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3D FACIAL EXPRESSION GENERATOR BASED ON TRANSFORMER VAE

Kaifeng Zou Boyang Yu Hyewon Seo

ICube Laboratory, CNRS–University of Strasbourg, France

ABSTRACT

We present a generative model for the 3D facial expres-
sion mesh sequences, from onset to the termination of a
desired expression. We tailor a Transformer VAE architec-
ture: The encoder compresses a sequence of facial landmarks
into an expression-aware regularized latent space, while the
decoder generates a new sequence from the sampled la-
tent variable, conditioned on a desired expression. After
a landmark-guided mesh deformation, a given 3D neutral
face is driven to an animated mesh sequence with the ex-
pected expression. The generated sequences are consistent,
of quality, and exhibit a good level of diversity, improv-
ing over state-of-the-art methods. We validate our model
by conducting extensive experiments on two representative
datasets. The supplementary video and code are available on a
GitHub page (https://github.com/ZOUKaifeng/
FacialExpressionGeneration).

Index Terms— transformer, variational autoencoder, fa-
cial expression generation

1. INTRODUCTION

The prevailing shape capture technology has paved the way
for data-driven approaches of facial animation. A common
strategy is to use multi-view systems that can capture full
shape geometry and appearance either in real-time or offline,
depending on the target application and the desired quality of
the data. Although the results thus obtained are often impres-
sively realistic, they are limited to capturing existing shapes,
necessitating generative models or retargeting methods to ob-
tain new, imaginary faces and/or varying expression styles.

Recent deep learning techniques have become dominant
solutions in facial modeling tasks, and have achieved impres-
sive performance. In particular, facial expression synthesis
in 2D image domain [1] has been boosted by the genera-
tive deep learning models like Generative Adversarial Net-
works (GANs) [2] and Variational Autoencoders (VAEs) [3].
Although these methods are capable of synthesizing realis-
tic expression poses, most of them address the generation of
static expression poses, and that too in 2D. 2D-to-3D facial
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reconstruction approaches partly overcome these limitations,
by performing per-frame 3D reconstruction from video input.
However, such a frame-based approach neglects the tempo-
ral aspect of animation, which is a vital element of the se-
quence data. Some of the recent generative models lever-
age auto-regressive models, such as LSTMs [4], GRUs[5],
or Transformers[6], for the temporal encoding of animation
sequences. However, with a few exceptions[7], they mostly
focus on the human body motion [8, 9].

In this paper, we address the challenging problem of 3D
dynamic facial expression generation. The specific aim is to
generate a sequence of appearance-preserving facial expres-
sions, conditioned on a categorical expression. We deploy
a conditional version of Transformer-based encoder-decoder
architecture, trained with the VAE losses to learn the distribu-
tion of the facial expressions. It is inspired by the recent suc-
cess of Transformer in the sequence generation in different
application scenarios[10, 8] and the conditional generation of
VAE and its variants[11].

After training, our model can generate temporally con-
sistent sequences of 3D facial landmarks, conditioned on a
desired expression label. Similarly to most existing works[7,
12], we train our generative model with many sequences of
landmarks sampled on 3D face meshes. To obtain the full
mesh deformation, we then adopt the sparse to dense decoder
(S2D-Dec) proposed in [7] to apply the geometric deforma-
tion encoded in landmarks to a given facial mesh at its neutral
pose.

2. APPROACH

Our method works in two stages. Firstly, a Transformer VAE
is trained to perform the conditional generation of landmarks
sequences. Then the S2D-Dec estimates the vertex-wise dis-
placements of a neutral face mesh for each frame of the land-
mark set in the generated sequence, in a frame-by-frame man-
ner. The overview of our method is shown in Fig.1.

2.1. Expression representation

Most of the few available 3D facial expression datasets [13,
14] come in the form of sequences of dense triangular meshes,
each containing thousands of vertices. It is tedious and takes
too long to train a generative model directly using all the ver-
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Fig. 1: Overview of our models.

tices, so we use a set of predefined facial landmarks instead.
It is a viable and compact way to represent facial expressions
by using feature points or landmarks on the face outline and
on the contours of eyes, nose, and mouth, etc.

Once the sequence of landmarks is in place, one can use
them to deform a neutral face mesh either by applying some
geometric method or by using a learned model, both in a
per-frame manner. Here we use the GCN-based S2D-Dec
to predict per-vertex displacements of the facial mesh given
a landmark set. The deformation of the input neutral face
mesh is obtained by adding the displacements to its vertices
(see Fig.1). Note that the magnitude of the expression can be
changed by scaling a coefficient to the displacements.

2.2. Transformer VAE

The key idea of VAE is to regularize the distribution in the
latent space of an autoencoder. As in the vanilla VAE [15],
we define a weak prior p(z) over z as a standard distribution
N (0, I). As we denote a sequence of facial landmarks by x =
[L1, L2, ..., LT ] and its expression label by c, the generative
process can be written as:

pθ(x, c, z) = pθ(x|c, z)p(c)p(z). (1)

We assume that p(c) = 1/K is a categorical distribution, with
K being the number of expression classes.

The posterior p(z|x, c) is also modeled as N (0, I). Since
it is intractable[3], a variational approximation qϕ(z|x, c)
is learned by an encoder neural network, with ϕ standing
for the network’s parameters. Supposing that z and c are
independent, it has been shown that the objective optimiza-
tion is achieved by maximizing the evidence lower bound
(ELBO)[15]:

Ez∼qϕ(z|x,c)

[
log

pθ (x, c, z)

qϕ(z | x, c)

]
. (2)

Our objective derived from Eq.2 is:

L(θ, ϕ;x, c) =− λKL(qϕ(z|x, c), p(z))+
Eqϕ(z|x,c)(log(pθ(x|c, z)),

(3)

where KL is the Kullback–Leibler divergence that measures
the difference between the latent distribution and the normal
distribution. The minimization of KL enforces the latent dis-
tribution to follow the standard distribution. The second term
can be interpreted as a reconstruction loss in the implemen-
tation, with p(x) modeled as a Gaussian distribution. As in
β-VAE [16], we have a hyperparameter λ to balance the re-
construction and the stochastical property of the latent space.

While using VAE to generate sequences of landmarks, the
temporal information is encoded into the latent space using
Transformer. This allows the model to learn the underlying



Fig. 2: Conditional generation with the labels ’mouth open’
(first two rows) and ’mouth side’ (last two rows). Two se-
quences are shown per each class to demonstrate the genera-
tion diversity of our model. More examples are shown in our
project page.

patterns and relationships between different landmarks over
time. As shown in Fig.1, our generative model inherits its
global architecture from the classic variational autoencoder
[15] with stacks of Transformer components inside. While
based on the vanilla Transformer [6], we further incorpo-
rate the expression condition information into the encoding
of parameters(µ, Σ) for the distribution qϕ(z|x, c). More
precisely, for each facial expression label c, there are two
expression label features denoted as expcµ and expcΣ. Rather
than directly feeding c to the encoder, its associated expres-
sion label features (expcµ and expcΣ) are prepended with the
input sequence embedding before feeding into the encoder.
Such use of label features has been introduced previously in
other domains for pooling purposes[10], especially for time
pooling in [8].

The first two frames of our encoder outputs (correspond-
ing to the two expression label features of the input) serve
as the latent distribution parameters: mean µ and variance Σ.
The rest of the outputs are ignored, which acts as time pool-
ing.

A latent vector z is sampled from the estimated distribu-
tion using the reparameterization trick[3]. It is then shifted
by a per-label learnable expression feature expcbias and fed
into the decoder as ’key’ and ’value’ to calculate the cross
attention. The decoder then generates the sequence of land-
marks corresponding to the expression label added in the la-

tent space. The decoder also takes time information as a
query, consisting of an all-zero vector of size T , the output
frame length. In our work, we set it identically to the input
sequence length.

3. EXPERIMENTS

3.1. Training details

The proposed method was tested on two 4D face datasets,
with some preprocessing to adapt each for our model. We
provide further details below.

CoMA dataset [14] is a commonly used 3D facial expression
dataset in face modeling tasks [17, 18]. It consists of more
than a hundred 3D animated head models captured from
twelve subjects, each performing 12 facial expressions. An
expression data contains a sequence of triangular meshes of
5023 vertices, undergoing some deformation elicited by an
expression. 68 landmarks sampled on the full mesh have been
used for training. Then, a similar method to [7] has been used
to extract sub-sequences from each sequence to align them
temporally in the semantic sense, e.g. from neutral to apex
(the most expressive state). The selected subsequences have
different frame lengths, for which we have applied subsam-
pling and linear interpolation to obtain a uniform length.

BU-4DFE dataset[13], another widely used dataset in facial
expression synthesis, contains a total of 606 sequences (101
subjects, each performing 6 basic emotional expressions). A
sequence of 83 landmarks manually selected on 3D facial
scans is made available. With some exceptions, all sequences
had been more or less aligned temporally, so we only per-
formed frame length uniformization to 100 frames.

Implementation details. The encoder and the decoder of
our Transformer VAE follow the conventional architecture of
the original Transformer[6], with 4 heads in each attention
module and an embedding dimension of 256. We use a linear
layer followed by 5 layers of spiral operation for the graph
convolution in S2D-Dec. Each model has been trained sepa-
rately, both using Adam [19] optimizer. The learning rate has
been set to a constant 1e− 4 for S2D-Dec, whereas there is a
warm-up step[20] for Transformer VAE.

Cross validation. To evaluate the model’s ability to handle
unseen data, we adopted the nested cross-validation strategy.
The dataset has been splitted into 5 folders, with an even dis-
tribution of labels in each folder. Then, we train five models
separately, each using three folders as training dataset while
sparing one as validation set and another as test set. The mean
and variance of the results from all five models are taken as
the final result.



Table 1: FID scores and classification accuracy of different models.

CoMA BU-4DFE

Model Accuracy FID Accuracy FID
Groud truth 83.78%± 4.23% 2.77± 0.62 99.51%± 0.65% 6.02± 1.05
CondLSTM [12] 8.33%± 0.09% 92.36± 6.36 16.69%± 0.05% 101.02± 9.29
Action2Motion [9] 52.36%± 8.58% 29.44± 4.98 80.83%± 3.75% 19.6± 4.52
Motion3DGAN [7] 69.44% 19.01 - -
Ours 81.40%± 2.47% 7.11± 1.24 99.13%± 1.07% 14.56± 1.92

3.2. Experimental results

We can generate diverse expressions with our decoder by
sampling the latent representation from the Gaussian distri-
bution. It is confirmed by the good level of diversity shown in
the generated sequences using a same class label, as demon-
strated in Fig.2.

We compare our Transformer VAE with several con-
tenders in terms of conditional generation, by evaluating
their classification accuracy and the FID score. Three other
methods are chosen for the comparison: Motion3DGAN [7],
Action2Motion [9], and CondLSTM. The latter is an adapted
model of [12] that takes the facial shape and the expression
label together as input. The results of Motion3DGAN [7]
are directly taken from their paper. In order to make a fair
comparison, we use the same classifier as theirs: one LSTM
layer followed by a fully connected layer.

The quantitative results are shown in Table 1. The FID
of ground truth is calculated between the test dataset and the
training dataset. It reveals that CondLSTM fails to handle
multi-class sequence generation, as evidenced by the poor ac-
curacy (< 9%). We observe that the Action2Motion model
requires a large amount of data to achieve optimal perfor-
mance. With only a small dataset, consisting of a few hundred
examples in contrast to the several thousand in their original
motion project, the model seems to have learned the expres-
sion behavior only partially. For instance, their generated face
does not always return to its neutral pose when tested on the
BU-4DFE dataset.

Although our classifier takes the same architecture, it
yields a higher accuracy than the one used in Motion3DGAN
during the evaluation. This may be partially due to the
differences in data preprocessing. Nevertheless, we note
that the generation accuracy of our model has been ob-
tained on a set of abundant size: (288 samples, each con-
ditioned on 12 labels, amounting to a total of 3456) whereas
Motion3DGAN[7] is tested only on 144 sequences. Mean-
while, our model shows outstanding performance on the
BU-4DFE dataset, which confirms the competitiveness of our
model. In addition, our model shows stable performance in
handling different test sets, with the smallest variances among
all the methods.

3.3. Ablation study

We ablate several components of the Transformer VAE to em-
phasize the contribution of each unit. First, we compare the
Transformer with another popular recurrent neural network,
GRU [5]. A GRU-VAE inheriting its architecture from that of
Transformer VAE has been used, with both the encoder and
the decoder consisting of 3 GRU layers.

Another design element worth investigating is the label
feature. We replaced the label feature setting by a label
variable while keeping the basic architecture of Transformer
VAE, i.e. the label value has been directly placed in the la-
tent space. The quantitative results on the experiments we
conducted with BU-4DFE dataset are shown in Table 2. We
can observe that both the Transformer and the label feature
setting are indispensable for the improved performance.

Table 2: Ablation study for Transformer VAE.

Model Accuracy FID
GRU-VAE 71.07%± 5.74% 28.70± 8.31
w/o label feature 93.49%± 3.87% 17.28± 3.65
Transformer VAE 99.13%± 1.07% 14.56± 1.92

4. CONCLUSION

We have presented a generative model for the synthesis of 3D
dynamic facial expressions, The dynamics of facial expres-
sions has been successfully learned by using an expression-
sensitive latent representation, from which we can randomly
sample instances with an expression category to synthesize
diverse expression sequences. The proposed method can pro-
duce realistic face meshes of diverse types of expression on
different subjects, outperforming SOTA models both qualita-
tively and quantitatively.
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