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Abstract. In this paper, we revisit the view based security framework
for XML without imposing any of the previously considered restrictions
on the class of queries, the class of DTDs, and the type of annotations
used to define the view. First, we show that the full class of Regular
XPath queries is closed under query rewriting. Next, we address the
problem of constructing a DTD that describes the view schema, which in
general needs not be regular. We propose three different methods of ap-
proximating the view schema and we show that the produced DTDs are
indistinguishable from the exact schema (with queries from a class spe-
cific for each method). Finally, we investigate problems of static analysis
of security access specifications.

1 Introduction

The wide acceptance of XML as the format for data representation and exchange
clearly demonstrates the need for a general and flexible framework of secure ac-
cess for XML databases. While security specification and enforcement are well
established in relational databases, their methods and approaches cannot be
easily adapted to XML databases. This is because an XML document stores
information not only in its data nodes but also in the way it is structured. Con-
sequently, the problem of secure access to XML databases has its own particular
flavor and requires dedicated solutions.

The view-based security framework for XML databases [19] has received an
increased attention from both the theoretical and practical angle [3, 9, 4, 17, 22,
18, 5]. It can be summarized as follows:

– The administrator provides the schema of the document together with the
security access specification (SAS) defining nodes accessible by the user.

– A virtual view comprising all accessible nodes is defined; the view is never
materialized but the user is given its schema.

– Every query over the view is rewritten to an equivalent query over the un-
derlying document and then evaluated.

✍ This work was partially supported by the Enumeration project ANR-07-blanc-.



The framework is parametrized by the class of queries, typically a fragment
of XPath, and the type of formalism used to define the schema with the secu-
rity access specification, typically an annotated DTD. Previous research often
imposed various restrictions in order to facilitate the tasks relevant to the frame-
work. For instance, taking the class of downward XPath queries allows to use
the knowledge of the document DTD to benefit the query rewriting [3]. The task
can be additionally simplified if the node accessibility is downward closed, i.e. all
descendants of an inaccessible node are inaccessible as well [1]. The last restric-
tion is also beneficial to constructing the view schema [4]. In fact, without it the
set of possible views is not necessarily a regular set of trees, and in particular,
needs not be representable with a DTD (cf. Example 3). For similar reasons, in
some works only non-recursive DTDs are considered [3, 17].

The aforementioned restrictions may easily limit the versatility of the frame-
work (cf. Example 2). In this paper we lift all the restrictions and revisit three
most frequently considered problems: query rewriting, construction of the view
schema, and static analysis of SAS. We make the following contributions:

1. We show that Regular XPath is closed under rewriting over XML views. The
rewriting is quadratic (combined complexity) whereas a lower exponential
bound has been shown for downward XPath queries [5, 6].

2. We propose a novel approach of approximating tree languages with a DTD.
Basically, a good approximation is a DTD that is indistinguishable from the
real schema by means of querying the document. We present three different
approximation methods and identify the classes of queries unable to distin-
guish them from the real schema. We also argue about the optimality of our
constructions.

3. We investigate the problem of comparing two SAS and propose two different
semantics, node- and query-based. The first compares the sets of accessible
nodes while the second compares the sets of queries that the user can pose
on the underlying document through the rewriting process. We provide a
detailed complexity analysis of those two notions. We also investigate the
problem of verifying accessibility of information.

Because of space limitations we omit some of the proofs. They can be found in
Appendix of the full version available online.4

Related work In [17] Rassadko extends the query rewriting approach of Fan
et al. [3, 4] to XPath queries with ascending axes. However, only non-recursive
DTDs are considered and it remains to be seen if this approach can be further
extended to handle horizontal axes as well.

To ensure that the view schema can be captured with a DTD, Fan et al. [3,
4] altered the definition of the view for recursive DTDs. Essentially, some inac-
cessible nodes rather than be removed are obfuscated, i.e. their attributes are
removed and names changed to dummy ones. While this approach guarantees
the schema to be regular, it clearly limits the relationships one can hide.

4 http://researchers.lille.inria.fr/~staworko/papers/staworko-dbpl09.pdf
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Vercammen et al. [22] propose a query rewriting algorithm for the class of
XPath queries with intersection and difference. The set of accessible nodes is
defined with a single XPath query Q. While this XPath dialect is commonly
available in existing systems, the query rewriting is obtained by incorporating
the query Q using the intersection and difference operators. In a straightforward
evaluation of XPath, this is equivalent to materializing the view, a behaviour
the original motivation tried to avoid.

Our method of verification of information accessibility is inspired by the
work of Libkin and Sirangelo [10] where the opposite problem is studied, i.e.
verifying that some information is secret. They consider the class of MSO queries,
which is more suitable in this context, and show the problem to be decidable for
downward-closed accessibility specifications. We recall that XReg is known to
be properly included in MSO [21], and thus checking whether a property can be
expressed in MSO needs not be related to the same check w.r.t. XReg.

2 Preliminaries

XML Documents. We assume a finite set of node labels Σ and model XML
documents with unranked ordered labeled trees TΣ . Formally, a Σ-tree is a finite
structure t ✏ ♣Nt, roott, childt, nextt, λtq, where Nt is a set of nodes, roott P Nt is
a distinguished root node, childt ❸ Nt✂Nt is the parent-child relation, nextt ❸
Nt ✂ Nt is the next-sibling relation, and λt : Nt Ñ Σ is the function assigning
to every node its label. We remark that we do not assume the set of nodes to be
a prefix closed subset of ◆∗. Moreover, equality of trees should not be confused
with isomorphism: two trees are equal if and only if all the elements of their
underlying structure are the same, including the node set.

Example 1. Figure 1 contains an example of a tree representing an XML database
with information on software development projects. Every project has a name

projects

project

name stable license

src bin doc free

project

name stable license

src bin doc propr

project

name dev license

src doc free

n0

n1 n2 n3

n4 n5 n6

n7 n8 n9 n10

n11 n12 n13

n14 n15 n16 n17

n18 n19 n20

n21 n22 n23

Nt0
✏ tn0, n1, n2, . . .✉, roott0

✏ n0, λt0
✏ t♣n0, projectsq, ♣n1, projectq, . . .✉,

childt0
✏ t♣n0, n1q, ♣n0, n2q, . . .✉, nextt0

✏ t♣n1, n2q, ♣n2, n3q, ♣n4, n5q, . . .✉.

Fig. 1. Tree t0.
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and a type of license (either free or proprietary). Projects under development
come with their source codes and documentation, whereas stable projects have
also binaries. ❬❭

Regular XPath queries. The class XReg of Regular XPath queries [13] over
Σ-trees is defined with the following grammar (with a varying over Σ):

α ::✑ self ⑤ ó ⑤ ò ⑤ ñ ⑤ ð

f ::✑ lab♣q ✏ a ⑤ Q ⑤ true ⑤ false ⑤ not f ⑤ f and f ⑤ f or f

Q ::✑ α ⑤ rf s ⑤ Q④Q ⑤ Q❨Q ⑤ Q∗

Essentially, XReg query is a regular expression of base axes and filter expres-
sions. Filter expressions are Boolean combinations of node label tests and exis-
tential path tests. We define several macros: α� is short for α∗④α, Qrf s is Q④rf s,
α::a stands for αrlab♣q ✏ as, and α::∗ is simply α, where a is a symbol, Q a
query, f a filter expression, and α a base axis or its closure. The semantics of
Regular XPath is defined in Fig. 2 (Boolean connectives are interpreted in the
usual manner). ✈Q✇t is the binary reachability relation on the nodes of t defined

✈self✇t ✏ t♣n, nq ⑤ n P Nt✉,

✈ó✇t ✏ childt,

✈ò✇t ✏ child
✁1

t ,

✈ñ✇t ✏ nextt,

✈ð✇t ✏ next
✁1

t ,

✈Q1④Q2✇t ✏ ✈Q1✇t ✆ ✈Q2✇t,

✈Q1 ❨ Q2✇t ✏ ✈Q1✇t ❨ ✈Q2✇t,

✈Q∗✇t ✏ ✈Q✇∗t ,

✈rf s✇t ✏ t♣n, nq P Nt ⑤ ♣t, nq ⑤ù f✉

♣t, nq ⑤ù lab♣q ✏ a iff λt♣nq ✏ a,

♣t, nq ⑤ù Q iff ❉n✶ P Nt. ♣n, n
✶q P ✈Q✇t.

Fig. 2. The semantics of Regular XPath.

by the query Q. By ♣t, nq ⑤ù f we denote that the filter f is satisfied at the node
n of the tree t. We say that a query Q is satisfied in the tree t if ♣t, roottq ⑤ù Q.
The set of answers to a query Q in a tree t is defined as

Ans♣Q, tq ✏ tn P Nt ⑤ ♣roott, nq P ✈Q✇t✉.

For instance, the query Q0 ✏ ó::projectró::stables④ó::name selects (the nodes
storing) the names of all stable projects. The set of answers to Q0 in t0 (Fig. 1)
is Ans♣Q0, t0q ✏ tn4, n11✉.

We recall from [13] that XReg is closed under inversion, i.e. for every query
Q there exists a query Q✁1 such that ✈Q✁1✇t ✏ ✈Q✇✁1

t for any tree t. Basically,
Q✁1 is obtained by reversing the base axes and the order of composition on the
top most level (filter expressions are unchanged). Naturally, ⑤Q✁1⑤ ✏ ⑤Q⑤.
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DTDs and annotations. A Document Type Definition (DTD) over Σ is a
function D that maps Σ to regular expressions over Σ. We allow regular expres-
sions defined with the grammar E ::✑ empty

✞✞ a
✞✞ E ”,”E

✞✞ E ”⑤”E
✞✞ E∗, where

empty defines the empty sequence, a is a symbol of Σ, E,E is the concatenation,
E⑤E is the union, and E∗ is the Kleene closure. In the sequel, we present DTDs
using rules of the form a Ñ E and if for a symbol a the rule is not specified,
then aÑ empty is implicitly assumed. The dependency graph of a DTD D over
Σ is a directed graph whose node set is Σ and the set of arcs contains ♣a, bq if
D♣aq uses the symbol b. A DTD is recursive iff its dependency graph is cyclic.

A Σ-tree t satisfies D if for every node n with k children n1, . . . , nk (listed
in the document order) we have λt♣n1q ☎ ☎ ☎λt♣nkq P L♣Eq, where E ✏ D♣λt♣nqq.
By L♣Dq we denote the set of all Σ-trees that satisfy D.

A security access specification (SAS) consists of a DTD and an annotation
specifying the accessibility of document nodes. Although the DTD and the an-
notation typically come together, we will often operate on the annotation inde-
pendently of the DTD. Formally, an annotation over Σ is a (possibly partial)
function A that maps Σ✂Σ to XReg filter expressions. The size ⑤A⑤ of annota-
tion A is simply the sum of the sizes of all filter expressions used in A.

Annotations define accessibility of nodes as follows. A node b with the parent
a is accessible w.r.t. A if the filter expression A♣a, bq is satisfied at the node b.
If A♣a, bq is not defined, then accessibility of the parent is used (inheritance).
Finally, the root node is always accessible.

Example 2. The DTD D0 below captures the schema of XML databases de-
scribed in Example 1.

projects Ñ project∗

project Ñ name, ♣stable ⑤ devq, license
A0♣project, stableq ✏ false

A0♣project, devq ✏ false

license Ñ free ⑤ propr

stable Ñ src, bin, doc

A0♣stable, srcq ✏ rò∗::project④ó∗::frees
A0♣stable, docq ✏ true

dev Ñ src, doc

A0♣dev, srcq ✏ rò∗::project④ó∗::frees
A0♣dev, docq ✏ true

The annotation A0 gives access to all projects but delinquently hides the in-
formation whether or not the project is stable (in particular, it hides binaries).
Additionally, A0 hides the source code of all projects developed under propri-
etary license.

In the tree t0 from Fig. 1 the root node projects is accessible and all nodes
project are accessible by inheritance. The nodes name and license with their
children are accessible by inheritance as well. A0 implicitly states that stable

and dev are not to be accessible, and the nodes bin are inaccessible by in-
heritance. On the other hand, A0 overrides the inheritance for nodes doc and
makes them accessible. Finally, the accessibility of src nodes is conditional:
only n7 and n21 are accessible because only those satisfy the specified condi-
tions, A0♣stable, srcq and A0♣dev, srcq resp. ❬❭

Now, given an annotation A over Σ and a Σ-tree t, the view A♣tq of t defined by
A is the Σ-tree obtained by removing from t all inaccessible nodes. Removing
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a node causes its children to be adopted by (or linked to) the parent of the
node. Since the accessibility of every node is well defined and the root is always
accessible, the view is a well defined Σ-tree. Figure 3 presents the view A0♣t0q

projects

project

name src doc license

free

project

name doc license

propr

project

name src doc license

free

n0

n1 n2 n3

n4 n6n7 n9

n10

n11 n13n16

n17

n18 n20n21 n22

n23

Fig. 3. The view A0♣t0q.

(for t0 from Fig. 1). We remark that the nodes of view constitute a subset of the
nodes of the underlying document, i.e. NA♣tq ❸ Nt.

3 Query rewriting over XML views

In this section we show that the class of Regular XPath queries is closed under
query rewriting. The rewriting technique for downward queries [3] relies on the
knowledge of the DTD. Our rewriting method works independently of the DTD.
We remark, however, that the DTD contains important information about the
expected structure of the document, and in practical applications, one should
take advantage of it in order to improve the efficiency of rewriting. The method
uses the fact that accessibility of a node can be defined with a single filter
expression (Lemma 1). This filter is used to construct rewritings of the base
axes (Lemma 2), which are used to rewrite the user queries.

Lemma 1. For any annotation A there exists a filter expression fA
acc such that

for any tree t, a node n P Nt is accessible in t w.r.t. A if and only if ♣t, nq ⑤ù fA
acc.

Moreover, fA
acc can be constructed in O♣⑤A⑤q time.

Proof. By dom♣Aq we denote the set of pairs of symbols for which A is defined.
We begin by defining two filter expressions. The first checks if A defines a filter
expression for the current node

fdom ✕
➎

♣a,bqPdom♣Aq

�
lab♣q ✏ b and ò::a

✟
,

and if it is the case, the second filter expression is used to evaluate it

feval ✕
➎

♣a,bqPdom♣Aq

�
lab♣q ✏ b and ò::a andA♣a, bq

✟
.

Finally, we restate the definition of accessibility using Regular XPath

fA
acc ✕ ♣rnot fdoms④òq

∗④rnot♣òq or fevals. ❬❭
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The filter expression fA
acc plays an important role in the algorithms presented in

this paper. Therefore, it is beneficial to optimize it, for instance, by incorporating
the knowledge of the DTD. The filter expression fA0

acc in the presence of D0

(Example 2) is equivalent to

lab♣q✘stable and lab♣q✘dev and lab♣q✘bin and ♣lab♣q✘src or ò∗::project④ó∗::freeq.

Now, we show how to rewrite the base axes.

Lemma 2. For any annotation A and any α P tó,ò,ñ,ð✉ there exists a Reg-
ular XPath expression RA

α such that ✈RA
α ✇t ✏ ✈α✇A♣tq for every tree t. Moreover,

⑤RA
α ⑤ ✏ O♣⑤A⑤q.

Proof. Essentially, the rewriting Rα defines paths, traversing inaccessible nodes
only, from one accessible node to another accessible node in a manner consistent
with the axis α. For the vertical axes the task is quite simple:

RA
ó ✕ rfA

accs④ó④♣rnot fA
accs④óq

∗④rfA
accs

and RA
ò ✕ ♣RA

ó q
✁1. Rewritings of the horizontal axes are slightly more complex

and we first define auxiliary filter expressions:

f❉Ó ✕ ♣rnot fA
accs④óq

∗④rfA
accs, f∅

Ó ✕ not f❉Ó , f∅

Ñ ✕ ♣ñ④rf∅

Ó sq
∗④rnot♣ñqs.

f❉Ó checks that the current node or any of its descendants is accessible. Con-

versely, f∅

Ó checks whether the current node and all of its descendants are in-

accessible. Similarly, f∅

Ñ verifies that only inaccessible can be found among the
siblings following the current node and their descendants.

The expression RA
ñ seeks the next accessible node among the following sib-

lings of the current node and their descendants. However, if there are no such
nodes but the parent is inaccessible, then next accessible node is sought among
the following siblings of the parent. The last step is repeated recursively if needed.

RA
ñ ✕ rfA

accs④♣rf
∅

Ñs④ò④rnot fA
accsq

∗④ñ④♣ r♣not fA
accq and f∅

Ó s④ñ ❨

r♣not fA
accq and f❉Ó s④ó④r✥ðsq

∗④rfA
accs

and RA
ð ✕ ♣RA

ñq
✁1. We observe that ⑤RA

α ⑤ ✏ O♣⑤A⑤q for every α P tó,ò,ñ,ð✉.
❬❭

Finally, we state the main result.

Theorem 1. XReg is closed under query rewriting, i.e. there exists a function
Rewrite such that Ans♣Q,A♣tqq ✏ Ans♣Rewrite♣Q,Aq, tq for any annotation A,
any Regular XPath query Q, and any tree t. Moreover, Rewrite♣Q,Aq is com-
putable in time O♣⑤A⑤ ∗ ⑤Q⑤q.

Proof. The function Rewrite♣Q,Aq replaces in Q every occurrence of a base axis
α P tó,ò,ñ,ð✉ with RA

α . A simple induction over the size of Q shows that
✈Q✇A♣tq ✏ ✈Rewrite♣Q,Aq✇t, Lemma 2 handling the nontrivial base cases. Since
the root is always accessible, we get Ans♣Q,A♣tqq ✏ Ans♣Rewrite♣Q,Aq, tq. We
note that the rewritten query is constructed in time O♣⑤A⑤ ∗ ⑤Q⑤q. ❬❭
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We observe that the asymptotic complexity of our rewriting method is compara-
ble to that of [4] but it handles a larger class of queries and DTDs. Currently, we
investigate automata based formalisms to devise efficient evaluation algorithms.
Also, we remark that our rewriting technique can be easily adapted to rewrite
Conditional XPath queries, a strict subclass of Regular XPath which we believe
to be more scalable.

4 View schema approximation

In general, the user will need a schema of the view to formulate her queries. In
this section we address the problem of its construction. For a SAS ♣D,Aq we
define VS♣D,Aq ✏ tA♣tq ⑤ t P L♣Dq✉.

Often constructing the view schema is simple. For example, the view schema
for D0 and A✶

0 (Example 5) is

projects Ñ project
∗

project Ñ name, doc, license license Ñ free ⑤ propr

In general, however, three potential obstacles may arise when inferring the view
schema.

Example 3. Consider the security access specifications ♣D1, A1q, ♣D2, A2q, and
♣D3, A3q (the last example is due to [9]):

D1 : r Ñ a, b, c

b Ñ d ⑤ e

D2 : r Ñ c

c Ñ ♣a, c, bq ⑤ empty

D3 : r Ñ ak ☎ ☎ ☎

ai Ñ ai✁1, ai✁1 ☎ ☎ ☎

a0 Ñ a

A1♣r, aq ✏ rñ::∗④ó::ds,

A1♣r, cq ✏ rð::∗④ó::ds,

A2♣r, cq ✏ A2♣c, cq ✏ false,

A2♣c, aq ✏ A2♣c, bq ✏ true,

A3♣r, akq ✏ false,

A3♣a0, aq ✏ true.

We observe that VS♣D1, A1q ✏ tr♣a, b♣dq, cq, r♣b♣eqq✉ although regular cannot

be captured with a DTD, VS♣D2, A2q ✏ tr♣a
k
, bkq ⑤ k P ◆✉ is not a regular tree

set, and finally, VS♣D3, A3q ✏ tr♣a2k

q✉ requires a DTD of size exponential in
⑤D3⑤. ❬❭

To alleviate the infeasibility of constructing a DTD representing the view schema,
we investigate approximation methods.

4.1 Intermediate representation

The reason why VS♣D1, A1q cannot be represented with a DTD is the correlation
between the filter expressions A1♣r, aq and A1♣r, cq, one is satisfied if and only if
the other is. A simple way to circumvent this problem is to consider only simple
annotations, i.e. annotations using only the constant filter expressions true and
false. It can be easily shown that the schema of a view defined by a simple
annotation on a non-recursive DTD can be always captured with a DTD.

In the reminder of this section, we adapt the restriction to simple annota-
tions. A comprehensive way to address the problem of correlation between filter
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expressions would be using a larger, more expressive class of schemas, for in-
stance EDTDs [15, 12]. EDTDs allow defining different content models (types)
for the same symbol. Then, the correlations between filter expressions are easily
captured with different types. For instance, an EDTD defining VS♣D1, A1q is

r Ñ ♣a, b♣1q, cq ⑤ b♣2q b♣1q Ñ d b♣2q Ñ e

Introducing EDTDs would unnecessarily complicate the presentation of our re-
sults. We conjecture, however, that our approximation methods generalized to
handle arbitrary annotations if we use annotated EDTDs for SAS and EDTD
for the schema view.5

To represent the exact view schema, we generalize the DTD by allowing the
rules to use context-free grammars in place of regular expressions.

Definition 1. A generalized DTD over Σ is a function H that maps Σ to
context-free grammars over Σ. A Σ-tree t is valid w.r.t. H if for every node n
with k consecutive children n1, . . . , nk we have λt♣n1q ☎ ☎ ☎λt♣nkq P L♣Gq, where
G ✏ H♣λt♣nqq. By L♣Hq we denote the set of all trees valid w.r.t. H.

Proposition 1. For every DTD D and every simple annotation A, there exists
a generalized DTD H♣D,Aq such that L♣H♣D,Aqq ✏ VS♣D,Aq. Moreover, H♣D,Aq

can be computed in time O♣⑤D⑤q.

We also remark that for every generalized DTD H there exists a DTD D and a
simple annotation A such that VS♣D,Aq ✏ L♣Hq. Thus, from now on we focus
on generalized DTDs. Recall that testing regularity of a context-free language is
undecidable [8]. Consequently,

Proposition 2. It is undecidable to test whether a generalized DTD is equiva-
lent to some DTD.

4.2 Indistinguishability of approximation

In our opinion, the main purpose of the schema is to guide the user in her
attempt to formulate a meaningful query, and an approximation of the schema
should be judged from this perspective. Consequently, we propose the following
notion to assert the suitability of an approximation.

Definition 2. We say that two sets L1 and L2 of Σ-trees are indistinguishable
by a class C of queries, denoted L1

✒✒✒C L2, if for every Q P C the query Q is
satisfied by a tree in L1 if and only if it is satisfied by a tree in L2.

In the sequel, instead of L♣Hq ✒✒✒C L♣Dq we write H ✒✒✒C D. Also, we consider
different subclasses of Regular XPath queries obtained by restricting the use
of axes, filter expressions, and negation. By XReg♣Aq we denote the class of

5 The schema of a view defined by an annotated EDTD cannot be always captured
with a EDTD but it can be shown that this is the case when the annotated EDTD
is non-recursive.
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Regular XPath queries using axes from A. Using self and node label tests is
always allowed, but using existential path test (negation) is allowed only if A

contains r s (not respectively). This way XReg♣ó,ò,ñ,ð, r s, notq denotes the
class of all Regular XPath queries. We remark that XReg♣Aq allows the use of
all regular operators, including transitive closure and union. Thus, for instance,
XReg♣ó∗q ❼ XReg♣ó�q ❼ XReg♣óq.

Example 4. Let H2 ✏ H♣D2,A2q for ♣D2, A2q from Example 3 and recall that
L♣H2q ✏ tr♣anbnq ⑤ n P ◆✉. Consider the following three DTDs:

D
i

2 : r Ñ ♣a, bq∗ D
ii

2 : r Ñ a
∗

, b
∗

D
iii

2 : r Ñ ♣a ⑤ bq∗

We observe that H2 is indistinguishable from: (i) Di
2 by C1 ✏ XReg♣ó,ò, r s, notq;

(ii) Dii
2 by C2 ✏ XReg♣ó,ò,ñ�,ð�, r sq; (iii) Diii

2 by C3 ✏ XReg♣óq. ❬❭

4.3 Three approximations

The only difference between generalized DTDs and standard DTDs is the use of
context-free grammars instead of regular expressions. Consequently, we base our
approximation techniques on existing methods that approximate context-free
languages with regular expressions. We remark that it remains a nontrivial task
to choose those methods that guarantee the approximated DTD to be indistin-
guishable by a possibly large class of queries. Later, we argue that the presented
methods are optimal.

The first method is due to Parikh [16]. We fix an ordering of the alphabet
Σ ✏ ta1, . . . , an✉ and define φ♣wq ✏ ♣⑤w⑤a1

, . . . , ⑤w⑤an
q, where ⑤w⑤ai

denotes the
number of occurrences of the symbol ai in the word w. Parikh has shown that
for every context-free grammar G there exists a regular expression E such that
tφ♣wq ⑤ w P L♣Gq✉ ✏ tφ♣wq ⑤ w P L♣Eq✉, i.e. E defines a set of words obtained
by some permutation of words of G. For instance, the expression for the context-
free language tanbn ⑤ n P ◆✉ is ♣a, bq∗. In this paper, by P ♣Gq we denote the
Parikh regular expression obtained with the method described in [7]. We remark
that ⑤P ♣Gq⑤ ✏ 2O♣⑤G⑤q.

The second method uses subwords and was first described in [2]. Formally, u is
a subword of w, denoted u ❸ w, if u ✏ u1 ☎ ☎ ☎uk and there exist v0, v1, . . . , vk P Σ∗

such that v0u1v1 ☎ ☎ ☎ vk✁1ukvk ✏ w. [2] shows that for every CFG G one can
construct a regular expression GÓ such that L♣GÓq ✏ tu ⑤ ❉w P L♣Gq. u ❸ w✉.
Also this method produces an exponential regular expression, i.e. ⑤GÓ⑤ ✏ 2O♣⑤G⑤q

The last method is very simple and for grammar G it constructs the expres-
sion ♣alph♣Gqq∗, where alph♣Gq is the set of all symbols used in words of G and
can be easily obtained from a trimmed copy of G. Naturally, ⑤alph♣Gq⑤ ✏ O♣⑤G⑤q.

Definition 3. Let H be a generalized DTD.

(i) The Parikh approximation of H is a DTD DP
H defined as DP

H♣aq ✏ P ♣H♣aqq
for every a P Σ.

(ii) The subword approximation of H is a DTD D
Ó
H defined as DÓ

H♣aq ✏ H♣aqÓ
for every a P Σ.
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(iii) The subset approximation of H is a DTD DS
H defined as DS

H♣aq ✏ alph♣H♣aqq∗

for every a P Σ.

The approximations are illustrated in Example 4 where Di
2 ✏ DP

H2
, Dii

2 ✏ D
Ó
H2

,

and Diii
2 ✏ DS

H2
. The subset approximation of VS♣D3, A3q is r Ñ a∗. We note

that ⑤DP
H ⑤ ✏ 2O♣⑤H⑤q, ⑤DÓ

H ⑤ ✏ 2O♣⑤H⑤q, and ⑤DS
H ⑤ ✏ O♣⑤H⑤q. Finally, we identify

the classes of queries relevant to each approximation method.

Theorem 2. For any generalized DTD H we have

(i) H and DP
H are indistinguishable by C1 ✏ XReg♣ó,ò, r s, notq.

(ii) H and DÓ
H are indistinguishable by C2 ✏ XReg♣ó,ò,ñ�,ð�, r sq.

(iii) H and DS
H are indistinguishable by C3 ✏ XReg♣óq.

We also remark that the subword and the subset methods construct a superset
of the real schema. More precisely, L♣Hq ❸ L♣DÓ

Hq ❸ L♣DS
Hq. As for Parikh

approximation, DP
H correctly characterizes H if we consider unordered trees.

4.4 Optimality

First, we note that it seems rather unfeasible to construct methods yielding
approximations indistinguishable for classes of queries larger than C1 or C2.

Proposition 3. There exists a generalized DTD H for which there is no DTD
indistinguishable from H by XReg♣ó,ñq or XReg♣ó,ñ�, r s, notq.

We remark that the Parikh and subword methods construct DTD exponential
in the size of the generalized DTD. It is not very surprising because, as seen in
Example 3, VS♣D3, A3q requires a DTD of exponential size. We show, however,
that the exponential lower bound holds even when approximating w.r.t. quite
strong restrictions of C1 and C2.

Theorem 3. Take any class of queries C containing XReg♣ó, r sq or XReg♣ó,òq.
For all k P ◆ there exists a generalized DTD Hk whose size is O♣kq and such
that any DTD D indistinguishable from Hk by C is of size Ω♣2kq.

5 Static analysis of security access specifications

In this section we investigate comparing security access specifications: equiv-
alence and restriction. We assume the DTD to be unchanged which allows to
eliminate the factor of comparing DTDs from our analysis. We recall that testing
equivalence and inclusion of DTDs is known to be PSPACE-complete [11]. Also,
we use again arbitrary annotations.

We begin with testing the equivalence of two annotations which is essential
for optimization of the query rewriting process. Next, we consider the problem
of comparing restrictiveness of two SAS. When the administrator modifies the
SAS to further restrict the user access to the document, it might be prudent
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to verify that indeed the user is not permitted access to any new data. To
address this problem we propose the notion of node-based restriction of SAS,
which compares the sets of accessible nodes before and after the change. We
observe, however, that this test does not always guarantee that the user cannot
obtain more information after the change (cf. Example 6). Consequently, we
propose the alternative notion of query-based restriction, which compares the
sets of queries the user is allowed to evaluate on the underlying document.

5.1 Equivalence

Two annotations are equivalent if they produce exactly the same view for every
source document. We emphasise that in the context of security using isomor-
phism to compare the views defined by two annotations may be error prone: the
same shape does not imply that the same data is accessible. Consequently, we
base the notion of equivalence on equality of trees.

Definition 4. Two annotations A1 and A2 are equivalent in the presence of the
DTD D, denoted A1 ✑

D A2, if and only if A1♣tq ✏ A2♣tq for every t P L♣Dq.

We observe that A1♣tq ✏ A2♣tq if and only if exactly the same nodes of t are
accessible w.r.t. A1 and A2. Consequently, we use Lemma 1 to relate equiva-
lence of annotations to equivalence of Regular XPath known to be EXPTIME-
complete [14, 13].

Theorem 4. Testing equivalence of annotations is EXPTIME-complete.

5.2 Node-based comparison

Now, we focus on comparing restrictiveness of two SAS. The first approach to
test restriction compares the set of nodes that are accessible in the views defined
by the annotations.

Definition 5. Given two annotations A1 and A2 and a DTD D, A1 is a node-
based restriction of A2 in the presence of D, denoted A1 ↕

D
nb A2, if NA1♣tq ❸

NA2♣tq for every t P L♣Dq.

Example 5. Recall S0 ✏ ♣D0, A0q from Example 2 and consider an annota-
tion A✶

0 that is obtained from A0 by making all src nodes inaccessible, i.e.
A✶

0♣stable, srcq ✏ A✶
0♣dev, srcq ✏ false. Clearly, A✶

0 ↕
D0

nb A0. ❬❭

In a manner analogous to Theorem 4, we can relate node-based restriction to
containment of Regular XPath queries.

Corollary 1. Testing node-based restriction of annotations is EXPTIME-complete.

Given a DTD D over Σ, let AnnD be the quotient set of all annotations
by ✑D (which is an equivalence relation). We observe that by Lemma 1 every
equivalence class has a representative that is total, i.e. is defined for every ♣a, bq P
Σ ✂ Σ. Interestingly, ♣AnnD,↕D

nbq is a Boolean algebra, where AnnD is the
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quotient set of all annotations by ✑D. The supremum, infimum, and complement
operations are defined as: rA1❭A2s♣a, bq ✏ A1♣a, bqorA2♣a, bq, rA1❬A2s♣a, bq ✏
A1♣a, bq and A2♣a, bq, and A❆♣a, bq ✏ notA♣a, bq. The top and bottom elements
are A❏♣a, bq ✏ true and A❑♣a, bq ✏ false. These operations can serve as general
tools for manipulating SAS, for instance, merging two SAS.

5.3 Query-based comparison

Sometimes, reducing the amount of nodes in the view may inadvertently reveal
some information that previously was hidden. To (roughly) identify the informa-
tion that is made accessible by the annotation to the user we use this predicate:

Public♣D,A,Qq✕ ❉Q✶ P XReg.❅t P L♣Dq.❅n P Nt. ♣A♣tq, nq ⑤ù Q✶ iff ♣t, nq ⑤ù Q.

Example 6. Recall again S0 ✏ ♣D0, A0q from Example 2, and consider the query

Q ✏ ó::projects④ó::projectró::dev and ó::license④ó::frees

that selects projects with free license that are currently under development. One
can easily verify that Public♣D0, A0, Qq does not hold. In fact,A0 was deliberately
designed to hide the development status of projects.

Now, consider A✷
0 obtained from A0 by denying access to the source code of

all projects under development, i.e. A✷
0♣dev, srcq ✏ false. Naturally, A✷

0 ↕
D
nb A0.

However, the projects with free license that are currently under development can
be selected with the following query

Q✶ ✏ ó::projects④ó::projectrnot♣ó::srcq and ó::license④ó::frees.

Clearly, this proves Public♣D0, A
✷
0, Qq. ❬❭

We use Public to compare the information made accessible by the annotations.

Definition 6. Given two annotations A1 and A2 and a DTD D, A1 is a query-
based restriction of A2 in the presence of D, denoted A1 ↕

D
qb A2, if for every

Regular XPath query Q, Public♣D,A1, Qq implies Public♣D,A2, Qq.

We note that A1 ↕
D
qb A2 implies A1 ↕

D
nb A2 (consider Q1 ✏ ó∗::∗). However, the

converse is not necessarily true (cf. Example 6). We also remark that ♣Ann,↕D
qbq

needs not to be even a semi-lattice (an example can be found in Appendix).
Now, recall A✶

0 and A0 from Example 5. Naturally, A✶
0 ↕

D0

qb A0. We observe
also that A✶

0♣t0q can be seen as a view constructed on top of the view A0♣t0q.
Interestingly, this observation leads to an alternative characterization of query-
based restriction (cf. Lemma 1).

Lemma 3. Given two annotations A1 and A2 and a DTD D, A1 ↕
D
qb A2 if and

only if there exists a filter expression fP such that for every t P L♣Dq and every
n P Nt, n is accessible in t w.r.t. A1 if and only if n P NA2♣tq and ♣A2♣tq, nq ⑤ù fP.
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In the sequel, we say that the filter expression fP provesA1 ↕
D
qb A2. In Example 5,

the filter expression that proves A✶
0 ↕

D
qb A0 is fP ✏ lab♣q✘src.

Now, we focus on computational properties of query-based restriction. Un-
fortunately, the problem of testing regular separability of two context-free lan-
guages, known to be undecidable [20], can be reduced to testing query-based
restriction.

Theorem 5. Testing query-based restriction is undecidable even for simple an-
notations.

Undecidability of testing query-based restriction may limit its applications. How-
ever, in certain settings, semi-automatic testing is often acceptable. For instance,
we may require the administrator to provide an additional input that helps to
prove that the restriction holds.

Corollary 2. Given two annotations A1 and A2, a DTD D, and a filter expres-
sion f , testing whether f proves A1 ↕

D
qb A2 is EXPTIME-complete.

While Lemma 3 shows that testing query-based restriction is RE (recursively
enumerable), for non-recursive DTDs there exists a coRE characterization.

Lemma 4. Given a non-recursive DTD D and two annotations A1 and A2,
A1 ↕

D
qb A2 if and only if A2♣tq ✏ A2♣t

✶q implies A1♣tq ✏ A1♣t
✶q for every t, t✶ P

L♣Dq.

Naturally, it shows that query-based restriction for non-recursive DTDs is de-
cidable. However, we are able to say more about its complexity.

Theorem 6. Testing query-based restriction for non-recursive DTDs is in EX-
PTIME and is PSPACE-hard.

Finally, we investigate the complexity of testing Public♣D,A,Qq, which may
be used to verify that the annotation A is allowing direct access to the informa-
tion defined by Q on the underlying document.

Proposition 4. Testing query-based restriction can be reduced in polynomial
time to Public, and vice versa.

By Theorems 5 and 6 we immediately get.

Corollary 3. Testing Public is undecidable for arbitrary DTDs and is in EXP-
TIME (and PSPACE-complete) for non-recursive DTDs.

6 Conclusions and future work

In this paper we have revisited problems central in the view-based XML security
framework. We considered the full class of Regular XPath queries and recursive
DTDs annotated with Regular XPath filter expressions. We have shown that the
expressive power of annotated DTDs is equal to the expressive power of a single
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Regular XPath query (selecting all the accessible nodes). This result is central
in the method of rewriting queries over the view.

In the second part of the paper we have investigated the problem of approxi-
mating the view schema with a DTD indistinguishable by a class of queries. We
have provided an analysis of approximability, presented three different approxi-
mation methods, and shown lower bounds on the size of the view DTD. Figure 4
summarizes the results.

XReg♣ó,ñq or XReg♣ó,ñ�, r s, notq
No approximation

XReg♣ó,ò, r s, notq
Parikh approximation (exponential)

XReg♣ó,ò,ñ�,ð�, r sq
Subword approximation (exponential)

XReg♣ó,òq or XReg♣ó, r sq
Lower exponential bound

XReg♣óq
Subset approximation (linear)

Fig. 4. Summary of approximation results (negative results in round boxes).

Finally, we have considered various problems of statical analysis of SAS.
We proposed two different approaches to compare restrictiveness of SAS and
analysed their computational implications. We have also studied the relationship
between comparison of SAS and verification of information accessibility.

As future work, we plan to investigate the practicality of the proposed solu-
tions by implementing a working system. We believe that in practical settings
the proposed algorithms will behave efficiently. We would like to combine the
Parikh and subword approximation methods to produce meaningful DTDs of ac-
ceptable sizes. We also intend to extend our approach to more expressive schema
and query formalisms, for instance EDTDs and n-ary XPath queries. Our pre-
liminary research in this direction is very promising.
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A Proof sketches

The sequel we use two alternative notations of regular expressions. On the one
hand, we use the notation as defined in the paper, essentially when presenting
DTDs. On the other hand, we use a more common notation when working with
regular expressions, i.e. we use the following grammar E ::✑ ǫ ⑤ a ⑤ E ☎E ⑤ E�E ⑤
E∗, where ǫ denotes the empty sequence, a P Σ is a single symbol, E ☎ E is the
concatenation, E�E is the union, and E∗ is the Kleene closure. We believe that
using two notation will not introduce confusion.
Proposition 1. For every DTD D and every simple annotation A, there exists
a generalized DTD H♣D,Aq such that L♣H♣D,Aqq ✏ VS♣D,Aq. Moreover, H♣D,Aq

can be computed in time O♣⑤D⑤q.

Proof. We construct extended context-free grammars, i.e. grammars which allow
the use of regular expressions in the rules. Naturally, every extended context-free
grammar can be converted to an equivalent standard context-free grammar in
linear time.

Let Σ be the alphabet of D and A. We begin by constructing a global set of
nonterminals V ✏ tN✶

a ⑤ a P Σ✉ ❨ tN✵
a ⑤ a P Σ✉. Intuitively, N✶

a (N✵
a ) produces

the words of symbols that can appear in a tree from VS♣D,Aq under a that is
accessible (inaccessible resp). The set of productions P for every a P Σ contains
the two rules:

1. N✶
a Ñ E✶

a, where E✶
a is obtained from D♣aq by replacing b with N✵

b for every
b P Σ such that A♣a, bq ✏ false.

2. N✵
a Ñ E✷

a, where E✷
a is obtained from D♣aq by replacing b with N✵

b for every
b P Σ such that A♣a, bq ✏ false or A♣a, bq is undefined.

H♣D,Aq♣aq ✏ ♣Σ,V,N✶
a , P q. L♣H♣D,Aqq ✏ VS♣D,Aq is shown with a simple in-

ductive argument. Finally, we remark that ⑤H♣D,Aq⑤ ✏ O♣⑤Σ⑤2⑤D⑤q, and given the
fact that Σ is considered fixed, this yields ⑤H♣D,Aq⑤ ✏ O♣⑤D⑤q. ❬❭

Theorem 2 For any generalized DTD H we have

(i) H and DP
H are indistinguishable by C1 ✏ XReg♣ó,ò, r s, notq.

(ii) H and DÓ
H are indistinguishable by C2 ✏ XReg♣ó,ò,ñ�,ð�, r sq.

(iii) H and DS
H are indistinguishable by C3 ✏ XReg♣óq.

Proof. (i) It can be shown with a simple inductive argument that for every
t P L♣Hq there exists t✶ P L♣DP

Hq that differs from t only by the relative
order of siblings, i.e. nextt✶ is a permutation of nextt whereas Nt✶ ✏ Nt,
roott✶ ✏ roott, childt ✏ childt✶ , and λt✶ ✏ λt. Since the semantics of the
queries in C1 does not depend on nextt, any query Q P C1 is satisfied by
t P L♣Hq if and only if Q is satisfied by the corresponding t✶ P L♣DP

h q. The
converse is proven analogously.

(ii) We observe that L♣Hq ❸ L♣DÓ
Hq, and consequently, it suffices to show that

for any query q P C2 that is satisfied by a t P L♣DÓ
Hq there exists some

t✶ P L♣Hq satisfying Q. We remark that, indeed, for every t P L♣DÓ
Hq there
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exists a t✶ P L♣Hq such that Nt ❸ Nt✶ , rootr ✏ roott✶ , childt ❸ childt✶ ,
λt ❸ λt✶ , and nextt ❸ next�t✶ . Since every Q P C2 does not use negation nor
horizontal axes without positive closure, adding subtrees under some nodes
of t cannot invalidate Q. Consequently, t✶ satisfies Q

(iii) By path♣tq we denote the set of all descending paths from the root node
to any node of t and we extend path to sets of trees in the standard way.
We observe, that L1

✒✒✒C3
L2 if and only if path♣L1q ✏ path♣L2q. Clearly,

path♣L♣Hqq ✏ path♣L♣DS
Hqq. ❬❭

Proposition 3. There exists a generalized DTD H for which there is no DTD
indistinguishable from H by C0 ✏ XReg♣ó,ñ�, r s, notq or C✶0 ✏ XReg♣ó,ñq.

Proof. For C0 we observe that for every tree there exists a query that is satisfied
by that tree and isomorphic trees only, i.e. this query characterizes the tree up
to isomorphism. For example, for r♣a, bq the query in C0 is

self::r
✏
ó::arnot♣óqs④ñ�::brnot♣óq and not♣ñ�qs and
➍

xPΣ not♣ó::x④ñ�::a④ñ�::bq
✘
.

Consequently L1
✒✒✒C L2 iff L1 ✑ L2 for any C containing C0.

The proof for C✶0 is a bit more intricate. Let H be a generalized DTD such
that L♣Hq ✏ tr♣c, ak, bk, cq ⑤ k P ◆✉ and assume that there is a DTD D such
that H ✒✒✒C✶

0
D.

We observe that L♣Dq consists of trees of depth 1 since ó::∗④ó::∗ is not
satisfied by any tree in L♣Hq. Also,

D♣rq ❸ ♣ǫ� cqa∗b∗♣ǫ� cq (1)

since no tree in L♣Hq satisfies any of the queries

self::r④ó::∗④ñ�::c④ñ�::c, self::r④ó::c④ñ�::c④ñ�::∗,

self::r④ó::a④ñ�::b④ñ�::a, self::r④ó::b④ñ�::a④ñ�::b.

Define the following objects

R1 ✏ L♣H♣rqq ✏ tcakbkc ⑤ k P ◆✉,

R2 ✏ L♣D♣rqq ❳ L♣ca∗b∗cq,

Qn,m ✏ self::r④ó::c④♣ñ::aqn④♣ñ::bqm④ñ::c,

and note that R2 is regular (being an intersection of two regular sets).
Given (1), H ✒✒✒C0

D with Qk,k for k P ◆ implies R1 ❸ R2, since for all k P ◆
the query Qk,k is satisfied by a tree in L♣Hq. In a similar way, we can show that
for every w ✏ cak1bk2c P R2 we have k1 ✏ k2, i.e. w P R1. Indeed, if there was
some w ✏ cak1bk2c P R2 with k1 ✘ k2, the query Qk1,k2

would be satisfied on
D, and thus on H, which is not the case. Consequently, R2 ✏ R1 is not a regular
set, a contradiction. ❬❭
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Theorem 3. Take any class of queries C containing C4 ✏ XReg♣ó, r sq or
C✶4 ✏ XReg♣ó,òq. For any k P ◆ there exists a generalized DTD Hk such that
⑤Hk⑤ ✏ O♣kq and for any DTD D indistinguishable from Hk by C the size of D
is Ω♣2kq.

Proof. We consider the generalized DTD Hk such that

rÑ a2k

aÑ b bÑ b ⑤ c

Clearly, Hk can be constructed in a manner such that ⑤Hk⑤ ✏ O♣kq (see S3 in
Example 3). Now, let D be any DTD indistinguishable from Hk by C4. It can be
easily shown that

D♣cq ✏ ǫ, b� c ❸D♣bq ❸ b� c∗,

D♣rq ❸ a∗, b ❸D♣aq ❸ b� ǫ,

We claim that: (i) a2k

P L♣D♣rqq, and (ii) L♣D♣rqq ❸ tam ⑤ 0 ↕ m ↕ 2k✉. For
(i) it suffices to consider the query self::r④Q1④ ☎ ☎ ☎ ④Q2k , where

Qi ✏ self::∗ró::a④♣ó::bqi④ó::cs.

To show (ii) consider the query self::r④Q1④ ☎ ☎ ☎ ④Q2k for any m → 2k. It is not
satisfied by any tree in L♣Hkq and so it cannot be satisfied by any tree in L♣Dq.
Since L♣D♣rqq is a set of words whose length is bounded by 2k, then the length
of the regular expression D♣rq must be at least 2k. We prove the lower bound
for C✶4 with the same argument but using Qi ✏ ó::a④♣ó::bqi④ó::c④♣ò::∗qi�2. ❬❭

Theorem 4. Testing equivalence of annotations is EXPTIME-complete.

Proof. We relate the problem of equivalence of annotations to equivalence of
Regular XPath queries which is known to be EXPTIME-complete [14, 13]. To
show membership we observe that A1 ✑D A2 iff the queries ó∗::∗rfA1

accs and
ó∗::∗rfA2

accs are equivalent in the presence of D.
To show EXPTIME-hardness, take two Regular XPath queries Q1 and Q2

and a DTD D. Consider the annotations A1♣a, bq ✏ rQ✁1
1 ④self::∗rnot♣òqss and

A2♣a, bq ✏ rQ✁1
2 ④self::∗rnot♣òqss. Clearly, Q1 and Q2 are equivalent in the pres-

ence of D iff A1 ✑
D A2. ❬❭

Throughout the remaining part of this appendix we use an alternative definition
of query-based resriction of annotations.

Proposition 5. Given two annotations A1 and A2 and a DTD D, A1 ↕
D
qb A2

iff for every query Q1 there exists a query Q2 such that Ans♣Q1, A1♣tqq ✏
Ans♣Q2, A2♣tqq for all t P L♣Dq.

Proof. We recall the definition of query-based restriction

A1 ↕
D
qb A2 ✑ ❅Q P XReg.Public♣D,A1, Qq ñ Public♣D,A2, Qq,
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where
Public♣D,A,Qq✕ ❉Q✶ P XReg.Rewrite♣Q✶, Aq ✑D Q.

Our claim is

❅Q P XReg.Public♣D,A1, Qq ñ Public♣D,A2, Qq iff

❅Q1 P XReg. ❉Q2 P XReg.Ans♣Q1, A1♣tqq ✏ Ans♣Q2, A2♣tqq

For the if part take any Q such that Public♣D,A1, Qq, i.e. there exists some
Q1 such that Rewrite♣Q1, Aq ✑

D Q, i.e. Ans♣Q, tq ✏ Ans♣Q2, A2♣tqq for all
t P L♣Dq. Take any Q2 such that Ans♣Q1, A1♣tqq ✏ Ans♣Q2, A2♣tqq for every
t P L♣Dq. Clearly, Ans♣Q, tq ✏ Ans♣Q2, A2♣tqq for every t P L♣Dq, and thus
Rewrite♣Q2, A2q ✑

D Q, i.e. Public♣D,A2, Qq.
For the only if part take any Q1 and let Q✶

1 ✏ Rewrite♣Q1, A1q. Natu-
rally, Public♣D,A1, Q

✶
1q and thus also Public♣D,A✶

1, Q
✶
1q. Hence there exists Q2

such that Rewrite♣Q2, A2q ✑
D Q✶

1 ✑
D Rewrite♣Q1, A1q, i.e. Ans♣Q1, A1♣tqq ✏

Ans♣Q2, A2♣tqq for all t P L♣Dq. ❬❭

In the following example we show a DTD D for which ♣Ann,↕D
qbq needs not be

a semi-lattice.

Example 7. Consider the DTD rÑ a∗, b, c, a∗ and its two annotations:

A1♣r, aq ✏ rñ
∗::bs, A2♣r, aq ✏ rnotñ∗::bs,

A1♣r, bq ✏ false A2♣r, bq ✏ false

A1♣r, cq ✏ false A2♣r, cq ✏ false

We claim that A1 and A2 has no ↕D
qb-supremum, i.e. a unique ↕D

qb-minimal

annotation A such that A1 ↕
D
qb A and A2 ↕

D
qb A. In fact, tA1, A2✉ has multiple

↕D
qb-minimal upper bounds and three examples follow:

A✶♣r, aq ✏ true A✷♣r, aq ✏ true A✸♣r, aq ✏ true

A✶♣r, cq ✏ true A✷♣r, cq ✏ false A✸♣r, cq ✏ rnot♣ð::a④ð::aq∗④rnotðss

A✶♣r, dq ✏ false A✷♣r, dq ✏ true A✸♣r, dq ✏ rð::c④♣ð::a④ð::aq∗④rnotðss

It can be shown that all of the annotations above are minimal upper bounds of
tA1, A2✉ yet they are incomparable. Similarly, we can construct a DTD and two
annotations having no infimum (w.r.t. ↕D

qb). ❬❭

Lemma 3. Given two annotations A1 and A2 and a DTD D, A1 ↕
D
qb A2 if and

only if there exists a filter expression fP such that for every t P L♣Dq and every
n P Nt, n is accessible in t w.r.t. A1 iff n P NA2♣tq and ♣A2♣tq, nq ⑤ù fP.

Proof. For the if part, the filter fP is used to rewrite any query Q1 to an appro-
priate query Q2 using the technique described in the proof of Theorem 1. For
the only if part, let Q2 be obtained from the definition of ↕D

qb with Q1 ✏ ó
∗.

Q2 can be easily converted to a filter expression fP ✏ Q✁1
2 ④self::∗r✥òs that is

satisfied exactly in the nodes selected by Q2. Clearly, fP proves A1 ↕
D
qb A2. ❬❭
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Theorem 5. Testing query-based restriction of annotations is undecidable.

Proof. We reduce regular separability of two context-free grammars to query-
based restriction. Recall that two context-free grammars G1 and G2 over the
alphabet Γ are regularly separable if there exists a regular set R (over Γ ) such
that L♣G1q ❸ R and L♣G2q ❸ R❆, where R❆ is the complement of R. Checking
regular separability of two context-free is know to be undecidable [20].

The reduction constructs a DTD D which defines the set of all (accepting)
derivation trees of G1 and G2. The annotation A2 removes all nonterminals from
the derivation tree, thus yielding a word of L♣G1q ❨ L♣G2q. The annotation A1

works similarly except that it also removes terminals derived from nonterminals
of G2; essentially, it yields only words of L♣G1q.

If G1 and G2 are separable by a regular set R, then the regular expression
describing R can be easily rewritten into a filter expression that proves A1 ↕

D
qb

A2. Conversely, suppose that fP proves A1 ↕
D
qb A2. fP is equivalent to a tree

MSO formula ϕ [Bu60], and we remark that ϕ is interpreted on trees of height
1 only. Therefore, there exists a word MSO formula ψ that captures exactly
the words consisting of labels of the consecutive children of the root node. This
formula ψ can be converted into a regular expression [TB68] which defines a set
separating G1 and G2. ❬❭

Corollary 2. Given two annotations A1 and A2, a DTD D, and a filter ex-
pression f , testing whether f proves A1 ↕

D
qb A2 is EXPTIME-complete.

Proof. We relate this test to testing equivalence of two annotations (Theo-
rem 4). To test that f proves A1 ↕

D
qb A2 we take f ✶ ✏ Rewrite♣f,A2q and

define A✶
2♣a, bq ✏ A2♣a, bq and f ✶. Clearly, n P NA✶

2
♣tq if and only if n P NA2♣tq

and ♣A2♣tq, nq ⑤ù f . Consequently, A1 ✑
D A✶

2 if and only if f proves A1 ↕
D
qb A2.

Conversely, we take any two A1 and A2 and observe that A1 ✑
D A2 if and only

if fA2

acc proves A1 ↕
D
qb A❏, where A❏♣a, bq ✏ true for every a, b P Σ. ❬❭

Lemma 4 and Theorem 6 Given a non-recursive DTD D and two annotations
A1 and A2, A1 ↕

D
qb A2 if and only if A2♣tq ✏ A2♣t

✶q implies A1♣tq ✏ A1♣t
✶q for

every t, t✶ P L♣Dq. Testing query-based restriction for non-recursive DTDs is in
EXPTIME and is PSPACE-hard.

Proof. We fix a non-recursive DTD D and two annotations A1 and A2 over Σ.
Since D is non-recursive, the height of all trees in L♣Dq is bounded by a constant
d ↕ ⑤Σ⑤.

For the only if part, let f be the filter that proves A1 ↕
D
qb A2 and take any

t, t✶ P L♣Dq such that A2♣tq ✏ A2♣t
✶q. Therefore, ♣A2♣tq, nq ⑤ù f iff ♣A2♣t

✶q, nq ⑤ù
f which implies that NA1♣tq ✏ NA1♣t✶q. Since, A1♣tq is constructed from nodes of
A2♣tq, similarly A1♣t

✶q is constructed from nodes of A2♣t
✶q, and A2♣tq ✏ A2♣t

✶q,
we have A1♣tq ✏ A1♣t

✶q.
The if part is more intricate and requires introducing some notations. Given

a Σ-tree t we decorate every node with a value indicating whether the node is
accessible w.r.t. A1 and A2. Formally, t❜A1 ❜A2 is a ♣Σ ✂ t✵,✶✉✂ t✵,✶✉q-tree
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♣Nt, roott, childt, parentt, λ
✶
tq, where λ✶t♣nq ✏ ♣λt♣nq, x1, x2q with xi ✏ ✶ iff n is

accessible in t w.r.t. Ai for i P t1, 2✉ and n P Nt.
We construct a nondeterministic tree automaton A that defines the set of all

properly decorated trees, i.e. L♣Aq ✏ tt ❜ A1 ❜ A2 ⑤ t P L♣Dq✉. To this end we
first define a Regular XPath query that characterizes L♣Aq. Let fi be obtained
by replacing in fAi

acc every occurrence of lab♣q ✏ a by lab♣q ✏ ♣a,✁,✁q (short for➎
x,yPt✵,✶✉ lab♣q ✏ ♣a, x, yq). Next, define the following query

Q ✏ self::∗
✏
not♣ó∗::♣✁,✵,✁qrf1sq and not♣ó∗::♣✁,✶,✁qrnot♣f1qsq and

not♣ó∗::♣✁,✁,✵qrf2sq and not♣ó∗::♣✁,✁,✶qrnot♣f2qsq
✘
.

Clearly t✶ satisfies Q iff t✶ ✏ t❜A1 ❜A2 for some Σ-tree t. Using the technique
presented in [CDLV08] we convert Q to a nondeterministic tree automaton6 AQ

whose size is exponential in the size of ⑤Q⑤ and such that

L♣AQq ✏ tt ⑤ t satisfies Q✉.

Finally, A is the product of AQ and the automaton AD that recognizes L♣Dq.
Now, we switch to finite word automata that work on linearizations of trees.

Correctness of this procedure follows from the the fact that we work with non-
recursive DTDs. A linearization of a tree is a sequence of opening and closing
tags. For instance, the linearization of the tree t ✏ a♣b, cq is Lin♣tq ✏ abb̄cc̄ā.

We construct a NFA B such that L♣Bq ✏ tLin♣tq ⑤ t P L♣Aq✉. Basically,
B simulates within its state a stack of depth at most d ↕ ⑤Σ⑤ (A is a visibly
pushdown automaton). The size of B is O♣⑤A⑤2dq. We remark that this does not
make ⑤B⑤ a doubly exponential function even if Σ is not assumed to be fixed. In
fact, ⑤A⑤ ✏ 2O♣p♣⑤A1⑤�⑤A2⑤q log♣⑤D⑤qq for some polynomial p♣nq, and consequently,
⑤B⑤ ✏ 2O♣p♣⑤A1⑤�⑤A2⑤q log♣⑤D⑤q⑤Σ⑤q.

Next, from B we construct a finite state transducer B∗ as follows:

– B∗ has the same set of states, the same set of initial states, and the same set
of final states as B.

– B∗ has transition q
ε
ÝÑ p for every transition q

♣a,✵,✵q
ÝÝÝÝÑ p or q

♣a,✵,✵q
ÝÝÝÝÑ p of B

– B∗ has a transition q
a④x1

ÝÝÝÑ p for any transition q
♣a,x1,✶q
ÝÝÝÝÝÑ p of B

– B∗ has a transition q
ā④x1

ÝÝÝÑ p for any transition q
♣a,x1,✶q
ÝÝÝÝÝÑ p of B

We claim that A1 ↕
D
qb A2 if the following two conditions are satisfied:

(P1) B has no transition of the form q
♣✁,✶,✵q
ÝÝÝÝÝÑ p.

(P2) B∗ is functional.

6 The original construction uses an automata model that works on the first-child
next-sibling encoding of ranked trees. In our proofs we work with visibly-pushdown
automata. We remark that any top-down automaton working on fcns encoding can
be easily transformed in polynomial time to VPA.
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The first condition simply states that A1 ↕
D
nb A2 and if it holds, then (P2)

allows to view B∗ as a transducer that converts A1♣tq into A2♣tq, i.e. it proves
A1 ↕

D
qb A2. Later we show how to construct from B a Regular XPath proof filter.

It can be easily shown that Lemma 4 is a reformulation of the two conditions
above. The first condition is easy to test. Functionality of B∗ can be also tested
in polynomial time [GI83]. This proves that testing query-based restriction for
non-recursive DTDs is in EXPTIME. PSPACE-hardness is proved by a simple
reduction of containment of regular expressions [11].

Now, we show that if the conditions P1 and P2 are satisfied, then from B∗ we
can construct a filter that proves A1 ↕

D
qb A2. First, we remove ε-transitions from

B∗ (using for instance the forward closure algorithm). W.l.o.g. we can assume

that for any two transitions q1
θ1④x1

ÝÝÝÑ p and q2
θ2④x2

ÝÝÝÑ p of B∗ if x1 ✏ ✶, then
x2 ✏ ✶. In other words, there is set Qs of selecting states of B∗ that the control
of B visits exactly after producing ✶. Also w.l.o.g., we can suppose that for every
state q of B∗, all of its incoming transitions use either opening tags or closing
tags. For simplicity, we assume a distinguished root node label r, and since we
consider non-recursive DTDs, no other node can be labeled with r. Next, we
construct an automaton A✌ as follows:

– A✌ has the same set of states, the same set of initial states, and the same
set of final states as B.

– for every transition q
a④x
ÝÝÑ p of B∗ the automaton A✌ contains

✌ q
a✌

ÝÑ p if B∗ contains a transition q✷
b̄④x
ÝÝÑ q for some q✷ and b,

✌ q
a
ÝÑ p otherwise.

– for every transition q
ā④x
ÝÝÑ p of B∗ the automaton A✌ contains

✌ q
ā✌

ÝÑ p if B∗ contains a transition q✷
b̄④x
ÝÝÑ q for some q✷ and b,

✌ q
ā
ÝÑ p otherwise.

The marker ✌ is used to indicate that the previously read symbol was a closing
tag. This helps us to determine whether the next opening move is toward the
next sibling or the parent. Now, for every q P QS we construct two regular
expressions: inq and outq such that

L♣inqq ✏ tw ⑤ q P δA✌♣q0, wq ❫ q0 P IA✌✉

L♣outqq ✏ tw ⑤ δA✌♣q, wq ❳ FA✌ ✘ ❍✉.

The filter expression we are looking for is
➈

qPQS

�
W ♣inqqrW ♣outqqs

✟
, where the

transformation W is defined as follows (we remark that symbol r✌ will never
occur in the constructed regular expressions):

W ♣rq ✏ r, W ♣r̄q ✏W ♣r̄✌q ✏ ò::r,

W ♣aq ✏ ó::a, W ♣āq ✏ self::a,

W ♣a✌q ✏ ñ::a, W ♣ā✌q ✏ ò::a,

W ♣E1 � E2q ✏W ♣E1q ❨W ♣E2q, W ♣E1E2q ✏W ♣E1q④W ♣E2q,

W ♣E∗q ✏ self::∗❨ ♣W ♣Eqq∗④W ♣Eq. ❬❭
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Proposition 4. Testing query-based restriction can be reduced in polynomial
time to Public, and vice versa.

Proof. Take any annotations A,A1, A2, any DTD D, and any Regular XPath
queryQ. First, we observe thatA1 ↕

D
qb A2 iff Public♣A2, D, f

A1

accq. Also, Public♣A,D,Qq

iff A✶ ↕D
qb A, where A✶♣a, bq ✏ rQ✁1④rnot♣òqss for every a, b P Σ. Clearly, the re-

ductions can be performed in linear time. ❬❭
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