
HAL Id: hal-01670709
https://hal.science/hal-01670709v1

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tests and proofs for enumerative combinatorics
Catherine Dubois, Alain Giorgetti, Richard Genestier

To cite this version:
Catherine Dubois, Alain Giorgetti, Richard Genestier. Tests and proofs for enumerative combinatorics.
TAP 2016: International Conference on Tests and Proofs, Jul 2016, Vienna, Austria. pp.57-75,
�10.1007/978-3-319-41135-4_4�. �hal-01670709�

https://hal.science/hal-01670709v1
https://hal.archives-ouvertes.fr

Tests and Proofs for Enumerative Combinatorics

Catherine Dubois1, Alain Giorgetti2, and Richard Genestier2

1 Samovar (UMR CNRS 5157), ENSIIE, Évry, France
catherine.dubois@ensiie.fr

2 FEMTO-ST Institute (UMR CNRS 6174 - UBFC/UFC/ENSMM/UTBM),
University of Franche-Comté, Besançon, France

{alain.giorgetti,richard.genestier}@femto-st.fr

Abstract. In this paper we show how the research domain of enu-
merative combinatorics can benefit from testing and formal verifica-
tion. We formalize in Coq the combinatorial structures of permutations
and maps, and a couple of related operations. Before formally proving
soundness theorems about these operations, we first validate them, by
using logic programming (Prolog) for bounded exhaustive testing and
Coq/QuickChick for random testing. It is an experimental study prepar-
ing a more ambitious project about formalization of combinatorial results
assisted by verification tools.

1 Introduction

Enumerative combinatorics is the branch of mathematics studying discrete struc-
tures of finite cardinality when some of their parameters are fixed. One of its
objectives is counting, i.e. determining these cardinalities. This research domain
also studies non-trivial structural bijections between two families of structures
and algorithms for exhaustive generation up to some size. In this paper we show
how the research domain of enumerative combinatorics can benefit from testing
and formal verification. In enumerative combinatorics we target combinatorial
maps, defined as a pair of permutations acting transitively on a set. In software
engineering we focus on automated testing and interactive deductive verification
with the Coq proof assistant [2].

We formalize in Coq the notions of permutation and combinatorial map,
two operations on permutations, and two operations on combinatorial maps.
Technically we first define these operations on functions. Then we formally prove
that they can be restricted to permutations, and finally to maps for the last two.
In other words we prove that they respectively preserve permutations and the
map structure.

Unless the proof is trivial, it is common to test lemmas and theorems before
proving. Main validation methods are random(ized) testing, bounded exhaustive
testing (BET) [5] and finite model finding [3]. In the following we deal with
random testing and BET. BET checks a formula for all its possible inputs up to
a given small size. It is often sufficient to detect many errors, while providing
counterexamples of minimal size. A challenge for BET is to design and implement

1

efficient algorithms to generate the data. We address it in a lightweight way by
exploiting the features of logic programming implemented in a Prolog system.
Prolog is well suited for algorithm prototyping due to its closeness to first-order
logic specifications. Thanks to backtracking, characteristic predicates written in
Prolog can often be used for free as bounded exhaustive generators.

We present a successful application of random and bounded exhaustive test-
ing to debug Coq specifications of combinatorial structures. Our original app-
roach of both case studies (permutations and maps) also is a contribution in
formalization of mathematics. In comparison with other approaches [8,10,16],
our formalization is very close to the mathematical definition of a map, as a
transitive pair of permutations. Our work is freely available at http://members.
femto-st.fr/alain-giorgetti/en/coq-unit-testing. It has been developed with Coq
8.4 and SWI-Prolog 5.10.4 [28].

The paper is organized as follows. Section 2 presents the testing methodology
on the simple example of permutations. Section 3 introduces the notion of rooted
map, its formalization in Coq, correctness theorems, and random and bounded
exhaustive testing performed before trying to prove them. Section 4 describes
related work and Sect. 5 concludes.

2 Testing Coq Conjectures

This section presents our methodology for testing Coq specifications. Before
investing time in proving false lemmas we want to check their validity. Property-
based testing (PBT) is popular for functional languages, as exemplified by Quick-
Check [7] in Haskell. QuickCheck like approach has also been adopted by proof
assistants, e.g. Isabelle [1], Agda [12], PVS [22], FoCaLiZe [6] and more recently
Coq [23]. We consider here two kinds of PBT: random testing (in Sect. 2.2) and
bounded exhaustive testing (in Sect. 2.3). They are illustrated by the running
example of permutations on a finite set presented in Sect. 2.1.

2.1 Permutations in Coq

Permutations on a finite set form an elementary but central combinatorial fam-
ily. In particular, permutations are the core of the definition of combinatorial
maps. It is well known that any injective endofunction on a finite domain is a
permutation. However, as far as we know, no popular Coq library defines per-
mutations as injective endofunctions supporting the two operations of insertion
and direct sum that we introduce here for their interest in the formal study of
rooted maps in Sect. 3. In the following the reader is required to have some basic
knowledge about Coq.

Listing 1.1 shows our Coq formalization of permutations. A permutation is
defined as an injective function from an interval of natural numbers (whose lower
bound is 0) to itself. In Coq the inductive type nat of Peano natural numbers
is predefined, with the constructors 0 for zero and S for the successor function.
We manipulate functions defined on nat (later called natural functions) but we

2

only impose constraints for the elements in the interval, whatever the defini-
tion outside the interval. The predicates is endo and is inj respectively define
the properties of being an endofunction and injectivity. Then a permutation is
a record structure composed of a natural function and the proofs that the lat-
ter satisfies the two previous properties. For convenience we also consider their
conjunction is permut.
De f i n i t i o n i s e n d o (n : nat) (f : nat → nat) := ∀ x , x < n → f x < n .
D e f i n i t i o n i s i n j (n : nat) (f : nat → nat) := ∀ x y ,
x < n → y < n → x <> y → f x <> f y .

Record permut (n : nat) : Set := MkPermut {
f c t : nat → nat ;
endo : i s e n d o n f c t ;
i n j : i s i n j n f c t } .

D e f i n i t i o n i s p e rmu t n f := i s e n d o n f ∧ i s i n j n f .

Listing 1.1. Permutations as injective endofunctions in Coq.

We can define a more concrete encoding of permutations: a permutation p
on {0, . . . , n − 1} may also be represented by the list [p(0); p(1); . . . ; p(n − 1)]
of its images, called its one-line notation in combinatorics. For instance the list

[1; 0; 3; 2; 6; 4; 5] represents the permutation p =

(
0 1 2 3 4 5 6
1 0 3 2 6 4 5

)
. We’ll generate

permutations as lists and go from this representation to the functional one with
the help of the function list2fun defined by
De f i n i t i o n l i s t 2 f u n (l : l i s t nat) : nat → nat := fun (n : nat) ⇒ nth n l n .

The function nth in Coq standard library is such that (nth n l d) returns the
n-th element of l if it exists, and d otherwise.

Let f be a function defined on {0, . . . , n − 1} and i a natural number. The
insertion before i in f is the function f ′ defined on {0, . . . , n} as follows: (a) it
is f if i > n; (b) it is f extended with the fixed-point f(n) = n if i = n; (c) if
i < n then f ′(n) = i, f ′(j) = n if f(j) = i, and f ′(j) = f(j) if 0 ≤ j ≤ n−1 and
f(j) �= i. The operation of insertion in a natural function is defined in Coq by
De f i n i t i o n i n s e r t f u n n (f : nat → nat) (i : nat) : nat → nat :=
fun x ⇒ i f l e l t d e c i n then

match nat compare x n wi th
Eq ⇒ i

| Lt ⇒ i f e q na t d e c (f x) i then n e l s e f x
| Gt ⇒ x
end

e l s e x .

The direct sum of a function f1 defined on {0, . . . , n1 − 1} and a function f2
defined on {0, . . . , n2 − 1} is the function f on {0, . . . , n1 + n2 − 1} such that
f(x) = f1(x) if 0 ≤ x < n1 and f(x) = f2(x − n1) + n1 if n1 ≤ x < n1 + n2.
It is an extension of the well-known direct sum on permutations [18, p. 57]. The
direct sum is defined in Coq on natural functions by
De f i n i t i o n sum fun n1 f1 n2 f2 : nat → nat := fun x ⇒
i f l t g e d e c x n1 then f1 x e l s e
i f l t g e d e c x (n1+n2) then (f 2 (x−n1)) + n1 e l s e x .

Listing 1.2 states that both operations preserve permutations. To validate
these lemmas, we define Boolean versions is endob, is injb and is permutb of the

3

logical properties is endo, is inj and is permut. Listing 1.3 shows the functions
is endob and is permutb. An evaluation of (is endob n f) returns true iff the
function f is an endofunction on {0, . . . , n − 1}. The lemma is endo dec states
that the Boolean function is endob is a correct implementation of the predicate
is endo. Similar lemmas are proved for the other two Boolean functions. If the
correlation between is endo and is endob is quite immediate, it is not the case
for is inj and is injb. To define is injb, we rely on another lemma we have proved:
a function f is injective on {0, 1, . . . , n} iff the list [f(0); f(1); . . . ; f(n)] of its
images has no duplicate.
Lemma i n s e r t p e rmu t : ∀ (n : nat) (p : permut n) (i : nat) ,
i s p e rmu t (S n) (i n s e r t f u n n (f c t p) i) .

Lemma sum permut : ∀ n1 (p1 : permut n1) n2 (p2 : permut n2) ,
i s p e rmu t (n1 + n2) (sum fun n1 (f c t p1) n2 (f c t p2)) .

Listing 1.2. Preservation properties of the insertion and sum operations.

F i x p o i n t i s e n dob au x n f m := match m with
0 ⇒ i f (l t d e c (f 0) n) then t r u e e l s e f a l s e

| S p ⇒ i f (l t d e c (f m) n) then i s e n dob au x n f p e l s e f a l s e
end .
D e f i n i t i o n i s e n dob n f := match n wi th

0 ⇒ t r u e
| S p ⇒ i s e n dob au x n f p
end .
Lemma i s e n d o d e c : ∀ n f , (i s e n dob n f = t r u e ↔ i s e n d o n f) .
D e f i n i t i o n i s p e rmu tb n f := (i s e n dob n f) && (i s i n j b n f) .

Listing 1.3. Boolean functions for permutations.

2.2 Random Testing

QuickChick [17] is a random testing plugin for Coq. It allows us to check the
validity of executable conjectures with random inputs. QuickChick is mainly a
generic framework providing combinators to write testing code, in particular
random generators. The general workflow that we follow to validate by testing
a conjecture like ∀ x: T, precondition x→ conclusion (f x), where precondition
and conclusion are logical predicates, starts with the definition of a random gen-
erator gen T of values of type T that satisfy the property precondition. Then we
have to turn conclusion into a Boolean function conclusionb – if it is possible,
otherwise QuickChick does not apply – that we prove semantically equivalent
to the logical predicate. The test is run by using the following command which
generates a fixed number of inputs using the generator gen T and for each one
applies the function f and verifies the property under test (conclusion):

QuickCheck (forAll gen T (fun x ⇒ conclusionb (f x)).

In this approach we rely on the generator which is here part of the trusted code.
QuickChick proposes some theorems (or axioms) about its different combinators
which could be used to prove that the generator is correct, but it may be hard
work. In the following we propose to test that the generator produces correct

4

outputs. For that purpose, we implement the same approach: turning the logical
property precondition into an executable one preconditionb.

We now illustrate QuickChick features on permutations encoded as natural
functions. However, QuickChick cannot deal with functions so we generate per-
mutations as lists and then transform them into functions, as detailed in Sect. 2.1.
Let us notice that QuickChick heavily uses monads. However, in the following we
explain very informally some piece of code.

We first define a generator for permutations on {0, . . . , n−1}, as lists without
any duplicate containing 0, 1, . . .n − 1 in any order:
F i x p o i n t gen pe rmut l (n : nat) : G (l i s t nat) := match n wi th

0 ⇒ r e tu rnGen n i l
| S p ⇒ do ! m ← choose (0 , n) ; l i f t G e n (i n s e r t p o s p m) (gen pe rmut l p)
end .

If n is 0, the output is the empty list. Otherwise (n is the successor of p) the recur-
sive call (gen permutl p) generates a list encoding a permutation on {0, . . . , p−1}
and the function inserts p in the latter at a position m which is randomly chosen
(using the combinator choose). The combinator liftGen applies a function, here
insert pos p m, to the result of a generator. To have confidence in this generator,
we test that the outputs do not contain any duplicate, that their length is n and
that their elements are natural numbers less than n. These three conditions are
implemented by the Boolean predicate list permutb.
QuickCheck (s i z e d (fun n ⇒ f o r A l l (g en pe rmut l n) (l i s t p e rmu t b n))) .
+++ OK, pas sed 10000 t e s t s

The maximal number of tests (10000 here) can be adjusted by the user. We
iterate over different values for n thanks to the use of the combinator sized.

We can follow the same process to validate that permutations as natural func-
tions are obtained by applying the translation function list2fun on lists generated
by the previous generator gen permutl:
De f i n i t i o n fun permutb n l := i s p e rmu tb n (l i s t 2 f u n l) .
QuickCheck (s i z e d (fun n ⇒ f o r A l l (g en pe rmut l n) (fun permutb n))) .
+++ OK, pas sed 10000 t e s t s

We are now ready to test the conjectures formulated in Listing 1.2, following
the same methodology: (i) when a natural function representing a permutation
is to be generated, we use the list generator gen permutl; (ii) the logical property
under test is turned into its Boolean version composed with the translation
function list2fun. For example testing Lemma insert permut is obtained by
QuickCheck (s i z e d (fun n ⇒ f o r A l l (g en pe rmut l n)

(fun l ⇒ (f o r A l l a r b i t r a r yN a t
(fun i ⇒ l e t f := l i s t 2 f u n l i n

i s p e rmu tb (S n) (i n s e r t f u n n f i)))))) .

This QuickCheck command has the same structure as the previous ones except
that we use two generators, one for permutations and another one for arbitrary
natural numbers, named arbitraryNat. This command passed 10000 tests. If we
inject a fault in the definition of insert fun, e.g. replacing the result n by S n in
the Lt case, we get a counterexample, e.g. l = [0; 1] and i = 0 for n = 2.

5

2.3 Bounded Exhaustive Testing

For testing Coq specifications we also advocate in favor of bounded exhaustive
testing (BET) and its lightweight support with logic programs, for many reasons.
Firstly BET is especially well adapted to enumerative combinatorics, because
it corresponds to the familiar research activity of generation of combinatorial
objects in this domain. Secondly BET provides the author of a wrong lemma
with the smallest combinatorial structure revealing her error. Thirdly the combi-
natorial structures formalized in Coq as inductive structures with properties are
often easy to formalize in first-order logic with Prolog predicates. Fourthly the
Prolog backtracking mechanism often provides bounded exhaustive generators
for free. All these advantages are illustrated in this paper.

In order to make the validation tasks easier, we extend a Prolog validation
library created by Valerio Senni [27] and previously applied to the validation of
algorithms on words encoding rooted planar maps [14]. The library provides full
automation for symmetric bounded exhaustive comparison for increasing bound
values. It returns counterexamples whenever validation fails (so the debugging
process is guided by those counterexamples), and it collects statistics such as
generation time and memory consumption. We illustrate some of the validation
library features on the example of permutations. The reader is assumed to be
familiar with logic programming, or can otherwise read a short summary in [14].

We encode a function f on {0, . . . , n − 1} by the Prolog list of its images
[f(0), . . . ,f(n − 1)], its one-line notation. A list is linear if it has no duplicates.
Listing 1.4 shows a Prolog predicate line such that the formula line(L,N) (resp.
line(L,K,N)) holds iff L is a linear list of length N (resp. K) with elements in
{0, . . . , N-1}. We then say for short that L is a permutation list. In other words,
this characteristic predicate of permutations corresponds to (is permut n) in Coq.
The predicate is parameterized by the list length. This is not strictly required for
formal specification but useful for generation purposes. The formula in(K,I,J)
holds iff the integer K is in the interval [I..J].
line([],0,_).
line([Y|P],K,N) :- K > 0, Km1 is K-1, Nm1 is N-1, in(Y,0,Nm1),
line(P,Km1 ,N), \+ member(Y,P).

line(P,N) :- line(P,N,N).

Listing 1.4. Permutations in Prolog.

A clear advantage of logic programming is that the predicate line works in
two ways: as an acceptor of permutation lists, and as a generator enumerating
permutation lists of a given length. For a characteristic predicate p and a given
size n the query scheme

Q: p(L,n), write_coq(L), fail.
indeed allows the enumeration of all the accepted data of size n. The query
forces the construction of a first datum L of size n accepted by p, its output
on a stream, and the failure of the proof mechanism by using the built-in fail.
Since the proof fails, the backtracking mechanism recovers the last choice-point
(necessarily in p) and triggers the generation of a new datum, until there are
no more choice-points. Here the predicate write_coq is defined by the user to

6

output (as side-effect) a test case in Coq syntax. For instance, it can easily be
defined so that the query

line(L,3), write_coq(3), fail.

writes one Coq line such as
Eval compute in (is permutb 3 (list2fun [2;0;1])) .

for each permutation list of length 3. These lines constitute a test suite for the
Coq function is permutb, under the assumptions that the Coq function list2fun
and the Prolog program in Listing 1.4 are correct. The latter can be checked
in two ways: by visual inspection of the lists it generates, or by counting. For
counting, the library provides the predicate iterate so that the query

:- iterate(0,6,line).

outputs the numbers 1, 1, 2, 6, 24, 120 and 720 of distinct lists of length n from 0
to 6 accepted by the predicate line. We then easily recognize the first numbers
n! of permutations of length n.

We can now adapt the predicate write_coq of the query Q to the BET of
the lemmas in Listing 1.2. For Lemma insert permut the query evaluation can
generate in a Coq file all the Coq lines of the form

Eval compute in (is permutb (n + 1) (insert fun n (list2fun l) i)).

for n up to some bound, for 0 ≤ i ≤ n and for any list l (of length n) satisfying
line(l,n). Then we check that the compilation of the generated Coq file always
produces true. We proceed similarly with the lemma sum permut.

As mentioned before about the property is inj, it may be hard to write a
Boolean version of a property and to prove its correctness. In that case BET
sometimes remains possible, as illustrated by the following example. Suppose
that we find no implementation of the property is permut. Then we generate a
non-computational proof generalizing the following example
Goal i s p e rmu t 3 (l i s t 2 f u n (2 : : 0 : : 1 : : n i l)) . u n f o l d i s p e rmu t .
un f o l d l i s t 2 f u n . un f o l d l i s t 2 f u nX . s p l i t .
− un f o l d i s e n d o . i n t r o s x Hx . a s s e r t (x = 0 ∨ x = 1 ∨ x = 2) . omega .

f i r s t o r d e r ; s ub s t ; s imp l ; omega .
− un f o l d i s i n j . i n t r o s x y Hx Hy Hxy .

a s s e r t (x = 0 ∨ x = 1 ∨ x = 2) . omega .
a s s e r t (y = 0 ∨ y = 1 ∨ y = 2) . omega .
f i r s t o r d e r ; s ub s t ; s imp l ; omega . Qed .

The proof first splits into one subproof for the property is endo and one for
is inj. Each subproof works by enumeration of the possible values of x (and y for
injectivity). This approach holds whenever the property is universally quantified
with variables i of type nat upper bounded by some number b. Then the tactic
enumerates all the possible values of i. The assertion is proved by the tactic
omega which implements a decision procedure for linear arithmetics (the Omega
test [24]). The proof is then decomposed into cases by the firstorder tactic.
In the subproof for injectivity each case contains hypotheses x =... and y =...
assigning values to both variables. After replacement of x and y with their values
the Omega test ends the proof.

7

3 Case Study of Rooted Maps

It is now time to apply our test methodology to more challenging Coq theorems.
As case study we consider the combinatorial family of rooted maps, formalized
in Coq as transitive permutations (Sect. 3.1). Then we introduce two operations
that should construct a map from one or two smaller ones by edge addition
(Sect. 3.2). Both operations are defined as combinations of the two operations
of insertion and direct sum defined in Sect. 2. Finally we check by testing and
then prove formally that both operations preserve permutations and transitivity
(Sect. 3.3). Section 3.4 reports some testing and proving statistics.

3.1 Definitions and Formalization

A topological map is a cellular embedding of a connected graph (possibly with
loops and multiple edges) into a compact, oriented surface without bound-
ary [19]. A face of a topological map is a connected component of the com-
plement of the graph in the surface. By definition each face is homeomorphic to
an open disc. Figure 1(a) shows a topological map. It is drawn on the plane for
convenience, but should be considered as drawn on the sphere, so that the outer
face (the infinite white piece of the plane) becomes homeomorphic to an open
disk. We admit the existence of a map containing a single vertex, no edges, and
a single face, called the vertex map. Any other map contains at least one edge.

A half-edge, i.e. an edge equipped with one of its two possible orientations,
is usually called a dart. The other dart on the same edge is called the opposite
dart. The vertex at the source of a dart and the face to the right of a dart are
said to be incident to that dart. A loop is an edge whose two associated darts are
incident to the same vertex. We only consider labeled topological maps, whose
darts are identified by a unique label. In the drawings the label of a dart is
always written in its incident face and near its incident vertex. For instance, the
dart 11 in Fig. 1(a) is incident to the outer face, it is incident to the same vertex
as the darts 3 and 4, and its opposite dart is labeled by 10.

Edmonds [13] reduced topological maps to their combinatorial structure,
defined as follows. A (combinatorial) labeled map with n edges is a triple (D,R,L)

Fig. 1. Two representations of a rooted map.

8

where D is a finite set of even cardinality 2n, R is a permutation of D and L is
a fixed-point free involution of D such that the group 〈R,L〉 generated by R and
L acts transitively on D. This transitivity means that any element of D can be
obtained from any other element of D by finitely many applications of the permu-
tations R, L and their inverse. Figure 1(b) shows the combinatorial map (D,R,L)
corresponding to the topological map in Fig. 1(a). More generally the one-to-one
correspondence between topological and combinatorial labeled maps works as fol-
lows. An element of the set D is a dart of the topological map. The permutations
R and L respectively encode its vertices and edges. An orbit of the permutation R
lists the darts encountered when turning counterclockwise around a vertex. The
involution L exchanges each dart with its opposite on the same edge. For instance,
the orbit (5 0 6) of R encodes the leftmost vertex in Fig. 1(a) and the orbit (8 9) of
L encodes the loop in Fig. 1(a). The transitive action of the permutations R and
L corresponds to the connexity of the embedded graph.

A rooting of a map is essentially the choice of one of its darts, called its root.
The edge which includes the root dart is called the root edge. By convention,
the vertex map is also considered to be rooted. In the drawings the root dart is
indicated by an arrow, as the dart 11 in Fig. 1(a). Two labeled maps (D,R,L)
and (D′, R′, L′) are isomorphic if there is a bijection θ from D to D′ such that
R′ = θ−1R θ and L′ = θ−1L θ. This bijection is called a labeled map isomor-
phism. For a predefined root d ∈ D, two labeled maps (D,R,L) and (D,R′, L′)
with the same set of darts D are root-preserving isomorphic if they are isomor-
phic and their isomorphism preserves the root d. A rooted combinatorial map
(or map for short) is an equivalence class for the relation of root-preserving iso-
morphism between labeled maps. For the purpose of enumeration, the special
virtue of rooted maps is that they have no symmetries, in the sense that the
automorphism group of any rooted map is trivial.

In order to simplify the formalization and formal reasoning we refine the usual
definition of a combinatorial labeled map. In the usual definition of a labeled
map M = (D,R,L) the set of darts D is any finite set and the permutation L
is any fixed-point free involution on D. Here we fix D to {0, . . . , 2e − 1} for any
map with e edges. Since rooted maps are defined modulo conjugation, we also
fix L to the fixed-point free involution that swaps 2i and 2i+1 for all 0 ≤ i < e.
This involution is formalized in Coq by
De f i n i t i o n opp (n : nat) : nat := i f (even odd dec n) then (n+1) e l s e (n−1).

Such a map is said to be local. For instance, the combinatorial map in Fig. 1(b)
is local. A local map can be represented using only its vertex permutation R,
called its rotation. To root a local map, we always choose the largest element
(2e − 1) of D.

We now define the transitivity of any function f on some set D so that a
triple (D,R, opp) is a local map iff its rotation R is transitive. We say that there
is a step between two elements x and y of D by a function f iff f(x) = y,
f(y) = x or opp(x) = y. Two numbers x and y are connected by f iff there is a
path (i.e. a sequence of steps) from x to y. Finally, a function f is transitive on
D if any two elements of D are connected by f .

9

I n d u c t i v e connected n (f : nat → nat) : nat → nat → nat → Prop :=
| c0 : ∀ x y , x < n → y < n → x = y → connected n f 0 x y
| c f i r s t : ∀ l x y z , x < n → y < n → z < n →

f x = y ∨ f y = x ∨ opp x = y →
connected n f l y z → connected n f (S l) x z .

D e f i n i t i o n i s t r a n s i t i v e f u n (n : nat) (f : nat → nat) : Prop :=
∀ x , x < n → ∀ y , y < n → ∃ m, connected n f m x y .
D e f i n i t i o n t r a n s i t i v e f u n (n : nat) (f : nat → nat) : Prop :=
∀ y , y < n → ∀ x , x < y → ∃ m, connected n f m x y .
D e f i n i t i o n i s t r a n s i t i v e n (p : permut n) := t r a n s i t i v e f u n n (f c t p) .

Listing 1.5. Definition of transitivity.

Listing 1.5 shows a Coq formalization of transitivity on {0, . . . , n − 1} of a nat-
ural function. The connectivity property is specified by the inductive predicate
connected so that (connected n f l x y) holds iff the natural numbers x and y are
related by exactly l steps of f. The constructor cfirst states that a path between
x and y can be decomposed into its first step and its end, while the constructor
c0 expresses the trivial case where x = y. This definition is completed by three
lemmas (not shown here): one lemma decomposing a path into its beginning and
its last step and two lemmas respectively proving the symmetry and the transi-
tivity of the binary relation (connected n f l). The definitions is transitive fun and
transitive fun implement two versions of the property of transitivity of a func-
tion. Decompositions into cases in several proofs are dramatically shortened by
using the second definition transitive fun of transitivity considering only numbers
x strictly smaller than y. Using symmetry of the predicate connected we prove
that both definitions of transitivity are equivalent. The predicate is transitive
defines the transitivity of a permutation as the transitivity of its associated
function.

All the maps considered hereafter are local and are encoded by their transitive
rotation. A local map (D,R, opp) with e edges is formalized in Coq by a record
composed of its vertex permutation of length 2e (its rotation) and the property
that this permutation is transitive, as follows:
Record map (e : nat) : Set := {
r o t a t i o n : permut (2∗ e) ;
t r a n s i t i v e : i s t r a n s i t i v e r o t a t i o n } .

3.2 Map Construction Operations

An edge is an isthmus if both of its associated darts are incident to the same
face. A map is isthmic (resp. non-isthmic) if it is not the vertex map and its root
edge is (resp. not) an isthmus. We define here an operation cI constructing an
isthmic map from two maps and a family of operations ckN (indexed by a number
k) constructing a non-isthmic map from one map. Both operations proceed by
addition of one edge.

Isthmic Operation. The operation cI is illustrated by an example in Fig. 2.
It adds an isthmic edge between a local map M1 with e1 edges and a local map
M2 with e2 edges. The result is a map M = cI(M1,M2) with e1 + e2 + 1 edges.

10

Fig. 2. Example of construction of an isthmic map.

Let d1 = 2e1, d2 = 2e2 and d = 2e1 +2e2 +2 be the numbers of darts of M1, M2

and M . The additional edge is composed of the two darts d − 1 (= d1 + d2 + 1)
and d − 2 (= d1 + d2). The root of M is the dart d − 1, while its opposite dart
opp(d − 1) is d − 2.
De f i n i t i o n i s t hm i c f u n d1 (r1 : nat → nat) d2 (r2 : nat → nat) : nat → nat
:= match d1 wi th
| 0 ⇒ match d2 wi th

| 0 ⇒ i n s e r t f u n 1 (i n s e r t f u n 0 r2 0) 1
| S d2m1 ⇒ i n s e r t f u n (d2+1) (i n s e r t f u n d2 r2 d2m1) (d2+1)
end

| S d1m1 ⇒ match d2 wi th
| 0 ⇒ i n s e r t f u n (d1+1) (i n s e r t f u n d1 r1 d1) d1m1
| S d2m1 ⇒

i n s e r t f u n (d1+d2+1)
(i n s e r t f u n (d1+d2) (sum fun d1 r1 d2 r2) (d1m1+d2))

d1m1
end end .

Listing 1.6. Isthmic operation in Coq.

Listing 1.6 presents a Coq function isthmic fun implementing this operation
on two natural functions r1 and r2 representing the rotations R1 and R2 of M1

and M2. If R1 and R2 represent the vertex map (d1 = d2 = 0) then the resulting
map M is reduced to one non-loop edge and the resulting rotation R is the
permutation (0) (1). If M1 is the vertex map (d1 = 0) and M2 is not empty
(d2 �= 0) then the dart d − 2 (= d2) is added just before the dart d2 − 1 in its
orbit in R2 and then the dart d − 1 (= d2 + 1) is added as a fixed-point of R.
If M1 is not empty (d1 �= 0) and M2 is the vertex map (d2 = 0) then the dart
d − 2 (= d1) is added as a fixed-point, and then the dart d − 1 (= d1 + 1) is
added just before the dart d1 − 1 in its orbit. Otherwise, when M1 and M2 are
not the vertex map, the direct sum R′ = sum(R1, R2) is computed thanks to a
call to the function sum fun. Then the dart d1 + d2 is inserted just before the
dart d2 − 1+d1 in its orbit in R′, and finally the dart d1 +d2 +1 is inserted just
before the dart d1 − 1 in its orbit in the resulting permutation.

Non-isthmic Operation. For 0 ≤ k ≤ 2e the operation ckN adds a non-isthmic
edge in a local map M with e edges (represented by its rotation R of length
d = 2e) to obtain a local map M ′ with e + 1 edges represented by its rotation
R′ of length d′ = 2e + 2. The resulting permutation R′ is obtained by insertion

11

Fig. 3. Examples of construction of non-isthmic maps.

of the new root d + 1 and its opposite d in R. If M is the vertex map, the new
edge is added – as a loop – in a unique way to obtain M ′. Otherwise, there are
d+1 ways to add the new edge, distinguished by the value of k between 0 and d.
Figure 3 shows a map M with three edges (in Fig. 3(a)) and three maps obtained
by application of the operation ckN on M , for different values of k. Two of them
are planar maps whereas the last one in Fig. 3(d) is a toroidal map (a map on
a torus). When k = d − 1 and k = d the added edge is a loop. These cases are
respectively illustrated in Fig. 3(b) and (c). Note that the order of insertion of
darts is important: in Fig. 3(b), the dart d is inserted just before the dart d − 1
but then the dart d+1 is inserted just before the dart k = d−1, so that the dart
d finally is just before d + 1 in its orbit in the rotation R′ of M ′. In all the other
cases, the dart d is just before the dart d − 1 in R′. Figure 3(d) shows a case
0 ≤ k < d − 1 where the dart k is not incident to the same face as d − 1. In this
case, the new edge can only be added through a hole perfored in the surface.

Listing 1.7 presents a Coq function non isthmic fun implementing this oper-
ation on a natural function r representing the vertex permutation R of a local
map with d darts, when k is d or less. When d = 0 the rotation R represents the
vertex map, the new edge is a loop and the resulting function is the permutation
(0 1). Otherwise, the dart d is inserted just before the root d − 1 of M in its
orbit in R. Let us denote here by Q the resulting permutation. Then the dart
d + 1 is inserted just before the dart k in its orbit of Q.

12

De f i n i t i o n n o n i s t hm i c f u n (d : nat) (r : nat → nat) (k : nat)
(k l e d : k ≤ d) : nat → nat :=
match d wi th
| 0 ⇒ i n s e r t f u n 1 (i n s e r t f u n 0 r 0) 0
| S dm1 ⇒ i n s e r t f u n (S d) (i n s e r t f u n d r dm1) k
end .

Listing 1.7. Non-isthmic operation in Coq.

3.3 Validation and Proof

We have separately formalized combinatorial maps and two map constructions
as operations on natural functions. It remains to prove that each operation pre-
serves transitive permutations. We proceed in two steps. The first step consists
in checking and proving that both operations preserve permutations. The second
step concerns transitivity.

Preservation of Permutations. The proof that the construction operations
preserve permutations is decomposed into intermediate lemmas. For example,
one of them
Lemma i s t hm i c e ndo : ∀ d1 (r1 : permut d1) d2 (r2 : permut d2) ,
i s e n d o (S (S (d1 + d2))) (i s t hm i c f u n d1 (f c t r1) d2 (f c t r2)) .

states that the isthmic operation preserves endofunctions, and
Lemma n o n i s t hm i c i n j : ∀ d (r : permut d) k (k l e d : k ≤ d) ,
i s i n j (S (S d)) (n o n i s t hm i c f u n d (f c t r) k k l e d) .

states that the non-isthmic operation preserves injectivity.
As in Sect. 2.3, we validate by BET that the isthmic and non-isthmic oper-

ations preserve permutations. In the non-isthmic case, we meet a specificity of
testing with dependent types. The non-isthmic operation is indeed parameter-
ized by a proof. So the BET has to generate such a proof for each test input.
It can be automated only if all these proofs share a common pattern (notion of
uniform proof). In the present case we need a uniform proof of x ≤ y for any
pair of natural numbers x and y. Fortunately the Coq predicate ≤ is reflected
by the Boolean function leb :nat→nat→bool through the lemma
Lemma l e b c omp l e t e : ∀ m n , l e b m n = t r u e → m ≤ n .

so that the term (leb complete x y eq refl) is a uniform Coq proof of x ≤ y.
For the preservation of permutations by the non-isthmic operation the BET
generates test cases such as
Eva l compute i n (
l e t p r oo f := l e b c omp l e t e 2 3 e q r e f l
i n i s p e rmu tb 5 (n o n i s t hm i c f u n 3 (l i s t 2 f u n [0 ; 0 ; 0]) 2 p r oo f)) .

for x = 2 and y = 3. After this validation we have proved all the permutation
preservation lemmas.

Random testing also allows us to validate the preservation of permutations by
the isthmic operation. The following QuickCheck command randomly generates
a first natural number d1, a permutation list l1 of length d1 and then a second

13

number d2 together with a permutation list of length d2 and checks if the isthmic
operation builts a permutation from the corresponding natural functions.
QuickCheck (f o r A l l a r b i t r a r yN a t (fun d1 ⇒

f o r A l l (g en pe rmut l d1) (fun l 1 ⇒ l e t f 1 := l i s t 2 f u n l 1 i n
f o r A l l a r b i t r a r yN a t (fun d2 ⇒

f o r A l l (g en pe rmut l d2) (fun l 2 ⇒ l e t f 2 := l i s t 2 f u n l 2 i n
i s p e rmu tb (S (S (d1 + d2))) (i s t hm i c f u n d1 f1 d2 f2)))))) .

Unfortunately for non isthmic fun, this process is not applicable. We could follow
the same process: generate a natural number d, a permutation list of length d and
a number k less than d and so on. Thanks to the choose combinator provided by
QuickChick, it is easy to provide such a k. However, we are not able to produce
a proof term for k ≤ d which is an argument required by non isthmic fun because
QuickChick does not provide a correctness proof for choose. A solution could be
to rewrite non isthmic fun without this proof argument.

Preservation of Transitivity. We first validate and then demonstrate that
the isthmic and non-isthmic operations preserve transitive permutations and
therefore can be considered as operations on (local) maps. These properties are
formalized by the two theorems presented in Listing 1.8. Theorem isthmic trans
(resp. non isthmic trans) states that the isthmic (resp. non-isthmic) operation
preserves the transitivity when acting on two permutations (resp. one permuta-
tion) of even length.
Theorem i s t hm i c t r a n s : ∀ d1 (r1 : permut d1) d2 (r2 : permut d2) ,

even d1 → even d2 → i s t r a n s i t i v e r1 → i s t r a n s i t i v e r2 →
i s t r a n s i t i v e (i s t hm i c p e rmu t r1 r2) .

Theorem n o n i s t hm i c t r a n s : ∀ d (r : permut d) k (k l e d : k ≤ d) ,
even d → i s t r a n s i t i v e r → i s t r a n s i t i v e (non i s t hm i c pe rmut r k l e d) .

Listing 1.8. Preservation of transitivity by the isthmic and non-isthmic operations.

F i x p o i n t n l i s t n (f : nat → nat) : nat → l i s t nat := fun x ⇒ match n wi th
0 ⇒ (opp x) : : n i l

| S m ⇒ el imDup ((n l i s t m f x) ++
(i f e q na t d e c (f m) x then m: : n i l e l s e n i l) ++
(i f e q na t d e c x m then (f m) : : n i l e l s e n i l))

end .
F i x p o i n t d f s (g : nat → l i s t nat) (n : nat) (v : l i s t nat) (x : nat) :=
i f (i n d e c eq na t d e c x v) then v e l s e match n wi th

0 ⇒ v
| S n ’ ⇒ f o l d l e f t (d f s g n ’) (g x) (x : : v)
end .
D e f i n i t i o n i s t r a n s i t i v e f u n b n f := i f
e q na t d e c n (l e n g t h (d f s (n l i s t n f) n n i l 0)) then t r u e e l s e f a l s e .

Listing 1.9. Boolean function for transitivity.

For testing we propose in Listing 1.9 an implementation of the transitivity
predicate defined in Listing 1.5. It is based on a depth-first search in the graph
where a directed edge goes from x to y if f(x) = y, f(y) = x or opp(x) = y,
for any two vertices x and y in {0, . . . , n − 1}. The call (nlistn f x) returns the
list of neighbors of x in this graph. The auxiliary function elimDup eliminates
duplicates in a list. The depth-first search is implemented by the function dfs

14

inspired by the function with the same name in [21]. The function fold left is
such that (fold left f [x1;..;xk] a) computes f (.. (f (f a x1) x2) ..) xk.

Proving the soundness of this implementation wrt. its specification in
Listing 1.5 is not an easy task and is therefore left as a future work. The sound-
ness of is transitive funb can however be checked, for instance by counting the
first numbers of transitive permutations. The number t(e) of transitive permu-
tations of length 2e is indeed equal to the number of rooted maps, multiplied
by the number 2e−1(e − 1)! of isomorphic local labeled maps in a rooted map
if e > 0 (Remember that a rooted map is an equivalence class of isomorphic
labeled maps, for root-preserving isomorphisms). The first numbers of rooted
maps and many references about them can be found in [29].

Let d = 2e be an even natural Coq number and let l be a Coq list of all the
permutation lists of length d. The Coq code
De f i n i t i o n i s t r a n s i t i v e l i s t b d l := i s t r a n s i t i v e f u n b d (l i s t 2 f u n l) .
Eva l compute i n (l e n g t h (f i l t e r (i s t r a n s i t i v e l i s t b d) l) .

computes the length of the list obtained by filtering the transitive permutation
lists. Thus it should compute t(e). The list l is generated by the Prolog-based
BET presented in Sect. 2. This validation is feasible only for e = 0, 1, 2, 3. It
correctly counts t(e) = 1, 2, 20, 592 after examining (2e)! permutations. For e = 4
the Coq compilation runs out of memory. After this validation by counting, we
use the Boolean function is transitive funb to test the theorems in Listing 1.8.

The isthmic operation combines insertion and direct sum. One could think
that it preserves transitivity because these two operations also do. In fact, it is
not so simple. In particular, the direct sum operation does not preserve transi-
tivity. It can be understood by coming back to its definition. But it can also be
quickly invalidated by BET on an executable version of the wrong property:
Theorem s um t r a n s i t i v e : ∀ d1 r1 d2 r2 , even d1 → even d2 →
i s p e rmu t d1 r1 → i s t r a n s i t i v e f u n d1 r1 →
i s p e rmu t d2 r2 → i s t r a n s i t i v e f u n d2 r2 →
i s t r a n s i t i v e f u n (d1 + d2) (sum fun d1 r1 d2 r2) .

The BET provides us with the smallest counterexample where r1 and r2 are the
function (list2fun [1; 0]) encoding the transposition exchanging 0 and 1.

Random testing also allows us to invalidate this conjecture and obtain some
counterexamples. For some executions, we retrieve exactly the previous smallest
one. As a process for generating transitive permutations is lacking, we generate
permutations as functions (as previously) and filter those which are transitive
using the Boolean predicate is transitive funb. The following QuickCheck com-
mand does the job. If f1 (or f2) is not transitive, the test case is discarded (it is
done by the combinator written as =⇒).
QuickCheck (f o r A l l gen even (fun d1 ⇒

f o r A l l (g en pe rmut l d1) (fun l 1 ⇒ l e t f 1 := l i s t 2 f u n l 1 i n
i s t r a n s i t i v e f u n b d1 f1=⇒

f o r A l l gen even (fun d2 ⇒
f o r A l l (g en pe rmut l d2) (fun l 2 ⇒ l e t f 2 := l i s t 2 f u n l 2 i n

i s t r a n s i t i v e f u n b d2 f2=⇒
i s t r a n s i t i v e f u n b (d1 + d2) (sum fun d1 f1 d2 f2)))))) .

2 [0 ; 1] 4 [2 ; 0 ; 1 ; 3] ∗∗∗ F a i l e d ! A f t e r 3 t e s t s and 0 s h r i n k s

15

Each transitivity preservation proof reduces to the preservation of connec-
tivity between any two numbers (darts) x and y with x < y. For instance the
most complex case in the proof of Theorem isthmic trans is 0 ≤ x < d1 (x ∈ R1)
and d1 ≤ y < d1 + d2 (y ∈ R2). Its proof constructs a path between x and y by
concatenation of a path from the dart x to the root d1 − 1 of R1, a step between
d1 − 1 and the root d − 1 = d1 + d2 + 1, a step between the root d − 1 and its
opposite d− 2 = d1 +d2 through the fixed-point free involution opp, a step from
d − 2 to the root d2 − 1 of R2, relabelled d1 + d2 − 1, and finally a path from
that dart d1 + d2 − 1 to y in the relabelling of R2.

3.4 Some Metrics

The case study is composed of 80 definitions, 185 lemmas and 2 theorems,
for a total of 5580 lines of Coq code. Among them around 280 lines are ded-
icated to validation. These lines contain 23 definitions and 4 lemmas. They
include Boolean versions of some logical definitions used by both random test-
ing and BET, e.g. the Boolean function is permutb, their corresponding correct-
ness proofs, and the generators required by QuickChick. The Prolog code for
BET is composed of 44 lines added to the validation library and 860 lines whose
execution generates test suites for the case study.

All the validations by counting and BET presented in the paper are executed
with lists up to length 4, in less that 21 s on a PC Intel Core i5-2400 3.10 GHz
× 4 under Linux Ubuntu 14.04 (the time for test generation is neglictible). The
QuickChick random tests (10000 test cases for each validation step except for the
wrong conjecture) are generated and executed in less than 54 s. These are rea-
sonable times for thousands of automatically generated tests. For a comparison
the Coq compilation time is around 20 s.

4 Related Work

Several techniques and tools help strengthening the trust in programs manipulat-
ing structured data. Randomized property-based testing (RPBT) consists in ran-
dom generation of test data to validate given assertions about programs. RPBT
has gained much popularity since the appearance of QuickCheck for Haskell [7],
followed by e.g. Quickcheck for Isabelle [5]. In RPBT a random data generator
can be defined by filtering the output of another one, in a similar way as an
exhaustive generator can be defined by filtering another exhaustive generator in
BET. A more generic approach is type-targeted testing [26], wherein types are
converted into queries to SMT solvers whose answers provide counterexamples.
SmallCheck and Lazy SmallCheck [25] are two Haskell libraries for property-
based testing, allowing an automatic exhaustive testing for small values. In Coq,
as far as we know, there is no equivalent to the Haskell library SmallCheck.

The theory of combinatorial maps was developed from the early 1970’s.
Tutte [30,31] proposed the most advanced work in this direction, develop-
ing an axiomatic theory of combinatorial maps without referencing topology.

16

More recently Lazarus [20] conducted a computational approach on graphs and
surfaces based on combinatorial maps. He notably proposed a formal defini-
tion of the basic operation of edge deletion on combinatorial labeled maps. An
advanced formalization related to maps is that of combinatorial hypermaps to
state and prove the Four Colour Theorem in the Coq system [15,16]. Note that
combinatorial hypermaps generalize combinatorial maps by allowing an arbi-
trary permutation L (i.e., not necessarily a fixed-point free involution). This
formalization does not explicitly state that L and R are bijective, but adopt the
alternative definition of a hypermap as a triple of endofunctions that compose
to the identity [15, p. 19]. It would be interesting to investigate this idea with
local maps rather than hypermaps, and to determine to what extent it could
simplify our formalization. Some formal proofs about combinatorial maps or
variants have already been carried out in the domain of computational geom-
etry. Dufourd et al. have developed a large Coq library specifying hypermaps
used to prove some classical results such as Euler formula for polyhedra [10],
Jordan curve theorem [11], and also some algorithms such as convex hull [4]
and image segmentation [9]. In these papers, a combinatorial map or hypermap
is represented by an inductive type with some constraints. Its constructors are
related to the insertion of a dart or the links of two darts. This representation
differs from ours that relies on permutations. In [8], Dubois and Mota proposed
a formalization of generalized maps using the B formalism, very close to the
mathematical presentation with permutations and involutions. Here we simplify
the structure by fixing the involution.

5 Conclusion

We have shown how to use random testing and bounded exhaustive testing to
validate Coq definitions and theorems. The bounded exhaustive testing is based
on logical specifications. It is assisted by a validation library in Prolog. We
have applied these methods on two case studies. The second case study is also
an original formalization of rooted maps with an interactive theorem prover.
It directly encodes the combinatorial definition of a rooted map (as a transitive
pair of injective endofunctions) and two basic operations for constructing them
from smaller ones. The properties that these operations preserve permutations
and transitivity are formalized, validated by random and bounded exhaustive
testing, and then proved with some interactivity.

These two case studies about combinatorial structures show that logic pro-
gramming features make Prolog an effective tool for prototyping and validating
this kind of Coq code. Our focus is more on the design and validation method-
ology than on the resulting algorithms. The present work is intended to serve as
a methodological guideline for further studies, in particular with other families
of combinatorial objects.

Acknowledgments. The authors warmly thank the anonymous referees for sugges-
tions, Noam Zeilberger for fruitful discussions and Valerio Senni for advice about his
validation library.

17

References

1. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu,
Z. (eds.) Software Engineering and Formal Methods (SEFM 2004), pp. 230–239.
IEEE Computer Society (2004)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, New York (2004)

3. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

4. Brun, C., Dufourd, J., Magaud, N.: Designing and proving correct a convex hull
algorithm with hypermaps in Coq. Comput. Geom. 45(8), 436–457 (2012)

5. Bulwahn, L.: The new quickcheck for Isabelle - Random, exhaustive and symbolic
testing under one roof. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol.
7679, pp. 92–108. Springer, Heidelberg (2012)

6. Carlier, M., Dubois, C., Gotlieb, A.: Constraint Reasoning in FOCALTEST. In:
International Conference on Software and Data Technologies (ICSOFT 2010),
Athens, July 2010

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, SIGPLAN Not., vol. 35, pp. 268–279. ACM,
New York (2000)

8. Dubois, C., Mota, J.M.: Geometric modeling with B: formal specification of gen-
eralized maps. J. Sci. Pract. Comput. 1(2), 9–24 (2007)

9. Dufourd, J.: Design and formal proof of a new optimal image segmentation program
with hypermaps. Pattern Recogn. 40(11), 2974–2993 (2007)

10. Dufourd, J.: Polyhedra genus theorem and Euler formula: a hypermap-formalized
intuitionistic proof. Theor. Comput. Sci. 403(2–3), 133–159 (2008)

11. Dufourd, J.: An intuitionistic proof of a discrete form of the Jordan curve theorem
formalized in Coq with combinatorial hypermaps. J. Autom. Reasoning 43(1),
19–51 (2009)

12. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in dependent
type theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp.
188–203. Springer, Heidelberg (2003)

13. Edmonds, J.R.: A combinatorial representation for oriented polyhedral surfaces.
Notices Amer. Math. Soc. 7, 646 (1960)

14. Giorgetti, A., Senni, V.: Specification and Validation of Algorithms Generating
Planar Lehman Words, June 2012. https://hal.inria.fr/hal-00753008

15. Gonthier, G.: A computer checked proof of the Four Colour Theorem (2005).
http://research.microsoft.com/gonthier/4colproof.pdf

16. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg
(2008)

17. Hritcu, C., Lampropoulos, L., Dénès, M., Paraskevopoulou, Z.: Randomized
property-based testing plugin for Coq. https://github.com/QuickChick

18. Kitaev, S.: Patterns in Permutations and Words. Springer, New York (2011)
19. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Springer,

New York (2004)

18

20. Lazarus, F.: Combinatorial graphs and surfaces from the computational and topo-
logical viewpoint followed by some notes on the isometric embedding of the
square flat torus (2014). http://www.gipsa-lab.grenoble-inp.fr/∼francis.lazarus/
Documents/hdr-Lazarus.pdf

21. Mathematical Components team: Library mathcomp.ssreflect.fingraph. http://
math-comp.github.io/math-comp/htmldoc/mathcomp.ssreflect.fingraph.html

22. Owre, S.: Random testing in PVS. In: Workshop on Automated Formal Methods
(AFM) (2006)

23. Paraskevopoulou, Z., Hritcu, C., Dénès, M., Lampropoulos, L., Pierce, B.C.: Foun-
dational property-based testing. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS,
vol. 9236, pp. 325–343. Springer, Heidelberg (2015)

24. Pugh, W.: The Omega test: A fast and practical integer programming algorithm
for dependence analysis. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, Supercomputing 1991, pp. 4–13. ACM, New York (1991)

25. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: auto-
matic exhaustive testing for small values. In: Proceedings of the 1st ACM SIG-
PLAN Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September
2008, pp. 37–48 (2008). http://doi.acm.org/10.1145/1411286.1411292

26. Seidel, E.L., Vazou, N., Jhala, R.: Type targeted testing. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 812–836. Springer, Heidelberg (2015)

27. Senni, V.: Validation library. https://subversion.assembla.com/svn/validation/
28. SWI: Prolog. http://www.swi-prolog.org/
29. The OEIS Foundation Inc: The On-Line Encyclopedia of Integer Sequences.

https://oeis.org/A000698
30. Tutte, W.T.: What is a map? In: Harary, F. (ed.) New Directions in the Theory

of Graphs: Proceedings, pp. 309–325. Academic Press, New York (1973)
31. Tutte, W.T.: Combinatorial oriented maps. Canad. J. Math. 31(5), 986–1004

(1979)

19

	Tests and Proofs for Enumerative Combinatorics
	1 Introduction
	2 Testing Coq Conjectures
	2.1 Permutations in Coq
	2.2 Random Testing
	2.3 Bounded Exhaustive Testing

	3 Case Study of Rooted Maps
	3.1 Definitions and Formalization
	3.2 Map Construction Operations
	3.3 Validation and Proof
	3.4 Some Metrics

	4 Related Work
	5 Conclusion
	References

