
HAL Id: hal-01851857
https://hal.science/hal-01851857v1

Submitted on 31 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reflexive and Automated Approach to Syntactic
Pattern Matching in Code Transformations

Jason Lecerf, John Brant, Thierry Goubier, Stéphane Ducasse

To cite this version:
Jason Lecerf, John Brant, Thierry Goubier, Stéphane Ducasse. A Reflexive and Automated Ap-
proach to Syntactic Pattern Matching in Code Transformations. ICSME 2018 - 34th IEEE Interna-
tional Conference on Software Maintenance and Evolution, Sep 2018, Madrid, Spain. �10.1109/IC-
SME.2018.00052�. �hal-01851857�

https://hal.science/hal-01851857v1
https://hal.archives-ouvertes.fr

A Reflexive and Automated Approach to Syntactic
Pattern Matching in Code Transformations

Jason Lecerf∗, John Brant†, Thierry Goubier∗ and Stéphane Ducasse‡
∗CEA-LIST

Gif-sur-Yvette, France
Email: jason.lecerf@cea.fr, thierry.goubier@cea.fr

†RefactoryWorkers
USA

Email: brant@refactoryworkers.com
‡RMoD, INRIA Lille Nord Europe

Villeneuve d’Ascq, France
Email: stephane.ducasse@inria.fr

Abstract—Empowering software engineers often requires to let
them write code transformations. However existing automated
or tool-supported approaches force developers to have a detailed
knowledge of the internal representation of the underlying tool.
While this knowledge is time consuming to master, the syntax
of the language, on the other hand, is already well known to
developers and can serve as a strong foundation for pattern
matching. Pattern languages with metavariables (that is variables
holding abstract syntax subtrees once the pattern has been
matched) have been used to help programmers define program
transformations at the language syntax level. The question
raised is then the engineering cost of metavariable support. Our
contribution is to show that, with a GLR parser, such patterns
with metavariables can be supported by using a form of runtime
reflexivity on the parser internal structures. This approach allows
one to directly implement such patterns on any parser generated
by a parser generation framework, without asking the pattern
writer to learn the AST structure and node types. As a use
case for that approach we describe the implementation built on
top of the SmaCC (Smalltalk Compiler Compiler) GLR parser
generator framework. This approach has been used in production
for source code transformations on a large scale. We will express
perspectives to adapt this approach to other types of parsing
technologies.

Index Terms—syntactic patterns; pattern matching; code tem-
plates; GLR parsing; parser generation

I. INTRODUCTION

Developers often face the need to perform code transfor-
mations over a large body of code [1], [2], activity often
termed refactoring a code base. Such code transformations are
tedious and error-prone to perform when done manually. Semi-
automated code transformations based on pattern matching
facilities is becoming more and more mainstream as an answer
to that issue, and have proven their effectiveness in real-life
code bases [3], to the point of being integrated inside inte-
grated development environments. Those code transformations
are based on writing patterns of code and their associated
transformations. A transformation engine parses the pattern,
finds all its occurrences in the source code and transforms

0Accepted at ICSME 2018

each occurrence using the transformation rule. With a simple
pattern, this feature enables developers to rewrite and refactor
large portions of their source code. That being said, writing
these patterns requires a large amount of language knowledge:
the internal structures (for example, see Listing 1) of the
transformation engine for this language, that we will call
an intermediate representation (IR). Most developers do not
have the time and resources to become experts in parsing
and in intermediate representations, making it really hard
for them to apprehend pattern matching. As a result, only
experts write patterns, and package them as extensions inside
integrated development environments for developers to use,
in the Refactoring Browser (RB) [4], [5], Eclipse, IntelliJ,
Photran, and many more. And those environments, even with
decades of existence such as RB, see very little user creation
of new transformation patterns [6].

The vast majority of the pattern matching engines exposes
their intermediate representations to the pattern writer [7],
[8], [9], [10], [11] He needs to know what kind of IR
construct he wants to match beforehand (ex. an Expression,
a QualifiedFunctionDeclaration, . . .).

As an example, to write the pattern in Listing 1 the user
needs to know that IFSTATEMENTNODE is the name
of the IR element to match. Some more knowledge about the
attributes of this node are also required: CONDITION and
BLOCK. Both are a burden to learn for the user.

1 ifPattern : ˆ(IFSTATEMENTNODE CONDITION=.
BLOCK=.

2 {Host code distinguishing single
3 statement vs multiple statements
4 conditionals}) ;

Listing 1. Explicit conditional statement pattern.

Additionnaly, the same example should perform the match-
ing of a one-statement conditional as opposed to a multiple-
statements conditional. However, explicit pattern matching
is too generic to handle this syntactic difference. Handling

similar syntactic differences is non trivial in IR-based patterns,
cannot be automated and requires non-standard intervention
using host code.

On the other hand, syntactic patterns such as the one in
Listing 2 let the user write patterns as he writes his program.

1 if (‘condition‘)
2 ‘anyStatement‘ ;

Listing 2. Syntactic conditional statement pattern.

Here condition and anyStatement are metavariables that
will match any valid IR construct (not all IR constructs of the
language) and the rest of the pattern is the standard syntax
of the language to match (here Java). To forgo the IR re-
quirement, syntactic patterns have been introduced (sometimes
named ”code templates”) to build upon the syntax of languages
instead of their IRs [12], [13], [14].

Since syntactic patterns rely on syntax, no IR in-
formation is directly given by the user (unlike the
IFSTATEMENTNODE in Listing 1) to the pattern
matching engine, the IR element of the pattern needs to be
extracted from the syntactic pattern thanks to an inference
engine. In conjunction with an inference engine, the matched
IR element associated to the pattern can be retrieved and used
for further analysis, rewriting, refactoring. . .

The challenge tackled in this paper is then how to produce a
pattern matching engine independent of the matched language
but that accounts for the syntactic differences in said language.

Contribution: Our solution, Reflexive Parsing, offers a pat-
tern matching engine working on syntactic patterns in which
metavariables can appear at any position. Reflexive Parsing
makes use of GLR parsing to build a node inference engine
which validates the completeness of the pattern matches, to
get all the possible matches of syntactic patterns.

This approach only requires:
• LR parser generation,
• IR1 generation by the parser,
• a token to identify metavariables, and
• a forking mechanism for the parser.
The approach is integrated in a parser generation framework,

making adaptation to a new language close to effortless.
Indeed, activating the pattern matching engine for a new
language only requires to add a single line to the language
grammar (compared to a standard LR grammar).

The main contributions of this paper are the following:
• A description of node typing in intermediate representa-

tions and its use in pattern matching,
• A description of the main mechanisms of Reflexive

Parsing,
• A discussion on how Reflexive Parsing can be general-

ized outside of its current implementation and parsing
technology.

1In our case, the IR is an Abstract Syntax Tree (AST) thus we refer it as
such

Section II describes the problem with the IR-based pattern
matching techniques. Section III presents the core mechanisms
of reflexive parsing through an example. Section IV details
these core mechanisms and the algorithms to implement them.
Section V introduces their open-source implementation and
industrial use. Section VI discusses the limitations of the
reflexive parsing approach. Section VII explains the position
of our work in the state of the art. Section VIII concludes this
paper and opens perspectives.

II. INTERMEDIATE REPRESENTATIONS AND PATTERN
MATCHING

A. Pattern matching

Pattern matching is a key component on which are built
rewrite engines [15], refactoring engines [4], [16] (with
support for pre- and post-conditions), powerful search en-
gines [14], clone detection engine [17]. . .

Pattern matching is all about feeding a pattern and a
program to an engine and getting in return all the possible
occurrences of the pattern in the program in the form of an
element of the IR per occurrence. A pattern matching engine
is simply a search engine returning elements of said source
code IR.

There are many words used to describe the elements of
internal representation of programs. The two most prominent
ones, AST nodes and terms, are named based on the rationale
behind the tool that uses them. Since our approach focuses
on parsing, we decide to use the term ”node” to further
describe elements of the IR. In this context, an AST can
represent either the representation of a program or pattern
occurrence. In ASTs, nodes are associated to their type,
FunctionDeclaration or Statement are examples of such
types. Since occurrences of a pattern result in ASTs, their
nodes are typed in the same way.

B. Explicit typing

Node types in patterns can exist in two ways, explicit
or inferred. Most current pattern matching techniques only
provide patterns with explicit typing. Explicit typing requires
the user to write the name of the IR element (its type) he
wants to match in the pattern.

a) Example: As previous shown by Listing 1, dealing
with IR in patterns is cumbersome. In the next version of
ANTLR (ANTLRv4), XPath [11] replaced the custom tree
matching as the prominent pattern matching tool. XPath has
the same exact problem of exposing internal IR. The patterns
in Listing 3 show different contexts in which ID can be
encountered. 2.

1 //ID
2 //expr/primary/ID
3 //body//ID

Listing 3. Example of patterns in XPath

2This example was taken from ANTLRv4’s githubhttps://github.com/antlr/
antlr4/blob/4.6/doc/tree-matching.md

If the developer only wants variable names in his expres-
sions, he needs to know to match ID, but it also means that the
developer should know that an ID is a subnode of primary
which is a subnode of expr node. The user should not need
to learn a complicated model to match source code.

b) Limitations: Patterns are inherently hard to write be-
cause they require knowledge of the language IR. For example,
the user may want to search for all the ForLoops, or all
the QualifiedNames, . . . Basically he already needs to know
what construct he is searching for. The typing information
needs to be clearly expressed in the pattern. The more complex
the language, the more constructs the user has to learn.

TABLE I
IR SIZE FOR POPULAR LANGUAGES

Language Java C++ C# Delphi JS
Nodes 114 157 149 141 78

Table I shows IR sizes for some mainstream languages taken
from Eclipse’s JDT plugin (Java), SmaCC (Java, C#, Delphi,
JS) and IPR (C++). IPR [18] is a C++ representation designed
specifically to be compact with as little node duplication as
possible. Yet it is still composed of over 150 node types. All
these languages have sizable IRs that can be tedious to learn
for a non expert.

Furthermore, this is dependent on the compiler internal
representation. The problem can be much worse for languages
similar to COBOL where the grammar is reverse engineered
from existing code bases [19] (more than 300 production
rules).

c) Unified representation: Solutions for unified repre-
sentations such as OMG’s AST Metamodel (ASTM) [20]
could ease the burden by having a common representation
for (almost) all languages. The concepts in the metamodel
corresponds to core nodes available in most programming
languages, such as the notion of expressions, statements,
etc. . . arranged in three groups: Generic ASTM, Language-
specific ASTM, and Proprietary ASTM, to be able to cover
all languages. The Generic ASTM is composed of 189 unique
types, present in most languages. This part of the ASTM is
not exhaustive and must be completed with node types from
the Language-specific and Proprietary ASTMs. These unified
representations end up being the union of all the nodes for all
the languages, making the representation even more complex.

d) Island parsing: Island parsing can be a solution to
reduce the size of the IR, by allowing one to write simpler
parsers restricted to the subset of the language one wants to
work on, instead of parsing the entire language [21]. This
approach decreases the cost of writing tools [22] as a tiny part
of the language is parsed but at the cost of automation, because
it cannot be generalized to other languages. This is significant
for legacy and proprietary languages such as Mantis, NSDK,
4D where the grammar is often not public or does not even
exist [23], [21]. However, island parsing may result in multiple
different representations for each parser that is written, and
thus have a hard time with genericity.

C. Inferred typing

Inferred typing refers to approaches where patterns describe
the syntax of what should be matched instead of its node type.
The system, in return, must infer the type of the node from
the syntax.

To express inferred typing, two main approaches have been
taken: query-by-example [24] and syntactic patterns [25], [14].

Query-by-example [24] consists in providing an example
that will be parsed and the engine will retrieve every occur-
rence that is significantly similar to the example. The major
drawback of this approach is its heuristic nature: it cannot
grasp every single occurrence. As an example, feeding a + 5
to a query-by-example engine will possibly yield all additions,
but also all other binary expressions or even only additions
between an identifier and a literal depending on the AST and
the similarity heuristic of the engine. However, this approach
is based on a heuristic and as such, cannot be exact, false
positives and negatives are a real threat.

Syntactic patterns [25], [14], [26], on the other hand, are
written in the language to match. They are snippets of code,
but with a major difference, metavariables can be inserted
inside. Metavariables will match any element of the IR that
could appear at that position (effectively being an enhanced
wildcard). So, syntactic patterns look like a normal pieces of
code which do not require knowledge of the IR. To illustrate,
the syntactic pattern ‘i‘ + ‘i‘ should match any addition
of a term with itself. In most ASTs, this means ‘i‘ will
be an Expression, a Number, an Identifier, . . . Syntactic
patterns can be used in the same way explicit patterns would:
in source code search engines, transformation tools, . . .

Syntactic patterns are fit to be used in the same contexts as
explicit patterns, but as of now, some key issues make it still
hard to automate and extend from a single language tool to a
multiple languages one. We will describe these problems next
and provide solutions in Section IV.

D. Syntactic pattern problems

a) Starting point problem: A pattern will in the end
be associated with one or more AST node types. To get
a specific type in a parser, you need to start at a specific
point in the grammar. The usual starting point of the grammar
will yield the root node of the AST, but other starting points
will yield different node types. The first challenge is how to
automatically infer all of the valid starting states to get all
the possible node types of a given pattern. The solution to
this problem must be language-independent and not require
manual specification.

b) Complete match problem: The problem is similar for
metavariables: instead of all the possible types for the pattern,
we only want the possible types for the metavariable in the
pattern. Since the node types can appear only at specific
positions, the engine must be capable of only selecting the
ones that are valid in regard to the grammar of the language.

1 { ‘x‘ }

Listing 4. Example of patterns in XPath

As an example, in Listing 4, the ‘x‘ metavariable
inside Java curly braces can refer to a Statement, an
AttributeDeclaration, a MethodDeclaration depending on
the type of block it is in. The set of node types, a metavariable
can have, must be complete and exact. The mechanism that
makes it possible should not rely on any language-specific
design.

c) Hybrid approach: While not a mandatory require-
ment, the engine should support an explicit-syntactic hybrid.
Syntactic patterns are written in the matched language but
this is not always desirable (mostly for experts). For example,
in C, to rewrite all K&R C function declarations into ANSI
C function declarations, syntactic patterns are really useful
since they distinguish between the two syntaxes. However
if the user wants to get all function declarations in an old
program (that may contain both K&R C and ANSI C dec-
larations), he is better off using explicit typing to match the
node FunctionDeclarationi (this is valid only for experts).
An hybrid approach should be developed to explicitly type
individual patterns and metavariables.

III. THE REFLEXIVE PARSING APPROACH: AN EXAMPLE

A. Pattern matching using Reflexive Parsing in parser gener-
ators

A key component of our approach is the use of a parser gen-
erator to help us solve the three issues above. Parser generators
give us access to type information from the grammar (through
semantic actions) and to the parser generation process. Having
both enables us to generate parsers fully compatible with our
pattern matching engine with almost no overhead. And our
approach, Reflexive Parsing, takes advantage of both properties
to build a node inferring system on patterns from a GLR [27]
parser generator. This system solves the starting state problem
and the complete match problem by a clever use of the GLR
parser forking mechanisms. The pattern matching engine also
supports an explicit-inferred hybrid approach that lets the user
specify explicitely individual metavariable or pattern types.

In the following sections, we describe (first through an
example) how a GLR parser aware of its own parse tables
help build a powerful pattern matcher that infer node types
from syntactic patterns.

To introduce our approach, we first present an example of
syntactic pattern to hint at what it can provide concretely and
what it looks like. Then we give a general explanation of how
the pattern matching engine work. For details, please refer to
Section IV.

B. An example

1 ‘any‘ ˆ 2
2 >>>
3 ‘any‘ * ‘any‘

Listing 5. Power of 2 syntactic pattern in R

In this example (Listing 5), the syntactic pattern is used to
match all the possible calls to the power-of-2 operator in the R

programming language to transform it in a multiplication. Such
a transformation is a common trick to improve performance
of programs at low cost.

However it is not as trivial as it seems to be. In R, literally
anything can be elevated to the power of 2 and still be valid
in the internal representation (expressions, function calls, and
even function definitions or for loops) 3. Listing all the items
that can appear as a power-of-2 operand is best handed to the
system to infer.

This syntactic pattern can be expressed this way because
the parser has acccess to both the metavariable token (in
backquotes) and its own parse tables.

C. General approach

Fig. 1. General pipeline of the pattern matching engine

Figure 1 presents the main components making syntactic
patterns possible. The gist of the reflexive parsing approach is
to parse the pattern. Whereas the program parsing yields an
AST, the pattern parsing is more complex and yields a forest
of ASTs corresponding to each valid match.

The GLR parse starts and when it encounters a metavariable,
the parser forks into multiple subparsers, one for each possible
type that can appear at this specific point during the parse.
The parser does it by reflexively inspecting its own LR parse
tables. In the automata, it looks at all the available transitions
from the current state. If a subparser fails to parse, it means the
configuration is invalid and it will be discarded. The subparsers
that survive at the end of the parse will each generate one AST,
each AST having a specific configuration of metavariable-type
pair. Each pattern AST in the forest is confronted against the
program AST. For the matching subtrees, each metavariable
is bound to the concrete AST node (meaning subtree) it
represents.

3As visible in the R parser in the R source code at: https://svn.r-project.
org/R/trunk/src/main/gram.y

That way, using a syntactic pattern with metavariable, the
system can grasp all the possible matches and the users need
no prior knowledge of the intermediate representation of the
engine.

Activating pattern matching for a new language is easy if a
LR grammar is available. It consists of only a single line of
code to add the metavariable token into the grammar, so that
the parser recognizes it. Then syntactic patterns can be used
on the new language.

Now we will describe in details each important component
of the reflexive parsing approach to pattern matching.

IV. THE REFLEXIVE PARSING APPROACH: THE
MECHANICS

Taking the parser generation route offers us unique oppor-
tunities. First, all the syntax information about the language is
present in the generated parser. Second, the type information is
also retained from both syntactic and semantic actions. Third,
we can modify the generation process to introduce our type
inference system for any parser with a valid grammar.

A. Table-driven parsing

LR parsers are table-driven parsers, which are in fact
automata. The parsing tables represent the states in which the
program can be in. Each transition is fired upon receiving a
specific token. If a token is not recognized by a state, the parse
fails. Upon receiving a valid token, the parser can shift to a
new state or reduce the current state. On shift, the current token
is consumed and the automata pushes a new state on the state
stack. On reduce, the n-th last states are popped from the state
stack, and a new state is pushed on the state stack. Once the
end of the file is reached and the first state has been reduced,
the parse is successful.

Such simplicity makes LR parsers great candidates for
generation. The other factor is that the tables are derived
from the grammar. Lex & Yacc [28] is an early example of a
generator producing a table-based scanner-parser combination.
In a parser generation framework, AST can be generated as
well from semantic actions in the grammar. In table-based
parsers, it is translated by a node stack and its manipulation.
On shift, the current token is pushed on the node stack. On
reduce, the n-th last stack elements are popped from the
stack and a new AST node is pushed with these elements
as subnodes.

Since all the grammar information is distilled into the parse
tables, it is then possible to use said information in the parse
tables from the parser at parse time. Accessing the parse tables
and the transitions, at any point in the source, the parser
knows what symbol types can be next: an Identifier, an
Expression, a Condition, etc. . . . By modifying the parser
generation process, we get access to this information from the
parse tables.

B. Typing in parser generators

In a parser generation environment, two kinds of types coex-
ist in a single typing system. The first kind is the symbol types:

tokens and non-terminals from the grammar. They already hold
type information and they are extracted from the syntactic
part of the grammar. We name tokens ”elementary types”
and non-terminals ”composite types”. The composite types
are the union of other types, either elementary or composite
themselves. The second kind is the user types (defined by the
user through semantic actions) change the types at key points
in the AST. User types override composite type definitions in
a parser generation setting.

1 Exp -> number
2 Exp -> Exp + Exp {{BinaryExp}}

Listing 6. Example of typing in grammar

In the example of listing 6, the token number will yield
an elementary type Tnumber. So, Exp should normally be
of composite type TExp = {Tnumber

⋃
{TExp, T+, TExp}}.

However, the user overwrote the type of the second production
with the user type TBinaryExp = {TExp, T+, TExp}, leading
to Exp being of type TExp = {Tnumber

⋃
TBinaryExp}. This

type definition is intuitive, a formal type definition is outside
the scope of this paper.

Fig. 2. Composite type example

When trying to match the pattern 3 + ‘anything‘, as in
Figure 2, the anything part of the pattern can be the symbol
number or the symbol BinaryExp, which respectively corre-
spond to elementary type Tnumber and user type TBinaryExp.
This composite type (TExp) is the union of both subtypes and
is important to grasp all the possible types of a pattern part. To
construct the valid pattern ASTs from the pattern declaration,
all the subtypes of the union must be considered as valid
candidates. The mechanisms to take typing into account will
be described in Section IV-G.

C. Parsing a syntactic pattern

Parsers can easily take advantage of the syntax since it is
encoded in their behavior, so a parser can be used to parse the
program and the pattern.

1 for(‘init‘;‘test‘;‘update‘)
2 {
3 ‘statements‘
4 }

Listing 7. Syntactic pattern in SmaCC

Listing 7 is an example of pattern the user must be able to
write. The metavariables are represented here by backquoted
names, but for genericity purposes this is in fact a customiz-
able token added to the grammar. The metavariable token is
mandatory to parse syntactic patterns: otherwise, the parse will
fail to recognize it as a valid part of the language. Since it is
added to the grammar, this token must not conflict with pre-
existing token definition. In this paper, every backquoted token
represents a metavariable because backquotes are rarely used
in programming languages.

Once the grammar is upgraded with a metavariable token
and the parser generated, the parse can truly start.

D. The starting point problem

The first question that comes to mind to parse a pattern
is: ”Where does the parse start?”. A parser needs a starting
symbol to begin the parse, and a program usually starts at the
state for the left symbol of the first production rule. However,
it is unreasonable for a pattern since it would mean describing
every pattern from the beginning of the program, a very tedious
and unrealistic task.

Since we have our LR parse tables, we have an advantage.
We know which states are good start candidates: states that
have at least one outgoing shift. To start the parse, the parser
needs to consume a token first, otherwise it cannot reduce the
pattern to a valid node. So the only candidates are the states
that at least consume one token, the states with at least one
shift transition. States that only reduce are not valid.

To parse the pattern, the engine creates a number of parsers
equal to the number of states that shift. That way we will get
all the possible types for the pattern root node. Each parser
is independent and starts at a different state, however they
all work on the same input stream: the pattern. For example,
parsers can start at the beginning of a function declaration, a
statement or an expression. Then, for each parser, the standard
LR parse begins. A failing parser will be pruned, so only
matching ones subsist. That way we embrace all the valid
starting points of the parser. The parsers behave normally until
they reach metavariables.

E. Wildcards and metavariables

Wildcards are usually used to match anything and are
available in most pattern matching engines. In our approach,
metavariables are wildcards in the sense that they can match
any node or list of nodes valid as per the grammar. The
metavariables are mainly only variables with unbound value
(until they match some node and their value become the node
in question) in the declarative sense of variable. However,
more information can be provided to the metavariable via a
small DSL.

When the parser’s lookahead is a metavariable token, it does
not execute the next standard LR actions, instead it does two
things:

• First, the parser forwards of the metavariable parsing to
a small dedicated parser (for the DSL).

• Second, the parser executes special behavior for the
metavariable.

F. The metavariable dedicated parser

The job of this dedicated metavariable parser is minimalis-
tic: it simply parses the metavariable token. What is important
to remember is that it is the place to add behavior for the
match. For example, the user can change how the metavariable
should match, such as ignoring some node types (such as
parentheses in expressions), providing additional checking
blocks, putting restrictions on the types (only nodes, only
tokens, only lists of nodes).

Type information can be provided in the metavariable token
for explicit typing. Doing that return the matching to a simple
type comparison instead of the syntactic comparison. This is
what allows an hybrid approach between inferred and explicit
typing. The default behaviour for a metavariable matching is
inferred and it is only overridden when providing the explicit
type information.

G. Forking the parser

Once the metavariable token is parsed, the execution returns
to the main parser. Instead of executing a standard LR action,
it triggers a special method which is described in Algorithm 1.

Algorithm 1 Reflexive parsing
1: function FORKONMETAVARIABLE(stateStack, metavariableToken)
2: state = top(stateStack)
3: userType = explicitType(metavariableToken)
4: for all (symbol, action) in transitions(state) do
5: if isDefined (userType) and ! compatible

(symbol, userType) then
6: continue
7: end if
8: if isComposite (symbol) then
9: forkParser()

10: emulateNodeShift (action, symbol,
metavariableToken)

11: else if isElementary (symbol) then
12: forkParser()
13: performReducesAndShift (action, symbol,

metavariableToken)
14: end if
15: end for
16: end function

The algorithm forks the parser for all possible interpreta-
tions of the metavariable token and shifts it on the node stack.
To do this, it goes over all symbols defined by the parser and
possible parser actions for the symbol in the current parser
state.

The symbol type is checked for compatibility with the
metavariable user type if one is specified by the user in the
pattern. The symbol type is compatible to the metavariable
user type if it is the same type or one of the metavariable
subtypes. For a composite type such as Expression, any

kind of expressions can be compatible: BinaryExpression,
UnaryExpression, . . .

If the symbol type is an elementary type (i.e., a token),
two LR actions are possible: shift and reduce, or in fact one
shift and possibly one or more reduces. The shift is always
performed but reduces may be executed earlier to put the
parser in the state where the metavariable can be pushed onto
the node stack (as for any LR shift). Some of these reductions
may be invalid, but their subparsers will quickly be killed when
no valid action can be found at the newly reduced state. In
the case of the symbol type being composite, the only possible
action is a shift, but instead of pushing a token on the stack,
the metavariable is pushed onto the node stack. The parser
forks itself into a new subparser instance before executing the
LR actions in question. This new subparser now continues its
parse with the type of the metavariable being identical to this
specific symbol type.

Additional verifications are performed to check if the sym-
bol types matches the restrictions on the metavariable (for
example, only match tokens).

Each subparser continues its parse and invokes
ForkOnMetavariable each time it encounters a metavariable
token. If a parser reaches an impossible configuration, it is
invalidated and discarded.

At the end of the parse, we collect all the possible types for a
metavariable in the form of one AST per successful subparser.
The result is a forest of the valid pattern ASTs where each
AST has a unique set of metavariable-type pairs.

H. Unification

The next phase is more standard: a unification process
compares the pattern forest of ASTs with the subtrees of
the program. This step consists in confronting each possible
pattern solution to the program AST. If part of the program
AST matches, the subtree should be returned and if no match
can be found, the algorithm stops there. This can be done in a
number of ways, but we focus on a simple depth-first traversal
of the program AST (see Algorithm 2).

Algorithm 2 Unification
1: function UNIFY(programAST, patternForest)
2: for all programNode in programAST do
3: programRoot← programNode
4: for all patternAST in patternForest do
5: patternRoot← root(patternAST)
6: if patternRoot = programRoot then
7: Register patternAST as a valid match
8: else
9: Discard patternAST

10: end if
11: end for
12: end for
13: end function

For each node of the program AST, we consider it as a root
node and compare it to the top node of each pattern AST.

Algorithm 3 AST node equality
1: function EQUALS(firstNode, secondNode)
2: if type(firstNode) = type(secondNode) then
3: return subnodes(firstNode) =

subnodes(secondNode)
4: else
5: return false
6: end if
7: end function

For the node equality (see Algorithm 3, we first check for
type equality and then if they have the same type, each child
(being a node or a token) is compared for equality with its
counterpart. If all the subnodes of the pattern root node and
the current program node match, we consider that this pattern
tree is a valid concrete match. If any of the subnodes fails to
match, the pattern tree is discarded.

Algorithm 4 AST token equality
1: function EQUALS(firstToken, secondToken)
2: return source(firstToken) =

source(secondToken)
3: end function

For tokens (see Algorithm 4, the actual token strings are
compared and returns the result of the equality to the calling
node.

If a now typed metavariable node matches in the program
AST, it is bound to its concrete match in a dictionary. Note that
if the same metavariable is used multiple times in a pattern,
their respective match in the program AST should be identical.
For example, ‘i‘ + ‘i‘ cannot successfully match 3 +
4. The dictionary is reused, at the end of the comparison, as
context for the match. The rewriting or analysis can then be
based on the typed matches and their respective contexts.

Trying to match a pattern that has no metavariable may
too result in multiple pattern ASTs (if the target language is
inherently ambiguous). For example, the pattern (‘a‘) * ‘
b‘ in the C programming language has (at least) two pattern
trees, one for the multiplication expression, and the second one
for the declaration of a pointer variable of type a. Comparing
such a pattern AST with the program AST is a more advanced
version of a text search function, more advanced because the
AST comparison can ignore some nodes (such as parentheses
in expressions) 4.

V. IMPLEMENTATION: THE SMACC REWRITE ENGINE

A. The Smalltalk Compiler-Compiler

This approach is implemented on top of the Smalltalk
Compiler-Compiler (SmaCC). 5 This parser generator pro-
duces LR(1), LALR(1) and GLR parsers from a grammar
in Backus-Naur Form (BNF). Compared to a LALR BNF

4This is a setting that can be set when writing the grammar in SmaCC.
5SmaCC is freely available at https://www.refactoryworkers.com/SmaCC.

html, on smalltalkhub and github

grammar from a different tool, the only difference is the
addition of the previously defined ”metavariable token” IV-E
as a non-conflicting token (meaning it should not interfere with
other token definitions). Our pattern matcher is based on this
grammar ”extension” and the GLR abstract parser class of the
tool.

Since the pattern matching engine has been built as part of
a transformation engine used for migration projects such as
Delphi to C# or PowerBuilder to C#, we will take examples
from code transformations.

B. Industrial Validation

Reflexive Parsing has been used on several industrial
projects using different programming languages such as Del-
phi, PowerBuilder, C#, Java and Ada [29]. These projects
range from analysis and refactoring to migration from one
language to another. As of writing this paper, the SmaCC
Rewrite Engine supports the following languages: C#, Java,
Javascript, Delphi, PowerBuilder, IDL, Swift, Ada and C6.

One recent project involved converting a PowerBuilder
application to C#. Code migration is a good example to
illustrate the pattern matching capabilities of the engine. The
PowerBuilder code contained almost 3,200 DataWindow com-
ponents and over 700 code components. These files contained
over 1.1 MLOC7 and were 153MB in size. The resulting
C# code contained almost 7,600 files with 3.3 MLOC and
was 161MB in size8. These files were converted using 578
conversion rules. Of the 578 rules, 356 (62%) of them used
patterns as described in this paper, and the other 222 rules
used more traditional explicit type based matching.

Converting the code was done in two passes. The first pass
converted all of the PowerBuilder code to C#, and used 509
conversion rules. Note that each transformation pass involves
applying numerous rules in bulk on the same valid input
(the first pass on PowerBuilder here), not by applying a
rule, parsing the new program and applying another one, etc.
The entire PowerBuilder code will be transformed to C# by
applying all the transforms to generate a new code from the
AST.

1 for ‘a‘ := ‘b‘ to ‘c‘ - 1 do ‘d‘
2 >>>
3 for (‘a‘ = ‘b‘; ‘a‘ < ‘c‘; ‘a‘++) ‘d‘

Listing 8. Delphi to C# syntactic pattern in SmaCC

Listing 8 is an example of Delphi to C# rule that is a special
case of the general for loop conversion. The Delphi for loop

6The C parser is closed source for now. A sample parser can be found
instead.

7DataWindows are generally automatically generated, declarative compo-
nents where many properties are assigned on a single line of code. Lines of
code are not necessarily a good measure for these components, but they are
included here.

8The number of files increased since some files were split into their code
and designer components. Also, most of the increase in overall size is due
to formatting. For example, code in methods were indented with two tab
characters in C#, and not indented in PowerBuilder.

used "- 1" in the end condition, we could eliminate the "-
1" from the converted code by using "<" instead of "<=".

Such small transformations are important to make the code
more natural to future developers.

The second pass refactored the converted C# code using
69 rules. While the refactoring step was not necessary, it did
eliminate some conversion artifacts and also simplified some
code to use some C# framework methods that were unavailable
in PowerBuilder. Running these two steps using the Pharo
environment [30] on a six core Intel E5-1650 on the 153MB of
PowerBuilder source took 2 minutes 55 seconds. Only running
the first pass took 1 minute 30 seconds.

While the pattern parsing described in this paper may cause
much forking during the parsing of the pattern, it does appear
to be acceptable in practice. For example, parsing the 356
patterns used by the conversion rules takes 300 milliseconds.

A more detailed evaluation of the tradeoff in performance
for simplicity and accessibility of syntactic pattern matching
compared to explicit pattern matching is outside the scope of
this paper and is left for future work. However, this evaluation
shows the practicality of the method in complex industrial use
cases of large code base migration.

VI. DISCUSSION

A. Prerequisites of the approach

Our approach assumes the following from the parser gen-
eration framework:

a) LR parser generation: The parser should be an LR
parser to enable reflexivity on the parse tables. The behaviour
of the LR parsers must be modified during the generation
process to enable the parsing of the metavariable token and the
actions associated to this token. This method enables greater
reusability since every generated parser will be reflexive. The
cost of adding this pattern matching technique to a new
language is very much reduced in this setting. Having or
creating the grammar remains the biggest requirement, but
since it is one for most parsing tools, it does not seem
unreasonnable here.

b) AST generation: The LR parser should be able to
generate an AST of the parsed program. A sub-requirement is
that a coupling between the syntactic symbols and their type
must be present in the parser. This coupling is achieved with
the semantic actions associated with the shift/reduce parser
actions. As most parsers generate ASTs, we do not find this
requirement particularly hard to validate.

c) Next type identification: During the parse of the
pattern, the parser should be able at any state during the parse
to find out what are the next types that can appear. In a LR
parser, this information is extracted from the symbol table of
the parser and its transitions from the current state. And from
the symbol, it is possible to deduce its symbol type (or user
type if it has been overridden).

d) Forking mechanism: The parser should have a forking
mechanism. If a GLR-style parser is already generated, it can
be used directly by forking on metavariables in addition to
ambiguities.

B. Parsing as intersection

We believe this approach is a restricted version of ”parsing
as intersection” applied to a pattern matching language. This
result from [31] simply states that the intersection of a
Context-Free Grammar (CFG) and a regular language is a
CFG. In our context, the initial CFG is the CFG of the target
language and the regular language is our syntactic pattern
language. The syntactic pattern grammar has the same alphabet
(the same symbols) as the one from the CFG but only supports
union, concatenation, Kleene star and Kleene plus because it
is a regular language. Thus, parsing as intersection answers
the question of the expressiveness of the syntactic pattern
language. Our intersection yields a forest of trees containing
the possible typed matches of the pattern, but this forest can
also be seen as all the generated trees from a grammar if
we explored all of its possibilities. This grammar is in fact
the CFG resulting from the intersection of the target language
CFG and the syntactic pattern (regular) language. As of the
discussions in [32], use cases of parsing as intersection were
unclear: we at least provide one, pattern matching. However,
further study is necessary to produce a full fledge grammar
from a GLR parser.

C. Scalability

LR and LALR parsers have the nice property of their parse
time being only dependent on the input length and not the input
depth [33]. This leads to much appreciated linear parse time. It
is not true for GLR-type parsing (O(n3) in complexity) and in
our case, since we are potentially creating all possible ASTs,
we can be exponential [34]. Those parsers create subparsers
every time an ambiguity is encountered. So, the parse time
now depends on the ”ambiguity depth”, meaning the number
of nested ambiguities we can get. In practice it does not seem
to be a problem. Most general purpose languages are decently
well formed and do not present much ambiguities.

As for the subparsers created only for pattern matching
purposes, it depends mostly on the quantity of metavariables
and their position in the pattern. We tend to think that the
quantity of metavariables, and thus of ”fork points”, is not an
issue. Every time a metavariable is added, it adds specificity
to the pattern. Since it is parsed, it means fewer configurations
will be accessible with each specificity. Fewer and fewer
subparsers will be created as the parse progresses on the
pattern and some will even get discarded.

D. Application to other parsers and parser generators

We believe the reflexive parser approach to be
implementation-agnostic enough to be reimplemented in
other pattern matching tools. As long as they respect the
previously described requirements (Section VI-A), it can be
applied as is to other LR-based parser and parser generator.

As for other parser classes such as GLL, the implementation
of the prerequisites would change. However, forking is already
available for GLL parsers and implementing a new token for
metavariable identification should not be a hard task. Also,

LL parser generators such as ANTLR already propose AST
generation.

The main concern lies in identifying the next possible types
at any point during the parse. A equivalent would be required
to work with parsing techniques other than LR.

a) Adaptation to unified representations: Using type
inference on the nodes of the unified representation allows
us to determine the set of possible results at a certain point.
This set, because of the unified representation, can be larger
than the possible target language subtrees, but this is probably
not an issue since the target language can’t generate some of
those candidate pattern trees. So even if the parser will fork for
those nodes (for example, the C programming language does
not have Qualified Names), they will then never be matched
in the unification process.

VII. RELATED WORKS

Our reflexive parsing approach characterizes itself by: pro-
viding a pattern matching engine based on syntactic patterns,
enhancing a language with said engine using only its grammar
(LR or GLR), limiting the need for explicitly typed patterns
and solving the starting point problem of the metavariable
parsing.

The transformation engine Coccinelle [12] uses syntactic
patterns in the form of SmPL semantic patches that describe
a code transformation with patch-like syntax. Coccinelle has
been used to find bugs and perform collateral envolution in
the Linux kernel. However, contrary to SmaCC, the patterns
are explicitly typed.

XPath [11] is a query language to find nodes in an XML
document with pattern similar to file system paths. While
model-querying (or AST-querying) is XPath’s bread and butter,
it is unfit to query source code since it manipulates an abstract
representation.

ANTLR [10] is a top-down parser generator which produces
LL(*) parsers with arbitrary lookahead from a BNF grammar.
In ANTLRv3, the user can craft explicit patterns using the
types of the language parse tree and specify custom tree
traversal strategies for unification. The current version of
ANTLR also relies on XPath for its parse tree transformations
(and thus suffers from the same problems). However, neither
approaches solve the starting point problem and both require
explicit typing.

srcQL [13], [35] is another query language based on both
srcML (an XML representation of source code) and previously
described XPath. srcML helps cope with abstraction problem
by providing the XML with concrete syntax information
thanks to ANTLR. While srcQL supports syntactic pattern
matching, it relies on heuristics to infer the pattern possible
types which can lead to false positives and false negatives.
Combined with unification being perform with partial string
comparison instead of proper node comparison, this can lead
to an equivalent of ‘foo‘ * ‘foo‘ matching foo * foo
() which we do not want for exact matches.

Ekeko/X [14] is a search and transformation engine on
Java programs based on logic programming. It supports code

templates (syntactic patterns) which instead of being parsed,
are transformed into a set of Clojure logical goals. However,
Ekeko/X’s approach is solely restricted to Java programs and
does not extend beyond this language.

Stratego [36] is a language to define rules for code trans-
formations. Stratego uses programmable rewrite strategies to
apply rewrite rules on ASTs in the form of terms. TOM [7] is a
language extension and an engine that bring pattern matching
capabilities to a host language such as C++, Java, . . . Both
Stratego’s and TOM’s pattern matching originates from term
rewriting theory, close to what exists in functional languages.
These approaches can explicit typing on the pattern and can
contain wildcard in the form of named generic terms.

The POET [37] language is a code transformation language
with custom optimizations as its main goal. Its parsing and
matching features are based on code templates from island
parsing: only the matched part of the language is verified, the
rest of the code is not parsed. As such, POET code templates
are explicitly typed contrary to a Reflexive Parsing approach
based on LR parsing.

VIII. CONCLUSION

We proposed a new take on pattern matching based on a
GLR parser capable of inspecting its own parse tables at any
point in the parse to infer the node types of patterns. As
a result, patterns can be expressed syntactically by the user
without learning the internal representation of the engine. Inte-
grated to a parser generation framework, activating the pattern
matching engine for a new language is as cheap as it can be: a
single line in the grammar. Our reflexive parsing approach has
been implemented in the SmaCC parser generator and rewrite
engine written in Smalltalk, and extensively used for large
scale code migrations of industrial applications.

As perspective, we consider of interest the study of the
extension of that technique on other transformation tools.
First candidates would be other classes of parsers such as
LL with GLL or parser combinators. A second perspective
is the integration of our pattern matching technique with type
inference on unified representations.

REFERENCES

[1] G. Santos, N. Anquetil, A. Etien, S. Ducasse, and M. T. Valente,
“System specific, source code transformations,” in 31st IEEE
International Conference on Software Maintenance and Evolution,
2015, pp. 221–230. [Online]. Available: http://rmod.inria.fr/archives/
papers/Sant15a-ICSME-TransformationPatterns.pdf

[2] N. Anquetil and J. Laval, “Legacy software restructuring: Analyzing
a concrete case,” in Proceedings of the 15th European Conference
on Software Maintenance and Reengineering (CSMR’11), Oldenburg,
Germany, 2011, pp. 279–286. [Online]. Available: http://rmod.inria.fr/
archives/papers/Anqu11a-CSMR2011-Coupling.pdf

[3] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: Ten years later,” in ACM SIGPLAN Notices, vol. 46,
no. 3. ACM, 2011, pp. 305–318.

[4] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke, “An automated
refactoring tool,” in Proceedings of ICAST ’96, Chicago, IL, Apr. 1996.

[5] D. B. Roberts, “Practical analysis for refactoring,” Ph.D. dissertation,
University of Illinois, 1999. [Online]. Available: http://historical.ncstrl.
org/tr/pdf/uiuc cs/UIUCDCS-R-99-2092.pdf

[6] G. J. de Souza Santos, “Assessing and improving code transformations
to support software evolution,” Ph.D. dissertation, University Lille 1
- Sciences et Technologies - France, feb 2017. [Online]. Available:
http://rmod.inria.fr/archives/phd/PhD-2017-Santos.pdf

[7] E. Balland, H. Cirstea, and P.-E. Moreau, “Bringing strategic rewriting
into the mainstream,” 2015.

[8] M. Hills, P. Klint, and J. J. Vinju, “Scripting a refactoring with rascal
and eclipse,” in 5th Workshop on Refactoring Tools, 2012, pp. 40–49.

[9] H. Li and S. Thompson, “A domain-specific language for scripting
refactorings in erlang,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2012, pp. 501–515.

[10] T. Parr and K. Fisher, “Ll (*): the foundation of the antlr parser
generator,” ACM Sigplan Notices, vol. 46, no. 6, pp. 425–436, 2011.

[11] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay,
J. Robie, and J. Siméon, “XML path language (XPath),” World Wide
Web Consortium (W3C), 2003.

[12] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in linux device drivers,” in ACM
SIGOPS Operating Systems Review, vol. 42, no. 4. ACM, 2008, pp.
247–260.

[13] B. M. Bartman, “Srcql: A syntax-aware query language for exploring
source code,” Ph.D. dissertation, Kent State University, 2013.

[14] C. De Roover and K. Inoue, “The ekeko/x program transformation tool,”
in Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th
International Working Conference on. IEEE, 2014, pp. 53–58.

[15] L. Yang, T. Kamiya, K. Sakamoto, H. Washizaki, and Y. Fukazawa,
“Refactoringscript: A script and its processor for composite refactoring.”
in SEKE, 2014, pp. 711–716.

[16] J. Kim, D. Batory, and D. Dig, “X15: A tool for refactoring java software
product lines,” in Proceedings of the 21st International Systems and
Software Product Line Conference-Volume B. ACM, 2017, pp. 28–31.

[17] G. P. Krishnan and N. Tsantalis, “Unification and refactoring of clones,”
in Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on.
IEEE, 2014, pp. 104–113.

[18] G. Dos Reis and B. Stroustrup, “A principled, complete, and efficient
representation of C++,” Mathematics in Computer Science, vol. 5, no. 3,
pp. 335–356, 2011.

[19] M. Van Den Brand, M. Sellink, C. Verhoef et al., “Obtaining a cobol
grammar from legacy code for reengineering purposes,” in Proceedings
of the 2nd International Workshop on the Theory and Practice of
Algebraic Specifications, electronic Workshops in Computing. Springer
verlag, 1997.

[20] Object Management Group, “Abstract syntax tree metamodel (ASTM)
version 1.0,” Object Management Group, Tech. Rep., 2011.

[21] J. Kurš, “Parsing for agile modeling,” PhD thesis, University of
Bern, Oct. 2016. [Online]. Available: http://scg.unibe.ch/archive/phd/
kurs-phd.pdf

[22] F. Brown, A. Nötzli, and D. Engler, “How to build static checking sys-
tems using orders of magnitude less code,” in ACM SIGOPS Operating
Systems Review, vol. 50, no. 2. ACM, 2016, pp. 143–157.

[23] J. Kurš, G. Larcheveque, L. Renggli, A. Bergel, D. Cassou, S. Ducasse,
and J. Laval, “PetitParser: Building modular parsers,” in Deep Into
Pharo. Square Bracket Associates, Sep. 2013, p. 36. [Online].
Available: http://scg.unibe.ch/archive/papers/Kurs13a-PetitParser.pdf

[24] V. Balachandran, “Query by example in large-scale code repositories,” in
Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on. IEEE, 2015, pp. 467–476.

[25] J. R. Cordy, “The txl source transformation language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[26] T. Molderez and C. De Roover, “Search-based generalization and
refinement of code templates,” in International Symposium on Search
Based Software Engineering. Springer, 2016, pp. 192–208.

[27] S. McPeak and G. C. Necula, “Elkhound: A fast, practical GLR parser
generator,” in International Conference on Compiler Construction.
Springer, 2004, pp. 73–88.

[28] J. R. Levine, T. Mason, and D. Brown, Lex & yacc. O’Reilly Media,
Inc., 1992.

[29] J. Brant, D. Roberts, B. Plendl, and J. Prince, “Extreme maintenance:
Transforming Delphi into C#,” in ICSM’10, 2010.

[30] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker, Pharo by Example. Kehrsatz, Switzerland: Square
Bracket Associates, 2009. [Online]. Available: http://rmod.inria.fr/
archives/books/Blac09a-PBE1-2013-07-29.pdf

[31] Y. Bar-Hillel, M. Perles, and E. Shamir, “On formal properties of simple
phrase structure grammars,” STUF-Language Typology and Universals,
vol. 14, no. 1-4, pp. 143–172, 1961.

[32] D. Grune and C. J. Jacobs, “Parsing as intersection,” in Parsing Tech-
niques. Springer, 2008, pp. 425–442.

[33] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, Mass.: Addison Wesley, 1974.

[34] A. Johnstone, E. Scott, and G. Economopoulos, “Evaluating GLR
parsing algorithms,” Science of Computer Programming, vol. 61, no. 3,
pp. 228–244, 2006.

[35] B. Bartman, C. D. Newman, M. L. Collard, and J. I. Maletic, “srcql:
A syntax-aware query language for source code,” in Software Analysis,
Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on. IEEE, 2017, pp. 467–471.

[36] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/xt
0.17. a language and toolset for program transformation,” Science of
computer programming, vol. 72, no. 1, pp. 52–70, 2008.

[37] Q. Yi, “Poet: a scripting language for applying parameterized source-
to-source program transformations,” Software: Practice and Experience,
vol. 42, no. 6, pp. 675–706, 2012.

