This is an interdisciplinary work in Computer Science and Operational Research. As it is well known, these two very important research fields are strictly connected. Among other aspects, one of the main areas where this interplay is strongly evident is Networking. As far as most recent decades have seen a constant growing of every kind of network computer connections, the need for advanced algorithms that help in optimizing the network performances became extremely relevant. Classical Optimization-based approaches have been deeply studied and applied since long time. However, the technology evolution asks for more flexible and advanced algorithmic approaches to model increasingly complex network configurations. In this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated with each vertex and it is not necessary to visit all vertices. The goal is to determine a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes the collected profit. The TSPP models the problem of sending a piece of information through a network where, in addition to the sending costs, it is also important to consider what “profit” this information can get during its routing. Because of its formulation, the right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this context, the aim of this work is to study new ways to solve the problem in both the exact and the approximated settings, giving all feasible instruments that can help to solve it, and to provide experimental insights into feasible networking instances.

The bi-objective travelling salesman problem with profits and its connection to computer networks.

STEVANATO, Elisa
2010

Abstract

This is an interdisciplinary work in Computer Science and Operational Research. As it is well known, these two very important research fields are strictly connected. Among other aspects, one of the main areas where this interplay is strongly evident is Networking. As far as most recent decades have seen a constant growing of every kind of network computer connections, the need for advanced algorithms that help in optimizing the network performances became extremely relevant. Classical Optimization-based approaches have been deeply studied and applied since long time. However, the technology evolution asks for more flexible and advanced algorithmic approaches to model increasingly complex network configurations. In this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated with each vertex and it is not necessary to visit all vertices. The goal is to determine a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes the collected profit. The TSPP models the problem of sending a piece of information through a network where, in addition to the sending costs, it is also important to consider what “profit” this information can get during its routing. Because of its formulation, the right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this context, the aim of this work is to study new ways to solve the problem in both the exact and the approximated settings, giving all feasible instruments that can help to solve it, and to provide experimental insights into feasible networking instances.
ZANGHIRATI, Gaetano
ZANGHIRATI, Gaetano
File in questo prodotto:
File Dimensione Formato  
297.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2389333
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact