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Abstract

This paper tackles the problem of image-based in-
door location recognition. The context of the present
work is activity monitoring using a wearable video cam-
era data. Because application constraints necessitate
weak supervision, a semi-supervised approach has been
adopted which leverages the large amount of unlabeled
images. The proposed method is based on the Bag
of Features approach for image description followed
by spectral dimensionality reduction in a transductive
setup. Additional information from geometrical veri-
fication constraints are also considered which allowed
to reach higher performance levels. The considered al-
gorithms are compared experimentally on the data ac-
quired in the wearable camera setup.

1 Introduction

The present study1 is positioned in the context of
video indexing of data acquired using a wearable cam-
era. In particular, the study of lifelogs, which corre-
spond to passive audio and video recording of one’s per-
son activities using a wearable device, shows promising
perspectives in terms of retrospective memory aid [3]
and task observation [2]. Small and autonomous ac-
quisition devices such as the SenseCam device [2] now
allow to record images at a rate up to one image every
few seconds, during periods of several hours to several
days. The amount of data to handle is therefore very
large, and difficult to visualize and browse.

Our work is based on the video rate capture system
presented in [1] for the monitoring and diagnosis of de-
mentia. In this context, the visual lifelog contains the
activities of a patient observed indoor at home in their
usual environment. The automatic indexing of the ac-
tivities is required in order to assist a practician in

1This work is supported by a grant from Agence Nationale de
la Recherche with reference ANR-09-BLAN-0165-02, within the
IMMED project http://immed.labri.fr/.

browsing efficiently the data to evaluate the actions and
the difficulties of the patient in an ecological situation.
Estimating the localization of the person within their
casual environment is a prerequisite to feed higher level
activities detectors with adequate contextual data.

One difficulty in our setting is the lack of supervi-
sion at the acquisition stage, which should be handled
by medical aids that are not specialists of technical
acquisition, and because of the little time those per-
sons would have to devote to the modeling of the envi-
ronment. We therefore expect such supervision to be
done on the recorded video data itself. This would be
done when taking the device into a new environment
by manually annotating a fraction of the several hours
long videos with the main rooms and important places.
The maximum amount of information should therefore
be extracted from both the labeled and unlabeled video
content, which calls for a semi-supervised approach.

In this paper, we will consider a Bag of Features
(BoF) method [6], which we will extend to a semi-
supervised approach. Feature matching on image pairs
[5] will also be examined and compared, and included
into the semi-supervised approach in order to further
improve the performances.

The paper is organized in several sections. Sec-
tion 2 discusses related work in the domain of image
recognition with an application in localization problem.
Section 3 presents the proposed algorithms, which are
compared experimentally and discussed in section 4.

2 Background

The goal of image based localization is to estimate
the location of an unknown query image with respect
to some learned database. The localization may be
qualitative or quantitative. Qualitative approaches aim
to estimate a 2D or 3D position whereas quantitative
methods recognize a reference image or its class from
the database. An example of quantitave location esti-
mation are robotic applications as in [11, 12]. Qualita-
tive positioning services find their application for out-



doors [21, 22, 23] and indoors [24] localization using
mobile devices.

Both approaches are frequently addressed by two
techniques - local feature matching [5, 20, 21] with
optional geometrical verification and “bag of words”
model [6, 10]. Former uses geometrical constraints
given local features with their positions whereas lat-
ter constructs weighted histogram of “visual words”.

A large body of work attempts to extend “bag of
words” model. In particular, by adding local discrimi-
native information [25], fast location recognition from
structure-from-motion point clouds [4] and finding ef-
ficiently loop closures in monocular SLAM [11]. Some
works propose also to include geometrical verification
[7] of query results, which was applied in [10] to refine a
global “bag of words” image search to the object level.

The approach for image representation is relying
on BoF visual word histograms which are known to
be succesfully used in image recognition applications.
While being effective, visual word histograms are typ-
ically very high dimensionality vectors. It is known
that such high dimensionality spaces are very sparse
and leads to well-known “curse of dimensionality” [9]
or empty space phenomena problem. As we intend to
learn from weak supervision, many classical machine
learning methods would be prone to overfitting be-
cause of low sample number in comparison to their di-
mensionality. Naturally there rises the question about
leveraging unlabeled images which is the subject of
semi-supervised learning algorithms.

Semi-supervised learning takes into account labeled
and unlabeled samples to reduce in a meaningful way
the dimensionality of the problem. Dimensionality re-
duction (DR) implies to choose what information is
preserved or how it is presented - maximum variance
(PCA) [9], direction for best class separability (LDA)
[9], local neighborhood preservation (LPP) [14] and
others to name few. DR has been applied succesfully
for face recognition [13, 17, 19] for example. Such
methods are usually divided into inductive and trans-
ductive approaches.

Inductive methods learn a projective basis onto
which an unseen sample could be projected (e.g. PCA,
LDA). Instead, transductive learning outputs class la-
bels for unlabeled samples directly. Methods LLE,
LapEig, MDS, ISOMAP and others possess such learn-
ing framework [16].

Transductive approach, when all the data is avail-
able at the learning stage, fits perfectly our indoor lo-
calization problem and was used in our experiments.

3 Semi-supervised location recognition

We now present the proposed semi-supervised
framework for location recognition. Let us represent
X = (x1, x2, . . . , xn) as a set of n image signa-
tures, in <l. The labeled subset of X represents Xl =
(x1, . . . , xl) with associated labels Pl = (p1, . . . , pl).
Unlabeled samples Xu = (xl+1, . . . , xl+u) represents
the rest of the set X for which the labels will be esti-
mated. In our case, the labeled data is planned to be
of much smaller amount than the unlabeled data.

First, features are extracted from the images, in or-
der to produce an affinity matrix W that contains the
pairwise unsupervised visual similarities between the
images of the video sequence. This affinity matrix is
used in the spectral graph embedding framework to
produce a reduced dimension representation of the data
Z, which is suitable for classification using standard su-
pervised approaches.

3.1 Feature extraction

We used a BoF approach for feature extraction,
based on Speeded Up Robust Features (SURF) interest
point features [8] and a hierarchical k-means quantiza-
tion tree [6]. This feature extraction step produces im-
age signatures X = (x1, x2, . . . , xn) that are suitable
for unsupervised similarity computation, while being
efficient to compute and robust in terms of recogni-
tion. This representation can be used directly for the
classification. The nearest neighbor or SVM classifiers
applied on X will be our baseline algorithms.

3.2 Graph representation of image simi-
larities

We define the graph G = (V, E) where V is the set
of vertices and E is the set of edges connecting neigh-
boring vertices (xi, xj). This graph representation en-
codes images as graph vertices and visual similarity
information as the edges among them [14, 16]

The similarity measure s between samples xi and
xj represent the visual similarity between the corre-
sponding images. In our case, we used the heat kernel
between the BoF image signatures (t ∈ <), which is
generic and provided as good results as more evolved
approaches in our preliminary experiments.

s(xi, xj) = e−
‖xi−xj‖22

2t2 (1)

The set of k nearest neighbors for sample xi is de-
noted by Nk(xi). Class label for sample xi is denoted
by C(xi).



The affinity matrix is build in an unsupervised way,
by keeping the similarity measures of the k-nearest-
neighbours for each sample :

WBoF (i, j) =

{
s(xi, xj) xi ∈ Nk(xj) or xj ∈ Nk(xi)
0 else

(2)

3.3 Spectral graph dimensionnality reduc-
tion

The general idea of the graph-embedding approach
is to represent each node (original high dimensional
sample xi) as a lower dimensionality vector zi that pre-
serves locality and relations with its neighbors encoded
by graph edges. The graph Laplacian [15] is defined as
L = D − W , where the matrix D is a diagonal ma-
trix with values D (i, j) =

∑
j W (i, j) for scaling issue

elimination. In the Laplacian Eigenmap [16] approach,
the optimal graph responses ym are then found as the
lowest eigenvectors to the following generalized eigen-
problem:

Ly = λDy (3)

Each graph response ym represents the embedding
of all samples within dimension m. Therefore, obtain-
ing matrix Y =

(
y1, . . . ,yd

)
as a solution of the eigen-

problem, sample xi will be represented by a d dimen-
sional vector zi whose elements are comprised of ith
elements of vectors y1,y2, . . . ,yd.

For our application all the data is available at the
moment of graph construction and embedding, i.e. the
learning is transductive. One of the advantages lies in
the fact that the unlabeled data to be classified is used
within the DR step, which allows to take into account
the affinities amongst unlabeled samples in order to
find the manifold on which the data actually lies.

3.4 Classification

After DR, the remaining stage of workflow remains
unchanged - unlabeled sample classification. Instead
of using BoF signatures X directly, we apply classifi-
cation algorithms to their embeddings Z. In all our
experiments we used simple 1-NN classifier and Sup-
port Vector Machines (SVM) [18] classifiers.

3.5 Matching based complementary infor-
mation

Following [5], we also considered pairwise bi-
directional image matching based on SURF keypoints.

The matches are then validated using RANSAC [7] to
enforce the fundamental matrix constraint. This re-
sults in a sparse matching matrix M with the number
of RANSAC validated matches. Each test image is
classified with the class of the labeled image that has
the largest number of validated matching features.

In order to incorporate the matching information,
the matching matrix M is transformed into an affinity
matrix using a non-linear ad-hoc function f . Parame-
ters a and b define a smooth weighting of the number
of matchings.

Wmatch (i, j) = f (M (i, j)) (4)

f (m) =


0 m < a
m−a
b−a a < m < b

1 m > b

(5)

The final affinity matrix used for Graph-Embedding
is defined as an additive combination of BoF and
Matching affinities (defined in Eq. 2 and 4):

WBM = WBoF + αWmatch (6)

4 Experiments

The experiments will evaluate the gain of the pro-
posed approach in the context of indoor room classifi-
cation. The device presented in [1] was used to acquire
the data.

4.1 Database

For evaluation purposes we recorded three indepen-
dent video sequences: training, testing and a sequence
for visual vocabulary construction with approximately
close number of frames per class. Each video sequence
depict the same six classes. It can be noted that there
are strong visual similarities amongst three rooms and
two corridors. In order to keep the number of train-
ing frames tractable, we obtained the testing database
F1K1 by subsampling the training sequence frames (se-
lecting each fourth image) and avoided scenes where
the passage from one room to another is taking place
(both for training and testing sequences). The proper-
ties of the original and subsampled databases are shown
in Table 1. Some sample frames from each class are de-
picted in the Figure 1.

For the sake of evaluation, the labeled data will be
chosen from training frame collection and evaluated
using complete collection of testing sequence frames.



Sequence Video length Selected frames
Vocabulary Tree 14 min 21 280

Training 28 min 41 348
Testing 3 min 5 200

Database Training samples Testing samples
F1K1 8 629 4 845

Table 1. Experimental data description

room1 room2 room3

corridor1 corridor2 stairs

Figure 1. Content of the 6 classes

Nevertheless, both sequences will be used simultane-
ously at the graph-embedding step, as required by the
target application.

4.2 Evaluation protocol

Each video frame is processed using the BoF frame-
work based on SURFfeatures [5, 8]. The descriptors
are quantized using a 3 levels tree with branching fac-
tor of 10 which was built using hierarchical k-means
from devoted video sequence [6]. For every given frame
descriptors, this produces 1111 dimensional vector (sig-
nature) All signatures are then normalized using a tf-
idf scheme where the weights were computed on all the
database [6].

The evaluated approaches are

1. Baseline BoF, without DR

2. BoF with linear DR such as PCA and ICA

3. BoF with graph-embedding DR in the Section 3.

Additionnally, approaches using pairwise matching
were evaluated. Image similarity based on feature
matching is more costly than BoF approach due to the
matching algorithm. For this reason, image pairs are
first screened, by considering only the first 20 nearest
neigbors of each image with respect to BoF signatures.

1. Best Matching: each image is associated to the
class of the image that has the largest number of
matching features after RANSAC validation.

2. BoF+Matching with graph-embedding dimension-
nality reduction: the BoF affinities are combined
with matching affinities, as explained in 6.

We evaluate the performance using accuracy measure
defined as a proportion of n samples classified correctly
with respect to total amount of samples N .

4.3 Baseline performance

The baseline performance was obtained using clas-
sifiers k-NN and SVM directly on the 1111 dimensions
BoF signatures.

For k-NN, the best performances were obtained with
k = 1, which is characterisic of a quite sparse sampling
of the signature space.

The critical point of an SVM classifier is the
choice of the kernel and selection of its parame-
ters. The SVM classifier selected here is a soft-
margin algorithm (so-called C-SVM) available online
at http://www.csie.ntu.edu/ucjlin/libsvm. It has been
tested with different classical kernels: linear, polyno-
mial, radial basic function (RBF) and laplacian. We
employed the parallel grid search technique combined
with 5-fold cross validation to find the optimal kernel
parameters for our dataset.

The Figure 3 shows the evolution of the precision
when the amount of supervision is varyied by control-
ing the number of labeled samples per class (the la-
beled samples are chosen randomly inside each class).
5 different sets of labeled samples were used for this
experiment.

The potentially more effective SVM classifier is not
able to obtain better class separation than simple k = 1
nearest neighbor on this dataset which is natural be-
cause of inability of SVM to avoid overfitting for such
low amount of supervision given high input signature
dimensionality. The signatures are therefore quite dis-
criminative but reach a limit in the pure supervised
approach. When all labeled data is used, the perfor-
mances are 81.86% for 1-NN and 81.07% for SVM.

Linear unsupervised approaches PCA and ICA did
not bring any significant improvement compared to di-
rect application of k-NN or SVM and were mostly om-
mited from result Figure 3.

4.4 Effect of non-linear DR

The matrix W is essential for spectral graph-
embedding method. We construct it providing two pa-
rameters : graph neighborhood (k) and affinity heat
kernel parameter (t). Experiments showed the param-
eter k to be important - too low value makes the graph
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Figure 2. Influence of graph neighborhood on
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Figure 3. Influence of data preparation meth-
ods on accuracy

too sparse and even disconnected, while higher value
will introduce too much irrelevant links degrading the
performance. This parameter is also dependent on the
database size (see Figure 2). The heat kernel parameter
t = 700 was selected by the means of cross-validation.
In figure 4, the performance of each approach is plotted
with respect to the amount of supervision, expressed as
a global rate of labeled samples for each class within
the training samples.

Since the spectral graph approach relies on the fact
that the data actually lies on a lower dimensionality
manifold than the high BoF signatures, a number of
dimensions has to be fixed. Figure 5 shows that the
performance is optimum only for an appropriate num-
ber of reduced dimensions (between 15 and 35 dimen-
sions). The optimal number of dimension is used for
each individual measure in the Figure 4.

The graph-embedding DR applied to BoF improves
the performance compared to the standard BoF ap-
proach. This improvement is more noticable for mod-
erate amount of supervision, showing the interest of the
approach. In particular, the improvement is approxi-
mately constant for a range from 100% down to 2% of
labeled samples per class.
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Figure 4. Comparison of BoF and Matches
based approaches for various levels of su-
pervision
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Figure 5. Intrinsic data dimensionality

The performance of keypoint matching performance
is clearly decreasing faster when the amount of supervi-
sion decreases. This confirms that the matching based
approach is more specific, as it can only recognize a
scene that has been labeled, but can not propagate this
labeling. In our case, the exact same scene may not be
found in the labeled set because of the low supervision.

For the combination of BoF and matchings from eq.
6, the matches were considered to be fully reliable if
more than 160 (upper threshold - b) RANSAC vali-
dated matches were found. In the other case images
with a number of matches lower than 100 were con-
sidered unreliable (lower threshold - a) indicates of no
match. The weighting parameter α = 0.76 was selected
manually and may be data dependent.

Results confirm the complementary nature of merg-
ing BoF and match information by demonstrating a
slight increase of performance in the weak supervision
situations.



5 Conclusion

In this paper we address indoor localization prob-
lem from video sequence recorded by a camera wearer.
Our method is capable of learning from low amounts
of labeled data - down to a few percents from the to-
tal amount. Experiments showed our approach to be
efficient even in presence of visual ambiguities between
classes.

Indeed, Graph-Embedding DR with inclusion of
matching information results in an increase of the
performance over plain BoF approach, especially for
weaker levels of supervision.

Additionally, RANSAC validated matches alone
showed to be insufficient for the present task because
of the high subsampling rate of the labeled data, but
it provides reliable information that was shown to fur-
ther improve the results of the BoF approach within the
semi-supervised framework. In the future, complemen-
tary data such as contextual information or the output
of inertial sensors, may be integrated in a similar way
in order to increase the discriminative power. Larger
scale acquisition campaign on volunteers in real condi-
tions are currently planned as a part of the IMMED
project in order to evaluate the algorithms on a larger
variety of conditions.
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