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Parameter and Time-delay Identification of Continuous-time Models

from Non-uniformly Sampled Data

Fengwei Chen, Hugues Garnier, Marion Gilson

Abstract— This paper considers the problem of continuous-time
model identification with arbitrary time-delay from irregularly
sampled data. The proposed method estimates the plant and
the time-delay in a separable way, when estimating one of them,
the other is assumed to be fixed. More precisely, the plant is
estimated by the iterative instrumental variable SRIVC method
while the time-delay is estimated by the Gauss-Newton method.
Because of the nonlinear relationship between the loss function
and the time-delay, a low-pass filter is employed to extend
the global convergence region for the time-delay estimation.
Numerical examples are presented to illustrate the properties
of the proposed method.

I. INTRODUCTION

Irregularly sampled data occurs quite frequently in many

application areas. For example, in astronomy, particularly

in stellar physics, the obtained data always has unknown

periodicity. In even-based sampling (e.g. Lebesgue sampler),

the sampler is triggered by the arrival of a certain event

process. When one wants to model a system from irregularly

sampled data, the use a continuous-time (CT) model is

preferable, since the CT model parameters are independent

of the sampling period (see e.g. [5], [2]).

Many processes have intrinsic delay, as it is the case in

thermal and chemical processes, therefore it is a common

practice to assume a time-delay in the model. The problem of

time-delay estimation based on a discrete-time (DT) model

has been studied a lot. Usually the time-delay is assumed

to be an integer number of the sampling period, thus the

delayed output of the system can be obtained by adjusting the

phase-shift. However, this flexibility is lost in the situation of

non-uniform sampling because of the time-varying sampling

intervals. To handle irregularly sampled data, the algorithm

must be capable of estimating arbitrary time-delay.

Several methods have been proposed for CT model parameter

and time-delay estimation. A linear filter-based method was

introduced in [1], where the time-delay along with the

transfer function parameters are estimated in an iterative

way through simple linear regression. Iterative global non-

linear least-squares and instrumental variable methods were

suggested in [10], where the plant parameters and time-delay

are estimated in a separable way. More recently, a wavelet

correlation method was introduced in [8] to estimate the

time-delay for MIMO dynamical systems, by calculating and
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handling the cross-correlation between the CWT coefficients

of the input and the output data.

In this paper, the time-delay and the plant parameters are

also estimated in a separable way, but a low-pass filter is

introduced to improve the convergence performance for the

time-delay estimation (see [3]). More precisely, the plant and

the time-delay are estimated by the iterative instrumental

variable (IV) and the Gauss-Newton methods, respectively.

For the IV method, the simplified refined instrumental vari-

able method for CT systems (SRIVC) is adopted. It was first

developed by Young and Jakeman in the open-loop situation

[12] and recent developments can be found in [4], [11].

This paper is organized in the following way. We first

define the parameter estimation problem in Section II. Subse-

quently, the SRIVC method for plant parameter identification

is recalled in Section III. Then the time-delay estimation

problem is discussed in Section IV. The final algorithm for

time-delay system identification is detailed in Section V.

Finally, in Section VI, numerical examples are presented to

illustrate the properties of the proposed method.

II. PROBLEM STATEMENT

Consider the following CT output error (COE) model






x(t) = G(p,θo)u(t− τo) =
B(p,θo)

A(p,θo)
u(t− τo)

y(tk) = x(tk) + e(tk)
(1)

where u(t), x(t) and τo are the excitation signal, the noise-

free response and the time-delay, respectively. p denotes

the differentiation operator, i.e. px = dx/dt. B(p,θo) and

A(p,θo) are polynomials assumed to be coprime of the

following form

B(p,θo) = bo0p
m + bo1p

m−1 + · · ·+ bom

A(p,θo) = ao0p
n + ao1p

n−1 + · · ·+ 1 (n > m)

The unknown parameters are stacked columnwise in

θo = [ao0 · · · aon−1 bo0 · · · bom]T (2)

The input-output signals of the system are observed at

irregular time-instant tk, for k = 1, 2, · · · , N , the sampling

interval is denoted as

hk = tk+1 − tk (3)

In most practical measurement situations, it is reasonable to

consider that x(tk) is corrupted by a DT measurement noise

e(tk), which is assumed to be white here. The identification

problem can be stated as: assume the orders n and m are



known, the identification objective is to estimate the un-

known parameters and time-delay from irregularly sampled

data ZN = {u(tk); y(tk)}Nk=1.

III. INSTRUMENTAL VARIABLE METHOD FOR PLANT

PARAMETER ESTIMATION

Amongst the different implementation of the optimal IV

approach, the SRIVC method is known to be one of the most

effective and is used here to identify the CT transfer function

parameters. In this section, the time-delay is assumed to

be known (τ = τo). The SRIVC method makes use of a

low-pass filter to generate the (filtered) input/output time-

derivatives of the differential equation model. The filter F (p)
takes the following form

F (p, θ̂j) =
1

A(p, θ̂j)
(4)

Then, the COE model can be equivalently reformulated in

the following regression form

yF (tk, θ̂
j) = φT

F (tk, θ̂
j , τo)θ̂j + ε(tk, θ̂

j , τo) (5)

with

φT
F (tk, θ̂

j , τo) =
[

− y
(n)
F (tk, θ̂

j) · · · − y
(1)
F (tk, θ̂

j),

u
(m)
F (tk − τo, θ̂j) · · · uF (tk − τo, θ̂j)

]

(6)

where ε(tk, θ̂
j , τo) is the equation error, (·)F denotes the

filtering operation, i.e. (·)F = F (p, θ̂j)(·). The IV vector

ψT
F (tk, θ̂

j , τo) is chosen as

ψT
F (tk, θ̂

j , τo) =
[

− x
(n)
F (tk, θ̂

j , τo) · · · − x
(1)
F (tk, θ̂

j , τo)

u
(m)
F (tk − τo, θ̂j) · · · uF (tk − τo, θ̂j)

]

(7)

where x(tk, θ̂
j , τo) is the noise-free response of the follow-

ing auxiliary model

x(tk, θ̂
j , τo) =

B(p, θ̂j)

A(p, θ̂j)
u(tk − τo) (8)

From N measured input-output data, the SRIVC parameter

estimates are given by

θ̂j+1 =
[

ΨF (θ̂
j , τo)ΦT

F (θ̂
j , τo)

]−1
ΨF (θ̂

j , τo)yF (θ̂
j)
(9)

with

yF (θ̂
j) =

[

yF (ts, θ̂
j) · · · yF (tN , θ̂j)

]T

ΦF (θ̂
j , τo) =

[

φF (ts, θ̂
j , τo) · · · φ(tN , θ̂j , τo)

]

ΨF (θ̂
j , τo) =

[

ψF (ts, θ̂
j , τo) · · · ψF (tN , θ̂j , τo)

]

where ts ≥ τo.

As it can be noted from (9), the SRIVC method uses

an adaptive procedure where the parameter estimates are

iteratively refined. At each iteration, an auxiliary model is

used to generate the instrumental variables and filter based

on the parameters obtained at the previous iteration. When

performing the CT filtering operation, the intersample behav-

ior is required to reconstruct a ‘CT input signal’ from the

irregularly sampled data. In many situations, as it is the case

in computer controlled systems, the intersample behavior

of the input u(tk) is always known, such as piece-wise

constant (zero-order hold) or piece-wise linear (first-order-

hold). However, the intersample behavior of the sampled

output y(tk) is missing. It is then a common practice to

assume y(t) is first-order hold. The 4th-order Runge-Kutta

(RK4) method can then be used to compute the filtered time-

derivatives for the output signal at the required irregular time-

instants.

IV. EXPANSION OF GLOBAL CONVERGENCE REGION IN

TIME-DELAY ESTIMATION

In this section, the plant-independent time-delay estimation

is investigated, so θ = θo is assumed in the sequel. τ is

assumed to be a ‘pure delay’ and appears as an explicit

parameter in the CT model. With these assumptions, the

estimated error can be formulated as

ǫ(t,θo, τ) = y(t)−G (p,θo)u(t− τ) (10)

The time-delay can be estimated by minimizing a certain

criterion of ǫ(t,θo, τ). Here the energy of the estimated

error is considered. The estimate of τ can be obtained by

the following fitting

τ̂ = arg min
τ

J(θo, τ) = arg min
τ

1

2

∫ ∞

−∞

ǫ2(t,θo, τ)dt (11)

Numerical methods are typical ways to solve (11), such as

the Gauss-Newton or the Levenberg-Marquardt algorithm.

Since the cost function J(θo, τ) is multi-modal with respect

to τ , the numerical method suffers from local minima and the

final estimate τ̂ is highly dependent on the initial value τ0.

To increase the chance of converging to the global minimum,

the use of a low-pass filter was suggested in [3]. This result

is used in this paper to improve the convergence performance

of the proposed method.

Let L(p) be a CT low-pass filter with the cutoff frequency

ωLF
c . The estimate τ̂ can be obtained by minimizing the

energy of the filtered estimated error

τ̂ = arg min
τ

J̄(θo, τ) (12)

J̄(θo, τ) =
1

2

∫ ∞

−∞

[L(p)ǫ(t,θo, τ)]
2
dt (13)

From the Parseval theorem, J̄(θo, τ) also has the following

frequency-domain interpretation (see e.g. [6], [3])

J̄(θo, τ) =
1

4π

∫ +∞

−∞

[

∣

∣G(iω,θo)e−iωτo −G(iω,θo)e−iωτ
∣

∣

2

× Φu(ω) + Φe(ω)
]

|L(iω)|2 dω (14)

where Φu(ω) and Φe(ω) are the power spectral densities

(PSD) of u(t) and e(t), respectively.

Let the time-delay error denoted as

δτ = τ − τo (15)



Let us now define V̄ (θo, τ) as the noise-free version of (14)

V̄ (θo, δτ) =
1

4π

∫ +∞

−∞

∣

∣G(iω,θo)e−iωτo ∣

∣

2 ∣
∣1− e−iωδτ

∣

∣

2

× Φu(ω) |L(iω)|2 dω (16)

From (16), it can be observed that V̄ (θo, δτ) depends on δτ
and the following transfer function

T (iω) = L(iω)G(iω,θo)e−iωτo

(17)

Since T (iω) requires the knowledge of the true model

G(iω,θo), which is not known in practical situations, the fol-

lowing theorem provides an alternative to compute V̄ (θo, δτ)
from filtered data.

Theorem 1 (see [3]): Assume the PSD of u(t) is denoted by

Φu(ω) and let z(t) be the noise-free output of the following

filter

T (iω) = L(iω)G(iω,θo)e−iωτo

Then an estimate of V̄ (θo, δτ) can be obtained by

V̄ (θo, δτ) = Rz(0)−Rz(δτ) (18)

where Rz is the autocorrelation function of z(t).
Proof: V̄ (θo, δτ) can be given as

V̄ (θo,δτ) =
1

4π

∫ +∞

−∞

|T (iω)|2
∣

∣1− e−iωδτ
∣

∣

2
Φu(ω)dω

=
1

4π

∫ +∞

−∞

Φz(ω)
(

2− e−iωδτ − eiωδτ
)

dω (19)

where Φz(ω) = |T (iω)|2 Φu(ω) is the PSD of z(t). By

using the well-known Wiener-Khinchin theorem, (19) can be

reformulated as

V̄ (θo, δτ) =Rz(0)−
1

2
Rz(−δτ)− 1

2
Rz(δτ)

= Rz(0)−Rz(δτ) (20)

The second equation in (20) uses the fact that Rz(δτ) is an

even function.

To illustrate the low-pass filtering effects on the global

convergence, let us consider the following example.

Example 1: Consider the following system

x(t) =
bo0

ao0p+ 1
u(t− τo) (21)

a) The system (with ao0 = 0.5, bo0 = 0.5 and τo = 5) is

observed for N = 20, 000 time-instants, the sampling

period hk is uniformly distributed in [0.01, 0.09]s.

b) To approximate Φu(ω) = 1, u(tk) is chosen to be a

zero-mean random sequence with the variance of

E
{

u2(tk)
}

= 1/hk

c) Three different low-pass filters are considered

1) Filter 1: L1(iω) = 1 (No filtering)

2) Filter 2: L2(iω) =

{

1 |ω| ≤ ωLF
c

0 |ω| > ωLF
c

3) Filter 3:

L3(iω) =

{

G−1(iω,θo)eiωτo |ω| ≤ ωLF
c

0 |ω| > ωLF
c

Actually the cut-off frequency ωLF
c of L(iω) can take

any positive value, given the fact the purpose of the

low-pass filtering is to extend the global convergence

region. It is then advised to choose ωLF
c to be lower

than the system bandwidth ωb. In this example ωLF
c =

0.25rad/s while ωb = 0.5rad/s.

Note that when filter L3(iω) is chosen, T (iω) becomes an

ideal low-pass filter. V̄ (θo, δτ) has then the following time-

domain representation (see [3])

V̄ (θo, δτ) =
1

4π

∫ ωLF
c

−ωLF
c

∣

∣1− e−iωδτ
∣

∣

2
dω

=
ωLF
c

π
− sin(ωLF

c δτ)

πδτ
(22)

Let δτmax denote the maximum delay uncertainty (or ad-

missible region uncertainty), for which |δτ | ≤ δτmax, such

that V̄ (θo, δτ) is unimodal. Equation (22) can then be

transformed to make a cardinal sine function appear

r = sin(t)/t (23)

A cardinal sine function has many extrema. An approxima-

tion of the t-coordinate (t ≥ 0) of the i-th extremum is

ti = (i+ 1/2)π − 1

(i+ 1/2)π
(24)

Because t0 = 0 is the global minimum, t1 can then be used to

compute the maximum delay uncertainty δτmax. By equating

t1 to ωLF
c δτL3

max, we have

δτL3
max ≈ t1/ω

LF
c ≈ 4.5/ωLF

c (25)
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Fig. 1. Normalized cost function V̄ (θo, δτ)/Rz(0) for the 3 considered
filters.



The normalized cost function V̄ (θo, δτ)/Rz(0) versus δτ
is plotted in Figure 1. It can be observed that without any

low-pass filtering, δτL1
max ≈ 1.9. When a low-pass filtering

is applied, the admissible region is extended to δτL2
max ≈ 8.6

and δτL3
max ≈ 8.5. The global convergence region is clearly

enlarged by using a low-pass filter.

From Figure 1, it can also be noticed that δτL2
max ≈ δτL3

max ≈
4.5/ωLF

c . This means that L2(iω) and L3(iω) have almost the

same effect. This phenomenon can be explained as follows:

when ωLF
c is much smaller than the system bandwidth, if

ω < ωLF
c , G(iω,θo) ≈ constant, its corresponding T (iω)

can also be regarded as an ideal low pass filter.

In the remainder of the paper, the ideal low-pass filter is used

L(iω) =

{

1 |ω| ≤ ωLF
c

0 |ω| > ωLF
c

(26)

Remark. 1: If the data are regularly sampled, the filtering

operation can be carried out in the frequency domain by

using the Fourier transform and its inverse, by adding a

rectangular window to the frequency data. In the present

case of irregularly sampled data, the non-uniform fast Fourier

transform (NUFFT) and its inverse can be used (see e.g. [9]).

V. SEPARABLE METHOD FOR TIME-DELAY SYSTEM

IDENTIFICATION

From the previous statements, θ is estimated by the SRIVC

method while τ is estimated by a numerical method. So it

is natural to use a separable way to estimate θ and τ , when

estimating each of them, the other is assumed to be fixed. The

regression model once the additional filter L(p) is applied,

takes the following form

ȳF (ρ) = Φ̄
T
F (ρ, τ)θ + ǭ(ρ) (27)

where ρ =
[

θT , τ
]T

, and x̄ means x is filtered by L(p). The

cost function to be minimized is given as

J̄N (ρ) =
1

2(N − s+ 1)
ǭT (ρ)ǭ(ρ) (28)

where s is chosen to guarantee that ts ≥ τ . The parameters

can be estimated by the following separable method (see

[7]). Compared with the original separable non-linear least-

squares method, we propose to estimate the linear part by the

SRIVC method instead of the simple least-squares method,

and perform a low-pass filtering operation in the first few

iterations of the algorithm to widen the convergence region

for the initial time-delay search.

Theorem 2: Let

θ̂(τ) =
[

Ψ̄F (ρ)Φ̄
T
F (ρ)

]−1

Ψ̄F (ρ)ȳF (θ) (29)

Then τ̂ can be obtained as

arg min
ρ

J̄N (ρ) = arg min
τ

˜̄JN (τ) (30)

τ̂ = arg min
τ

˜̄JN (τ) (31)

where

˜̄JN (τ) = J̄N (ρ)
∣

∣

θ=θ̂(τ)

The proposed Gauss-Newton method is then given as

τ̂ j+1 =τ̂ j − µj
[

∇2 ˜̄JN (τ̂ j)
]−1

∇ ˜̄JN
(

τ̂ j
)

(32)

θ̂j+1 =
[

Ψ̄F (θ̂
j , τ̂ j+1)Φ̄

T
F (θ̂

j , τ̂ j+1)
]−1

× Ψ̄F (θ̂
j , τ̂ j+1)ȳF (θ̂

j) (33)

where

∇ ˜̄JN (τ) =
1

N − s+ 1
ǭTτ ǭ(ρ)

∇2 ˜̄JN (τ) ≈ 1

N − s+ 1

[

ǭTτ ǭτ − ǭTτ ǭθ
(

ǭTθ ǭθ
)−1

ǭTθ ǭτ

]

ǫτ =
∂ǫ(ρ)

∂τ

∣

∣

∣

ρ=ρ̂j
= pG(p, θ̂j)u(τ̂ j)

ǫθ =
∂ǫ(ρ)

∂θ

∣

∣

∣

ρ=ρ̂j
= −Ψ

T
F (ρ̂

j)

A. The Proposed SRIVC-based Algorithm

The complete algorithm (tdsrivc) for time-delay system

identification can be summarized as

1) Initialization: Set boundaries ∆τmin, ∆τmax, τmin, τmax,

the cut-off frequencies ωSVF
c , ωLF

c , and ∆
˜̄JN (τ)min.

Initialize F (p) by the following state-variable-filter

(SVF)

F (p) =
1

(p+ ωSVF
c )n

Based on the initial value τ̂1 and F (p), use srivc

(see e.g. [11] for more details about srivc method

and the choice of ωSVF
c ) algorithm to compute θ̂1.

2) Initialization of the time-delay search

for j=1:M

a) Compute ∆τ̂ j

∆τ̂ j = −
[

∇2 ˜̄JN
(

τ̂ j
)

]−1

∇ ˜̄JN
(

τ̂ j
)

(34)

b) Perform the following

i) Compute τ̂ j+1 = τ̂ j +∆τ̂ j .

If τ̂ j+1 /∈ [τmin, τmax], let ∆τ̂ j = ∆τ̂ j/2 and

repeat this step.

ii) If |∆τ̂ j | > ∆τmax, let |∆τ̂ j | = ∆τmax.

If |∆τ̂ j | < ∆τmin, go to step (c).

iii) Estimate θ using srivc

Update auxiliary model and prefilter

G(p, θ̂j) = B̂
(

p, θ̂j
)

/Â
(

p, θ̂j
)

F (p, θ̂j) = 1/Â
(

p, θ̂j
)

Compute the filtered signals in

Ψ̄F

(

θ̂j , τ̂ j+1
)

, Φ̄F

(

θ̂j , τ̂ j+1
)

, ȳF
(

θ̂j
)

Then estimate θ

θ̂j+1 =
[

Ψ̄F

(

θ̂j , τ̂ j+1
)

Φ̄
T
F

(

θ̂j , τ̂ j+1
)

]−1

× Ψ̄F

(

θ̂j , τ̂ j+1
)

ȳF
(

θ̂j
)
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Fig. 2. Estimated results with and without low-pass filtering. Ring - fit>99. Dot - fit≤99.

iv) Compute ˜̄JN
(

τ̂ j+1
)

.

If ˜̄JN
(

τ̂ j+1
)

≥ ˜̄JN (τ̂ j), let ∆τ̂ j = ∆τ̂ j/2
and go to step iii.

c) Check the stop condition, if ˜̄JN (τ̂ j) −
˜̄JN

(

τ̂ j+1
)

≥ ∆
˜̄JN (τ)min, go to step (a),

else break.

end

3) Refined plant parameter and delay estimation

for j=M :convergence

Repeat step 2) without applying the low-pass filter

L(iω).
end

Note that in the above algorithm, tdsrivc runs in the

end without low-pass filtering to obtain a refined estimate.

The reason for using a two-step scheme is that the low-

pass filtering increases the convergence region at the price

of slightly decreasing the accuracy of the final estimate, so

a refinement step is suggested. In addition, the maximum

number of iterations M for the initial time-delay search can

be typically chosen between 5 to 10.

B. The Possibility of Handling Arbitrary Time-delay

As discussed in Section III, when performing CT filtering,

the actual input of the filter is a ‘CT signal’, which is

reconstructed from the irregularly sampled data and the

provided inter-sample behavior. With this reconstructed CT

signal, it is possible to predict the output of a filter at any

desired time-instant with the specified time-delay. In this

way, the proposed method can therefore handle arbitrary

time-delay identification.

VI. NUMERICAL EXAMPLES

In this section, all the systems to be identified are assumed

to be excited by a pseudo random binary sequence (PRBS),

which is generated from a 9-stage shift register and the

clock is set to 0.5s. The time-varying sampling period hk is

assumed to be uniformly distributed in the following interval

hk ∼ U [0.01, 0.09]s

The stopping rule for the iterative algorithm is that the

relative change in ˜̄JN (τ̂) or J̃N (τ̂) is lower than 10−4; the

maximum iteration number of stage 2) is M = 10; the time-

delay boundaries are τmin = 0 and τmax = 10.

A. Noise-free Case

To illustrate the positive effect of the low-pass filtering strat-

egy on the convergence performance, let us first consider the

noise-free situation. The second-order system to be studied

is given as

y(t) =
2

0.25p2 + 0.7p+ 1
u(t− 5) (35)

Different initializations for the cut-off frequency of the initial

filter ωSVF
c used in the SRIVC method and τ0 are tested one

by one

ωSVF
c = {0.2π, 0.4π, 0.6π, · · · , 3π} rad/s

τ0 = {0, 1, 2, · · · , 10}s

for two cut-off frequency of the low-pass filter (ωLF
c =

0.4π, ωLF
c = 0.2π). For each run, the number of observations

is N = 10, 000. The criterion of global convergence is

fit > 99, where fit is the normalized root-mean-square

error defined as follows

fit = 100

(

1− ‖y(t)− x̂(t)‖2
‖y(t)− E {y(t)} ‖2

)

where x̂(tk) is the noise-free response of the estimated

model, y(tk) is the sampled output.

Two identification schemes has been tested:

A. Identification without low-pass filtering.

B. Identification with low-pass filtering.

The estimated results are presented in Fig.2 for the two

chosen values of ωLF
c . From this figure we see that the results

for scheme A (no filtering) are very poor. Convergence is

reached when τ0 lies in the interval [4, 6]. Meanwhile, a

SVF filter with lower cut-off frequency slightly increases the

probability of global convergence. The results for Scheme B

are overall quite satisfying. It can be noted that when ωLF
c

decreases, the global minimum is more easy to access.

One question remains here to know how ωL should be

chosen. It has concluded that the global minimum is easier

to access for smaller values of ωLF
c . Then, one may ask, can

ωLF
c be arbitrarily small? The answer is no, the reason can be

given as: smaller values for ωLF
c mean that more information

of the sampled data is removed, which can deteriorate the

plant parameter estimation. A rule of thumb can be to choose

the cut-off frequency of the ideal low-pass filter as 1
10 to 1

2
of the system bandwidth.



True system Low-pass filtering â0 â1 b̂0 b̂1 τ̂ Niter P

1:
2e−5s

2s + 1

No
2.0003

——
2.0003

——
4.9999

10.2 45%
±0.0153 ±0.0114 ±0.0030

Yes
1.9994

——
1.9992

——
5.0001

10.4 96%
±0.0160 ± 0.0114 ± 0.0033

2:
3e−5s

0.25s2 + s + 1

No
0.2496 0.9991 2.9995

——
5.0003

6.2 42%
±0.0056 ±0.0068 ±0.0137 ±0.0048

Yes
0.2496 0.9983 2.9972

——
5.0005

10.1 100%
±0.0069 ± 0.0072 ± 0.0152 ± 0.0058

3:
2e−5s

0.25s2 + 0.7s + 1

No
0.2499 0.6987 1.9983

——
4.9997

6.5 57%
±0.0041 ±0.0043 ±0.0087 ±0.0050

Yes
0.2498 0.6988 1.9984

——
5.0002

9.9 100%
±0.0039 ± 0.0049 ± 0.0099 ± 0.0045

4:
(−4s + 1)e−5s

9s2 + 2.4s + 1

No
9.0020 2.3991 -4.0029 0.9995 4.9993

8.5 42%
±0.0581 ±0.0211 ±0.0271 ±0.0143 ±0.0056

Yes
8.9923 2.3964 -3.9972 0.9973 5.0000

11.5 84%
±0.0482 ±0.0193 ±0.0286 ±0.0127 ±0.0056

TABLE I

ESTIMATED MODELS FROM IRREGULARLY SAMPLED DATA. Niter -THE NUMBER OF ITERATIONS, P -THE RATIO OF GLOBAL CONVERGENCE. THE

MEAN VALUE, THE STANDARD DEVIATION AND Niter ARE COMPUTED FROM THE SUCCESSFUL ESTIMATED MODELS.

B. Noisy-output Case

In this subsection, it is assumed that the measured output is

corrupted by a discrete-time white noise, the signal to noise

ratio (SNR) is 15dB. The SNR is defined as

SNR = 10log
Px

Pe

where Px and Pe represent the average power of the noise-

free signal x(tk) and the disturbance e(tk). The number of

observed data is N = 2000. The cut-off frequency of the

initial SVF filter is fixed to ωSVF
c = 2π.

Due to the fact that the time-delay of the system to be studied

is lower than 10, any choice of ωLF
c leads to δτmax ≥ 5 is

reasonable, here we choose ωLF
c = 0.1π. The initial guess of

the time-delay is assumed to be uniformly distributed in the

following interval

τ0 ∼ U [0, 10]s

In this noisy-output case, the criterion for global convergence

fit satisfies the following inequality

fit ≤ 100

(

1−
√
Pe√

Px + Pe

)

= 100
[

1−
(

1 + 10SNR/10
)−1/2

]

≈ 82.5

The criterion for ‘success’ is fit > 81. The estimated

results are given in Table I. This table shows that when no

filter is applied (scheme A), the global convergence ratio is

less than 60%, while the success ratio surges to 84% ∼ 100%
when a filtering option (scheme B) is adopted. The good

performance does not come for free, the cost is the slight

increase of the iteration number to converge.

VII. CONCLUSION

In this paper, identification of continuous-time system with

arbitrary time-delay from irregularly sampled data has been

considered. The proposed algorithm estimate the plant pa-

rameters and the time-delay in a separable way, more pre-

cisely, the plant is estimated by the SRIVC method and

the time-delay is estimated by the Gauss-Newton method,

respectively. An ideal low-pass filter is introduced to extend

the global convergence region. Numerical examples have

been used to show that, under mild initializations, the global

convergence ratio can be increased to 80%∼100% after the

use of a low-pass filter.
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Identification of continuous-time transfer function models from non–
uniformly sampled data in presence of colored noise. In The 19th

IFAC World Congress, Cape Town, South Africa, 24–29 August 2014.
[3] G. Ferretti, C. Maffezzoni, and R. Scattolini. On the identifiability

of the time delay with least-squares methods. Automatica, 32(3):449–
453, 1996.

[4] H. Garnier, M. Gilson, P. C. Young, and E. Huselstein. An optimal
IV technique for identifying continuous-time transfer function model
of multiple input systems. Control Engineering Practice, 46(15):471–
486, 2007.

[5] H. Garnier and L. Wang(Eds.). Identification of Continuous-time

Models from Sampled Data. Springer-Verlag, London, 2008.
[6] L. Ljung. System Identification – Theory for the User. Prentice-Hall,

Upper Saddle River, 2nd edition edition, 1999.
[7] L. S. H. Ngia. Separable nonlinear least-squares methods for efficient

off-line and on-line modeling of systems using Kautz and Laguerre
filters. IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, 48(6):562–579, 2001.
[8] B. Ni, D. Xiao, and S. L. Shah. Time delay estimation for MIMO

dynamical systems - With time - frequency domain analysis. Journal

of Process Control, 1(20):83–94, 2010.
[9] A. F. Ware. Fast approximate Fourier transforms for irregularly spaced

data. SIAM Review, 40(4):838–856, 1998.
[10] Z. Yang, H. Iemura, S. Kanae, and K. Wada. Identification of

continuous-time systems with multiple unknown time delays by global
nonlinear least-squares and instrumental variable methods. Automat-

ica, 43(7):1257–1264, 2007.
[11] P. C. Young, H. Garnier, and M. Gilson. Refined instrumental

variable identification of continuous-time hybrid Box-Jenkins models.
In Identification of Continuous-time Models from Sampled Data (H.

Garnier and L. Wang (Eds.)), pages 91–132, London, 2008. Springer-
Verlag.

[12] P. C. Young and A. J. Jakeman. Refined instrumental variable methods
of time-series analysis: Part III, extensions. International Journal of

Control, 31:741–764, 1980.


	Introduction
	Problem Statement
	Instrumental Variable Method for Plant Parameter Estimation
	Expansion of Global Convergence Region in Time-delay Estimation
	Separable Method for Time-delay System Identification
	The Proposed SRIVC-based Algorithm
	The Possibility of Handling Arbitrary Time-delay

	Numerical Examples
	Noise-free Case
	Noisy-output Case

	Conclusion
	References

