(q1; q01); : : : ; (qk; q0k)g j fq01; : : : ; q0kg 2 Fg:It is pure routine to hek that S 0 is equivalent to T .0 1aja bjb
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Figure 8: Transduer S 0 of Example 17We illustrate the onstrution of S and S 0 by the following example.Example 17 Let A be the alphabet fa; b; g and onsider the transduer Tpitured in Figure 5. Note that the state 1 is onstant whereas the state 0is not. Applying the onstrution desribed above, one gets the transduer Spitured in Figure 6. The domain of T is A�(�a)! but the domain of S isA�(�(a + b))!. The Muller automaton A for the domain of T is pitured inFigure 7. The transduer S 0 obtained by ombining S and A is pitured inFigure 8.5 ConlusionIn this paper, we have provided haraterizations of sequential funtions of in�-nite words realized by Muller and B�uhi transduers. When a transduer realizesa sequential funtion, we have given an algorithm to ompute an equivalent se-quential transduer. Sine this determinization inludes the determinization ofan automaton for the domain of the funtion, the omplexity is at least expo-nential.In the ase of �nite words, the determinization is also exponential but itan be heked in polynomial time whether a funtion given by a transdueris sequential. The ontinuity an be heked in polynomial time [15℄. The20
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