Understanding the Mood of Social Media Messages

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Social Media is a valuable source of information when seeking to understand community opinion and sentiment about issues of public interest. Such analysis is usually based on sentiment or emotion processing using machine learning techniques or references a curated lexicon of words to measure the emotive intensity being expressed. The lexicon approach can be limited by the sparsity problem, where the lexicon words are not present in the text being processed, and context issues, where the lexicon words have different meanings in the domain under investigation. We have developed a novel technique based on word embeddings to mitigate these issues and present a case study showing its application, where the mood expressed by the community on social media about the Centenary of Armistice in Australia was determined in near real-time.

Description

Keywords

Data Analytics, Data Mining and Machine Learning for Social Media

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email [email protected] if you need this content in ADA-compliant format.