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1 Introduction

Poker games, the betting games with incomplete information for two or more players are

interesting problems to investigate. Not only chance but also psychology, strategy, deception,

and audacity are involved in decision making process. If it is only a game of luck like rock,

paper, scissors, or a game without favorable plays like tic-tac-toe, we should have not seen

all familiar faces at the high stakes poker World Bracelet final tables year after year.

In particular, poker games can be understood systematically and rigorously by game

theoretical and probabilistic models. Therefore, they yield a wealth of problem for the

mathematicians and game theorists. John von Neumann and Oskar Morgenstern analyzed

two simple poker games in Theory of Games and Economic Behavior. Thereafter, papers

generalized the results, extended ideas to simulate real Poker games more closely, or help to

reveal certain aspects of the game. Increasingly, poker players who implement mathematical

point of view to the game have emerged, beating players adhering to experience and psycho-

logical manipulation. Intuition and experience are superseded by a group of mathematical

and rational plays by the PhDs. Chris Ferguson, a computer science PhD from UCLA and

Bill Chen, a mathematics PhD from UC Berkeley are the most representative players. Their

works in theoretical poker are discussed here (Ferguson and Ferguson 2003; Ferguson, Fer-

guson, and Garaway 2007; Chen and Ankenman 2006). The simplified models developed by

themselves have helped to play optimally.

There are many advantages modeling the poker games with statistical and game theo-

retical tools. Simplified models help us to concentrate on certain aspects of the game. For

example, when the model only specifies one round of betting, it reflects the effects of bluffing.

However, when more rounds of betting are mixed into the model, what kinds of hands should

be played can be found, and some results may even be counterintuitive though optimal. The

ultimate goal for the players is to optimize. Though one may already have a favorable pure

or mixed strategies, it might not be maximizing the profit for a player or it may even be

dominated by certain type of strategies. The notions such as Bayesian-Nash and trembling

hand equilibria help to achieve desirable plays. Risk management should also be considered.

For those who are unfamiliar with poker, and for those who may have different names,

some basic terminology is introduced. In the beginning, each player may need to put in a

certain fixed number of chips in order to be dealt a hand. These chips are called ante and

may be considered dead money, the money you may need to earn back from the pot where

all the money is aggregated and awarded to the eventual winner. The first player can do

nothing and pass the opportunity to the next player by checking, or bet or raise a certain

amount for the other players to match in order to stay in the game. Then, player II (or
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subsequent players if there are more than two players) can either fold so that he forfeits

his chance of winning and money he has put in, call by matching the amount player I has

raised, or re-raise by calling the amount player I has raised, and raising additional chips on

top. Then player I or subsequent players have the choice to call or re-raise further. Someone

wins when everyone else folds or everyone else checks and he has the best hand.

In this exposition, we discuss several existing models, and extend upon them by making

some fundamental modifications that help to reveal different aspects of the game. They are

all two-player zero-sum games with initial hands to both players U(0, 1). The von Neumann

model in von Neumann and Morgenstern (1953) is the foundation of all the models. It allows

just one raise for the first player, as it reveals the importance of bluffing, and its relation to

the value of the game. When the bet is allowed to be any positive number, an equilibrium

is solved (Newman 1959). Thereafter, additional raises are allowed. Ferguson and Ferguson

(2003) solved the game with 1 bet for each player. I then extend the model by allowing one

more re-raise for player I.

Previously, all the models have fixed hands for both players. I construct a simple model

with changing hands. After a signal, player I’s can be changed for better or worse. This is

motivated by the situation where a player may possibly have a straight draw or flush draw

and the river card (the last card that appears on the table) may appear to have helped him.

How the players react to it should be explored.

2 von Neumann’s Game: 1 fixed bet for Player I

This section presents the basic model of von Neumann while definitions that are applicable

to latter sections are introduced along the way. Two players each contribute an ante of $1,

and are dealt “hands” x1 and x2, respectively independent and identically distributed as

U(0, 1). Player I can check or bet a predetermined amount B, and player II can call or fold

if player I bets. The only available information for each player is his own hand and the game

structure. Strategies for two players are

Player I: s1 : x1 → {check, bet};
Player II: s2 : x2 × s1(x1)→ {call, fold}.

A mixed strategy can be specified as b : [0, 1]→ [0, 1] where if player I is dealt hand x1, he bets

with probability b(x). Similarly, player II’s mixed strategies are functions c : [0, 1] → [0, 1],

where if player II is dealt x2 an player I bets, then player II calls with probability c(y).

A player’s payoff is dependent of x1, x2, s1(x1), and s2(x2). Extensive form of the game

and optimal strategies are presented in Figure 1 with player I’s payoffs shown (their recip-

rocals are player II’s because the game is zero-sum).
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I

II
bet

call

fold

check u

1

(1+B)u

Figure 1: Extensive form of von Neumann’s game,
where u = 1 if x1 ≥ x2; = −1 otherwise.

We want to investigate how players play in equilibrium. They are going to play a pair of

optimal strategies as defined below. A strategy is optimal if given any hand and the other

player’s strategy, there is no incentive to deviate to any other strategy.

Definition 2.1. For player i, a strategy s∗i is optimal if given any other strategy s′i and

other player’s strategy sj,∫
xj

ui(xi, xj, s
∗
i (xi), sj(xj))dxj ≥

∫
xj

ui(xi, xj, s
′
i(xi), sj(xj))dxj ∀xi, xj ∈ (0, 1). (2.1)

If both/all players are playing optimal strategies, then the collection of the strategies are an

equilibrium strategy.

For two similar hands, payoff from an optimal strategy should be the same. Otherwise,

there is an incentive to deviate to the strategy played if given the other hand. Therefore,

hands slightly bigger and slightly smaller yield similar payoffs. This idea is embodied in

the indifference condition (IC). For example in the optimal strategy above, player II is

indifferent between folding and calling when he is dealt c.

Lemma 2.2 (Indifference Condition). For strategy s∗i , as ε→ 0+,∫
xj

ui
(
xi, xj, s

∗
i

(
xi − ε

)
, xj
)
→
∫
xj

ui
(
xi, xj, s

∗
i

(
xi + ε

)
, xj
)
∀xi. (2.2)

Theorem 2.3. An equilibrium strategy of von Neumann’s game is presented as follows.

Player I checks when a ≤ x1 ≤ b and bets amount B otherwise; in case of raise, player II

calls if x2 > c and folds otherwise, where

a =
B

(B + 1)(B + 4)
, b =

B2 + 4B + 2

(B + 1)(B + 4)
, c =

B(B + 3)

(B + 1)(B + 4)
.

Two players’ optimal strategies are illustrated in Figure 2.
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Player I a b
0 1

c

bet (bluff) bet

fold callPlayer II

check

Figure 2: Optimal strategies of both players

Proof. Optimal strategies are found by backward induction. Player II’s optimal strategy is

found first. When Player I raises, player II calls if his expected payoff is greater than −1,

which is his payoff from folding. Since his payoff depends piecewise-linearly on his hand

strength x2, u2(x1, x2), player II’s payoff, is a monotonic function of x2 if he calls. Therefore,

player II’s optimal strategy is to call when x2 > c and to fold otherwise.

Given player II’s optimal strategy, player I should bet if his expected payoff of betting is

greater than of checking (Tie situations need not be considered because the density function

is non-atomic). Player I’s payoff given x1

• from checking is (+1) · (x1 − 0) + (−1) · (1− x1) = 2x1 − 1.

• from betting is∫ c

0

(+1)dx2 +

∫ 1

c

(−1−B)dx2 = c+ (−1−B)(1− c) = (B + 2)c−B − 1, x1 < c,

or∫ c

0

(+1)dx2 +

∫ x1

c

(1 +B)dx2 +

∫ 1

x1

(−1−B)dx2 = (B + 1)(2x1 − 1)−Bc, x1 ≥ c.

Then by IC in Equation 2.2,

2x1 − 1 = 2c+Bc−B − 1, (2.3)

2x1 − 1 = (B + 1)(2x1 − c− 1) + c (2.4)

Since I’s payoff is also piecewise linear with respect to x1, player I’s optimal strategy is to

bet if x1 < a or x1 > b, and to check if a ≤ x1 ≤ b. Then x1 ≤ c in Equation 2.3, and x1 ≥ c

in Equation 2.4,

2a− 1 = 2c+Bc−B − 1 (2.5)

2b− 1 = (B + 1)(2b− c− 1) + c (2.6)
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Player II’s optimal strategy should obey the indifference condition,[
a(1 +B) + (1− b)(−1−B)

]/(
a+ 1− b

)
= −1 (2.7)

Solve Equations 2.5 and 2.6 give values a and b and substitute into Equation 2.7, c =

B(B + 3)
/[

(B + 1)(B + 4)
]
. a and b as functions of B are obtained by re-substitution.

Remark 2.4. Note that the only optimal pure strategy for Player I is as described above.

However, for player II, even if he varies his strategy between a and b given that he calls

with b− c proportion of hands, while still folding x2 < a and calls x2 > b, there is no better

strategy for player I.

2.1 Payoff Square and Player I’s Value

Payoffs of both players can be determined. In addition, given that player I determines his

bet amount before hands are assigned, the optimal B that maximizes the expected payoff

is of interest. First, payoff squares that describe strategies and corresponding payoffs of

players are introduced.

Definition 2.5. A payoff square is a two-dimensional square diagram with hands of player

I in x-axis, and player II’s in y-axis. A point in the square indicates a hand pair (x1, x2),

and the payoff, u1(x1, x2, s1(x1, x2), s2(x1, x2)), indicated at the point is resulted from the

strategies played corresponding to the hands.

Remark 2.6. Payoffs of any strategy set can be depicted by the payoff square. It can also

be generalized to n-dimension, which is equivalent to taking multiple integrals of n variables

(Besides the payoff square, only a payoff “cube” depicting a three-player game is beneficial).

Corollary 2.7. Given that both players follow the optimal strategies described in Theorem

2.3, player I’s payoff is u1(x1, x2, s1, s2) = a. Optimal bet amount is B∗ = 2.

Proof. Expected payoff from player I checking all hands is 0, +1 below x1 = x2 and −1

above x1 = x2. Equivalently, the payoff differential from this strategy is illustrated and

expected payoff would be the same overall, so we add 1 above x1 = x2, subtract 1, and

cancel out a square region on the top of +B and −B to get the resulting square on the right.

The original, complete payoff square as well as its geometric and algebraic manipulation are

shown in Figure 3.
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Figure 3: Illustration of Player I’s payoff by payoff square.

The expected payoff of player I is

u1 = B(1− b)(b− c)−B(a)(1− c) + (2)(1/2)(c+ c− a)(a)

= B
/[

(B + 1)(B + 4)
]

= a. (2.8)

Maximizing u1(B) with respect to B,
(
4 − B2

)/[
(B + 1)2(B + 4)2

]
= 0, B∗ = 2. u1(2) =

1/9, a = 1/9, b = 7/9, c = 5/9.

The result deserves some discussion. Player I’s payoff, B/(B2 + 5B + 4) is positive for

all B > 0, and it achieves its maximum at B∗ = 2, the pot size. This means that the

game favors player I who is given the chance to raise, and he maximizes his payoff to be

1/9 by betting pot size every time. Player I has an advantage because he can bluff with his

worst hands. More importantly, for real poker perhaps, he must bluff with his worst but not

mediocre hands.

3 Newman’s Game: 1 variable bet for Player I

In contrast to von Neumann’s model in which the bet amount is pre-determined and fixed,

Donald Newman presents a model that has the same game structure but allows any bet

amount Newman (1959). In this game, player I’s expected payoff is 1/7 because player I

bluffs 1/7 of time. Optimality of the strategy is proven by showing that the given pure

strategy is a saddle point of all strategies.
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The game tree is the same as above, but any positive real number bet B is allowed. Player

I’s strategy B(x1) : (0, 1) → R+ ∪ {0}, and Player II calls the amount when x2 ∈ SB(x1).

Collection of the intervals SB is denoted Σ. Expected payoff to A due to the pure strategy

is then

u1(x1, x2) =

{
1 if x2 /∈ SB(x1)

u(1 +B(x1)) if x2 ∈ SB(x1)

=

{
1 + 0

1 + [u(1 +B)− 1]

E(Σ, B) = 1 +

∫ ∫
x2∈SB(x1)

[
u(1 +B(x1))− 1

]
dx1dx2 (3.1)

Theorem 3.1. Let ξ = 2/(B + 2), then the optimal strategy is that

I checks if x1 ∈ (1/7, 4/7), bets B with hand 1/7 · (1−3ξ2 +2ξ3) = (4/7)(2+3B)(2+B)−3 or

1−3/7 · ξ2 = 1− (12/7)(2 +B)−2; II calls if and only if x2 > 1−6/7ξ = 1− (12/7)(2 +B)−1

and folds otherwise.

Proof. We must prove, according to definition of Nash equilibrium, that

Proposition 3.2. Player II’s payoff is maximized: −E(Σ0, B0) ≥ −E(Σ, B0) ∀Σ

Proposition 3.3. Player I’s payoff is maximized: E(Σ0, B0) ≥ E(Σ0, B) ∀B

where Σ0 and B0 are asserted solutions. Together, we must prove that

E(Σ, B0) ≥ E(Σ0, B0) ≥ E(Σ0, B) (3.2)

First, we prove assertion 1. Given any SB, define S ′B =
(
1 − measure(SB), 1

)
. Since

integrand in equation 3.1 is monotone decreasing in x2. We have

−E(Σ′, B) ≥ −E(Σ, B).

From poker point of view, this equation states that if player II decides to call proportion

p of all hands, then he should call with his best p of the hands to yield higher expected

payoff, regardless of player I’s strategy. However, it is certainly true that

− E(Σ′, B0) ≥ −E(Σ, B0). (3.3)

Now consider B0. ∀B0 > 0, there are two hands x1 < x2 correspoding to the amount of

bet. Let S∗0 = (0, 1), and for B > 0, define

S∗B =
[
S ′B ∩ (x1, 1)

]
∪ (x2, 1).
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Potentially if they are nonempty intervals, S∗B differs from S ′B by removing (a, x1) where

E ≥ 0 and adding (x2, a) where E ≤ 0. Therefore,

− E(Σ∗, B0) ≥ −E(Σ′, B0) (3.4)

S∗B are intervals of the form

1. x1 ≤ a∗(B) ≤ x2 for B > 0

2. a∗(0) = 0

For player II, this means that he should call with hands (p, 1) with p better than the

bluffing hand but worse than player I’s better hand.

For such a∗, by strategy B0, u(x, a∗) = a∗ + u(1− a∗)(1 +B),

E(Σ∗, B0) =

∫ 1

0

a∗ + (B + 1)[|a∗ − x1|+ x1 − 1]dx (3.5)

It can be shown that E is independent of a∗ if it satisfies the two conditions above, by

splitting E into
∫ 1/7

0
+
∫ 4/7

1/7
+
∫ 1

4/7
and changing the independent variable into ξ as defined

above, a∗ cancels out of the expression (in
∫ 4/7

1/7
, a∗ = 0; intuitively, a∗ with corresponding

values in each of the two intervals cancel each other out).

This in particular means that

E(Σ∗, B0) = E(Σ0, B0). (3.6)

By equations 3.3, 3.4, 3.6, we have

−E(Σ0, B0) = −E(Σ∗, B0) ≥ −E(Σ′, B0) ≥ −E(Σ, B0),

verifying assertion 1.

Next by backward induction, given player II’s strategy, we need to prove assertion 2.

Here we drop x1 subscript because Player II’s payoff is no longer inolved. By eq.3.5,

E =

∫ 1

0

1− 6

7
ξ +

2− ξ
ξ

[∣∣1− 6

7
ξ − x1

∣∣+ x1 − 1
]
dx. (3.7)

Since ξ is a function of x, we verify for the three intervals
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1. x < 1/7. Integrand is

1− 6

7
ξ +

2− ξ
ξ

[(
1− 6

7
ξ − x

)
+ x− 1

]
= 1− 6

7
ξ +

2− ξ
ξ

(
6

7
ξ) = 1− 12

7
= −5

7

independent of ξ, so the choice x = 1
7
(1− 3ξ2 + 2ξ3) is justified.

2. 1/7 ≤ x ≤ 4/7. The integrand has non-vanishing derivative sign(x), so maximum

occurs at an endpoint. ξ = 0 produces −5/7 and ξ = 1, 2x− 1, Since 2x− 1 ≥ −5/7

for all x in the interval, ξ = 1, i.e. B = 0 is the optimal choice.

3. x > 4/7. Derivative = 0 when x = 1 − 3
7
ξ2. and integrand equals 1

7
(19 − 24ξ + 6ξ2).

Considering along with endpoints ξ = 0, 1,

1

7
(19− 24ξ + 6ξ2) = 1− 6

7
ξ2 +

12

7
(1− ξ2) ≥ V (1) = 1− 6

7
ξ2 = 2x− 1 ≥ V (0) = −5

7
.

So x = 1− 3
7
ξ2 is optimal.

Therefore, the strategy presented is optimal for both players, given that the two assertions

are proven.

4 Fergusons’ Game: 1 fixed bet for Player I and 1 fixed

bet for Player II

The key extension to the previous model is allowing player II to re-raise amount B2 after

calling player I’s bet B1, and then player I either calls or folds. This model is discussed

in Ferguson and Ferguson (2003) and Ferguson, Ferguson, and Garaway (2007). The pure

strategies given hands x1, x2 ∼ U(0, 1), are

Player I: s1 : x1 × s2(s1)→ {check, bet B1}×{fold, call}={bet-fold, bet-raise, check},
Player II: s2 : x2× {check, bet} → {bet B2, check, fold}.

I
I

II
bet

check
fold

bet

call

fold

check u

1

(1+B1)u

-(1+B1)

(1+B1+B2)u

Figure 4: Extensive form of the two players with player I’s payoffs.
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Theorem 4.1. Player I bet-folds when x1 ∈ (0, a] ∪ (b, c], checks when x1 ∈ (a, b], and bet-

calls when x1 > c. Player II folds when x2 ≤ d, calls when x2 ∈ (e, f ], and re-raises when

x1 ∈ (d, e] ∪ (f, 1]. 0 ≤ a ≤ e ≤ b ≤ c ≤ f ≤ 1 and 0 ≤ d ≤ e (d can be larger or smaller

than a), where

a =
B2

1(2 + 2B1 +B2)
2

(1 +B1)∆
, b = 1− 2 +B1

B1

a, c = 1− 2B1(2 +B1)(2 + 2B1 +B2)

∆
,

d =
B1 + 2a

2 +B1

, e =
B1

1 +B1

− a, f = 1− B1(2 +B1)(2 + 2B1 +B2)

∆

where ∆ = B1(4 + B1)(2 + 2B1 + B2)
2 + (1 + B1)(2 + B1)

2B2. The optimal strategies are

illustrated in Figure 5.

Player I
a b c

0 1
d e f

bet-fold bet-fold bet-call

fold raise call raisePlayer II

check

Figure 5: Optimal Strategies of both players.

Proof. First, apply the indifference conditions for

• Player I at a: −2a+ (−2−B1)d = B1;

• Player I at b: 2B1b+ (2 +B1)d+ (−2B1 − 2)e = B1;

• Player I at c: (−2− 2B1 −B2)d+ (2 + 2B1 +B2)e+B2f = B2;

• Player II at d: (2 +B1)a− (2 +B1)b+ (2 + 2B1 +B2)c = B1 +B2;

• Player II at e: (−2− 2B1)b+ (2 + 2B1 +B2)c = B2;

• Player II at f : −c+ 2f = 1.

Solving six linearly independent equations of six unknowns, we get results as presented

in the theorem. Then suppose we ignore the antes contributed by the players by treating

them as sunk costs. Given that Player II uses the conjectured optimal strategy, and player

I has hand x1, I’s “gain” from

• checking is 2x1.

• bet-folding is 2a if 0 < x < e; 2a+2(1+B)(x−e) if e < x < f , and 2a+2(1+B1)(f−e)
if f < x < 1.
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• bet-calling is 2a−2(1+B1+B2)(e−d) if 0 < x < d; 2a−2(1+B1+B2)(e−x) if d < x < e;

2a+ 2(1 +B1)(x− e) if e < x < f ; and 2a+ 2(1 +B1)(f − e) + 2(1 +B1 +B2)(x− f)

if f < x < 1.

We can verify that at every critical point, the payoffs from two strategies are equal. Then

noting that the payoff function is piecewise linear, we verify that player I’s strategy is optimal.

Similarly given player I’s optimal strategy and Player II’s hand x2, Player II’s expected payoff

from

• folding is 0 if 0 < x2 < a, 2(x2 − a) if a < x2 < b, and 2(b− a) if b < x2 < 1.

• calling is −2(1 +B1)(a− x2) if 0 < x2 < a; 2(y− a) if a < x2 < b; and 2(b− a) + 2(1 +

B1)(x2 − b) if b < x2 < 1.

• raising is 0 if 0 < x2 < a, 2(x2 − a) if a < x2 < b; 2(b − a) if b < x2 < c; and

2(b− a) + (1 +B1 +B2)(x2 − c) if c < x2 < 1.

Then with II’s boundary conditions verified, player II is proven to play an optimal strategy

as well. Complicated operations were done by Maple 11.

Corollary 4.2. Expected payoff of player I is a. Optimal bet for player I, B∗1 = 1 +
√

13/3.

Optimal bet for II is B∗2 = 2B∗1 + 2 = 4 + 2
√

13/3.

Proof. Applying the modified payoff square as illustrated in Figure 6,

u1 = B1

[
− a(1− d)− (c− b)(e− d) + (1− c)(e− d) + (1− b)(b− e)

]
+

2
[
(2d− a)(a

/
2)− (c− b)(e− d)

]
+B2

[
(1− c)(e− d)− (f − c)(1− f)

]
= B2

1

/
{(1 +B1)

[
B1(4 +B1) + (1 +B1)(2 +B1)

2B2/(2 + 2B1 +B2)
2
]
} = a.

Minimizing u1 with respect to B2 while B1 is fixed, is equivalent to maximizing B2/(2 +

2B1 +B2)
2,

(2B1 + 2 +B2)− 2B2

(2 + 2B1 +B2)2
= 0⇒ B∗2 = 2B∗1 + 2.

Substitute in, u1 = 8B2
1

/[
(1 +B1)(9B

2
1 + 36B1 + 4)

]
. Then maximizing u1 with respect

to B1 yields 9B3
1 − 40B1 − 8 = 0. Three roots are B1 = −2, 1 +

√
13/3, 1−

√
13/3. Clearly,

B∗1 = 1 +
√

13/3 ≈ 2.202, B∗2 = 4 + 2
√

13/3 ≈ 6.404

Substituting in B∗1 and B∗2 , a = 0.0955, b = 0.8178, c = 0.909, d = 0.569, e = 0.592, f = 0.954.
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Figure 6: Payoff of Player I by payoff square.

Though the game still favors player I, its payoff (0.0955) is lower than that in the original

von Neumann model (1/9). This shows that allowing player II to re-raise restricts player I’s

audacity of bluffing, thus decreasing his advantage and profit. Obviously player I always has

advantage given that he makes a voluntary decision first: he can always checks to yield an

expected payoff of 0. Also note that player I’s optimal bet is a little over the pot size, and

player II is little under the added pot size, however very close. This gives some insight and

justification to bet by pot size in real poker.

In addition, player II can bluff with his “good” hands. This is justified as follows. Player

I will fold his worst hands because he is caught bluffing, and fold some of his good hands

because player II will also raise with his best hands. However, if player II simply calls, he

has higher chance of losing to the good hands that player I has raised with. Folding is even

more disastrous as he is bluffed by the worst hands of Player I.

In both models, payoffs for player I are both a which corresponds to the initial bluff

region by Player I in the first round. This fact needs to be further investigated in order to

determine whether value of player I is always a allowing additional re-raises.

5 My Game: 2 fixed bets for Player I and 1 fixed bet

for Player II

This is the simplest model allowing both players the chance to bet but with different numbers

of such chances. This model is investigated in order to be compared with von Neumann’s

and Fergusons’ models with (1, 0) and (1, 1) bets for Players I and II, respectively. How
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the game favors player I by adding one round of betting compared to Fergusons’ and by

adding one round of betting for each player compared to von Neumann’s are of interest.

In addition, with more information, we can conjecture a generalized equilibrium strategy if

infinite number of raises is allowed for both players. If we define one round of betting as one

bet and one re-raise, then this model is one of ”one and half round betting”.

Player I can either checks or raises B1 after each player i is dealt hand xi. Player II

then can decide to fold, call, or re-raise amount B2 after calling. Player I then can fold,

call, or re-raise an additional amount B3 with player II calling or folding. The strategies are

illustrated as

Player I: [0, 1]→{check, raise B1}×{fold, call, re-raise B3}
Player II: [0, 1]→{fold, call, raise B2}×{fold, call}

The game tree is illustrated below with payoff of Player I denoted.

I III II
fold

check/call

bet

u

1 -1-B1 1+B1+B2

u(1+B1) u(1+B1+B2) u(1+B1+B2+B3)

Figure 7: Game Tree of Three Raises

Theorem 5.1. An optimal strategy is described and illustrated as follows. Player I check for

a ≤ x1 ≤ b, bet B1 otherwise; player II will fold x2 < d, call with e ≤ x2 ≤ f , and re-raise

B2 for hands d ≤ x2 < e and f < x2 ≤ 1. Then player I would fold x1 < a, b ≤ x1 ≤ c,

call g ≤ x1 ≤ h, and bet amount B3 with c < x1 < g, h ≤ x1 ≤ 1. Player II will fold except

calling with hands x2 ≤ i. Strategies at boundary points can be either one of the two adjacent

to it as the probability is non-atomic.

Player I
a b c

0 1
d e f

bet-fold bet-fold bet-bet

fold bet-fold call bet-foldPlayer II

check
g

i

h

bet-call

bet-call bet-bet

Figure 8: An equilibrium strategy for two players.

Optimal bet sizes are B∗1 = 1 +
√

4329 + 624
√

13
/

69 ≈ 2.176, B∗2 = (1 +
√

13/3)(1 +B1) ≈
2.2(1 +B1) ≈ 7, and B∗3 = 2B∗2 + 2B∗1 + 2 ≈ 20, with

Player I: a = 0.09758, b = 0.81272, c = 0.91086, g = 0.91557, h = 0.9906,

Player II: d = 0.5678, e = 0.5875, f = 0.96229, i = 0.9811. (5.1)
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The expected payoff of player I is again a.

Proof. The optimal strategies are extensions from Fergusons’ model just as it is the extension

to the von Neumann model. For regions [c, 1] where previously player I bet-calls, it is divided

into three regions: bet-bet, bet-call, bet-bet, and previous [f, 1] region is divided into bet-

fold and bet-call areas. Instead of six unknowns, nine unknown therefore are involved. The

assumption about the relationship is

a ≤ e ≤ b ≤ c ≤ g ≤ f ≤ i ≤ h; d ≤ e (5.2)

The indifference conditions are

1. Player I indifferent between bet-folding and checking at a:

d+ (−1−B1)(1− d) = 2a− 1; (5.3)

2. Player I indifferent between checking and bet-folding at b:

2b− 1 = d+ (2b− 2e+ d− 1)(1 +B1); (5.4)

3. Player I indifferent between bet-folding and bet-betting at c:

2(e− d+ 1− f)(2 + 2B1 + 2B2) = (1− i)(2 + 2B1 + 2B2 +B3); (5.5)

4. Player I indifferent between bet-betting and bet-calling at g:

i(1 +B1 +B2 +B3)−B3 = (2f − i− 1)(1 +B1 +B2); (5.6)

5. Player I indifferent between bet-calling and bet-betting at h:

2h = 1 + i; (5.7)

6. Player II indifferent between folding and bet-folding at d:

(−1)(a+ 1− b) = (1 +B1)(a+ c− b)− (1 +B1 +B2)(1− c); (5.8)
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7. Player II indifferent between bet-folding and calling at e:

(1 +B1 +B2 +B3)(c− 1) = (1 +B1)(2b− c− 1); (5.9)

8. Player II indifferent between calling and bet-folding at f :

(2g − 2c)(1 +B1 +B2) = (2f − c− 1)B2; (5.10)

9. Player II indifferent between bet-folding and bet-calling at i:

(g − c)(2 + 2B1 + 2B2 +B3) = (1− h)B3; (5.11)

Solving the nine linear equations yield the nine unknowns. Payoff square is used to derive

the expected payoff of player I.

0 1 1x

2x

a c

1+B1

β+B3

-B1

+1+1

-1

d b g f

+1

-β
-β

e i h

1

a

c

d

b

g

f

e

i

h

-1-B1

0

0

0

0
-1-

B1

-β-

B3

ββ

β=1+B1+B2

β

-β

0 1 1x

2x

a c

B1

B3

-B1

+2

d b g f

+1

e i h

1

a

c

d

b

g

f

e

i

h

-2-B1

-B2 

-B3

2+2B1+B2

B1+B2

-B2

Figure 9: Payoff squares of the One and Half Round Game

UI =
1

2
(2d− a)a(+2)− a(1− d)B1 + (−2−B1)(c− b)(e− d) +B1(b− e)(1− b)

+ (B1 +B2)(1− c)(e− d) + (1− h)(h− i)B3 − (f − g)(1− f)B2

+ (g − c)(1− i)(−B2 −B3) + (2 + 2B1 +B2)(g − c)(i− f) = a (5.12)

To prove that the given strategy is optimal, we prove that I and II are playing the best

strategies given any hand x1 given that the other player is playing the respective strategy.
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Player I’s payoff for hand x1 from

• checking: 2x1 − 1

• bet-folding: x1 < e : d− (1 + B1)(1− d); e ≤ x1 ≤ f : d− (1 + B1)(e− d + 1− x1) +

(x1 − e)(1 +B1); x1 > f : d+ (f − e)(1 +B1)− (e− d+ 1− f)(1 +B1);

• bet-calling: x1 ≤ d : d− (1− d)(B1 + 1); d < x1 < ed+ (f − 1 + 2x1− e− d)(1 +B1 +

B2)+(e−f)(1+B1); e ≤ x1 ≤ f : d+(e−d+f−1)(1+B1+B2)+(2x1−e−f)(1+B1);

x > f : d+ (f − e)(1 +B1) + (1 +B1 +B2)(e− d+ 2x1 − f − 1);

• bet-betting: x1 < e : d+ (e− d+ i− f)(1 +B1 +B2) + (f − e)(−1−B1) + (1− i)(−1−
B1 −B2 −B3); e ≤ x1 ≤ f : d+ (e− d+ i− f)(1 +B1 +B2) + (i− 1)(1 +B1 +B2 +

B3) + (2x1− e− f)(1 +B1); f < x ≤ i : d+ (e− d+ i− f)(1 +B1 +B2) + (f − e)(1 +

B1) + (i− 1)(1 + B1 + B2 + B3); f < x ≤ i : d+ (e− d+ i− f)(1 + B1 + B2) + (f −
e)(1 +B1) + (2x1 − i− 1)(1 +B1 +B2 +B3).

Player II’s payoff given hand x2 from

• folding is 0 if 0 ≤ x2 < a; 2x2 − 2a− 1 if a ≤ x2 ≤ b; 2b− 2a− 1 if x2 > b;

• calling is b− a+ (2x2 − a+ b− 1)(1 +B1) if x2 < a; (a+ b− 1)(1 +B1) + 2x2 − a− b
if a ≤ x2 ≤ b; (2x2 − b− 1 + a)(1 +B1) + b− a if x2 > b;

• bet-folding is (2c− b+ a− 1)(1 +B1 +B2) + a− b if x2 < a; (2c− b+ a− 1)(1 +B1 +

B2) + 2x2− a− b if a ≤ x ≤ b; (c− b+ a+ g− 1)(1 +B1 +B2) + b− a+ if b < x2 < g;

b−a+(2c−b+a−2g−1+2x2)(1+B1+B2) if g < x2 < h; b−a+(2c−b+a−2g+2h−1)

if x2 > h;

• bet-calling is a−b+(a+c−b)(1+B1)+(g−h)(1+B1+B2)+(1−h+g−c)(1+B1+B2+B3)

if x2 < a; 2x2 − a − b + (a + c − b)(1 + B1) + (g − h)(1 + B1 + B2) + (1 − h + g −
c)(1 + B1 + B2 + B3) if a ≤ x2 ≤ b; b − a + (a + c − b)(1 + B1) + (g − h)(1 +

B1 + B2) + (1 − h + g − c)(1 + B1 + B2 + B3) if x2 < c; b − a + (c − b + a)(1 +

B1) + (g − h)(1 + B1 + B2) + (2x2 − g − c + h− 1)(1 + B1 + B2 + B3) if c ≤ x2 ≤ g;

b−a+(c−b+a)(1+B1)+(2x2−g−h)(1+B1+B2)+(g−c+h−1)(1+B1+B2+B3) if g <

x2 ≤ h; b−a+(c−b+a)(1+B1)+(h−g)(1+B1+B2)+(g−c+2x2−h−1)(1+B1+B2+B3)

if x2 > h.

Since the nine equations are satisfied at the critical points, and payoff functions are piecewise

linear to the hands and strategies, it can be verified that both players are playing the best

strategy given a certain hand.
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Let’s compare the results to the earlier models. The optimal expected payoff of player I

(0.0975) is lower than that in the von Neumann model (1/9 = 0.11), and higher than that

of Fergusons’ (0.0955). This result is because of the betting power given to each player. In

von Neumann’s basic model, only player I has one chance of betting, Fergusons give equal

number of raises to each player but player I the advantage of raising first. Though player I is

favored because he makes a decision first, his advantage is reduced because permitting player

II to re-raise restricts player I’s audacity to bluff thus reducing the proportion of hands he

bluffs with and raises with overall.

However, in this game with one and half round of betting, player I gets back some of the

edge by being both the first and the last to be able to raise. However, notice that player II

folds over half and just a little under two thirds of his hands, and it is the same proportion of

hands that have been folded initially compared to the previous model. The loss of payoff for

player II comes mainly from two areas: more initial hands folded and additional hands that

are simply called in the previous game but now need to be folded after re-raise by player I.

However, player I’s expected payoff is not greatly affected. We suspect that the expected

payoff of player I is converging to a value near 0.097.

6 Discussion: Multiple re-raises

The game tree allowing two raises by each player is illustrated in Figure 10, and model of

more raises can extended by adding more “branches”.

I III II I
fold

check/call

bet

Figure 10: Game tree of two raises.

By forward induction, we conjectured the optimal strategies for both players to be as

follows. For player i, i = 1, 2, in round j, let fi,j be the folding threshold, ci,j the calling

threshold, and ri,j the raising threshold. fi,j < ci,j < ri,j < 1, dividing the hands into four
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intervals. Then player i in round j will
fold if xi ∈ (0, fi,j]

raise if xi ∈ (fi,j, ci,j]

call/check if xi ∈ (ci,j, ri,j]

raise if xi ∈ (ri,j, 1]

fI,1 = 0 in this model because no hand will be folded by player I. Furthermore, 0 <

fi,j, ci,j, ri,j < fi,J for all J > j, producing strictly smaller interval of remaining hands.

Relationship of inequalities between two players’ folding, calling and raising thresholds needs

to be investigated. Similarly, we can apply indifference conditions to each of the boundary

points in the crossing intervals and solve for equilibrium conditions, but it will only grow

more complicated algebraically.

The value of the game, that is, the expected payoff of player I will eventually converge

to a certain value close to 0.096− 0.097, more crudely 1/10. The fact that the value of the

game is always equal to the initial bluff region of player I should be able to proven rigorously,

possibly with help of the cancellations made in payoff square.

(Cutler 1975) discusses a model allowing infinite pot-size raises, but with initial force-in

for player I. It is possible to be solved since the bet is restricted to be pot size, the ratio of

high raises and bluffs is always 2 to 1. Both players will make bluffs and raises with fewer

but the same proportion of remaining hands. The game favors player II because player I is

forced to raise in the first round. In addition, the paper shows that the profit from player II

being super bluffer and ultraconservative player is virtually the same.

7 The Model with Changing Hands

Players I and II are dealt hands x1, x2 ∈ U [0, 1). Player I is then forced to bet B1. Player

II can decide to call or fold. If called, the game proceeds. A ball marked + or − is shown

with equal chance, and player I’s hand x1 is changed accordingly. If + is shown, there is 1/2

chance that the ball stays unchanged or 1/2 chance that the ball is changed to x1 + 0.5 if

x1 < 0.5 and stays unchanged x1 for x1 ≥ 0.5. If − ball is shown, then there is half chance

that all hands stay unchanged and half chance that x1 is changed to x1 − 0.5 for hands

x1 ≥ 0.5 and unchanged if x1 < 0.5. Then player I can bet again, with fixed amount B2.

Player II can either call or fold. Game Tree is as below.
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I

+

II

bet

fold

call

check

-

1

u(1+B1)
check

I

I

II

fold

call

II

fold

call

1+B1

1+B1

u(1+B1+B2)

u(1+B1+B2)

Figure 11: Game of the Changing Hand Game

Player I A B
0 1

c

bet bet

fold call-callPlayer II

check

Dcall-fold

Player I a b
0 1

c

bet bet

fold call-callPlayer II

check

dcall-fold

Figure 12: Equilibrium Strategy of The Changing Hand Game where a, b, d are equivalent to
a−, b−, d−, and A,B,D are a+, b+, d+

The critical points in the optimal strategies have the order relation:

0 < a+ < c <
1

2
< d+ < b+ < 1 (7.1)

0 < a− < c <
1

2
< d− < b− < 1 (7.2)

Indifference conditions at the critical points are

1+) When + is shown, Player I is indifferent between checking and betting at a+

(−1−B1) =
2d+ − c− 1

1− c
(1 +B1 +B2)

(c− 1)(1 +B1) = (2d+ − c− 1)(1 +B1 +B2)

(2d+ − 2c)(1 +B1) + (2d+ − c− 1)B2 = 0 (7.3)

2+) When + is shown, Player I is indifferent between checking and betting at b+

2b+ − c− 1

1− c
(1 +B1) =

d+ − c
1− c

(1 +B1) +
2b+ − d+ − 1

1− c
(1 +B1 +B2)

2b+ = d+ + 1 (7.4)
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3+) When + is shown, Player II is indifferent between folding and calling at d+

(−1−B1)[
3

2
(1− b+) +

1

2
a+] = (1 +B1 +B2)[

1

2
a+ +

3

2
(b+ − 1)]

2a+(1 +B1) +B2(a
+ + 3b+ − 3) = 0 (7.5)

1−) When − is shown, Player I is indifferent between checking and betting at a−

(2d− − 2c)(1 +B1) + (2d− − c+ 1)B2 = 0 (7.6)

2−) When − is shown, Player I is indifferent between checking and betting at b−

2b− = d− + 1 (7.7)

3−) When − is shown, Player II is indifferent between folding and calling at d−

(−1−B1)[
1

2
(1− b−) +

3

2
a−] = (1 +B1 +B2)[

3

2
a− +

1

2
(b− − 1)]

6a−(1 +B1) +B2(3a
− + b− − 1) = 0 (7.8)

4) When confronted with a raise, Player II is indifferent between folding and call-folding

at c 1:

−1 =
1

2

[
− 3

4
(1 +B1)−

1

2
a+(1 +B1)− (

1

2
− c)1

2
(1 +B1) +

1

2
(c− a+)(1 +B1)

]
+

1

2

[
− 1

4
(1 +B1)−

3

2
a−(1 +B1)− (

1

2
− c)3

2
(1 +B1) +

3

2
(c− a−)(1 +B1)

]
2 = (1 +B1)(2 + a+ + 3a− − 4c) (7.9)

Solving the seven equations yield the seven unknowns:

a− =
(x+ 2)y

∆
, a+ =

3y(x+ 2)

2∆
, c =

2x+ 2x2 + 3xy + y

∆

b+ = b− =
9xy + 8y + 6x2 + 10x+ 4

2∆
, d+ = d− =

4xy + 3y + 2x2 + 2x

∆
. (7.10)

where ∆ = 5xy + 4x2 + 8x+ 4 + 5y.

1Actually, assuming c > 0.5 and c < 0.5 yields the same indifference condition for c.
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Figure 13: Payoff Square of the + sub-game.

Player I’s payoff V1 =
(
V + + V −

)/
2 where V + is the payoff when + signal is shown,

V + =
[
c2 + (d+ − c)A(x+ 2) + A(1− d+)(−B1 −B2)− (c− A)(1− c)B1

− (1/2− c)(1−B)B1 − (3(b+ − 1/2))(1− b+)B1 + (3 ∗ (1− b+))(d+ − c)x

+ (3(b+ − d+))(1− b+)(B1 +B2)
]/

2 (7.11)

and V − is the payoff when − is shown,

V − =
[
3c2 + 3(d− − c)a(B1 + 2) + 3a−(1− d−)(−B1 −B2)− 3(c− a−)(1− c)B1

− 3(
1

2
− c)(1− b−)B1 − (b− − 1

2
)(1− b−)B1 + (1− b−)(d− − c)B1

+ (b− d−)(1− b)(B1 +B2)
]/

2 (7.12)

Overall,

V =−
[
56B3

1B2 + 36B2B
4
1 +B2

1B
3
2 + 20B2

2B
3
1 + 48B4

1 − 16B2 + 48B3
1 + 16B5

1

− 12B2B
2
1 + 4B3

2 + 16B2
1 + 4B3

2B1 − 48B1B2 − 40B2
2B1 − 20B2

2

]/[
(B1 + 1)∆

]2
(7.13)

When the bets are restricted to the pot size, that is, B1 = 2, B2 = 4, value of the game
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to player I is −7
/

36, and

a− =
1

36
, a+ =

1

4
, b− = b+ =

19

24
, c =

5

12
, d− = d+ =

7

12
. (7.14)

Therefore, the game favors player II. Payoff squares for the + situation are illustrated.

The − situation is the same except that the boundaries are replaced by respective

a−, b−, and d−.

8 Conclusion

In this exposition, we discussed some classical models of two-player zero-sum poker games

with initial independent and identically distributed uniform (0, 1). The models differ by

number of bets allowed, amount of bet allowed each round, and the possibility of change

to the hand held. While equilibrium strategies are found, various aspects of the game

are revealed. For example, the von Neumann model shows the importance of bluffing that

directly affects the value of the game. Subsequent models that extend it by adding more bets,

reveal how these additional bet allowances affect the values and form of optimal strategies.

It is found that players raise some of the mediocre hands but simply call with better hands.

The reason behind it is that, the opposite player would likely fold the hands worse than the

player’s, but call with better hands, so raising may not necessarily generate more profit but

possibly aggravate loss.

The model with the changing hand suggests how players respond to signals. With a signal

favorable to player I, he will have more power to bluff. Essentially the model presented

distorts the uniform distribution into a “bi-uniform” one which is a combination of two

uniform distributions with different probabilities. The force-in can be eliminated, and instead

the player should be given the option to check or raise.

In addition, a tool that is used to clearly show the payoffs of players under different

strategies, called the payoff square, is used to calculate the payoffs of players. It may be

used to understand why the value of the game equals the initial bluff region, and it can be

extended to three-player games as well.

Overall, the models presented help us to understand many small parts of the poker game,

though it is far from a perfect understanding.
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