
1 6 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

Software engineers have recognized the
profound influence of business globalization
for some time, generating alarmist reactions

in some quarters and moving others to try to
capture and emulate models that have met
with success. More recently, attention has
turned toward trying to understand the fac-
tors that enable multinationals and virtual
corporations to operate successfully across
geographic and cultural boundaries.

Globalization and software
Over the last few years, software has be-

come a vital component of almost every
business. Success increasingly depends on
using software as a competitive weapon.
More than a decade ago, seeking lower
costs and access to skilled resources, many
organizations began to experiment with
remotely located software development fa-
cilities and with outsourcing. Several fac-
tors have accelerated this trend:

■ the need to capitalize on the global re-
source pool to successfully and cost-com-
petitively use scarce resources, wherever
located;

focus
Global Software
Development

James D. Herbsleb and Deependra Moitra, Lucent Technologies

T
he last several decades have witnessed a steady, irreversible trend
toward the globalization of business, and of software-intensive
high-technology businesses in particular. Economic forces are re-
lentlessly turning national markets into global markets and

spawning new forms of competition and cooperation that reach across na-
tional boundaries. This change is having a profound impact not only on
marketing and distribution but also on the way products are conceived,
designed, constructed, tested, and delivered to customers.1

guest editors’ introduction

■ the business advantages of proximity
to the market, including knowledge of
customers and local conditions, as well
as the good will engendered by local
investment;

■ the quick formation of virtual corpora-
tions and virtual teams to exploit mar-
ket opportunities;

■ severe pressure to improve time-to-
market by using time zone differences in
“round-the-clock” development; and

■ the need for flexibility to capitalize on
merger and acquisition opportunities
wherever they present themselves.

As a result, software development is in-
creasingly a multisite, multicultural, glob-
ally distributed undertaking. Engineers,
managers, and executives face numerous,
formidable challenges on many levels, from
the technical to the social and cultural.

Is working at a distance really such a
problem? Nearly everyone with GSD expe-
rience, it seems, has anecdotes illustrating
difficulties and misunderstandings. While
these stories are compelling, they do not
give us a clear picture of its cumulative ef-
fects. However, we have strong evidence,2

based both on statistical modeling of devel-
opment interval and on survey results, that
multisite development tasks take much
longer than comparable colocated tasks and
that communication and coordination play
major roles in this delay.

While we focus primarily on the prob-
lems of GSD, we should not neglect the po-
tential benefits of geographic dispersion.
For example, if an organization can manage
daily handoffs of work between remote sites
and focus attention around the clock on
critical-path tasks, it is possible to take ad-
vantage of widely dispersed time zones.3 We
could theoretically extend the productive
hours of the day from the current 8- to 10-
hour norm to somewhere near the limit of
24. This is perhaps a distant goal as a gen-
eral model for development, but occasional
benefits—for example, accelerated problem
investigation or a distributed daily test-and-
fix cycle—are possible.

Moreover, we probably think of “distrib-
uted” work in much too limited a way. Dis-
tances need not be global to be important.4-5

In fact, being in another building or on a
different floor of the same building, or even

at the other end of a long corridor, severely
reduces communication. Solutions that help
globally distributed colleagues work to-
gether more effectively will often help those
in the same zip code as well.

Dimensions of the problem
Physical separation among project mem-

bers has diverse effects on many levels.

Strategic issues
Once a particular set of project sites has

been determined (a decision outside the scope
of this issue), deciding how to divide up the
work across sites is difficult. Solutions are
constrained by the resources available at the
sites, their levels of expertise in various tech-
nologies, the infrastructure, and so on. An
ideal arrangement would let the sites oper-
ate as independently as possible while pro-
viding for easy, flexible, and effective com-
munication across sites. A number of
models are possible and appropriate under
different circumstances and require differ-
ent coordination mechanisms.6

Another fundamental challenge is the or-
ganization’s resistance to GSD. This resist-
ance often surfaces because of misalignment
between senior and middle management on
the intent and perceived benefits of GSD.
Many individuals might believe their jobs
are threatened, experience a loss of control,
and fear the possibility of relocation and the
need for extensive travel.

Cultural issues
GSD requires close cooperation of indi-

viduals with different cultural backgrounds.
Cultures differ on many critical dimensions,
such as the need for structure, attitudes to-
ward hierarchy, sense of time, and commu-
nication styles.7 While many people find
such differences enriching, they can also
lead to serious and chronic misunderstand-
ings, especially among people who do not
know each other well. An email, for exam-
ple, from someone in a culture where com-
munication tends to be direct might seem
abrupt or even rude to someone from a dif-
ferent background. A different sense of time
can lead to acrimony over the interpretation
and seriousness of deadlines.

Cultural differences often exacerbate com-
munication problems as well. When people
are puzzled as to how to respond to odd-

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 17

Cultures differ
on many critical

dimensions,
such as

the need for
structure,
attitudes
toward

hierarchy,
communication

styles, and
sense of time.

sounding messages, they often just ignore
them or make uncharitable attributions
about the sender’s intentions or character.

Inadequate communication
Software development, particularly in the

early stages, requires much communication.8

In fact, software projects have two comple-
mentary communication needs. First, the more
formal, official communications need a clear,
well-understood interface. For crucial tasks
like updating project status, escalating proj-
ect issues, and determining who has respon-
sibility for particular work products, a fuzzy
or poorly specified interface loses time and
lets problems fall through the cracks.

Disruption to a second, vital communica-
tion channel can be surprisingly crippling9:
developers not located together have very
little informal, spontaneous conversation
across sites. Informal “corridor talk” helps
people stay aware of what is going on around
them, what other people are working on,
what states various parts of the project are
in, who has expertise in what area, and
many other essential pieces of background
information that enable developers to work
together efficiently. One result is that the is-
sues, big and small, that crop up on a nearly
daily basis in any software project can go
unrecognized or lie dormant and unresolved
for extended periods. The absence of ongo-
ing conversation can also lead to surprises
from distant sites, potentially resulting in
misalignment and rework. The more uncer-
tain the project, the more important this
communication channel is.10

These issues are even more complex in
outsourcing arrangements. The fear of loss of
intellectual property or other proprietary in-
formation about products or schedules leads
to restricted or filtered communication, often
seriously impairing this critical channel.

Knowledge management
Without effective information- and

knowledge-sharing mechanisms, managers
cannot exploit GSD’s benefits. For example,
they might fail to promptly and uniformly
share information from customers and the
market among the development teams.
When project leaders disseminate status in-
formation inadequately, teams cannot deter-
mine what tasks are currently on the critical
path. Needed expertise might be available

but cannot be located and hence is not ex-
ploited. Also, owing to poor knowledge and
information management, teams miss many
reuse opportunities that otherwise would
have saved cost and time.

Poor documentation can also cause inef-
fective collaborative development. The re-
sistance to documentation among develop-
ers is well known and needs no emphasis. In
GSD, however, in addition to documenting
the various artifacts, updating and revising
the documentation is equally important. To
prevent assumptions and ambiguity and to
support maintainability, documentation must
be current and reflect what various teams
are using and working on.

Project and process management issues
When teams hand off processes between

sites, the lack of synchronization can be
particularly critical—for example, if the de-
velopment team at one site and the test
group at another site define “unit-tested
code” differently. Synchronization requires
commonly defined milestones and clear en-
try and exit criteria. Though concurrent de-
velopment process models have been sug-
gested in the literature and used,11-13

effectively implementing concurrent engi-
neering principles in GSD often becomes
difficult because of volatile requirements,
unstable specifications, the unavailability of
good tools that support collaboration
across time and space, and the lack of in-
formal communication. Some groups prac-
tice risk management in a traditional fash-
ion, not taking into account the possible
impacts of diverse cultures and attitudes.

Technical issues
Since networks spanning globally dis-

persed locations are often slow and unreli-
able, tasks such as configuration manage-
ment that involve transmission of critical
data and multisite production must be metic-
ulously planned and executed. The need to
control product changes and to ensure that
all concerned hear about them is much
greater in GSD. Other common issues in-
clude using incompatible data formats and
different versions of the same tools.

The articles in this issue
Each article in this issue provides some

answers to managers and engineers navigat-

Developers
not located

together have
very little
informal,

spontaneous
conversation
across sites.

1 8 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1

ing these difficult waters. They describe new
tactics and techniques as well as hard-won
practical lessons from experience.

As we noted earlier, distance is a major
issue in GSD leading to coordination, com-
munication, and management problems. In
“Tactical Approaches for Alleviating Dis-
tance in Global Software Development,”
Erran Carmel and Ritu Agarwal provide
several approaches that can be applied
across a range of geographically distributed
projects. Audris Mockus and David M.
Weiss, in “Globalization by Chunking: A
Quantitative Approach,” offer a method for
using code change history to compute the
degree of “relatedness” of the work items at
two sites. They further propose a method
for distributing work in a way that mini-
mizes the need for coordination across sites.

In “Using Components for Rapid Dis-
tributed Software Development,” Alexan-
der Repenning, Andri Ioannidou, Michele
Payton, Wenming Ye, and Jeremy Roschelle
describe their experiences using a compo-
nent architecture to support work dis-
tribution across sites. Based on their large,

geographically distributed testbed for pub-
lishing educational software applications,
the authors outline a rapid production
process using components suited for distrib-
uted development. This enables each site to
take ownership of particular components
and work on them independently without
much need for intersite communication and
coordination.

In our experience, training programmers
to think and behave like software engineers
is an uphill task. Many educational pro-
grams now include team-oriented work,
and with globalization so pervasive, they
also need to train their students with geo-
graphically distributed development in
mind. Jesús Favela and Feniosky Peña-
Mora, in “Geographically Distributed Col-
laborative Software Development,” describe
a project-oriented software engineering
course and show how students in two dif-
ferent countries collaborated using an Inter-
net-based groupware environment. While
their objective in designing the project was
educational, their experiences are signifi-
cant to the business community.

Synchronization
requires

commonly
defined

milestones and
clear entry and

exit criteria.

Software outsourcing is increasingly pop-
ular among corporations as an economi-
cally and strategically attractive business
model. As companies outsource their soft-
ware needs to software houses across national
borders, the two independent organizations
must interact—causing the dynamics of glob-
ally distributed software development to
surface rather strongly. In a thought-pro-
voking article, “Synching or Sinking: Global
Software Outsourcing Relationships,”
Richard Heeks, S. Krishna, Brian Nichol-
son, and Sundeep Sahay report on three in-
teresting case studies and capture their suc-
cessful outsourcing strategies to maximize
business value.

Finally, we offer three excellent articles
summarizing real organizational experi-
ences, lessons learned, and good practices. In
“Surviving Global Software Development,”
Christof Ebert and Philip De Neve narrate
Alcatel’s experience in globally distributed
software development and synthesize the
good practices they observed in a large oper-
ation involving 5,000 engineers. Robert Bat-
tin, Ron Crocker, Joe Kreidler, and K. Sub-
ramanian, in “Leveraging Resources in
Global Software Development,” report on
their experiences and approaches while
working on Motorola’s 3G Trial Systems
project, which spans six countries. In “Out-
sourcing in India,” Werner Kobitzsch, Dieter
Rombach, and Raimund Feldmann capture
their experiences and lessons learned with
distributed software development at Teno-
vis, a German company. Interestingly, while
these articles are from different companies
operating in different cultural settings, there
is a marked commonality in experiences
gained and approaches that worked.

G iven the global reach of today’s large
corporations and the global market
for software products, few software

engineers will remain unaffected as the
globalization trend surges forward. As we
increasingly work in virtual, distributed
team environments, we will more and more
face formidable problems of miscommuni-
cation, lack of coordination, infrastructure
incompatibility, cultural misunderstanding,
and conflicting expectations—not to men-
tion the technical challenges of architecting

products for distributed development. We
hope the advances in collaborative tools
and multimedia, Web technology,14-15 and a
refined understanding of concurrent-engi-
neering principles will help us address these
challenges.

Acknowledgment
We thank the reviewers who contributed their

valuable time and expertise toward development of
this special issue. Our sincere thanks also to Dawn
Craig at IEEE Software for her meticulous efforts
helping us put together the issue.

References
1. M. O’Hara-Devereaux and R. Johansen, Globalwork:

Bridging Distance, Culture, and Time, Jossey-Bass, San
Francisco, 1994.

2. J.D. Herbsleb et al., “An Empirical Study of Global
Software Development: Distance and Speed,” to be
published in Proc. Int’l Conf. Software Eng. 2001,
IEEE CS Press, Los Alamitos, Calif., 2001.

3. E. Carmel, Global Software Teams, Prentice Hall, Up-
per Saddle River, N.J., 1999.

4. T. J. Allen, Managing the Flow of Technology, MIT
Press, Cambridge, Mass., 1977.

5. R.E. Kraut, C. Egido, and J. Galegher, “Patterns of
Contact and Communication in Scientific Research Col-
laborations,” Intellectual Teamwork: Social Founda-
tions of Cooperative Work, J. Galegher, R.E. Kraut, and
C. Egido, eds., Lawrence Erlbaum Assoc., Hillsdale,
N.J., 1990, pp. 149–172.

6. R.E. Grinter, J.D. Herbsleb, and D.E. Perry, “The Geog-
raphy of Coordination: Dealing with Distance in R&D
Work,” Proc. Int’l ACM SIGGROUP Conf. Supporting
Group Work, ACM Press, New York, 1999, pp. 306–
315.

7. G.H. Hofstede, Cultures and Organizations: Software
of the Mind—Intercultural Cooperation and Its Impor-
tance for Survival, revised ed., McGraw-Hill, New
York, 1997.

8. D.E. Perry, N.A. Staudenmayer, and L.G. Votta, “Peo-
ple, Organizations, and Process Improvement,” IEEE
Software, vol. 11, no. 4, July/Aug. 1994, pp. 36–45.

9. J.D. Herbsleb and R.E. Grinter, “Architectures, Coordi-
nation, and Distance: Conway’s Law and Beyond,”
IEEE Software, vol. 16, no. 5, Sept./Oct. 1999, pp.
63–70.

10. R.E. Kraut and L.A. Streeter, “Coordination in Soft-
ware Development,” Comm. ACM, vol. 38, no. 3, Mar.
1995, pp. 69–81.

11. M. Aoyama, “Managing the Concurrent Development
of Large-Scale Software Development,” Int’l J. Technol-
ogy Management, vol. 14, no. 6/7/8, 1997, pp. 739–
765.

12. J.D. Blackburn, G. Hoedemaker, and L.N. van Wassen-
hove, “Concurrent Software Engineering: Prospects and
Pitfalls,” IEEE Trans. Eng. Management, vol. 43, May
1996, pp. 179–188.

13. F. Rafii and S. Perkins, “Internationalizing Software
with Concurrent Engineering,” IEEE Software, vol. 12,
no. 5, Sept./Oct. 1995, pp. 39–46.

14. S. Murugesan, “Leverage Global Software Development
and Distribution Using the Internet and Web,” Cutter
IT J., vol. 12, no. 3, Mar. 1999, pp. 57–63.

15. M. Aoyama, “Web-Based Agile Software Development,”
IEEE Software, vol. 15, no. 6, Nov./Dec. 1998, pp.
56–65.

2 0 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1

About the Authors

James D Herbsleb is currently a
member of
the Software
Production Re-
search Depart-
ment and
leader of the
Bell Labs Col-
laboratory
project. For

the last three years, his work has focused
on collaboration technology to support
large, globally distributed projects. For
the past 10 years, he has conducted re-
search in collaborative software engineer-
ing, human–computer interaction, and
computer-supported cooperative work. He
holds an MS in computer science from the
University of Michigan and a PhD in psy-
chology from the University of Nebraska.
Contact him at herbsleb@research.
bell-labs.com.

Deependra Moitra is currently
general man-
ager of engi-
neering at the
Lucent Tech-
nologies India
R&D Program.
His interests
are in soft-
ware engi-
neering management, management of
technology and innovation, new-product
innovation, R&D globalization, and entre-
preneurship in software and high-tech in-
dustries. He serves on the editorial boards
of Research-Technology Management,
Technology Analysis and Strategic Man-
agement, International Journal of Entre-
preneurship and Innovation, Journal of
Small Business Management, Journal of
Knowledge Management, and IEEE Soft-
ware. He is a member of IEEE, IEEE Com-
puter Society, IEEE Engineering Manage-
ment Society, and ACM. Contact him at
d.moitra@computer.org.

