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Isometri embeddings of subdivided omplete graphs in thehyperubeLaurent Beaudou Sylvain Gravier Kahina Meslem12 Deember 2006AbstratIsometri subgraphs of hyperubes are known as partial ubes. These graphs have �rst beeninvestigated by Graham and Pollak [4℄ and Djokovi� [3℄. Several papers followed with variousharaterizations of partial ubes. In this paper, we prove that a subdivision of a omplete graph oforder n (n ≥ 4) is a partial ube if and only if this one is isomorphi to S(Kn) or there exist n − 1non-subdivided edges of Kn adjaent to a ommon vertex in the subdivision and the other edges of
Kn are subdivided an odd number of times.IntrodutionFor a graph G, the distane dG(u, v) between verties u and v is de�ned as the number of edges ona shortest uv-path. A subgraph H of G is alled isometri if and only if dG(u, v) = dH(u, v) for all

u, v ∈ V (H). Isometri subgraphs of hyperubes are alled partial ubes. Partial ubes have �rst beeninvestigated by Graham and Pollak [4℄ and Djokovi� [3℄. Later, several haraterizations were shownusing a relation de�ned on the edges set or onstrutive operations. Partial ubes have found di�erentappliations, for instane, in [5℄, interesting appliations in hemial graph theory were established.Clearly, partial ubes are bipartite. The simple way to obtain a bipartite graph is to subdivide everyedge of G by a single vertex. Suh a graph is a subdivision of G and denote S(G). However, the mainquestion is how to determine whih subdivision is a partial ube. In this paper, we are dealing withsubdivisions of omplete graphs. Our goal is to determine among all the subdivisions of a ompletegraph, whih ones are partial ubes. Until now, low-density graphs had been studied (trees, yles,wheels). We have deided to see what we ould say on the other side of the problem, with high-densitygraphs, and their most known representatives : omplete graphs.In literature, the subdivision of a given graph has been treated as partial ubes and important resultswere provided. The subdivided wheels result was interesting sine it onsists in answering in negativea question of Chepoi and Tardif [2℄ whether partial ubes are preisely bipartite graphs with onvexintervals :
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In [6℄, the authors haraterize the partial ubes that are subdivided wheels (see 2).In this paper we prove a onjeture due to Aïder, Gravier and Meslem [1℄ whih haraterizes all thesubdivisions of a lique that are a partial ube. Either it is S(Kn), or one of the verties has no inidentsubdivided edge and all other edges are subdivided an odd number of times.1 Preliminary de�nitions and main resultWe only onsider �nite, simple, loopless, onneted and undireted graphs G=(V ,E) where V is thevertex set and E is the edge set. A subgraph of G is a graph having all its verties and edges in G.The neighborhood of a vertex u, denoted by N(u), onsists in all the verties v whih are adjaent to
u. Given a subset S of V , the indued subgraph 〈S〉 of G is the maximal subgraph of G with vertex set
S. A omplete graph of order n, denoted Kn, is a graph having n verties suh that eah two distintverties are adjaent.A walk is a sequene of verties v1, v2, ..., vn and edges vivi+1, 1 ≤ i ≤ n − 1. A path on n verties,denoted Pn, is a walk on n di�erent verties. A losed walk, in whih all verties (exept the �rst and thelast) are di�erent, is a yle. The yle on n verties is denoted Cn. For a graph G, the distane dG(u, v)between verties u and v is de�ned as the number of edges on a shortest uv-path (or uv-geodesi). Asubgraph H of G is alled isometri if dG(u, v) = dH(u, v) for all distint verties u and v in V (H).The vertex set of the n-ube (or the hyperube) Qn onsists of all n-tuples b1, b2, ..., bn with bi ∈ {0, 1}.Two verties are adjaent in Qn if the orresponding tuples di�er preisely in one plae. Qn is a bipartitegraph. An isometri subgraph of Qn is alled partial ube. A graph G is an isometri embedding in thehyperube if it is isomorphi to a partial ube. A subdivision of a graph G, noted sub(G), is a graphobtained from G by adding verties to the edges of G. A vertex v in G whih is adjaent to all itsneighbors of G in sub(G) is said universal in sub(G) . That means that all the edges of G inident to
v, are not subdivided. S(G) is the subdivision of G where eah edge of G ontains exatly one addedvertex.
Wk be the k-wheel, that is, the graph obtained as a join of the one vertex graph K1 and all the vertiesof the yle Ck. We denote the entral vertex of Wk by u and the remaining verties by w1, ..., wk.
Wk(m1, ..., mk; n1, ..., nk) is the graph obtained by subdividing edges of Wk, where mi is the number ofverties added on the edge wiwi+1, and ni the number of verties added on the inner edge uwi. SeeFig. 1(a).Our proposal is to demonstrate the following theorem onjetured in [1℄Theorem 1. Let G be a subdivision of a omplete graph Kn (n ≥ 4). G is a partial ube if and only ifeither G is isomorphi to S(Kn) or G ontains a universal vertex u and the number of added vertiesto eah edge no inident to u in Kn is odd.2 Proof of the main resultIn this setion, we provide the validity of the Theorem 1. Thus, we use the following terminology toprove this theorem. G is a subdivision of Kn also denoted as sub(Kn). A vertex u in G is said prinipalin G if u belongs to Kn (it has not been added to subdivide an edge). We have to note that in ourproof, we only use prinipal verties. We will be interested about paths that join prinipal verties in
G. Thus, a path of order n, Pn(x1, x2, . . . , xn) is a path that joins prinipal verties x1, x2,. . .,xn in G.An edge that joins two prinipal verties in G, x and y is said plain (it has not been subdivided). Wedenote by G\u the subdivision of Kn−1 indued by V (G)\u. For eah x, y and z prinipal verties in
G, we say that x sees y if the path joining these verties in G is geodesi.Notie that in our �gures, a line (resp. a dotted line) represents a geodesi (resp. no geodesi) pathbetween two prinipal verties in G. A bold line represents a plain edge. A dashed line represents asubdivided edge with undetermined status.
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2.1 Proof of the su�ient onditionTheorem 2. [6℄ Let k ≥ 3. Then a subdivided k-wheel W is a partial ube if and only if W is isomorphito Wk(m1, ..., mk; 0, ..., 0), where mi is odd for i = 1, ..., k, or W = W3(1, 1, 1; 1, 1, 1).Proposition 3. [8℄ For any n ≥ 1, S(Kn) is a partial ube.Lemma 4. [1℄ Let G be a subdivision of Kn (n ≥ 4) where eah edge in Kn is an isometri path in G.
G is a partial ube if and only if G ontains a universal vertex and the other edges of Kn have exatlyone added vertex or G is isomorphi to S(Kn).Aording to Proposition 3, a graph G isomorphi to a S(Kn) is a partial ube. Thus, it remains toshow that a subdivided omplete graph G = sub(Kn) having a universal vertex u and odd added vertiesto eah edge of Kn not inident to u is a partial ube, for eah n ≥ 4. Let n ≥ 4, and let G be suha graph. Thanks to Lemma 4, we an embed the subdivision of Kn with u as universal vertex andexatly one added vertex to eah edge not inident to u in a hyperube. Then, suessively, for eahedge of G whih is subdivided more than one, we proeed as follows. We onsider that the urrentgraph an be embedded in Qm. Let x and y be the prinipal verties of the subdivided edge, and let ussuppose that this edge is subdivided 2k + 1 times (k > 1). We remove the subdivision vertex from thegraph and we assume that the omponents of x, u and y in Qm are : x = (a1, a2, . . . , ai, aj , . . . , am),
u = (a1, a2, . . . , ai, aj , . . . , am), y = (a1, a2, . . . , ai, aj , . . . , am). We embed the same graph where theedge xy is subdivided 2k + 1 times in Qm+k. In fat, the �rst m omponents of eah vertex in theembedding whih belongs to Qm are the same in Qm+k and the remaining ones are null. For eah
i = 1, ..., 2k + 1, we an attribute to the vertex vi the following omponents in Qm+k:







vi = (a1, a2, . . . , ai, aj , . . . , am,

i times
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) 1 ≤ i ≤ k

vi = (a1, a2, . . . , aj , aj, . . . , am, 1, 1, . . . , 1, 1) i = k + 1

vi = (a1, a2, . . . , ai, aj , . . . , am, 0, . . . , 0
︸ ︷︷ ︸

i−k−1 times, 1, . . . , 1) k + 2 ≤ i ≤ 2k + 1The distanes between verties from the preedent embedding are preserved. Besides it is straightforwardto see that a shortest path from any vertex of the preedent embedding to a vertex vi goes through
x or y so that the resulting graph is also a partial ube. By doing this transformation for every edgesubdivided more than one, we obtain that G is a partial ube.2.2 Proof of the neessary onditionWe will proeed by indution. We �rst study the subdivisions of K4 and K5.2.2.1 First stepsWe have the following results onerning the subdivision of a omplete graph:The theorem for K4 is ontained in Theorem 2 (a 3-wheel is isomorphi to K4).Proposition 5. [1℄ Let G be a subdivision of K5. G is a partial ube if and only if G is isomorphi to
S(K5) or G ontains a universal vertex u and the number of the added verties to eah edge no inidentto u in K5 is odd.2.2.2 Useful minor resultsProposition 6. Let x, y be prinipal verties of G, then a xy-geodesi is either isomorphi to P2 or P3.Proof. Clearly, there exists p ≥ 2 suh that a xy-geodesi is isomorphi to Pp.For a ontradition, assume that p ≥ 4 ; we now onsider the �rst four verties of geo(x, y) : x, x1, x2and x3. They indue in G an isometri subdivision of K4 (see Fig.2(a)). Then, by Theorem 2, either
{x, x1, x2, x3} is isometri to S(K4) (impossible beause P (x, x3) would be isometri), either there is a3



universal vertex in it. But P (x, x2) annot be a plain edge beause dG(x, x2) = dG(x, x1)+dG(x1, x2) ≥
2. Besides, P (x1, x3) annot be a plain edge for the same reason, so that there is no universal vertex inthis subgraph whih is a ontradition.

xx1
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(a) vw

x y

a

1
b(b)Figure 2:From now on, for any x and y prinipal verties of G, we will note x → y if P (x, y) is geodesi and

x
v
−→ y if the path along x, v and y is a xy-geodesi.Remark 2.1. If G is a partial ube, then G is also bipartite, and all its yles are even.Lemma 7. If P (x, y) is plain and y → v then a xv-geodesi is ontained in 〈x, y, v〉.Proof. For a ontradition let us suppose that x

w
−→ v for some w distint from x, y and v. We denoteby a the distane between y and v, and b the distane between x and v (see Fig.2(b)). Then we musthave b < a + 1 (else, x

y
−→ v). Moreover, if b ≤ a − 1, the sequene y, x, w, v would be a yv-geodesiisomorphi to P4, whih is impossible by Proposition 6. Finally, we have b = a that leads to an oddyle of length 2a + 1 whih is also impossible.2.2.3 Proof of the indutionWe an now suppose that there exists n ≥ 6 suh that the partial ube G is a subdivision of Kn.Moreover, by Lemma 4 we an assume that G is not isomophi to S(Kn), and that the theorem isproven for any m < n.Proposition 8. If there exists u of G a prinipal vertex, suh as G\u is isometri, then there exists auniversal vertex in G.Proof. As G\u is isometri in G whih is a partial ube, G\u is also a partial ube. With the indutionhypothesis, there exists x ∈ G\u a universal vertex in G\u or G\u is isomorphi to S(Kn−1).We �rst onsider the ase when P (u, v) is isometri for any v ∈ G\u.

• If G\u is isomorphi to S(Kn−1), let us prove that u is universal in G. As G is not isomophi to
S(Kn) there exists v ∈ G\u suh that P (u, v) is not subdivided exatly one.Let y, z be verties in G\{u, v} (n ≥ 6, so that we an assume that u, v, y, z are distint), then
〈u, v, y, z〉 is learly isometri in G. Therefore, it is a partial ube and a subdivision of K4 notisomorphi to S(K4) beause of P (u, v). Then, by Theorem 2, u is the only possible universalvertex in this subgraph and P (u, v), P (u, y) and P (u, z) are plain edges. Therefore, u is a universalvertex in G (see Fig.3(a)).

• If there exists x ∈ G\u universal in G\u ; as n ≥ 6, there exist y, z ∈ G\u distint.As x is universal in G\u, we an assume that a shortest path from y to z is ontained in 〈x, y, z〉.Therefore, 〈u, x, y, z〉 is isometri in G and, as a subdivision of K4, it ontains, by the Theorem 2,a universal vertex whih must be x (it annot be isomorphi to S(K4) beause of the plain edge
P (x, y)). Therefore, P (u, x) is a plain edge and x is a universal vertex in G (see Fig.3(b)).4
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(b)Figure 3:Let us now onsider the ase when there exists a ∈ G prinipal vertex, suh that P (u, a) is not isometri.Let us demonstrate that G\u is not isomorphi to S(Kn−1) by ontradition. Let us suppose it is, andlet x be a vertex of G\u that minimize dG(u, x). There exists b ∈ G\{u, a, x} (n ≥ 6). We an assumethat u
x
−→ a, and either u → b or u

x
−→ b. These four verties indue an isometri subdivision of K4 in G.But P (u, a) is at least subdivided twie (or it would be isometri). Therefore, it neither is isomorphito S(K4) nor has a universal vertex whih is impossible (see Fig. 4(a))
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G\u ontains then a universal vertex x.We an split verties of G\u in two non-empty sets K ontaining the prinipal verties y suh that
P (u, y) is isometri and L ontaining prinipal verties y suh that P (u, y) is not isometri (for instanewe know that a ∈ L and x ∈ K, see Fig. 4(b)).Let us prove that x ∈ K. For a ontradition, let us assume that x ∈ L. Then we an hoose y a nearestvertex of u (therefore, u → y and y ∈ K). This implies that u

y
−→ x as P (x, y) is plain. Now let us pikanother vertex z in K if it is possible or in L if K = {y}. Clearly (x is universal in G\u), we have either

y → z or y
x
−→ z. z an be in K or in L :

• If z ∈ K, then 〈u, x, y, z〉 is an isometri subdivision of K4 whih implies that P (y, z) is plain.We have then a triangle (x, y, z) and we know we annot have any odd yle. Therefore, this isimpossible (see Fig.5(a)).
• If z ∈ L, then K = {y} so that u

y
−→ z. Therefore, 〈x, u, y, z〉 is an isometri subdivision of K4whih implies that y is universal in it. It would mean that (x, y, z) is a triangle (see Fig.5(b)).This ontradits the fat that G is a partial ube.We an now assume that x ∈ K. Let us prove that P (u, x) is plain. For that, we onsider a geodesibetween u and a. It goes through K by a vertex y.

• If y 6= x, then 〈u, x, a, y〉 is an isometri subdivison of K4 ; x is the only universal vertex that anbe hosen so that P (u, x) is plain.
• If x = y 5
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(b)Figure 5:� let us pik b another vertex of K if it exists. Then we also have an isometri subdivision of
K4 with 〈a, x, b, u〉. One more, x has to be the universal vertex in it and P (u, x) is plain(see Fig.6(a)).� if |K| = 1, let us pik b in L. Then u

x
−→ b and by the way we have an isometri subdivisionof K4 with 〈a, x, b, u〉. x has to be the universal vertex and P (u, x) is plain(see Fig.6(b)).
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(b)Figure 6:We now have proven that there exists a universal vertex in G.We still have to onsider the ase when there is no u in G suh that G\u is isometri.Proposition 9. If G is a partial ube, then there exists u in G suh that G\u is isometri in G.Proof. Let us suppose that there is not any u in G that an be removed. It means that, for any vertex
u in G, there exist verties x, y in G suh that x

u
−→ y is the only xy-geodesi.De�nition 2.1. For the rest of the proof, we will lassify verties x of K as follows (see also Fig.7):

• x has type L if there exists y in K suh that u
x
−→ y.

• x has type I if there exists y in L suh that u
x
−→ y.

• x has type C if there exist y, z in K suh that y
x
−→ z.

• x has type Λ if there exist y, z in L suh that y
x
−→ z.

• x has type R if there exist y in K and z in L suh that y
x
−→ z.Remark 2.2. Clearly, every vertex of K has one of these types. Moreover, there is no vertex with onlytype L beause P (u, y) is also geodesi, and G\x would be isometri ; we have supposed it was not.Lemma 10. There is no vertex with type C in K.
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u(e) RFigure 7:Proof. Let us suppose that there exists a vertex x in K suh that y
x
−→ z where y and z are in K. Thesubdivided K4 -〈u, x, y, z〉- is isometri. Hene, neither z nor y is universal vertex in this sub(K4) sine

dG(y, z) ≥ 2. The vertex u is not universal too, otherwise y
x
−→ z is not geodesi. Consequently x isuniversal in sub(K4).Now, let us show for eah vertex t in K distint from x,y and z, if z sees t then P (z, t) is plain. Infat, if z sees t, let us denote a = dG(z, t) ; then dG(u, t) = a (See Fig.8(a)). On the one hand,

a − 2 < dG(u, t) < a + 2 otherwise a ut-geodesi or a zt-geodesi would be isomorphi to P4 (forbiddenby Proposition 6). On the other hand, dG(u, t) 6∈ {a − 1, a + 1} otherwise the yle (u, z, t, x) would beodd, and by Remark 2.1, G would not be a partial ube.Consider now an xt-geodesi. It is not x
z
−→ t otherwise z would have type C and thus, P (u, z) wouldbe plain giving birth to a triangle, (z, u, x). Consequently, dG(x, t) ≤ a. Furthermore, this xt-geodesihas a length at least a − 1 otherwise we would not have z

x
−→ t (a shorter way would exist through x.

dG(x, t) 6= a otherwise the verties (x, t, z) would make an odd yle in G, whih is a ontradition.Consequently, dG(x, t) = a − 1. Moreover, we an assume that x → t, otherwise there would be a
zt-geodesi going through four prinipal verties of G, whih is forbidden by Proposition 6. 〈x, z, t, u〉is an isometri subdivision of K4 whih annot be isomorphi to S(K4) (P (x, z) is plain). There mustbe a universal vertex whih an only be x (or else, it would lead to triangles). Thus P (x, t) is plain and
a = 2.Now, let us onsider the type of vertex y in K.

• The vertex y is not of type C otherwise we would have P (u, y) plain that would lead to a trianglewhih is forbidden.
• If the vertex y has type I, then there exists a vertex v in L suh that u

y
−→ v. A xv-geodesi isontained in 〈x, y, v〉 thanks to Lemma 7. Then, the subdivided K4 - 〈u, y, x, v〉 - is isometri.The verties u and v are not universal sine P (u, v) is not isometri. The vertex x an not beuniversal, otherwise we would not have u

y
−→ v. If y is a universal vertex in sub(K4) then Gontains a triangle (y, x, u). Contradition. Consequently, y is not a vertex of type I.

• Let us show that the vertex y is not of type Λ. If there exists two verties v and w in L, suh that
v

y
−→ w, then a xv-geodesi (resp. xw-geodesi) is ontained in 〈x, v, y〉 (resp. 〈x, w, y〉), thanksto Lemma 7. Consequently, the subdivided K4 - 〈x, y, v, w〉 - is isometri. The vertex v (resp.

w) is not universal otherwise (x, y, v) (resp. (x, y, w)) is a triangle in G. This is a ontradition.The vertex x is not universal otherwise G ontains a triangle (x, y, v). If y is a universal vertexin sub(K4), then the distane between u and v is less or equal than 3. If it is 3, we would have a
uv geodesi going through u, x, y, v whih would be isomorphi to P4, this is forbidden. If it is 2,an odd yle will arise, whih also forbidden. If it is 1, v would not be in L whih ontradits ourhypothesis. Finally, we an assume that y has not the type Λ.

• The vertex y is not of type R. If y has type R, then either t
y
−→ v or x

y
−→ v where t is a vertex in

K di�erent than x, y and z and v is a vertex in L. In the �rst ase, a tx-geodesi going through
t, x, y, v is isomorphi P4 (see Fig.8(b)). This is a ontradition. In the seond ase, we annothave u

y
−→ v, otherwise y would have type I treated above. Neither an we have u

x
−→ v (else,the sequene u, x, y, v would be a geodesi isomorphi to P4). Then there exists t in K suh that7



u
t
−→ v (see Fig. 8()). Let a be the distane between v and y. We denote l the distane between

u and v. Then l ≤ a + 1, else we would have u
y
−→ v whih ontradits preedent onlusions.Moreover, a − 1 ≤ l, else we would have a yv-geodesi going through y, u, t, v isomorphi to P4whih is forbidden. Finally, to avoid odd yle, we must have l = a. But d(x, v) = a + 1, thusa xv-geodesi going through x, u, t, v is isomorphi to P4. This is a ontradition. Therefore, yannot have type R.We onlude that the vertex y has none of the types C,I, Λ ,R, Contradition to the previous lemma.Consequently, the vertex x is not of type C.
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a()Figure 8:Proposition 11. Eah vertex a of L sees exatly one vertex of KProof. Existene : We just have to onsider a ua-geodesi, it goes through K by visiting a vertex xwhih is seen by a.Uniity : For a ontradition, let us suppose that a sees two distint verties x and y of K. We ansuppose that u
x
−→ a. Furthermore, as it exists we an onsider that (a, u, x, y) realize : u

x
−→ a, a → yand dG(u, x) + dG(x, a) + dG(a, y) is minimum for G and u.Claim 12. 〈u, a, x, y〉 is an isometri subdivision of K4 in G.

u

yxx′

aa′Figure 9:Proof. For a ontradition, let us suppose that it is not isometri. It would mean that there exists a′prinipal vertex of G distint from u and a suh that x
a′

−→ y. Thanks to the Lemma 10, we an assumethat a′ ∈ L (otherwise it would have type C). Moreover, we are sure that dG(u, x)+dG(x, a′)+dG(a′, y) <

dG(u, x) + dG(x, a) + dG(a, y). As (a, u, x, y) is a minimum for this quantity, it means that a ua′-geodesi does not go through x or y. There exists a vertex x′ in K distint from the others suh8



that u
x′

−→ a′(see Fig.9). We then have : u
x′

−→ a′, a′ → y and dG(u, x′) + dG(x′, a′) + dG(a′, y) <

dG(u, x) + dG(x, a) + dG(a, y). This is a ontradition that proves our Claim 12.The indution hypothesis for n = 4 implies that x or y is universal in this sub(K4) (it annot beisomorphi to S(K4) sine P (u, a) is not geodesi and thus it is at least subdivided twie). Let usassume x is this universal vertex, then P (a, y) and P (u, y) are both subdivided exatly one as theyare geodesis (they annot be plain beause it would lead to a triangle, see Fig.10(a)). We will nowdemonstrate that this ase an never happen, by using the following Lemma :
yx
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b c()Figure 10:Lemma 13. There are no verties x and y in K suh that P (x, u) and P (x, y) are plain.Proof. For a ontradition, let us suppose it was possible. Thus, we onsider a type of y, whih annotbe C by Lemma 10. y has type I : then there exists b ∈ L suh that u
y
−→ b. The distane between u and b is then

d(y, b) + 2. Then the sequene u,x,y,b would also be a ub-geodesi. But the Proposition 6 forbidsgeodesis isomorphi to P4. This ontradits the type I for y.
y has type Λ : then there exist b and c in L suh that b

y
−→ c. By Lemma 7, we know that a xb-geodesiand a xc-geodesi are ontained in 〈x, y, b, c〉. Then the subdivision of K4 indued is isometri anddistint from S(K4) so that it has a universal vertex whih an either be x or y (else it would leadto a triangle). If x is universal, then P (b, y) and P (c, y) are both subdivided twie beause they aregeodesis (they annot be plain to avoid triangles, see Fig.10(b)). This ontradits b

y
−→ c ; there is ashorter walk through x. If y is universal (see Fig.10()), let us suppose dG(u, c) = 3, then u, x, y, c is a

uc-geodesi isomorphi to P4 whih is impossible by Proposition 6 ; therefore, dG(u, c) = 2 (it annotequal 1 beause c ∈ L). The geodesi of length 2 and the walk of length 3 between u and c indue anodd yle of length 5. We an then assume there is no y with type Λ.
y has type R : then there exists b ∈ L and t ∈ K suh that t

y
−→ b.

• If t = x, we denote by l the distane between y and b. Then dG(x, b) = l+1. A ub-geodesi annotgoes through x (it would be isomorphi to a P4 forbidden by Proposition 6) or y (it would havetype I). Therefore, there exists a vertex z in K suh that u
z
−→ b, we denote by p the distanebetween u and b. Then p > l, else, the sequene x, u, z, b would be a geodesi isomorphi to P4.Besides, p ≤ l + 1, else, we would have u

y
−→ b and y would have type I. Therefore p = l + 1 whihis also impossible beause it indues an odd yle (b, y, u, z) of length 2l + 3 (see Fig.11(a)).

• If t 6= x, let l be the distane between y and t. We then study dG(x, t), denoted by p (seeFig.11(b)). On the one hand, p ≤ l, else we would have a path of length l + 1 between x and tgoing through y and thus, it would have type C forbidden by Lemma 10. Furthermore, p annotequal l beause it would lead to an odd yle (x, t, y) of length 2l + 1. On the other hand weknow that p > l − 2 beause P (t, y) is a ty-geodesi. By onsequene, p = l − 1 ; whih impliesthat l ≥ 2 (it means, P (y, t) is not plain). From this we an also onlude that x → t beause ifwe had x
v
−→ t, the path (y, x, v, t) of length l would then be a geodesi isomorphi to P4 whihis impossible (by Proposition 6). Finally, 〈y, x, b, t〉 is an isometri sub(K4) in G. It annot be9



S(K4) beause P (x, y) is plain ; and, as P (y, t) is not plain, x must be the universal vertex in thissubgraph. Then dG(t, b) ≤ dG(t, x) + dG(x, b) = 2 ≤ l < dG(t, y) + dG(y, b) = dG(t, b). This is aontradition.This means y annot not have any of the mandatory types. It �nishes the proof of Lemma 13We then have proven the Proposition 11, eah vertex a of L sees exatly one vertex x of K; besides, wehave u
x
−→ a whih is the only ua-geodesi (if not, any other ua-geodesi would be isomorphi to P4).
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y
t
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l

p

x
y

t

b(b)Figure 11:We will now prove that |K| = 1.For this, we will proeed by ontradition. Thus, let us suppose that there exist x and y distint vertiesof K. Both must have a type R,I or Λ (by Remark 2.2 and Lemma 10). Eah one of these types, impliesthat x and y sees at least one vertex in L. Let a be a vertex suh that x sees a. Then we onsider ashortest path from a to y. It annot be diret beause of Proposition 11. It annot go through x, elseit would indue an isometri subdivision of K4 and x would be universal : P (x, u) and P (x, y) wouldthen be plain whih is forbidden by Lemma 13. So there exists b in L suh that a
b
−→ y. As b sees y wean assume that u

y
−→ b. We may then onsider that (x, a, y, b) are the verties of that kind (x, y ∈ K,

a, b ∈ L, u
x
−→ a, u

y
−→ b and a

b
−→ y) that minimize the quantity dG(x, a) + dG(a, b) + dG(b, y).Claim 14. 〈u, x, y, a, b〉, is isometri.Proof. If the subdivided K5 -〈u, x, y, a, b〉- is not isometri, then any shortest xb-path does not belong tothis sub(K5). Aording to Proposition 11, the vertex b does not see any other vertex in K than y. Then,there exists a vertex a′ in L suh that b

a′

−→ x. Sine x is the unique vertex of K that x sees (Proposition11), then u
x
−→ a′. Therefore, u

x
−→ a′,u y

−→ b and b
a′

−→ x. Furthermore, dG(x, a′) + dG(a′, b) + dG(b, y) <

dG(x, a) + dG(a, b) + dG(b, y). Contradition to the hypothesis. Our Claim is proven.Then, this subdivision of K5 is a partial ube and by the indution hypothesis, it is either isomorphito S(K5) or has a universal vertex. It annot be isomorphi to S(K5) beause P (u, a) would then bea ua-geodesi and it is not. By onsequene it must have a universal vertex whih an neither be u (itdoes not see a), nor a or b (they do not see u), nor x or y (then we would have P (x, u) and P (x, y)plain whih is forbidden by Lemma 13). Thus, this subgraph is not a partial ube whih ontradits ourhypotheses.As a onlusion, we an assume |K| = 1 and then, u sees only one vertex in G whih means that nogeodesi goes through it. It implies that G\u is isometri. This ontradits our hypothesis. Finally, wehave proven Proposition 9.
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We then have a universal vertex u in G and to avoid odd yles, there has to be an odd number of addedverties in edges that are not inident to u.Consequently, the Theorem 1 is proven.2.3 A orollaryCorollary 15. Let sub(G) be a subdivision of a graph suh that eah edge ontains odd added verties.
K is a graph obtained from sub(G) by joining a vertex u adjaent to eah prinipal vertex of sub(G).Then, K is a partial ube.Proof. The proof is inluded in the su�ient ondition. We �rst embed isometrially the star with u asa entral vertex. Then, we an add isometrially every odd paths between two verties of G followingthe onstrution made in Paragraph 2.1.ConlusionA brief summary of the proof ould be the following. We �rst prove that if a vertex an be removedisometrially, we then have a universal vertex thanks to the indution hypothesis. Then we still haveto prove that we an always remove a vertex. We onsider that if every vertex is needed, they all havea type among C, Λ , R , I. We prove that none an have type C. After that, we exhibit an isometrisubdivision of K4 to show that any vertex of L annot see two verties of K. And we onlude by �ndingan isometri subdivision of K5 that annot have any universal vertex and is distint from S(K5).In the end, we have a strutural haraterization of every subdivisons of omplete graphs that are partialubes.Referenes[1℄ M. Aïder, S. Gravier, K. Meslem, Isometri embeddings of subdivided onneted graphs in thehyperube, Submitted (2005).[2℄ V. Chepoi, d-onvexity and isometri subgraphs of Hamming graphs, Cybernetis , 1 (1988) 6�9.[3℄ D. Djokovi�, Distane preserving subgraphs of the hyperubes, Journal of Combinatorial Theory ,Ser B41 (1973), 263�267.[4℄ R.L Graham, H.Pollak On the addressing problem for loop swithing, Bell System Tehnol., J.50(1971) 2495�2519.[5℄ W.Imrih, S. Klavºar, Produt Graphs: struture and reognition, Wiley , New York, (2000).[6℄ S. Gravier, S. Klavºar, M. Mollard Isometri embeddings of subdivided wheels in hyperubes, Dis-rete Mathematis , 269 (2003) 287�293.[7℄ S. Klavºar, A.Lipove Partial ubes as subdivision graphs and as generalized Petersen graphs, Dis-rete Mathematis , 263 (2003) 157�165.[8℄ S. Klavºar, A.Lipove Edge-ritial isometri subgraphs of hyperubes, Preprint series , Vol.39(2001); 157�165.[9℄ P.M. Winkler, Isometri embeddings in Hamming graphs, Disrete Appl. Math., 7 (1984) 221�225
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