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Abstract
Regular cost functions were introduced as a quantitative generalisation of regular languages,
retaining many of their equivalent characterisations and decidability properties. For instance,
stabilisation monoids play the same role for cost functions as monoids do for regular languages.
The purpose of this article is to further extend this algebraic approach by generalising two results
on regular languages to cost functions: Eilenberg’s varieties theorem and profinite equational
characterisations of lattices of regular languages. This opens interesting new perspectives, but
the specificities of cost functions introduce difficulties that prevent these generalisations to be
straightforward. In contrast, although syntactic algebras can be defined for formal power series
over a commutative ring, no such notion is known for series over semirings and in particular over
the tropical semiring.

1998 ACM Subject Classification F.4.3 Algebraic language theory

Keywords and phrases Cost functions, regular language, varieties, syntactic algebra

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.30

1 Introduction

Quantitative extensions of regular languages have been studied for over 50 years. Most of
them rely on the early work of Schützenberger [25, 26, 27], who extended Kleene’s theorem
to formal power series over a semiring. A very nice presentation of this theory can be found
in the book of Berstel and Reutenauer [5]. In this setting, weighted automata play the
role of automata and weighted logic was introduced as an attempt to generalise Büchi’s
characterisation of regular languages in monadic second order logic. See the handbook [12]
for an overview and further references.

However, this theory also suffers some weaknesses. For instance, the equality problem
for rational series with multiplicities in the tropical semiring is undecidable [15], a major
difference with the equality problem for regular languages, which is decidable. To overcome
this problem and other related questions, Colcombet introduced the notion of regular cost
functions [9], an other quantitative generalisation of regular languages. Cost functions
are formally defined as equivalence classes of power series with coefficients in the semiring
N ∪ {∞}. This equivalence does not retain the exact values of the coefficients of the series
but measures boundedness in some precise way. Thus cost functions are less general than
power series, but are still more general than languages, which can be viewed as cost functions
associated with their characteristic functions.
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30:2 Varieties of Cost Functions

This approach proved to be very successful. It leads to simplified proofs of several major
results related to boundedness (the limitedness problem of distance automata, Kirsten’s
proof of the star-height problem, etc.). Moreover, the equivalences on regular languages

regular languages ⇔ finite automata ⇔ finite monoids ⇔ monadic second order logic

admit the following nontrivial extension

regular cost functions ⇔ cost automata ⇔ stabilisation monoids ⇔ cost monadic logic .

Contributions

The aim of this paper is to show that the algebraic approach to regular languages also
extends to the setting of cost functions. To this end, we change the recognising object of cost
functions from stabilisation monoid [9] to a structure with better algebraic properties, called
stabilisation algebra. This gives us a new way of interpreting cost functions, as particular
sets of a free stabilisation algebra F (A) on the alphabet A, generalising the set of words
A∗. This allows us to extend the ordered version [19] of Eilenberg’s varieties theorem [13],
which gives a bijective correspondence between positive varieties of languages and varieties of
finite ordered monoids (Theorem 5.5). We show that the profinite algebra F̂ (A) generalising
profinite words is the dual of the lattice of regular cost functions. This leads to an extension
of the duality results between profinite words and regular languages. In particular, we extend
the equational approach to lattices of regular languages given in [14] (Theorem 7.5). Our
approach not only subsumes the corresponding results on languages but it also gives a nice
algebraic framework for the results of [11, 16]. A series of examples is given in Section 8.

Related work

Toruńczyk [30] also established a link between cost functions and profinite words, using a
different approach. More precisely, Toruńczyk identifies a regular cost function with the set
of profinite words that are limits of infinite sequences of words over which the function is
bounded.

It is also interesting to compare these results to similar results on formal power series.
Syntactic algebras of formal power series over a commutative ring were introduced by
Reutenauer [22, 23], but no such notion is known for semirings. Reutenauer also extended
Eilenberg’s varieties theorem to power series over a commutative field. However, as shown in
[24], equational theory only works for power series over finite fields.

Finally, let us mention two new promising approaches to recognisability, using respectively
categories [1, 2] and monads [7, 8]. For the time being, these two approaches do not seem
to apply to cost functions, but we hope our paper will serve as a test bench for future
developments of this new point of view.

2 Regular Cost Functions and Stabilisation Monoids

In this section, we introduce the notions of cost functions and of stabilisation monoids. For a
more complete and detailed presentation, the reader is referred to [10].

Let A be a finite alphabet and let F be the set of all functions from A∗ to N ∪ {∞}.
Colcombet [9] introduced the following equivalence relation on F : two elements f and g of
F are equivalent (denoted f ≈ g) if, for each subset S of A∗, f is bounded on S if and only
if g is bounded on S. A cost function is a ≈-class. In practice, cost functions are always
represented by one of their representatives in F .
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The equivalence relation ≈ behaves well with respect to the operations min and max,
defined in the usual way. Indeed for all f, g, h ∈ F , if f ≈ g, then min(f, h) ≈ min(g, h)
and max(f, h) ≈ max(g, h) [9]. It follows that the minimum and the maximum of two cost
functions are well-defined notions.

I Example 2.1. Let A = {a, b}. Given a word u, let |u| denote the length of u and |u|a the
number of occurrences of the letter a in u. Let us define three functions f , g and h from
A∗ to N ∪ {∞} by setting f(u) = |u|, g(u) = |u|a and h(u) = 2|u|a. Then g is equivalent to
h and they represent the same cost function, whereas g is not equivalent to f . Indeed g is
bounded on b∗ and f is not since for all n, g(bn) = 0 and f(bn) = n.

The characteristic function of a language L on A∗ is the function χL : A∗ → N ∪ {∞}
defined by χL(u) = 0 if u ∈ L and ∞ otherwise. The crucial observation that χL ≈ χL′ if
and only if L = L′ allows one to identify a language with the cost function defined by its
characteristic function.

Stabilisation monoids were introduced in [9] in order to extend the classical notion of
monoids recognising a language to the setting of cost functions. Recall that an ordered
monoid is a set equipped with an associative binary product, a neutral element and an order
compatible with the product, i.e., the conditions x1 6 x2 and y1 6 y2 imply x1y1 6 x2y2.
We let E(M) denote the set of idempotents of a monoid M .

Following [9], we define a stabilisation monoid as an ordered monoid M together with a
stabilisation operator ] : E(M)→ E(M) satisfying the following properties:
(S1) for all s, t ∈M such that st ∈ E(M) and ts ∈ E(M), one has (st)]s = s(ts)],
(S2) for all e ∈ E(M), one has (e])] = e]e = ee] = e] 6 e,
(S3) for all e, f ∈ E(M), e 6 f implies e] 6 f ],
(S4) 1] = 1.

Given two stabilisation monoidsM and N , a morphism ϕ fromM to N is a monoid morphism
which is order-preserving and ]-preserving: if e ∈ E(M), then ϕ(e)] = ϕ(e]).

Just like finite (ordered) monoids recognise regular languages, finite stabilisation monoids
recognise regular cost functions. However, the formal definition of recognition is more involved
for cost functions than for languages and relies on the notion of factorisation trees. Let M
be a stabilisation monoid and let h : A→M be a function, called the labelling map.

I Definition 2.2. Let w = a1a2 · · · ak be a word of A∗ where each ai is a letter. An h-
factorisation tree of threshold n for w is a finite tree labelled by the elements of M and such
that:
(T1) the tree has exactly k leaves, labelled by h(a1), . . . , h(ak), respectively,
(T2) each binary node is labelled by the product of its left child’s label by its right child’s

label,
(T3) if a node has arity > 2, then all its children are labelled by the same idempotent e. If

the arity of the node is 6 n, then the node is labelled by e, otherwise it is labelled by
e].

I Example 2.3. Let S1 be the stabilisation monoid containing three idempotent elements
{1, s, 0} with 0 < s < 1, 0] = s] = 0, 0 is a zero of the monoid and 1 the neutral element.
Let h(a) = s and h(b) = 1. See on page 4 a factorisation tree of threshold 5 for the word
abaabbbbaaaabbba. A variant of Simon’s factorisation theorem [9, 29] guarantees the existence
of trees of bounded height to evaluate input words. More precisely, for each labelling function

STACS 2016



30:4 Varieties of Cost Functions

h : A → M , there is a positive integer K (= 3|M |) such that for all words w and for all
integers n > 3, there is an h-factorisation tree of threshold n for w with height at most K.

0

s

h(a) h(b)

h(a) h(a) s

1

h(b) h(b) h(b) h(b)

h(a)

h(a) h(a) s

h(a) 1

h(b) h(b) h(b)

h(a)

We can now give the formal definition of a regular cost function recognised by a finite
stabilisation monoid. Recall that a subset D of a partially ordered set is a downset if the
conditions t ∈ D and s 6 t imply s ∈ D.

I Definition 2.4. Let M be a finite stabilisation monoid, h : A → M a labelling map
and I a downset of M . The cost function recognised by (M,h, I) is the equivalence class
of the function that maps a word u to the maximal threshold n such that there exists
an h-factorisation tree for u of threshold n, height at most 3|M | and root in I. Such an
equivalence class of functions is called a regular cost function.

I Example 2.5. Consider the stabilisation monoid S1 defined in Example 2.3 and let I = {0}.
Let h : {a, b} → M be the labelling map defined by h(a) = s and h(b) = 1. Then S1 is
a stabilisation monoid that can make a distinction between products with no s (that are
1), products containing “few” s (that are s) and products containing “a lot of” s (that are
0 = s]). The cost function recognised by (S1, h, I) is the equivalence class of the function
u 7→ |u|a.

For instance the tree from example 2.3 of height 4 and threshold 5 has root labelled by
s] = 0 because it is a witness that there are more than 5 occurrences of a in the input word.
Conversely, such a factorisation tree of threshold n and height k would have its root labelled
by 1 if the input word contains no a, and labelled by s if there are at most nk occurrences
of a. Because k is a fixed constant, these trees can be used to recognise the cost function
u 7→ |u|a, since it is equivalent to u 7→ (|u|a)k.

Regular cost functions can also be recognised by generalised forms of nondeterministic
finite automata, regular expressions or monadic second-order logical formulas. See [11] for
a complete introduction. Moreover, every regular cost function f has a unique syntactic
stabilisation monoid M , in the sense that:
(1) there is a unique pair (h, I) where h : A→M is a labelling function and I a downset

of M such that f is recognised by (M,h, I),
(2) for any (M ′, h′, I ′) recognising f , there is a surjective morphism ϕ : M → M ′ such

that h = ϕ ◦ h′ and I ′ = ϕ−1(I).

3 Stabilisation Algebras

The goal of the present work is to study algebraic properties of stabilisation monoids and cost
functions. In particular, we would like to define regular cost functions as particular subsets



L. Daviaud, D. Kuperberg, and J.-É. Pin 30:5

of a free stabilisation monoid. However, since in a stabilisation monoid, the ]-operator is
only defined on idempotents, the notion of a free stabilisation monoid cannot be defined
directly and requires the introduction of a new algebraic structure, in which idempotents are
directly defined in the signature of the algebra: stabilisation algebras.

Given a countable set of variables X, let T (X) be the free term algebra of signature
{·, ω, ], 1} over X. An identity over T (X) is an equation of the form s 6 t, where s and t are
terms of T (X).

A finite stabilisation monoid M satisfies the identity s 6 t if the equation holds for any
instantiation of the variables by elements of M , where 1 is interpreted as the neutral element
of M , ω is interpreted as the idempotent power in M , and ] is replaced with ω] (to guarantee
that ] is only applied to idempotents). A finite stabilisation monoid M satisfies the identity
s = t if it satisfies the identities s 6 t and t 6 s.

We can now define the structure of a stabilisation algebra in the following way.

I Definition 3.1. A stabilisation algebra is an ordered algebra M with signature 〈1,6, ·, ω, ]〉
satisfying the following axioms:
(A1) all identities that are satisfied by all finite stabilisation monoids,
(A2) a description of the behaviour of ω on idempotent elements: x2 = x implies xω = x,
(A3) the three properties expressing that the order 6 is compatible with the operations

·, ω, ]: x1 6 x2 and y1 6 y2 imply x1y1 6 x2y2, and x 6 y implies xω 6 yω and
x] 6 y].

In particular, (A1) implies that a stabilisation algebra is a monoid with neutral element 1. A
morphism between two stabilisation algebras is a monoid morphism which is order-preserving,
ω-preserving and ]-preserving. Let M and N be two stabilisation algebras. Then N is a
stabilisation subalgebra of M if N ⊆M , and N is a quotient of M if there exists a surjective
morphism M → N . The product of two stabilisation algebras M and N is defined on the set
product M ×N , with operations defined componentwise.

Recall that in a finite monoid, every element x has a unique idempotent power, denoted
xω. This fact allows one to identify finite stabilisation monoids and finite stabilisation
algebras.

I Proposition 3.2. Finite stabilisation algebras are in one-to-one correspondence with finite
stabilisation monoids, by interpreting ω as the idempotent power.

We now build a free stabilisation algebra F (A) on each finite alphabet A. Recall that
T (A) is the set of terms of the free algebra of signature {·, ω, ], 1} over the alphabet A. Given
s and t two elements of T (A), we write s ≡ t if and only if the identity t = s holds in all
finite stabilisation monoids. This defines an equivalence relation and we let F (A) denote the
set of ≡-classes. Furthermore we let t denote the equivalence class of t in F (A).

I Proposition 3.3. F (A) can be equipped with a structure of stabilisation algebra.

This follows from a general result on ordered algebras mentioned without proof in [6].
A recent result [18] states that the equivalence of two ]-free terms of T (A) is decidable.

Actually, the result is more general and also covers the case of ω − 1 powers. However,
deciding the equivalence of arbitrary terms in T (A) seems to still be an open problem.

The following theorem shows that F (A) is a free object, by making explicit the corres-
ponding universal property.

STACS 2016



30:6 Varieties of Cost Functions

I Theorem 3.4 (Universal Property). For any stabilisation algebra M and any function
h : A → M , there exists a unique morphism of stabilisation algebra h : F (A) → M

extending h.

I Corollary 3.5. Every A-generated stabilisation algebra is a quotient of F (A).

4 Recognisability

We now define the notion of recognisable downsets in the free stabilisation algebra. We will
later see how a regular cost function can be identified with a recognisable downset. This will
allow us to generalise the classical notions of syntactic congruence and syntactic monoid. We
identify terms t ∈ T (A) and their class t ∈ F (A) for more readability.

Let I be a downset of F (A), let M be a stabilisation algebra and let h : F (A)→M be a
surjective morphism. We say that I is recognised by h if there exists a downset J of M such
that I = h−1(J). A downset I of F (A) is said to be recognisable if it is recognised by some
morphism onto a finite stabilisation algebra.

Syntactic congruence and syntactic stabilisation algebra

A context on A is an element of T (A ∪ {x}), where x /∈ A. In other words, a context is a
term T (A) with possible occurrences of the free variable x. Given a context C on A and
an element t of T (A), we let C[t] denote the element of T (A) obtained by replacing all the
occurrences of x by t in C, i.e., C[t] = C[x← t]. Let Ctx(A) denote the set of contexts on A.

Given a downset I of F (A) and two elements t and s of F (A), we write that s ∼I t if for
any context C, C[s] ∈ I is equivalent to C[t] ∈ I. This equivalence relation ∼I is a congruence
on F (A), called the syntactic congruence of I and the the quotient algebra F (A)/∼I is the
syntactic stabilisation algebra of I. The quotient morphism h : F (A) → F (A)/∼I is the
syntactic morphism of I and the triple (F (A)/∼I , h, h(I)) is called the syntactic triple of I.

Given a recognisable downset I of M , there is a natural preorder among the morphisms
recognising I: given h1 : M → N1 and h2 : M → N2, we set h1 6 h2 if there exists a
surjective morphism h : N1 → N2 such that h2 = h ◦ h1. Then we can state:

I Proposition 4.1. The syntactic morphism is a minimal element for this preorder.

The analog of this property in the framework of stabilisation monoids is given in [16].

Regular Cost Functions Versus Recognisable Downsets

We have seen that regular cost functions are recognised by finite stabilisation monoids and
that recognisable downsets are recognised by finite stabilisation algebras. Now, Proposition
3.2 shows that finite stabilisation algebras correspond exactly to finite stabilisation monoids.
These results indicate that regular cost functions and recognisable downsets are closely
related.

One can make this relation a bijection as follows. Let f be a regular cost function and let
M be its syntactic stabilisation monoid. Let also (h, I) be the unique pair (where h : A→M

is a labelling function and I is a downset of M) such that f is recognised by (M,h, I). Then
one can view M as a stabilisation algebra and extend h to a morphism h : F (A)→M . Then
the recognisable downset associated with f is h−1(I) ⊆ F (A).

Conversely, for every recognisable downset I ⊆ F (A), one can define the regular cost
function f associated to I by considering the syntactic triple (M,h, J) of I, and see M as a
stabilisation monoid.
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It is interesting to consider the link with regular languages. Let L be a regular language
and let ∼L be its syntactic congruence. Let IL be the downset corresponding to the regular
cost function χL, i.e., the downset representing the language L. Since downsets represents
cost functions via their unbounded elements, IL is actually the set of elements of T (A)
representing words not in L. Any element of T (A) can be tested for membership in L

by evaluating it in the finite stabilisation algebra M = A∗/∼L where ] = id and ω is the
idempotent power. Remark now that for all u, v ∈ A∗, we have u ∼L v if and only if u ∼IL

v

(where u and v are interpreted in T (A)). In this sense, ∼I is an extension of the classical
syntactic congruence on languages.

I Example 4.2. Let A = {a, b}. Consider the downset of T (A) which consists of all terms
containing an occurrence of a under the scope of ]. This set describes words containing
a large number of a’s. It is of finite index, and it represents the cost function g given in
Example 2.1 that counts the number of a’s in a word. It is also recognised by the stabilisation
monoid given in Example 2.3 with elements 1 > a > 0, all idempotent, and with a] = 0] = 0.

I Proposition 4.3. The lattice of regular cost functions under min and max is isomorphic
to the lattice of recognisable downsets under union and intersection.

5 Varieties

We now generalise the notion of varieties of regular languages and some proofs from [13, 19].
A lattice of recognisable downsets is a set of recognisable downsets containing ∅ and F (A),

and closed under finite union and finite intersection. A lattice L of regular downsets of F (A)
is closed under contexts if, for every I ∈ F (A) and each context C ∈ Ctx(A), the condition
I ∈ L implies C−1[I] ∈ L, where C−1[I] = {t ∈ F (A) | C[t] ∈ I}.

A variety of recognisable downsets associates with each finite alphabet A a lattice V(A)
of recognisable downsets of F (A) satisfying the following properties:
(V1) For each alphabet A, V(A) is closed under contexts.
(V2) For each morphism ϕ : F (B)→ F (A), the condition I ∈ V(A) implies ϕ−1(I) ∈ V(B).

Varieties of downsets generalise positive varieties of languages [19], as there is no comple-
mentation for downsets.

I Example 5.1. A recognisable downset I is aperiodic if for all t ∈ F (A), the relation
tω ∼I t

ωt holds. It is not too difficult to show that aperiodic downsets form a variety of
recognisable downsets.

We now define varieties of stabilisation algebras.

I Definition 5.2. A variety of finite stabilisation algebras is a class of finite stabilisation
algebras closed under taking stabilisation subalgebras, quotients and finite products.

Notice that this notion is often called pseudovarieties in the literature, as opposed to
Birkhoff varieties which are also closed under arbitrary products.

I Example 5.3. A finite stabilisation algebra M is aperiodic if for all x ∈ M , we have
xω = xωx. Aperiodic stabilisation algebras form a variety of finite stabilisation algebras.

Let M,N be two stabilisation algebras. We say that M divides N if M is a quotient of a
stabilisation subalgebra of N . It follows from the definition that varieties of stabilisation
algebras are closed under division. If S is a (possibly infinite) set of finite stabilisation
algebras, the variety generated by S is the smallest variety of finite stabilisation algebras
containing the elements of S.

STACS 2016
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I Lemma 5.4. Let V be a variety generated by a set S of finite stabilisation algebras, and
M be a finite stabilisation algebra. Then M ∈ V if and only if M divides a finite product of
elements of S.

Given a variety V of finite stabilisation algebras, let V(A) denote the set of recognisable
downsets over A whose syntactic stabilisation algebra belongs to V. The correspondence
V → V associates with each variety of finite stabilisation algebras a class of recognisable
downsets.

Thus, each variety of recognisable downsets V is associated to the variety of finite
stabilisation algebras V generated by the syntactic stabilisation algebras of downsets in V.
This defines a correspondence V → V. The analog of the ordered version of Eilenberg’s
theorem can now be stated as follows:

I Theorem 5.5. The correspondences V → V and V→ V define mutually inverse bijective
correspondences between varieties of finite stabilisation algebras and varieties of recognisable
downsets.

6 Profinite Stabilisation Algebra

The free profinite monoid on A, denoted Â∗, can be defined as the completion of A∗ for the
profinite metric. See [4, 20, 21] for more information on this space.

We now prove the existence of free profinite stabilisation algebras. Taking the construction
of free profinite monoids as a model, we define it as the completion F̂ (A) of F (A) for an
appropriate metric.

I Definition 6.1. A stabilisation algebra M separates two elements s and t of F (A) if there
is a morphism ϕ : F (A)→M such that ϕ(s) 6= ϕ(t). For s, t ∈ F (A), define

d(s, t) =
{

0 if s = t

2−n(s,t) otherwise

where n(s, t) is the minimum size of a finite stabilisation algebra separating s and t.

Note that d is well defined, since if s 6= t ∈ F (A), then there is by (A1) a finite stabilisation
monoid in which the identity s = t fails. Such a monoid can be viewed as a finite stabilisation
algebra separating s and t. The following proposition gathers the properties of d and F̂ (A):

I Proposition 6.2.
(1) d is an ultrametric distance.
(2) The operations on F (A) are uniformly continuous and thus extend by continuity to

F̂ (A).
(3) The resulting stabilisation algebra F̂ (A) is compact.

The idempotent power. If M is a finite monoid, then for any m ∈ M and n > |M |, we
have mω = mn! (where ω is the idempotent power). Since finite stabilisation algebras are
in particular monoids where ω is the idempotent power, we obtain that for any u ∈ F (A)
and n > 0, d(un!, uω) 6 2−n. Therefore, for any element u ∈ F (A), the sequence (un!)n∈N

converges in F̂ (A), to uω.
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I Proposition 6.3. The morphism ϕ : F (A) → Â∗ defined by ϕ(a) = a, ϕ(tω) = tω and
ϕ(t]) = tω is uniformly continuous, and therefore can be uniquely extended into a continuous
morphism of stabilisation algebras ϕ̂ : F̂ (A)→ Â∗.

Notice however that this morphism does not coincide with the interpretation of regular
cost functions as subsets of Â∗ as done in [30].

The profinite metric can be relativised to any variety of stabilisation algebras to obtain
the so-called pro-V metric. For s, t ∈ F (A) and V a variety of stabilisation algebras, define
dV(s, t) = 2−|M | where M is one of the smallest stabilisation algebras from V separating
s and t and dV(s, t) = 0 if there is no such M . Remark that the metric d of Definition 6.1
corresponds to dV where V is the variety of all finite stabilisation algebras. We also define
an equivalence s ∼V t by dV(s, t) = 0.

I Proposition 6.4. For any variety V, ∼V is a congruence on F (A) and dV is an ultrametric
distance on F (A)/∼V.

We now define the pro-V stabilisation algebra F̂V(A) as the completion of F (A)/∼V

with respect to dV. As before, we can show that F̂V(A) is compact and can be equipped with
a structure of stabilisation algebra. The following result now follows from general results on
profinite algebras.

I Theorem 6.5. A finite A-generated stabilisation algebra belongs to V if and only if it is a
continuous quotient of F̂V(A).

7 Duality, Equations and Identities

Stone duality tells us that every bounded distributive lattice L has an associated compact
Hausdorff space, called its dual space. The dual space of the Boolean algebra of all regular
languages of A∗ [3] is the free profinite monoid on A.

A similar result holds for the lattice of regular cost functions, which, by Proposition 4.3,
is isomorphic to the lattice of recognisable downsets under union and intersection.

I Theorem 7.1. The dual space of the lattice of recognisable downsets of F (A) is the space
F̂ (A).

7.1 Equations of Lattices
It is shown in [14] that any lattice of regular languages can be defined by a set of equations
of the form u→ v, where u and v are profinite words. This result can also be extended to
recognisable downsets.

Let u, v ∈ F̂ (A). We say that a recognisable downset I of F (A) satisfies the equation
u→ v if u ∈ I implies v ∈ I, where I denotes the topological closure of I.

A set L of recognisable downsets is defined by a set E of equations if the following property
holds: a recognisable downset belongs to L if and only if it satisfies all the equations of E.
We can now state our second main result.

I Theorem 7.2. A set of recognisable downsets of F (A) is a lattice of recognisable downsets
if and only if it is defined by a set of equations of the form u→ v.

The case of lattices of languages closed under quotients was also considered in [14]. The
corresponding notion for lattices of downsets is to be closed under contexts.
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A profinite context C on the finite alphabet A is an element of ̂F (A ∪ {x}) where x /∈ A.
If u is an element of F̂ (A), then C[u] is also an element of F̂ (A), defined by replacing x by u
and evaluating the operations ω and ] in the stabilisation algebra F̂ (A).

I Definition 7.3. A recognisable downset of F (A) satisfies the equation u 6 v if, for all
profinite contexts C, it satisfies the equation C[u]→ C[v].

Equivalently, a stabilisation algebra satisfies the equation u 6 v if, for all downsets J
of M and for all contexts C, C[v] ∈ J implies C[u] ∈ J . By density of F (A) in F̂ (A), it is
enough to consider contexts in CtxA for this definition. The notation u = v is used as a
shortcut for u 6 v and v 6 u. We can now state:

I Theorem 7.4. A set of recognisable downsets of F (A) is a lattice of recognisable downsets
closed under contexts if and only if it is defined by a set of equations of the form u 6 v.

7.2 Identities of Varieties
Condition (V2) of the definition of a variety allows one to use identities instead of equations.

Let B be an alphabet and let u and v be two elements of F̂ (B). We say that a
recognisable downset I of F (A) satisfies the profinite identity u 6 v if, for each morphism
γ : F (B)→ F (A), I satisfies the equation γ̂(u) 6 γ̂(v).

We use the term identity because, in this case, each letter of B can be replaced (through
the morphism γ) by any element of F (A).

In practice, it is more convenient to use the following characterisation. Let I be a
recognisable downset and let M be its syntactic stabilisation algebra. Then I satisfies
the identity u 6 v if and only if for every continuous morphism h : F (B) → M , one has
ĥ(u) 6M ĥ(v), where 6M is the order of M .

I Theorem 7.5. A class of finite stabilisation algebras (resp., recognisable downsets) is a
variety if and only if it is defined by a set of identities of the form u 6 v.

8 Examples of Equational Descriptions of Varieties and Lattices

In this section, we gather examples of varieties of regular cost functions and of sets of
equations. First, it is interesting to see how the identification of regular languages with cost
functions extends to varieties.

I Proposition 8.1. If a positive variety of regular languages is defined by a set of identities
E, then it is a variety of regular cost functions, defined by the set of identities E ∪{x] = xω}.
Conversely, if a variety of regular cost functions is defined by a set of identities E, then the
variety of regular cost functions defined by E ∪ {x] = xω} can be identified with a positive
variety of languages.

For instance, the variety of regular cost functions defined by xω = xω+1 and x] = xω

contains only the characteristic functions of star-free languages [28].

Aperiodic Cost Functions

The variety of aperiodic cost functions is defined by the identity xω = xω+1. It contains
recognisable downsets that are not languages, like u 7→ |u|a. This variety has a nice connection
with the logics CFO and CLTL, first introduced in [16, 17] as a generalisation to cost functions
of the logics FO and LTL on words. Indeed, the results of [16, 17] can be reformulated as
follows:
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I Theorem 8.2. The variety of aperiodic cost functions coincides with the variety of CFO-
definable cost functions and with the variety of CLTL-definable cost functions.

Note that given a finite stabilisation algebra M , one can effectively test whether it verifies
equations like xω = xω+1 or x] = xω: it suffices to check that it stands for each x in M .
It follows that one can effectively decide whether a regular cost function is CFO-definable
(respectively CLTL-definable).

Temporal Cost Functions

Another interesting example is the class of temporal cost functions, first introduced in [11].
These functions allow one to count the number of occurrences of consecutive events. Many
equivalent characterizations of these functions are known. In [11], the algebraic characteriza-
tion is expressed in terms of the interplay between Green relations and stabilisation in the
syntactic monoid, but it can be formulated in terms of equations as follows:

I Theorem 8.3. Temporal cost functions over A form a lattice of regular cost functions,
defined by the equations (xy]z)] = (xy]z)ω, for all x, z ∈ F (A) and all y ∈ F (A)− {1}.

Proof. Let M be the syntactic stabilisation monoid of a regular cost function f . An
idempotent e is called stable if e] = e. The algebraic characterization from [11] states that f
is temporal if and only if an idempotent J -below a stable idempotent different from 1 is
itself stable. Recall that the J -order is defined by e 6J s if there exist x, y ∈M such that
e = xsy. To show that our set of equations is equivalent to this characterization, it suffices
to observe that an element is a stable idempotent if and only if it is of the form s] for some
s. This means that the characterization from [11] specifies that the idempotents of the form
(xs]z)ω, with s 6= 1, are stable. Using Corollary 3.5, one can now lift these properties to
F (A), yielding the equations of the statement. J

Commutative Cost Functions

The description of the variety of languages corresponding to commutative monoids is one of
the first known examples of Eilenberg’s correspondence between varieties of languages and
varieties of monoids [13]. We prove below a similar result for cost functions.

Let us say that a finite stabilisation algebra M is commutative if for all x, y ∈ M , we
have xy = yx. We will say that M is ]-commutative if it is commutative and for all x, y ∈M ,
x]y] = (xy)]. A cost function is called commutative (resp., ]-commutative) if its syntactic
stabilisation algebra is commutative (resp., ]-commutative).

I Example 8.4. The cost function maxblocka on the alphabet {a, b} defined by:

maxblocka(an1ban2b · · · bank ) = max(n1, n2, . . . , nk).

is commutative but not ]-commutative. The downset representing this regular cost function
consists in ω]-expressions on {a, b} containing a subexpression of the form u], where u is an
ω]-expression on the alphabet {a} with at least one occurrence of a. Its syntactic stabilisation
algebra M has four elements: 0 6 a 6 1 6 b, all elements are idempotent and commute,
and we have a] = 0, x] = x for x 6= a, and ab = b = ba. It is not ]-commutative because
a]b] = 0b = 0 and (ab)] = b] = b.

A stabilisation algebra is said to be monogenic if it can be generated by a single element.
We will use freely the following useful lemma.
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I Lemma 8.5. Any finite ]-commutative stabilisation algebra divides the product of its
monogenic stabilisation subalgebras.

The stabilisation monoid S1 defined in Example 2.3 has three idempotent elements
0 < a < 1 such that 0] = a] = 0. It is also the syntactic stabilisation algebra of the function
f = u 7→ |u|a. Let U+

1 denote the stabilisation monoid with two idempotent elements 0 6 1
such that 0] = 0.

I Proposition 8.6. Let J+
1 be the variety of finite stabilisation algebras defined by the

equations x 6 1, x2 = x, xy = yx and x]y] = (xy)]. Then the corresponding variety of cost
functions is generated by the functions u 7→ |u|a for all letters a.

Proof. Since S1 is the syntactic stabilisation algebra of the function u 7→ |u|a, it is equivalent
to prove that the variety of finite stabilisation algebras V generated by S1 is equal to J+

1 .
Since S1 satisfies all the equations of J+

1 , the relation V ⊆ J+
1 holds. To prove the opposite

inclusion, consider a finite stabilisation algebra M of J+
1 . By Lemma 8.5, M divides the

product of its monogenic stabilisation subalgebras. But if m ∈M , the stabilisation algebra
generated by m is {1,m,m]}: indeed, the equations m2 = m, (m])2 = m] and the properties
of a stabilisation monoid imply that mm] = m]m = m]. Thus, this stabilisation algebra is
either {1}, U+

1 or S1. Since U+
1 is a quotient of S1, M actually divides a product of copies of

S1, and therefore M ∈ V. Thus V = J+
1 . J

As stated earlier, if we add the equation x] = xω, we obtain the positive variety of regular
languages corresponding to the variety of ordered monoids generated by the ordered monoid
U+

1 (see [19]).

I Proposition 8.7. Let Acom be the variety of finite stabilisation algebras defined by the
equations xω = xω+1, xy = yx and x]y] = (xy)]. Then the corresponding variety of cost
functions is generated by the functions u 7→ |u|a and χLa,k

where La,k = {u | |u|a = k} for
each k > 0 and each letter a.

I Proposition 8.8. Let Com be the variety of finite stabilisation algebras defined by the
equations xy = yx and x]y] = (xy)]. Then the corresponding variety of cost functions is
generated by the functions u 7→ |u|a, χLa,k

and χLk,n
, where La,k,n = {u | |u|a ≡ k mod n}.

9 Conclusion

We provide a new representation of regular cost functions as downsets of a free stabilisation
algebra, an ordered algebraic structure. This new representation allows us to extend
Eilenberg’s variety theory, in its ordered version: varieties of regular cost functions correspond
to varieties of finite stabilisation algebras and are characterised by profinite identities.
Furthermore, we also extend the duality approach of [14] to this new setting, leading to
profinite equational descriptions of lattices of regular cost functions. Finally, we give several
examples of equational characterisations of classes of cost functions related to logic. We also
investigate the extensions of commutative languages to regular cost functions. We uncover
the role of a new identity, x]y] = (xy)], in the study of these extensions.

These results confirm the pertinence and the usefulness of the theory of regular cost
functions as a well-behaved quantitative generalisation of regular languages. They also open
new perspective for the study of cost functions.

For instance, it would be interesting to extend other known characterisations of varieties
of languages to the setting of cost functions. An emblematic example would be Simon’s
characterisation of piecewise testable languages.
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