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Abstract. More and more, models, through Domain Specific Languages (DSL),

tend to be the solution to define complex systems. Expressing properties specific

to these metamodels, and checking them, appear as an urgent need. Until now,

the only complete industrial solutions that are available consider structural prop-

erties such as the ones that could be expressed in OCL. There are although some

attempts on behavioural properties for DSL.

This paper addresses a method to specify and then check temporal properties over

models. The case study is SIMPLEPDL, a process metamodel. We propose a way

to use a temporal extension of OCL, TOCL, to express properties. We specify a

models transformation to Petri Nets and LTL formulae for both the process model

and its associated temporal properties. We check these properties using a model

checker and enrich the model with the analysis results. This work is a first step

towards a generic framework to specify and effectively check temporal properties

over arbitrary models.

Key words: Metamodelling, Properties Validation, Verification, Temporal OCL,

Process Model, Petri Nets, LTL, Models Semantics, Model Transformation

1 Introduction

Domain specific approaches tend to be the next approach for specifying complex sys-

tems, giving the appropriate abstraction. They can be easily built by domain experts

and can then be integrated in generic toolkits and frameworks. Nowadays, there exists

a bunch of environments allowing to define DSL (EMF1, GME2 ...) mainly focusing on

abstract and concrete syntaxes.

Once a metamodel specific to a particular domain has been defined, one wants to

express properties that have to be verified for models of this DSL. Such extensions

are usually expressed in OCL and describe structural properties of the model. Initially

OCL constraints were applied to UML models. Therefore many works and tools have

1 http://www.eclipse.org/emf/
2 http://www.isis.vanderbilt.edu/projects/gme/
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been designed in order to verify these constraints. Tools developed for UML have been

adapted to DSL.

However, for behavioural properties, there is a lack of effective works that define all

the steps from the property specification to its effective verification. Numerous current

projects, such as Topcased3, consider these problematics as a main topic.

The paper introduces a property-driven approach for specifying and checking tem-

poral properties. The case study is process engineering. Our approach can be described

as simple steps. We first characterise the properties. Then process states must be identi-

fied. The DSL metamodel is then extended to represent these states. We adapt an OCL

temporal extension, formalized using a LTL semantics [7], to represent our temporal

properties. The properties are then checked in another formalism: Petri nets. A model

transformation to Petri nets is given and allows to apply model checking on an ob-

servational abstraction of the trace semantics of the given model with respect to the

properties. Finally the result of the analysis is used to enrich the model with properties

information.

This paper gives the following contributions:

– we propose a property-driven approach to identify dynamic states of process models;

– we introduce a temporal extension of OCL based on process states;

– we translate temporal constraints into LTL constraints on the Petri nets;

– we propose an observational trace semantics for SIMPLEPDL;

– we define SIMPLEPDL denotational semantics though a mapping to Petri nets;

– we define a front end for the Tina model checker.

This paper is organised as follows: the second section introduces our DSL, a process

metamodel, as well as the natural expression of the user needs for models validation.

The third section develops our proposition on our case study. The fourth section con-

siders related works then the last section concludes.

2 Case Study: Process Model Validation

Our contribution is introduced through a modelling language example on which we

would like to express a set of properties that have to be verified on all possible models.

Our DSL is a simple process description language: SIMPLEPDL.

We first introduce the domain concepts of SIMPLEPDL and then the kind of prop-

erties we want to check on models. The properties we are interested in are properties

specific to our DSL that must be satisfied for every model of our metamodel. In fact, our

approach of verification is driven by those properties. Properties allows to caracterise

SIMPLEPDL models states and then refine the metamodel to capture them.

2.1 SIMPLEPDL

SIMPLEPDL is an experimental language for specifying processes. The SPEM standard

(Software Process Engineering Metamodel) [23] proposed by the OMG inspires our

3 Toolkit In OPen source for Critical Applications and SystEms Development, http://www.

topcased.org
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work4, but we also take ideas from the UMA metamodel (Unified Method Architecture)

used in the EPF Eclipse plug-in5 (Eclipse Process Framework), dedicated to process

modelling. It is simplified to keep the presentation simple.

The SIMPLEPDL metamodel is given in Figure 1. It defines the process concept

(Process) composed of a set of work definitions (WorkDefinition) representing the ac-

tivities to be performed during the development. One workdefinition may depend upon

another (WorkSequence). In such a case, an ordering constraint (linkType) on the second

workdefinition is specified, using the enumeration WorkSequenceType. For example,

two workdefinitions WD1 and WD2 linked by a precedence relation of kind finishToStart

specify that WD2 will be able to start only when WD1 is finished (and respectively for

startToStart, startToFinish and finishToFinish). SIMPLEPDL does also allow to explic-

itly represent resources (Resource) that are needed in order to perform one workdefini-

tion (designer, computer, server, . . . ) and also time constraints (min time and max time

on WorkDefinition and Process) to specify the minimum (resp. maximum) time allowed

to perform the workdefinition or the whole process.

One can remark that, for the sake of brevity, some concepts are not presented here

such as products (WorkProduct) that workdefinitions handle, or roles (Role) that can be

assimilated to resources.

Fig. 1: SIMPLEPDL metamodel

4 We propose an analysis of the SPEM 2.0 standard in [2]
5 http://www.eclipse.org/epf/
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2.2 Properties

We now present the different kinds of properties specific to the proposed metamodel:

structural ones, temporal ones and quantitative ones. We will particularly develop the

second kind as a core concept for the rest of the paper.

Structural properties: The expressivity of metamodelling languages (i.e. meta-metamodels)

does not allow to formally capture the whole set of the language properties, i.e. the ax-

iomatic semantics. They mainly capture the cardinalities constraints

In programming languages, the axiomatic semantics is usually based on mathemat-

ical logics and expresses a proof method for some construction properties of a language

[12]. It can be very general, such as Hoare triples or restricted to ensure construction

consistency (e.g. typing).

In a modelling language, this second kind of use is expressed using well formedness

rules at the metamodel level. Such rules have to be realised by all models that are

conform to this metamodel. One can check these rules by static analysis on models.

In order to express the rules, the OMG advocates the use of OCL [21, 26]. Ap-

plied at the metamodel level, OCL can add properties, mostly structural, that could not

have been captured by the metamodel definition. It is a mean to precise the metamodel

semantics by limiting possible conforming models.
There is an example of such a constraint:

One WorkSequence could not have the same WorkDefinition as source and target.

That can be formalised as

context WorkSequence inv :

self.predecessor <> self.successor

In order to check that a particular model satisfies these constraints, one can use an

OCL checker such as USE [25], OSLO6, or EMFT7.

Temporal properties: Many properties have to be satisfied in every model execution.

The expert of the domain will formalise them when defining the metamodel. In our pro-

cess metamodel, any workdefinition can be started and then be finished. One can then

ask, and therefore check, whether a given process model effectively terminates, i.e. that

every workdefinition in it finishes. Taking into account time and resources, some new

properties appear that are independent of any model. For a given set of resources, de-

scribed in the model, does the process terminate ? Is it possible to satisfy every real

time constraints expressed on the workdefinition (attributes min time and max time) ?

We could also express temporal properties depending on the capability for a workdef-

inition to suspend its work and free its resources to share them temporarily with other

workdefinitions.

6 Open Source Library for OCL, http://oslo-project.berlios.de.
7 The Eclipse Modeling Framework Technology project, http://www.eclipse.org/emft/
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Quantitative properties: The aim of such properties is to describe or compute critical

paths of executions in terms of minimal or maximal resource consumption. WCET8 or

schedulability are typical examples of quantitative properties. For instance, time and

memory are standard resources the usage of which one would wish to measure. In this

respect, a consumption (and production) model has first to be set. In simple situations,

a discrete and finite model may fit the needs, as it is the case when we focus on a

single kind of resource, with a fixed and finite number of instances. Memory require-

ments alone usually fall in this simple class and could be checked with off-the-shelf

model-checking techniques for discrete models, nevertheless with possible minor adap-

tations. Yet, for more involved models and resources, in order to precisely represent

what is happening, we may find it mandatory to write down quite general arithmetical

constraints or to handle continuous quantities (as in real-time systems specifications for

instance). As discussions about relevance of such models and their verification issues

are quite complex and out of the scope of this present work, we choose for the time be-

ing to simply rule out quantitative properties and postpone their introduction for future

works. Thus, we stick to the presentation of the overall methodology without delving

upon details.

2.3 Dynamic Informations & Property-Driven Approach

Expressing temporal properties that have to be checked on each model execution im-

plies the existence of an operational semantics that is not expressed within a metamod-

elling language such as the MOF.

In our case, the execution of a process model consists in performing the different

work definitions of the process. When executing a model, every work definition must

be started and the overall process must finally reach a state where all of them are in

the state finished. The real semantics can be arbitrary complex, and sometimes non

computer-representable in case of complex continuous systems.

Our previous works have investigated the use of operational semantics [11] and

translational semantics [10]. In this paper we present a generic approach to define the

abstract dynamic semantics, a semantics of observable events, built upon the properties

expressed at the metamodel level.

The temporal properties expressed for every model conform to the metamodel are

built over a notion of states. The formal semantics associated to the system can be seen

as the set of maximal finite traces which elements are model states. If the metamodel

has a well defined operational semantics, it can be easily expressed as a modification of

instances’ attributes or a modification of the topology (dynamically creating or killing

instances). On the contrary, if the associated semantics is not formally defined, the states

characterised by properties allow to define an observable operational semantics. Fol-

lowing this idea, if state properties rely on notions that cannot be directly expressed

in the model (classical OCL queries), then the metamodel must be enriched to express

these notions. The dynamic operational semantics, i.e. the Kripke structure that allows

to build trace semantics, must then be approximated by defining transition between

characterised states. It is the work of the domain expert to describe them.

8 Worst Case Execution Time
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This approach has mainly three advantages:

– it gives a method to define a formal semantics for metamodel that could not always

initially describe it;

– this approach is incremental: the domain expert can specify a property, that charac-

terises new states. Then he will extend the metamodel to represent this new dynamic

information. The expert can then introduce another property and extend again the

metamodel.

– it allows to easily define an “observable” approximation of the trace semantics. One

such approach allows to check the properties defined, because the semantics were

defined depending on the needs expressed by these properties. It can also help in

defining a minimal abstract semantics that gives access to formal tools allowing to

check properties on a reasonably-sized state space.

3 An Approach to Validation through Petri Nets and LTL

In this section, we will follow all the steps that allow us to express temporal constraints

on our SIMPLEPDL metamodel.

3.1 Characterising Properties

This first step must be realised by the expert. As expert of processes, we say that ev-

ery SIMPLEPDL model must verify the following properties. We separate them in two

classes: universal properties that have to be satisfied by every execution and existential

properties that must be true in at least one execution.

Our universal properties are: (1) every workdefinition must start, (2) all started

workdefinitions must finish, (3) once a workdefinition is finished, it has to stay in this

state, (4) a workdefinition is able to start depending on worksequences constraints. All

workdefinitions that are linked to it using a startToStart worksequence are started. Re-

ciprocally all workdefinitions that are linked to it using a finishedToStart worksequence

are finished.

The same kind of properties apply for finishing each workdefinition.

Our existential properties are: (1) every workdefinition must take more than min time

and less than max time to be performed, (2) the overall process is able to finish, i.e. when

all workdefinitions are finished in time (i.e. between min time and max time).

3.2 Characterising States

The second step consists in characterising different states for the metamodel elements

from the properties. From the aforementioned temporal properties, we can identify two

orthogonal ideas for the workdefinition element. First, a workdefinition can be not

started, started and finally finished. Secondly, there is a notion of time and clock as-

sociated to each workdefinition; but this time is only relevant for transition enabling

conditions (in our case transitions that start and finish a workdefinition) and is not

explicit in state properties. Thus it can be represented into the finite set of states
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Let w be the considered Work Definition.

∀ws = w.predecessor,(ws.linkType = startToStart&&ws.linkToPredecessor.state = started)
||(ws.linkType = f inishedToStart&&ws.linkToPredecessor.state = f inished)

notStarted,notFinished,clock → started,notFinished,0

∀ws = w.predecessor,(ws.linkType = startToFinished&&ws.linkToPredecessor.state = started)
||(ws.linkType = f inishedToFinished&&ws.linkToPredecessor.state = f inished)

started,notFinished,clock < min time → f inished, tooEarly,clock

started,notFinished,clock ∈ [min time,max time] → f inished,ok,clock

started,notFinished,clock > max time → f inished, tooLate,clock

Fig. 2: Event-based Transition Relation for WorkDefinitions

{tooEarly, ok, tooLate}. This second orthogonal idea is only relevant when the progress

is finished. Therefore we add a fourth state: notFinished.

3.3 Extending the Metamodel to Represent Dynamic Information

We now have to express these states by extending the WorkDefinition elements in or-

der to introduce attributes that reflect dynamic information, i.e. the state of the current

workdefinition. We choose to add three variables: state∈{notStarted, started, f inished},

time state ∈ {notFinished, tooEarly, ok, tooLate} and clock ∈ R
+.

An observational abstraction of the operational semantics of our processes with

respect to our properties can now be defined.

The expert has again to formalise the initial states and the transition relation. In our

case, it is quite natural: the initial states are the singleton {w 7→ (notStarted,notFinished)|
w ∈ W D}. We define the transition relation for one workdefinition in W D in Figure 2.

3.4 Expressing Temporal Properties : Temporal OCL

A few temporal extensions of OCL have already been proposed in a UML context (see

related works section). We have chosen the proposal of [27] for two main reasons:

1. The semantics of the temporal expressions is formally defined on a trace seman-

tics. Such traces are finite sequences of system states, describing a snapshot of the

running system. Even if this work was initially defined on UML models, the trace

semantics can be easily generalised to arbitrary state sequences while keeping the

original semantics of temporal operators.

2. The syntax of this OCL extension is quite natural. It introduces usual future-

oriented temporal operators such as next, existsNext, always, sometimes as well

as their past-oriented duals. We will only use the future-oriented ones because we

intend to effectively check properties using the Tina model checker [3], which does

not support past-oriented operators.

Let us go back to our process example to introduce our generalisation. A snapshot

of our process has to describe precisely the state of each workdefinition. We take as
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given a finite set S of such states. Let W D be the set of workdefinitions of the model.

Let Σ be the set of the process state: Σ = W D 7→ S .

A trace σ̂ of the process is a maximal finite sequence of process states 〈σ0, . . . ,σn〉,σi ∈
Σ, where σ0 denotes the initial process state. Semantically, we have two kinds of tran-

sitions. First, continuous time-passing transitions that are here unobservable and con-

sist in incrementing all workdefinition clocks by a quantity dt simultaneously. Second,

event-based transitions that change the states of workdefinitions as defined by the ex-

pert above. Two consecutive events in a sequence are related through a combination of

the time-passing transition followed by an event-based transition.

In order to ease the definition of our properties we introduce the new operator pre-

cedes. Such an operator can be described using the previous ones:

e1 precedes e2 = always!(e2) until e1

Expressions of our TOCL extension are now OCL expressions over the model ele-

ments using these temporal operators. We also allow these expressions to be built over

state names defined in the aforementioned set S . The universal temporal properties can

now be expressed as:

always (notStarted =⇒ sometime started)
always (started =⇒ sometime finished)
finished =⇒ always finished

always ((predss.state = started &&

pred f .state = finished &&

notStarted) =⇒ sometime started)

The existential ones have to be rewritten in order to be checked: we will verify

the negation of each formula. If the analysis gives a correct answer, there is no trace

satisfying the property. On the contrary, if the analysis gives a negative answer with

a counter-example, the existential property is verified and the counter-example is one

of the traces satisfying the temporal property. We only give here the first existential

property.

always (not wd.time state = ok)
≡ always (wd.time state = tooEarly

||wd.time state = tooLate)

We have given the textual concrete syntax and the associated semantics of our extension

of TOCL. In order to integrate it into a metamodelling approach (i.e. defining properties

at the metamodel level), it is necessary to define, at the MOF level, the OCL abstract

syntax and its temporal extension. To give the ability for any DSL to use TOCL, we start

from the OCL metamodel defined in [24] and promote it at the MOF level [22] (fig. 3).

We also add the set of temporal operators defined in [27] and in the aforementioned

extension (fig. 3).

We have now introduced the concrete and abstract syntax and semantics of our

temporal OCL extension. With these temporal constraints we are now able to express

complex properties on the behaviour of the model to be checked. One immediate appli-

cation of these constraints is the transformation of every invariant as defined in OCL as
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MOF::Core::Basic

Type

Property

constrainedElement

1..*

properties

0..*

OCL::Expression

OclExpression
body

0..1

TOCL

ToclOperator

arguments

1..2

{ordered}

Fig. 3: Temporal OCL integration to MOF

the first kind of properties. We now consider executing models and each invariant has to

be checked in every process state of all possible traces. Therefore, we rename invariant

expressions e to always e.

The next part introduces how these model states can be built using OCL over model

attributes.

3.5 Denotational Semantics to Petri Net and LTL

In this study, we choose to use the technical space of Petri nets as the target repre-

sentation for formally expressing our process models. We also choose to express our

temporal formulae as LTL formaluae (Linear Temporal Logic) over the Petri net asso-

ciated to a process model. Then we manipulate Petri nets and LTL formulae within the

Tina9 toolkit.

TINA (TIme Petri Net Analyser) is a software environment to edit and analyse Petri

nets and timed nets [3]. The different tools constituting the environment can be used

alone or together. Some of these tools will be used in this study:

– nd (NetDraw) : nd is an editing tool for automatas and timed networks, under a textual

or graphical form. It integrates a “step by step” simulator (graphical or textual) for

the timed networks and allows to call other tools without leaving the editor.

– Tina : this tool builds the state space of a Petri net, timed or not. Tina can perform

classical constructs (marking graphs, covering trees) and also allows abstract state

space construction, based on partial order techniques. Tina proposes, for timed net-

works, all quotient graph constructions discussed in [4].

– selt: usually, it is necessary to check more specific properties than the ones dedicated

to general accessibility alone, such as boundedness, deadlocks, pseudo liveness and

liveness already checked by tina. The selt tool is a model-checker for formulae of an

extension of temporal logic seltl (State/Event LT L) of [7]. In case of non satisfiability,

selt is able to build a readable counter-example sequence or in a more compressed

form usable by the TINA simulator, in order to execute it step by step.

9 http://www.laas.fr/tina/
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Denotational Semantics of SIMPLEPDL

PetriNet In this case study, we use timed Petri nets as a paradigm to express the se-

mantics of our processes, models of SIMPLEPDL. The semantics is now a denotational

one defined as a mapping from SIMPLEPDL to Petri nets. The Petri nets metamodel

is given in Figure 4. A Petri net (PetriNet) is composed of nodes (Node) that denote

places (Place) or transitions (Transition). Nodes are linked together by arcs (Arc). Arcs

can be normal ones or read-arcs (ArcKind). The attribute tokensNb specifies the num-

ber of tokens consumed in the source place or produced in the target one (in case of a

read-arc, it is only used to check whether the source place contains at least the specified

number of tokens). Petri nets markings are defined by the tokensNb attributes of places.

Finally, a time interval can be expressed on transitions.

Fig. 4: Petri Nets Metamodel

Mapping The translation schema that transforms a process model into a Petri nets

model (SIMPLEPDL2PETRINET) is given in Figure 5. Each workdefinition is trans-

lated into four places characterising its state (NotStarted, Started, InProgress or Fin-

ished). A WorkSequence becomes a read-arc from one place of the source workdef-

inition to a transition of the target workdefinition. The state Started records that the

workdefinition has been started.

We also add five places that will define a local clock. The clock will be in state

TooEarly when the workdefinition ends before min time and in the state TooLate when

the workdefinition ends after max time.

Our transformation has been written in ATL, ATLAS Transformation Language

[19]. A first rule expresses one workdefinition in terms of places and transitions. A

second one translates a work sequence into a read-arc between the adequate place of

the source workdefinition and the appropriate transition of the target workdefinition.

Finally a third rule considers the whole process and builds the associated Petri net.

In order to manipulate the obtained Petri net inside a dedicated tool such as Tina, we

have composed the preceding transformation with a transformation PETRINET2TINA

that translates a PetriNet model into the textual syntax of the Tina tool.
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 <<WorkDefinition>>

Conception
--------------------
temps_min = 10
temps_max = 16

<<Ressource>>

Machine
--------------------

nbOccurence = 4

2

 <<WorkSequence>>

ws

wd1_started wd2_start

ws.linkType = startToStart
wd1_finished wd2_start

ws.linkType = finishToStart

wd1_started wd2_finish

ws.linkType = startToFinish
wd1_finished wd2_finish

ws.linkType = finishToFinish

Fig. 5: Translation schema from SIMPLEPDL to PetriNet

Traceability The set of translation choices (i.e. the mapping) defined in the SIM-

PLEPDL2PETRINET transformation is captured in the ATL source code. The benefit

of this language is that it is itself defined as a metamodel. It allows to obtain a model

(conform to the ATL metamodel) corresponding to the transformation. This transforma-

tion model can be reused as an entry model for another transformation (Higher Order

Transformation). We can remark that it is possible to enrich traceability information as

proposed by [17].

Denotational Semantics of TOCL The transformation model defined during the trans-

lation to Petri nets is used to instantiate a generic transformation that defines LTL prop-

erties from the initial metamodel properties, instantiated relatively to the initial process

model.

Our experiments show a lack in current MDE technology that does not allow to

parameterise a model transformation. The use of a programming language such as Java,

as well as a specific library such as EMF, is necessary to handle such a transformation.
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3.6 Models Validation and Feedback

Model checking results have to be interpreted at the SIMPLEPDL model level in or-

der to provide a complete front-end to the end-user. Properties verified in the Petri net

correspond to a double instantiation of the properties expressed at the metamodel level.

The interpretation of the results must be the conjunction of the results obtained for the

different instantiations of a metamodel property.

The feedback of properties results (catching in a first time the truth value of the

property) in the model, can be automatically computed using the transformation model

defined during the translation SIMPLEPDL2PETRINET. This translation captures the

set of choices that have been done during the transformation (i.e. the mapping table).

This technique uses a Higher Order Transformation that takes a transformation model

and allows to trace back the model checker interpretation into the DSL model.

In a first time, we only handle the boolean value returned by the Tina analyser. When

the LTL properties associated to one SIMPLEPDL properties are satisfied, the property

is satisfied. In the other case, the transformation model allows to identify in the model

the faulty element and to update its dynamic information in order to visualise the state

in which the property failed. We have to take care of the kind (universal or existential)

of temporal properties expressed. In case of an existential one, the negation of the result

has to be returned.

The next step consists in handling counter-examples. Such counter-examples gen-

erated by the model checker could be expressed on the model and be then injected in

the model animator (e.g. the SIMPLEPDL animator) defined in the Topcased project.

4 Related Works

4.1 Models Semantics

The formal semantics definition of modelling languages is an active research field in

the MDE community. Beside our previous works presented in [11] and [10], we have

identified other projects that consider this important subject.

The ISIS laboratory of the Vanderbilt University focuses on MDE for many years.

They proposed the MIC approach (Model-Integrated Computing), in which models are

at the heart of the integrated software development. Recently, they propose, in [8], a

semantics anchored to a model of formal semantics built upon ASM (Abstract State

Machine) [16], using the transformation language GReAT (Graph Rewriting And Trans-

formation language) [1].

Xactium10 is a company wbose objectives are to provide practical solutions for

the development of systems based on MDE principles. It developed the XMF-Mosaic

tool [9] that allows to define a DSL, to simulate and to validate models using a extension

of the OCL language named xOCL (eXecutable OCL). XMF-Mosaic also provides

means to transform models and to define translations to other technical spaces.

These works are very near to the objectives of the TOPCASED environment, i.e.

to propose a modular modelling environment based on a modular generative approach

10 http://www.xactium.com
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(like GME, XMF), as well as a formal semantics that provides simulation and model

validation tools. Our works based on Kermeta follow an approach similar to the ones of

xOCL inside the XMF-Mosaic tool.

The semantics anchoring proposed by the ISIS laboratory is similar to the denota-

tional semantics like the mapping to Petri nets we propose. The main difference is that

we want to give more flexibility in the choice of the semantics model and to allow easier

feedbacks from simulations or verifications inside a particular model. However, they do

not propose the use of models rewriting rules to define the operational semantics.

4.2 Models Verification

Verification of UML models In order to specify structural properties on UML mod-

els, OCL was introduced. It is therefore accepted as the standard language to express

structural properties on UML models. There also exists a bunch of tools to check OCL

properties for any model.

As for temporal properties, some recent works intend to extend the usual OCL syn-

tax and semantics to give the capability to express temporal constraints. All these works

address OCL extensions in an UML context. They do not address how the transition

system is derived from the model.

The aforementioned work of [27] proposed to extend OCL with temporal operators

and defined their semantics on the trace semantics of the UML model. This work is a

first step towards the simulation of temporal properties over traces using the USE tool.

Some works, such as [15] and [14], are focused on the expression of real time con-

straints while keeping the original OCL syntax. They relied on StateChart states to

express the dynamic constraints of the system. Then, they mapped their constraints into

Clocked-CTL.

[6] proposed to express real time constraints using two new classes Time and

Events. A new OCL template is introduced and the usual ones (pre-, post-, inv and

action) are translated in it. The semantics is also defined as a trace semantics.

In [13], the authors expressed non temporal OCL constraints into their object-

oriented version of CTL. They defined formally what is a state of the UML model.

They are able to check whether a property expressed in OCL can be checked in every

reachable state.

The work of [5] introduced new OCL templates. They mapped them into Oµ(OCL)-
calculus, an observational µ-calculus, which expressions are OCL expressions. The

semantics of their Oµ(OCL)-calculus is defined over the states of [13]. Using model

checking tools, the author intends to check the property on a CCS term modelling their

UML system.

All the previous works only specify the way OCL must be extended to deal with

temporal formulae in order to verify or simulate them later but do not reach this last step,

at least not in an automatic manner. For instance, the point of generating the transition

system from the initial UML is not solved.

Verification of DSL models OCL was initially defined on UML but was quickly defined

for every metamodel. It is the main tool to express structural properties in DSL. Existing

OCL checkers are also model independent.



14 Combemale et al.

5 Conclusion & Future Works

The context of this article was to integrate formal methods for refining DSL semantics.

DSL semantics is usually restricted to structural properties and dynamic aspects are of-

ten only informally described or are even implicit. As our aim is to express and validate

behavioural and operational properties within a metamodelling framework, the first step

was to introduce and handle an operational semantics, instantiated in this article to our

process metamodel SIMPLEPDL. This semantics is introduced with respect to proper-

ties of interest, given by an expert of the domain. First, a notion of state is introduced,

followed by the definition of transitions and executions. Temporal operators, forming

temporal properties, are also introduced. In order to check these properties, first a deno-

tational semantics is provided as a mapping from SIMPLEPDL processes to Petri nets,

second a front end to the Tina model-checker is defined.

Few things still remain to be done. In particular, the current presentation is focused

on SIMPLEPDL, it still needs to be abstracted away to get a more general approach.

The formal connection between the observational operational semantics and the deno-

tational semantics induced by the ATL transformation have to be validated.

Currently, we are implementing a prototype allowing us to define metaproperties

through an Ecore modelling language extension given by the Eclipse EMF plugin. The

expression of temporal properties uses an extension of OCL metamodel provided by

the EMFT plugin on which we add the set of temporal operators described above, in the

article. An interface associated to the TOCL textual concrete syntax will be integrated

using generators such as Sintaks [20] or TCS [18]. Our prototype must also integrate the

set of ATL transformations and provide a front end to Petri nets using the Tina toolkit,

through the SIMPLEPDL language. We still have, in case of a negative answer from

the model checker, for a given property, to retrieve the generated counter-example. It

can then be injected within both the model animator currently developed with the TOP-

CASED project and the SIMPLEPDL model graphical editor defined with TOPCASED.
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thesis of concrete syntax. In 9th International Conference on Model Driven Engineering

Languages and Systems (MoDELS), volume 4199 of LNCS, Genova, Italy, October 2006.
21. Object Management Group, Inc. UML Object Constraint Language (OCL) 2.0 Specification,

October 2003. Final Adopted Specification.
22. Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Core Specification, January

2006. Final Adopted Specification.
23. Object Management Group, Inc. Software Process Engineering Metamodel (SPEM) 2.0

Specification, March 2007. Final Adopted Specification.
24. Mark Richters and Martin Gogolla. A metamodel for OCL. In Robert France and Bernhard

Rumpe, editors, UML’99 - The Unified Modeling Language. Second International Confer-

ence, Fort Collins., volume 1723 of LNCS, pages 156–171, USA, October 1999.
25. Mark Richters and Martin Gogolla. Validating UML models and OCL constraints. In UML

2000 - The Unified Modeling Language. Third International Conference, volume 1939 of

LNCS, pages 265–277, York, UK, October 2000.
26. Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your Models

Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., 2003.
27. Paul Ziemann and Martin Gogolla. An extension of OCL with temporal logic. In Critical

Systems Development with UML – Proceedings of the UML’02 workshop, volume TUM-

I0208, pages 53–62, September 2002.


