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Towards Functional Model Transformations
with OCL

Frédéric Jouault, Olivier Beaudoux, Matthias Brun, Mickael 
Clavreul, and Guillaume Savaton

ESEO, Angers, France

Abstract. Several model transformation approaches such as QVT and ATL use OCL 
as expression language for its model-querying capabilities. However, they need to add 
specific and incompatible syntactic constructs for pattern matching as well as model 
element creation and mutation.

In this paper, we present an exploratory approach to enable the expression of whole 
model transformations in OCL. This approach lever-ages some OCL extensions 
proposed for inclusion in the upcoming OCL 2.5: pattern matching and shadow objects. 
It also relies on a specific execution layer to enable traceability and side effects on 
models.

With model transformations as OCL functions, it becomes possi-ble to use a 
single, standard, well-known, functional, and formalized model querying language 
to perform tasks traditionally assigned to model transformation languages. Thus, 
functional techniques such as func-tion composition and higher-order become 
directly applicable to model transformations.

Keywords: Model transformation · OCL · Functional transformation

1 Introduction

The Object Constraint Language [6] (OCL) progressively evolved from a lan-
guage focused on the expression of constraints (invariants, pre- and post- condi-
tions) on UML models to a more general metamodel-independent language for
model query and navigation. Some model transformation approaches (such as
QVT and ATL) started making use of these capabilities by integrating (or host-
ing) OCL as an expression languages. These host languages typically leverage
OCL to express guards (i.e., predicates selecting elements that match transfor-
mation rules) and for navigation (i.e., path expressions over models).

Because OCL is a purely functional language, it cannot be directly used to
perform changes on models or their elements. Therefore, host languages must
define specific syntax and semantics around OCL for these purposes. However,
recent OCL extension proposals [3,5] considered for inclusion in the next version
of OCL [12] give even more capabilities to OCL. For instance, structural pattern
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matching enables declarative data analysis, and shadow objects enable creation
and processing of immutable versions of model elements. Making use of shadow
objects does not require performing any side effect such as creating elements in
models. This constraint is mandatory to keep OCL purely functional.

In this paper, we explore the possibility of directly using OCL as a trans-
formation language. For this purpose, we define our own variant of OCL called
OCLT (where the T stands for transformation). OCLT is based on OCL 2.4 [6]
and integrates pattern matching and shadow objects extensions in a way that is
similar to the work presented in [5], but with syntax closer to the one used in [3].
These custom extensions are likely to become unnecessary when they actually
become standard by being integrated in OCL 2.5. In the mean time, OCLT lets
us start investigating their capabilities. In addition to these extensions, OCLT
also needs some means to actually create elements in models. To this end, we
additionally integrate to OCLT a specific layer that can translate shadow objects
to actual model elements. This layer is also responsible for trace link resolution,
which consists in linking elements created separately by using traceability links
between source and target elements.

Model transformations expressed in OCLT are pure functions taking as argu-
ments a collection of source model elements, and returning a collection of tar-
get elements. Transformation composition thus becomes function composition.
Other functional techniques such as partial application and higher-order func-
tions also become applicable to model transformation. We illustrate our approach
on the well-known ClassDiagram2Relational model transformation case-study.

The paper is organized as follows. Section 2 gives an overview of the shadow
objects and pattern matching OCL extensions. Section 3 presents the specific
execution layer of OCLT, and shows how our approach can be applied to the well-
known ClassDiagram2Relational transformation. Section 4 discusses the merits
of the OCLT approach. Relation to some related works is given in Sect. 5. And
finally Sect. 6 concludes.

2 Overview of Proposed OCL Constructs

Over the years, many different OCL extensions have been proposed and discussed
(notably in the OCL Workshop series since the year 2000). We focus here on two
extensions that facilitate functional model transformation: shadow objects, and
pattern matching. They are both considered for inclusion in the next version
of OCL, as explained in [12]. They were first introducted in [5], and are also
discussed in [3] along with other extensions such as lambda expressions and active
operations [1]. Although these other extensions could be useful, they are not
strictly necessary for the approach presented in this paper. This section presents
shadow objects and pattern matching with emphasis on their application to
model transformation.

2.1 Shadow Objects

OCL already offers immutable tuples with labeled components. These tuples
notably help with complex computations by enabling the construction of
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temporary data structures. The following example shows a possible tuple-based
representation of class named C owning an attribute named a:
1 T u p l e {name = ’ C ’ , attr = O r d e r e d S e t { T u p l e {name = ’ a ’}}}

The outermost tuple is a class, and the innermost tuple an attribute. One
can note that these facts are not captured in the tuple representation. Although
it would be possible to add an explicit type component to both tuples, shadow
objects extend tuples with an attached model element type, as illustrated below:
1 Class {name = ’ C ’ , attr = O r d e r e d S e t {Attribute {name = ’ a ’}}}

Like tuples, shadow objects are immutable and can be processed by OCL
expressions. The semantics of OCL is only modified so that they are mostly
indistinguishable from actual model elements. Shadow objects can be useful in
side effect-free OCL expressions (e.g., as metamodel-typed tuples). But they
are especially convenient when explicitly supported by a host language. For
instance, a model transformation language may create an actual element in a
model when a shadow object is assigned to a property of an existing model
element. Model element creation can thus use the same standard OCL syntax in
all host languages.

2.2 Pattern Matching with OCL

Pattern matching is a construct found in several successful functional languages
(e.g., Haskell, ML, Scala), but not in OCL. It is typically used to analyze the
structure of data. Existing OCL-based model transformation languages typi-
cally heavily rely on OCL guards for rule matching. For instance, to match
all Attributes named ’id’ and not multivalued, one may write (in ATL-like
syntax):
1 a : Attribute (

2 a . name = ’ id ’ and not a . multiValued
3 )

To each Attribute in turn a variable named a is bound (line 1), and then
a guard (line 2) is evaluated to test if Attribute a matches or not. The guard
becomes more verbose when the values of more properties need to be examined.
With pattern matching, one may write:
1 a@Attribute {
2 name = ’ id ’ ,

3 multiValued = false
4 }

The @ character (line 1) denotes an as-pattern (like in Haskell and Scala),
which binds the matched value to the variable. The pattern we have here is
an object pattern that matches model elements (or shadow objects). It con-
sists of a type: Attribute (line 1), and a set of slots (lines 1-2) between curly
braces. Each slot details the value (right of equal symbol) that its associated
property (named on the left of the equal symbol) must have for a match. More
complex pattern matching can be performed: all values can be matched (e.g.,
Tuples, Collections), and multiple variables may be bound in a single pattern.
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Moreover, in the context of this paper, we decide to support non-linear patterns
(i.e., patterns in which a given variable may be bound several times). Nonethe-
less, guards are still useful, and can be combined with pattern matching.

3 Application to Model Transformation

3.1 Traceability and Side Effects

As mentioned earlier, OCL is purely functional and does not permit side effects
on mutable data structures. However, models and their elements are often rep-
resented as such. This is notably the case in EMF1-based tools. Whether they
should rather be represented as immutable data structures or not is beyond the
scope of this paper. We want to find a solution that plays well with mutable
models as well. The resolution of trace links is another issue: it typically works
by linking (and therefore updating) elements created at different places.

In order to address these problems, we add a specific layer to OCLT. After
the execution of an OCLT transformation, this layer translates shadow objects
into actual model elements, and performs trace links resolution. These actions
are only performed at the end of each transformation before their results can
be reused (e.g., by another transformation). We also impose that whole mod-
els are created by OCLT transformations (i.e., no update to existing models).
Therefore, model creation can happen atomically, models as seen from OCLT
can be considered as immutable, and the purely functional property of OCLT
can be preserved. We add a new type of OCL expression called transfo in order
to identify which OCLT functions require this specific layer to kick in. This is its
only syntactically visible aspect. The workings of trace link resolution are best
explained on a case study. They are therefore explained in the next section.

3.2 ClassDiagram2Relational in OCLT

This section shows how the ClassDiagram2Relational transformation can be
encoded in OCLT, as given in Listing 1. The source and target metamodels
are given in Fig. 1. They were adapted from [9].

The transformation is written as OCLT function classDiagram2Relational
with type transfo (line 1). It is composed of three parts similar to model trans-
formation rules: Class2Table (line 4), SingleValuedAttribute2Column (line 14),
and MultiValuedAttribute2ColumnsAndTable (line 17). Each rule is encoded as
a case in a single collect over the whole source model contents (line 2). Although
the syntax of cases is different from the one presented in [5], it is equivalent.
collect ignores elements that do not match any pattern, like an implicit select.

Rule Class2Table selects instances of Class from the source and binds them to
variable a since they trivially match the empty object pattern (line 4). A shadow
object instance of Table is then created before being collected to the target (lines
5 to 12). The mapping between the class and the relational table is defined
1 Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/.
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Fig. 1. Metamodels for the ClassDiagram2Relational transformation.

within the shadow object directly by setting its properties. The name of the
table matches exactly the name of the class (line 6), and its columns consist of a
column defining the primary key (line 8) union the set of columns representing
the single-valued attributes of the class (line 10).

According to the Relational metamodel, the cols property of Table only
accepts Columns as values. Therefore, trying to put Attributes in this property
is an issue. OCLT relaxes the type system for shadow object so as to temporarily
allow it to happen, until trace link resolution kicks in. Once the whole transfor-
mation has been executed, all source elements stored in the properties of target
elements (such as Attributes being stored in property cols of Table here) are
resolved into their corresponding target elements. The trace links between source
elements and target elements required for resolution are automatically created
during the execution of every collect iterator that has a collection of source ele-
ments as input, and a collection of target elements as output. Therefore, our
single-valued Attributes stored in property cols are ultimately replaced by the
Columns created in the case labeled SingleValuedAttribute2Column. This mech-
anism is similar to the implicit trace link resolution of ATL.

The next two rules follow a similar construct based on the use of pattern
matching and shadow objects. They however differs from the first rule by intro-
ducing variables n and on (lines 14 and 18) directly within the pattern expression
for capturing the values of object properties, rather than using a single variable
representing the matched object c (line 4). This example illustrates the two styles
that can be used for writing pattern expressions (navigation or deconstruction),
but using a single style for a whole transformation may be preferable.

Listing 1. ClassDiagram2Relational in OCLT.
1 transfo : classDiagram2Relational ( sourceModelContents :

2 O r d e r e d S e t ( NamedElt ) ) : O r d e r e d S e t ( Named )=sourceModelContents−>collect (

3 - - C l a s s 2 T a b l e

4 case c@Class {} |
5 Table {
6 name = c . name ,

7 cols = O r d e r e d S e t {
8 Column {name = ’ id ’}
9 }−>union (

10 c . attrs−>select (a | not a . multiValued ) - - r e s o l v i n g !

11 )

12 }
13 - - S i n g l e V a l u e d A t t r i b u t e 2 C o l u m n
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14 case Attr {name = n , multiValued = false} |
15 Column {name = n}
16 - - M u l t i V a l u e d A t t r i b u t e 2 C o l u m n s A n d T a b l e

17 case Attr {
18 owner = Class {name = on } ,

19 name = n , multiValued = true
20 } |
21 Table {
22 name = on + ’ _ ’ + n ,

23 cols = O r d e r e d S e t {
24 Column {name = ’ i d r e f ’} ,

25 Column {name = n}
26 }
27 }
28 )

4 Discussion

The previous sections presented the OCLT approach, and its application to
a well-known case-study. In this section, we briefly discuss five points: model
transformations seen as functions in Sect. 4.1; interoperability with model trans-
formation languages in Sect. 4.2; performance benefits of pattern matching in
Sect. 4.3; an alternative rule structuring in Sect. 4.4; and some limitations of the
OCLT approach in Sect. 4.5.

4.1 Model Transformations as Functions

When model transformations are functions, functional programming techniques
become usable. External model transformation composition [11] is simply achiev-
able via function composition.

Considering model transformations as functions is not a new idea. For
instance, the type system introduced in [10] gives a function type to every model
transformation. It thus enables type checking of model transformation composi-
tions. However, this type system only considers black-box functions. With OCLT,
even the internals of transformations are expressed in a functional language.

The case of higher-order transformations [8] (HOTs) is similar: existing tech-
niques are closer to transformation generation. It is the black-box view of these
transformations as functions, which has a higher-order functional type. Adding
lambda expressions and partial application to OCLT would enable HOTs as
high-order functions.

4.2 Interoperability with Model Transformation Languages

We consider two different motivations for interoperability between model trans-
formation languages. (1) Reusing transformations written in other languages.
(2) Leveraging capabilities of several languages.

Motivations 1 and 2 can be achieved by existing transformation composition
approaches. Moreover, OCLT could be extended to support functional compo-
sition of transformations written in several languages. In this case, these trans-
formations are considered as black-box functions.
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However, sometimes only part of a transformation may need to be written
in a different language. Because OCL is used in several existing model trans-
formation languages, internal composition [11] with OCLT becomes possible by
integrating the OCL extensions of OCLT into these transformation languages.
Concretely, partial OCLT transformations could be integrated anywhere the host
language allows OCL expressions. The host language could then benefit from
OCLT capabilities (motivation 2).

Finally, OCLT could also be compiled into existing model transformation
languages, which would achieve motivations 1 and 2. This would also be one way
to implement OCLT. Pattern matching can be relatively easily transformed into
regular OCL guards for languages that do not support complex patterns such
as ATL. Thus, flat OCLT transformations such as the one presented in Sect. 3.2
would be relatively trivial to compile to QVT or ATL. Nonetheless, it may be
more difficult to compile complex rule dependencies such as could potentially
be achieved in more complex OCLT transformations. There may also be some
issues if the target language only offers declarative rules with specific scheduling
incompatible with OCLT.

4.3 Performance Benefits of Pattern Matching

Pattern matching can make OCL expressions more readable and less verbose [5].
But it can also have a positive impact on performance. For instance, to match
a Class with an Attribute it owns, one may write (in ATL-like syntax):
1 c : Class ,

2 a : Attribute (

3 c . attr−>includes (a )

4 )

Naive execution is very expensive because the cartesian product of the sets of
all Classes and of all Attributes must be filtered with the guard (line 3). Deep
guard analysis can result in a significant optimization: given a Class, only the
Attributes it owns need to be considered. But it relies on extracting the intent
behind the guard, which is not a trivial task in the general case. With pattern
matching, the intent is directly expressed at the right level of abstraction:
1 c@Class {
2 attr = Set {a : Attribute , . . . }
3 }

The dots at the end of the set denote that the matched set may contain other
elements than the matched attribute. With such a pattern, it is relatively simple
for each Class c to iterate only on Attributes it owns.

Of course, pattern matching cannot express all relationships between model
elements. Therefore, guards must still be permitted. In OCLT as presented here,
guards may be encoded using pre-filtering (using the select iterator) or with the
if-then-else-endif expression. A possibly better solution would be to integrate
the selectCollect iterator proposed in [12] into OCLT.
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4.4 ClassDiagram2Relational Without Cases

Listing 2 gives a different version of the ClassDiagram2Relational transformation
that does not make use of cases. It relies on the implicit selection performed by
collect when patterns do not match. If a guard is required, then selectCollect
could be used. A drawback of this new version is that a naive implementation
would traverse the whole source model three times instead of once. However, it
has the advantage that each collect may traverse different collections. This may
prove useful to apply different rules to different models. Another potential use
is to collect on a cartesian product of model element collections (with multiple
iterators). This is one possibility to express model transformation rules that take
multiple source elements.

Another way to express rules without relying on cases is to follow an approach
similar to the definition of functions with equations, which is used in functional
programming languages like Haskell. However, such an approach would not easily
support rules with different numbers of source elements.

Listing 2. ClassDiagram2Relational in OCL without cases.
1 transfo : classDiagram2Relational_WithoutCases ( sourceModelContents :

2 O r d e r e d S e t ( NamedElt ) ) : O r d e r e d S e t ( Named ) = sourceModelContents−>collect (

3 sourceModelContents−>collect (

4 [ . . . ] - - C l a s s 2 T a b l e

5 )−>union (

6 sourceModelContents−>collect (

7 [ . . . ] - - S i n g l e V a l u e d A t t r i b u t e 2 C o l u m n

8 )

9 )−>union (

10 sourceModelContents−>collect (

11 [ . . . ] - - M u l t i V a l u e d A t t r i b u t e 2 C o l u m n s A n d T a b l e

12 )

4.5 Limitations of the Approach

The OCL extensions presented in this paper enable writing whole transforma-
tions in OCLT. We have nonetheless identified the three following limitations:

– Explicit trace link resolution is not currently possible. All trace link res-
olution is performed entirely automatically by the specific layer of OCLT.
However, our experience with ATL has shown that explicit trace link resolu-
tion (with resolveTemp) is sometimes useful.

– Model refining transformations leave most of a model unchanged, and only
perform few changes. This is notably what the refining mode is for in ATL.
OCLT does not currently offer such a capability. This mostly becomes an issue
when in-place changes must be performed. Otherwise, it is always possible to
copy all unchanged elements.

– MxN rules transform M source elements into N target elements. OCLT
can currently handle multiple source elements by collect ing over cartesian
products as discussed in Sect. 4.4. However, multiple target elements is not
currently supported. It would be possible to return a collection of elements
for matched source element. This may work because collect automatically
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flattens collections. However, such rules may need to be specified separately
(e.g., using union as in Listing 2). A more critical issue would be to enable
trace link resolution to one target element among several. This would be
difficult to support without explicit trace link resolution.

5 Related Work

In [5], Clark proposes to add pattern matching and object expressions (similar to
shadow objects) to OCL and already addresses the similarities with functional
programming languages and graph-based transformation languages. While Clark
tackles the issue of navigation expressions and their verbosity for expressing con-
straints, our proposal focuses on model transformation. Of course, all advantages
noted by Clark also apply to OCLT.

In [7], Pollet et al. propose new constructs for implementing model manipula-
tion in OCL using the concept of actions where navigation through the elements
of the models is available. Our approach extends OCL to enable similar declara-
tion of model manipulation actions. Pollet et al. and Cariou et al. also propose
to express contracts [4,7] on OCL actions. This is currently not a concern for
OCLT.

In [2], Bergmann proposes to tranform OCL constraints into EMFQuery to
improve the performance of querying models. In [13], Winkelmamm et al. propose
to transform a subset of OCL constraints into graph constraints. The intent of
this approach is to generate valid instances of model for a given metamodel for
testing purposes. While the generation of instances might be considered as a
specific kind of model transformation, our approach focuses on the definition of
model transformation rules. The use of these rules for model synthesis could be
investigated in further research. These two works show that translation of OCL
guards into patterns is possible in some cases.

6 Conclusion

This paper has presented OCLT, an OCL-based approach to express model
transformations. OCLT relies on two OCL extensions (pattern matching and
shadow objects) that are considered for inclusion in OCL 2.5 [12]. Therefore,
the only lasting difference with OCL may be the new transfo type of expressions
along with its semantics. transfo expressions are post-processed by instantiating
shadow objects in actual models, and by resolving trace links.

The ClassDiagram2Relational transformation written in OCLT looks similar
to, and is as readable as with more traditional rule-based model transforma-
tion languages. Because OCLT transformations are purely functional, they can
directly use techniques such as functional composition. Partial application and
higher-order functions have not been deeply investigated yet but look promising.

As an exploratory work, OCLT still need further work to become actually
usable. Notably, its specific transfo type and associated layer should be given
clear and precise semantics. Then, a full implementation should be created.
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Finally, the addition of other proposed OCL extensions should be evaluated.
For instance, adding an active operations semantics [1,3] to OLCT has the poten-
tial of enabling incremental synchronization, with at least partial bidirectional
updates. However, such an addition may be difficult to reconcile with the purely
functional aspect of OCLT.
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