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Received: 14 November 2007 – Published in Hydrol. Earth Syst. Sci. Discuss.: 28 February 2008
Revised: 2 June 2008 – Accepted: 1 July 2008 – Published: 30 July 2008

Abstract. Resilience is a fundamental concept for under-
standing vegetation as a dynamic component of the climate
system. It expresses the ability of ecosystems to tolerate dis-
turbances and to recover their initial state. Recovery times
are basic parameters of the vegetation’s response to forcing
and, therefore, are essential for describing realistic vegeta-
tion within dynamical models. Healthy vegetation tends to
rapidly recover from shock and to persist in growth and ex-
pansion. On the contrary, climatic and anthropic stress can
reduce resilience thus favouring persistent decrease in vege-
tation activity.

In order to characterize resilience, we analyzed the time
series 1982–2003 of 8 km GIMMS AVHRR-NDVI maps of
the Italian territory. Persistence probability of negative and
positive trends was estimated according to the vegetation
cover class, altitude, and climate. Generally, mean recovery
times from negative trends were shorter than those estimated
for positive trends, as expected for vegetation of healthy sta-
tus. Some signatures of inefficient resilience were found in
high-level mountainous areas and in the Mediterranean sub-
tropical ones. This analysis was refined by aggregating pix-
els according to phenology. This multitemporal clustering
synthesized information on vegetation cover, climate, and
orography rather well. The consequent persistence estima-
tions confirmed and detailed hints obtained from the pre-
vious analyses. Under the same climatic regime, different
vegetation resilience levels were found. In particular, within
the Mediterranean sub-tropical climate, clustering was able
to identify features with different persistence levels in ar-
eas that are liable to different levels of anthropic pressure.
Moreover, it was capable of enhancing reduced vegetation
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resilience also in the southern areas under Warm Temperate
sub-continental climate. The general consistency of the ob-
tained results showed that, with the help of suited analysis
methodologies, 8 km AVHRR-NDVI data could be useful for
capturing details on vegetation cover activity at local scale
even in complex territories such as that of the Italian penin-
sula.

1 Introduction

Vegetation cover is known to play a key role in all of the
processes linking land and atmosphere. It affects the en-
ergy, momentum, and hydrologic balance of the land sur-
face thus rendering the land-atmosphere dynamical system
closely coupled (for a review see Arora, 2002).

Ecosystems and climate influence one another on time
scales ranging from seconds to millions of years (see, e.g.,
Sellers et al., 1995) so that interactions include short-term
response of vegetation and soil to atmospheric processes as
well as long-term evolution of ecosystems and soil structure
(Pielke et al., 1998).

Anthropic activities further complicate the effects of these
coupling mechanisms by exerting external forcing on the sys-
tem (Wang et al., 2006). Land use change, land manage-
ment, and human pressure can actually affect climate vari-
ables (e.g., precipitation and temperature) at both local and
global scale (see, e.g., Pielke et al., 2002; Feddema, 2005).
Nonlinear interactions could amplify (positive feedbacks) or
attenuate (negative feedbacks) disturbances produced by hu-
man activities. By now, the fundamental importance of in-
cluding vegetation cover in climatic and hydrological mod-
els as a dynamic component is widely recognized (see, e.g.,
Montaldo et al., 2005; Donohue et al., 2007). Especially in
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the context of climate change, the assessment of vegetation
responses to climatic stress and the evaluation of its ability to
follow change and/or to recover from disturbances are fun-
damental. As an example, vegetation responses to warm-
ing, such as changes in phenology, leaf area index, and root-
ing depth, are able to influence soil moisture availability and
evapotranspiration rates. Models that do not incorporate such
direct biotic reactions can lead to erroneous predictions of
ecosystem water balance (Zavaleta et al., 2003).

Some simple models (see, e.g., Brovkin et al., 1998; Zeng
et al., 2002 and reference therein) have tried to describe the
direct vegetation-rainfall relationship. Characteristic time
scales are included in the models, but only the equilibrium
relationships are discussed. In other words, time is normal-
ized to the characteristic response scale of vegetation before
running the models and only stationary asymptotic behaviors
are described.

Nevertheless, models aiming at real forecasting could
greatly benefit from the inclusion of real time scales. This
is particularly true in a changing climate, when the hypothe-
sis of long range stationarity does not hold.

The presence itself of characteristic time scales is an in-
dication of resilience, which is a measure of the recovery
rate of vegetation from environmental shock (Odum, 1983).
The higher the resilience, the shorter the recovery time. Re-
silience is expected to be reduced in areas affected by pro-
longed stress of anthropic or climatic origin. Highly reduced
resilience is in fact a potentially early sign of land degra-
dation and desertification. On the contrary, in the presence
of favorable conditions, vegetation is expected to grow and
expand for long periods of time thus overstaying in a non-
stationary state towards the climax condition (the stationary
state of mature phases) (Odum, 1983). Therefore, estimat-
ing recovery times could provide realistic dynamical param-
eters for characterizing the actual current status of vegetation
cover. If correctly related to structural, anthropic, and cli-
matic features of the concerned territory, these times could
provide useful hints on the complex links existing among
these factors and vegetation within the hydrological and cli-
mate dynamics.

Undoubtedly, satellite observations are the main source of
information on the land cover variability that can be used to
improve the description of land properties. They provide not
only vegetation cover maps to be directly assimilated into
the models, but also a wealth of data concerning the dynam-
ics of vegetation at different spatial and temporal scales to
be used for improving the models themselves (Zhou et al.,
2006; Pettorelli et al., 2005; Zeng et al., 2002). In par-
ticular, significant relationships have been reported between
the satellite Normalized Difference Vegetation Index (NDVI,
Tucker,1979) and some structural and functional characteris-
tics of vegetation, such as biomass (e.g, Studer et al., 2007;
Sellers, 1985), Leaf Area Index (LAI) (e.g, Maselli et al.,
2004; Asrar et al., 1984), Net Primary Production (NPP)
(e.g., Olofsson et al., 2007; Prince, 1991), and Absorbed

Photosynthetic Active Radiation (APAR) (e.g, Wang et al.,
2004; Gamon et al., 1995).

In this work, we used 8 km NDVI from the US National
Oceanic and Atmospheric Administration (NOAA) – Ad-
vanced Very High Resolution Radiometer (AVHRR), for as-
sessing characteristic recovery times of vegetation cover in-
terannual variability in Italy for the period 1982–2003. Data
were extracted from the Global Inventory Modeling and
Mapping Studies (GIMMS) NDVI database. Such a dataset
is widely used for characterizing vegetation at global scale or,
at most, continental scale (e.g., Zhou et al., 2006; Heumann
et al., 2007 and reference therein), but no application was
preformed to assess its potential at higher detailed scales for
locally investigating vegetation as we proposed in the current
study.

The methodology we adopted was developed and previ-
ously applied to 1-km AVHRR-NDVI (Lanfredi et al., 2004).
This method is devoted to the estimation of the persistence
probability which, in turn, allows for estimating possible
characteristic time scales (mean recovery times) related to
vegetation cover resilience. In order to estimate such a per-
sistence probability for different vegetation cover classes, we
analyzed them separately according to the Corine land cover
map. Orography is another source of important information
for characterizing vegetation variability over the Italian ter-
ritory; the Italian peninsula is mainly mountainous. Altitude
differences determine both local vegetation typology and hu-
man land management practices; so, we also investigated re-
silience as a function of altitude. Moreover, in order to obtain
a closer link between vegetation response and climate, re-
silience was analyzed according to local climate regions. As
a final step of our investigation, we analyzed vegetation dis-
tribution on the basis of pheno-phases in order to estimate the
persistence probability for the main phenological patterns.

2 Study area

Geographically, Italy lies in the temperate zone. It expands
towards the central part of the Mediterranean Sea between
36◦ N and 47◦ N latitude (Fig. 1). Due to its sizable length,
very irregular orography, narrow peninsular structure, and
the extension of man managed areas, the Italian territory ap-
pears to be very heterogeneous both for climate and land
cover variability.

2.1 Climate

The climate of the northernmost part, bordering the European
continent, quite differs from that of the southernmost part,
which is surrounded by the Mediterranean Sea. The Alps act
as a partial barrier against north-west winds, while the Apen-
nines protect the west side of the peninsula against winds
from north-east; as a generality, the Tyrrhenian (west) coast
is warmer and wetter than the Adriatic (east) coast. The great
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valley of the Po River has a special climate, characterized by
hot summers and severe winters. In the level areas of South-
ern Italy and Sicily temperatures are higher. In Sardinia, con-
ditions are more turbulent on the western side, and the island
suffers from the cold winds blowing from the northwest and
from the hot winds blowing from the southwest as well.

2.2 Vegetation cover

The native vegetation of Italy reflects the heterogeneity of
the physical environments. At least three macro-areas of dif-
fering vegetation can be detected: the Alps, the Po Valley,
and the Mediterranean-Apennine area. Native vegetation is
in practice closeted in high altitude areas. In the strictly
Mediterranean part of the Apennines, where the forests have
been destroyed, typical scrubland vegetation, composed pri-
marily of leathery, broad-leaved evergreen shrubs or small
trees, which is called maquis, has grown up. It can be
mainly found on the lower slopes of mountains bordering
the Mediterranean Sea. Altogether, vegetation typologies are
very heterogeneous. They range from plants typical of warm
climates, such the papyrus plant that is present in Sicily, to
plants that are endemic in northern Europe, such as the Nor-
way spruce and the Scotch pine. However, the main part of
the territory is man managed; agriculture is quite diffused
even in non level areas. It is mainly divided into field crops,
fruit tree plantations, and agro-forestry areas. Land use and
land cover patterns in anthropized areas are rather erratic
since urban and industrial areas coexist with cultivated and
densely vegetated areas. AVHRR data at 1 km proved to be
useful for characterizing such heterogeneity (Bonfiglio et al.,
2002; Maselli, 2004; Simoniello et al., 2004). In this work,
for the first time, the potential use of 8 km data for the same
purpose has been tested.

3 Data

3.1 Satellite vegetation index

The AVHRR time series analyzed in this study is the GIMMS
(Global Inventory Modeling and Mapping Studies) dataset
gathered from the University of Maryland. This dataset, hav-
ing a spatial resolution of 8×8 km, was corrected for the prin-
cipal factors (calibration instability, intercalibration, view
and illumination geometry, volcanic aerosols) upsetting the
AVHRR time series (Tucker at al., 2005).

Bi-weekly NDVI data from 1982 to 2003 were reprojected
into the Lambert Azimuthal Equal Area Projection, sized on
the study area and composed into annual MVC (Maximum
Value Composite) maps (Holben, 1986) in order to obtain
a synthetic parameter not influenced by seasonal patterns
but suitable for estimating interannual variations of vegeta-
tion activity. The maximum of vegetation activity is one of
the recognized parameters that show a strong link to climate
change (Myneni et al., 1997; Heumann et al., 2007).
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Fig.1. Italian territory with the regional administrative boundaries and the name of principal 
locations cited in the text.  

Fig. 1. Italian territory with the regional administrative boundaries
and the name of principal locations cited in the text.

3.2 Ancillary data

The adopted land cover data were elaborated in the frame-
work of the Corine Land Cover project and were collected
from National Environmental Protection Agency (APAT)
(http://www.clc2000.sinanet.apat.it/). The 2000 Corine map
was recoded from the original 44 classes into 9 classes by
taking into account the present land covers and the detectable
signal at the satellite resolution. The final map (Fig. 2)
contains Mixed Broad-leaved Forests, Coniferous Forests,
Maquis, Sparsely Vegetated Areas and Pastures, Permanent
Crops, Complex Cultivation patterns, Arable Lands, Urban-
ized Areas, and Water Bodies.

Analyses at different altitudes were performed by us-
ing the GTOPO30 Digital Elevation Model (Fig. 3)
elaborated at USGS (http://edc.usgs.gov/products/elevation/
gtopo30/gtopo30.html). The original data, derived from sev-
eral sources of raster and vector topographic information,
was in geographic projection with a resolution of 30 arc-
seconds, approximately 1 km.

Data on Italian climate regions were acquired from
the Italian pedoclimatic GIS (http://www.soilmaps.it/ita/
downloads.html) elaborated by the national centre for pedo-
logical cartography (CNCP). Such a recent classification
(Fig. 4) was performed on long termo-pluviometric time
series and identifies six main climatic regimes: Temper-
ate sub-oceanic, Warm Temperate sub-continental, Temper-
ate mountainous, Mediterranean sub-oceanic, Mediterranean
sub-continental, Mediterranean sub-tropical, Mediterranean
mountainous.
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Fig. 2. Land cover map obtained from Corine 2000 by recoding the original III level 
(http://www.clc2000.sinanet.apat.it/).  

Fig. 2. Land cover map obtained from Corine 2000 by recoding the
original III level (http://www.clc2000.sinanet.apat.it/).
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Fig. 3. Elevation map obtained by resampling to 8 km the digital elevation model GTOPO30 
from USGS (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html). 

Fig. 3. Elevation map obtained by resampling to 8 km the dig-
ital elevation model GTOPO30 from USGS (http://edc.usgs.gov/
products/elevation/gtopo30/gtopo30.html).

All the ancillary data were reprojected in Lambert Az-
imuthal Equal Area and resampled at the AVHRR resolution
(8 km) in order to overlap them on satellite time series.

4 Methodology

4.1 Estimation of persistence probability

Persistence probabilityq(t) measures the probability that
a given fluctuating fieldX(x, y; t ′) deviates from a refer-
ence level, usually the mean value, for a time intervalt be-
fore returning back to it (First-Passage probability; Redner,
2001). It enhances those collective properties that are of in-
terest in all the problems that require the understanding of
the stochastic dynamics of spatially extended objects. If we
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Fig. 4. Map of climate regions obtained by resampling the classified climate from CNCP at 8 
km (http://www.soilmaps.it/ita/downloads.html). 

Fig. 4. Map of climate regions obtained by resampling the classified
climate from CNCP at 8 km (http://www.soilmaps.it/ita/downloads.
html).

focus onX−Xr (Xr as the reference level), we have to sim-
ply look at the sign of the fluctuations andq(t) is defined as
the probability that such a sign has never changed since the
initial time.

The technique we used in this work was based on the
concept of “sign-time” distribution (Newman and Toroczkai,
1998), which, in its standard form, is substantially a his-
togram estimated on the surviving times of the signs of the
fluctuations.

This method assumes that the given field is not noised so
that all of the observed fluctuations are really generated by
the dynamics we are trying to characterize. Actually, year-
to-year variability of vegetation cover includes a high content
of erratic variability. Thus, in order to characterize resilience
on climatic scales, we focused on NDVI trends rather than
on NDVI fluctuations in themselves. In practice, we studied
the tendency of vegetation activity to persist in increases or
decreases since the initial time so as to characterize long term
behaviors.

In our adapted algorithm, the sign-time distribution is es-
timated from the signs of the slopes of the linear trends ob-
tained by fitting ever longer time sequences: the first return
time is defined as the first time the slope is reset to zero. This
occurs when the sequence appears to be stationary and we
can assume that the current status is “statistically” equiva-
lent to the initial one (recovery). In applicative frameworks,
generally we are not able to pick up the precise return time
because of the discrete and noised character of observational
time series; usually we detect the first passage time, when the
fluctuating field has just passed the return time and the trend
has changed the sign.

Let NDVI(x, y; 0) be the value of MVC-NDVI measured
at first year of the considered time series in the site(x, y)
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and NDVI(x, y; t) be the MVC-NDVI value at the timet
and site(x, y). Our algorithm (Lanfredi et al., 2004) firstly
estimates linear trends over a reference initial period [0, ti ]
for any pixel(x, y). The sign of any given trend, which ex-
presses the tendency of NDVI to increase or decrease, lasts
in time until inter-annual variations do not integrate destruc-
tively. Then, at the passage from one year to the next, those
sites where the addition of the current inter-annual fluctua-
tion is not able to clear the trend previously estimated or to
change its sign are classified as persistent.

The surfaces(x, y; t) of trend signs in a period [0, t ] is
defined by assigning value 1 to the pixels(x, y) where a pos-
itive trend is detected in the given period and value−1 oth-
erwise.

At the initial timet=ti we construct the surfaces(x, y; ti).
Then, we progressively add new years and compare each new
surface with the previous one by keeping track of persistent
sites in persistence mapsP(x, y; t) that are constructed ac-
cording to the rule:

P(x, y; t) = s(x, y; t) t = ti

P(x, y; t) =

{
0 if s(x, y, t) 6= P(x, y; t − 1)

P (x, y; t − 1) if s(x, y; t) = P(x, y; t − 1)

t > ti (1)

At the observational timeT , we obtain a cumulative field:
P T

ti
(x, y)=

∑T
t=ti+1

P(x, y; t) by adding all the persistence
maps fromti+1 to T . At any pixel(x, y), the magnitude of
such a field indicates the number of years during which the
initial trend has not been cleared (surviving time) and its sign
indicates whether the tendency was to increase or decrease.

The last step consists in estimating the function:

q(t) =
N(t)

N(ti)
(2)

whereN(t) andN(ti) are the number of non cleared trends
having the same sign inP(x, y; t) andP(x, y; ti), respec-
tively.

The persistence probability is finally fitted with an expo-
nential decay law,e−

t
τ , in order to estimate the mean life

time (τ ). Such a type of decay has proved to be particularly
effective in a previous analysis of 1 km data (Lanfredi et al.,
2004).

We would underline that we did not apply any threshold-
ing based on the trend statistical confidence. We made this
choice because our aim was not to detect “change” but to
study collective behaviors of vegetation activity. We tried
to evaluate whether the interannual fluctuations tend to inte-
grate constructively (positive persistence index) or destruc-
tively (negative persistence index). In the context of climatic
and hydrological models, spatial correlation of vegetation re-
silience is an interesting major property as is time correlation.
When low significance trends are aggregated in space, their
spatial correlation indicates a collective behavior that cannot
be considered random in any way.

4.2 Identification of Phenological Patterns

In order to group data according to their pheno-phases, we
applied a clustering procedure based on the Fuzzy K-means
unsupervised algorithm (see, e.g., Richard and Jia, 2006).
This algorithm is based on the minimization of an objec-
tive function that evaluates the distribution of each data value
with respect to the fuzzy partition. We selected such an ap-
proach since the fuzziness concept can be appropriate for de-
tecting clusters with a homogeneous distribution. In fact,
what we expect in a phenological classification is not an
abrupt variation between a cluster phenology and another;
instead, especially for natural vegetation, we can expect that
there are gradual differences among phenological patterns
linked to different altitude and climatic conditions.

From an operative point of view, once the initial cluster
centroids (seeds) are chosen, the algorithm computes the de-
gree of membership of all feature vectors in all the clus-
ters and, then, iteratively computes new centroids until their
movement is less than a predetermined threshold (1% for our
analyses). Finally, a pixel is assigned to the cluster that shows
the highest membership degree. Generally, such a procedure
is applied on the spectral domain mainly in the context of
land cover classification to group pixels having similar spec-
tral features. In our work, we adopted such an algorithm to
analyze the temporal domain, in particular, to group pixels
having similar vegetation phenology, i.e. similar timing of
the vegetative cycle. Phenology is a crucial component of
land–atmosphere interactions (Fitzjarrald et al., 2001; Arora
and Boer, 2005). The principal phenological driving factor
is the type of cover, but, for the same cover, altitude and
climatic conditions determine different timing in the pheno-
phase sequence.

The identification of the main phenological patterns was
performed by applying the clustering on 15-day NDVI-MVC
from January to December. In order to obtain phenological
responses representative of the whole time series, we com-
puted the average values of each bi-weekly composite with
a 10-year time step; in particular, the average was calculated
from 1983, 1993, and 2003 data.

Since the principal trainer for sub-annual NDVI dynamics
is the land cover type and any deviations from the character-
istic phenological pattern are mainly due to peculiar territo-
rial conditions (e.g. climate regime and altitude), the required
number of clusters as seeds for the algorithm was chosen by
taking into account the number of vegetated land cover. We
included also the urbanized areas since at the considered spa-
tial resolution such pixels are made of large vegetated por-
tions.

5 Results

Persistence maps were obtained for the period 1992–2003 by
using 1982–1991 as a reference period. Figure 5 shows the
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Table 1. Percentage of pixels for the reference period, mean lifetimesτ (years) and determination coefficients R2 of the exponential best fits
obtained for vegetated Corine land covers. The determination coefficient is the percentage of the sample variance that is explained by the
fit. It is estimated as:R2

=
∑
t

(N̂t−N̄t )
2/

∑
t

(Nt−N̄t )
2, whereNt is the count of survived trends at the year t,N̄t is the mean value of the

counts, andN̂t is the estimates ofNt supplied by the fit.

Positive trends Negative trends

Land cover % τ (years) R2 % τ (years) R2

Mixed Broad-leaved Forests 65,0 23.6 0.89 35.0 14.9 0.98
Coniferous Forests 62.6 13.7 0.94 37.4 11.4 0.94
Maquis 60.2 19.8 0.94 39.8 15.4 0.97
Sparsely Vegetated and Pasture 64.9 16.8 0.97 35,1 16.2 0.98
Permanent Crops 63.4 16.0 0.93 36.6 12.9 0.98
Complex Cultivation Patterns 59.1 20.4 0.96 40.9 12.7 0.99
Arable Lands 53.5 25.6 0.88 46.5 14.9 0.95
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Fig. 5. Total persistence map of NDVI trends,P T
ti

(x, y), for the
period 1992-2003 obtained from 8 km GIMMS dataset. The persis-
tence index is expressed in number of years starting from 1992; the
reference period is 1982–1991.

total persistence mapP 2003
1992(x, y) for the whole investigated

area. The inspection of this map supplies some interesting
information. Areas characterized by positive persistence in-
dices are about 63% of the total. The distribution of positive
and negative values seems to be rather variable over the main
part of the territory, with the exception of evident extended
clusters.

The main positive one is located in the upper part of the
Po Valley and extends in the north-east direction. Here, most
trends have very low slopes and high NDVI values. The over-
all situation of this area describes fluctuating vegetation ac-
tivity that tends to interfere constructively across the years.
On the contrary, the lower part of the Po Valley is more het-
erogeneous and mainly characterized by negative persistence

indices. This situation describes more unstable vegetation
conditions having low levels of recovery ability. The main
negative clusters are located in Southern Italy and on the is-
lands, in accordance with independent studies on areas at risk
of desertification (APAT, 2006).

The persistence map reported in Fig. 5 gathers areas with
different vegetation covers, orography, and local climate to-
gether. In order to estimate persistence probability and pos-
sible characteristic times, we grouped the investigated pixels
according to these three features.

5.1 Characteristic times per vegetation cover class

Sample persistence probability was estimated for different
vegetated Corine land cover classes and exponential best fits
were computed for each class. Altogether, the mean life
times reported in Table 1 describe a rather good scenario.

All the vegetated classes are characterized by positive
trends that last more than the negative ones on the average.
Sparsely Vegetated Areas and Pastures are an exception since
they showed similar decay times (∼16 years); such a value
for negative trends could be interpreted as a preliminary sign
of stressed conditions for this vegetation type. The long last-
ing positive trends of high value vegetation (Mixed Broad-
leaved Forests) account for forests being able to grow and
expand (Fig. 6a). Coniferous Forests (Fig. 6b) showed less
efficiency but this result could be transitory since the plot of
the persistence probability shows a local fast decrease around
1994 and it becomes successively slower.

5.2 Characteristic times per altitude

The analysis performed according to altitude revealed some
interesting features. By sampling the altitude range (0–
3743 m) at a rate of 250 m, we noted that in most cases the
average recovery time from positive trends is slower than
that from the negative ones. This difference fluctuates, but
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Fig. 6. Best fits of the persistence probability q(t) of negative and positive NDVI trends obtained 
by exponential decay laws for: (a) Mixed Broad-leaved Forests; (b) Coniferous Forests 
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Fig. 7. Best fits of the persistence probabilityq(t) of negative and positive NDVI trends obtained by exponential decay laws for altitude
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generally tends to increase to a maximum divergence of 15
years observed for the altitude band between 750 and 1000 m
(Fig. 7a). The main part of the pixels belonging to this class
is located on the Tyrrhenian side of the Italian peninsula and
on islands. Some alpine pixels are also included. When there
is a further increase in altitude, such a difference starts to de-
crease and successively the situation appears to be reversed
until it hits the minimum (−5.8 years) that was observed for
the class located at altitude>1750 m (Fig. 7b). This range
covers the whole alpine zone, mainly characterized by herba-
ceous vegetation and a presence of some isolatedLarix, P.
cembra, P. mugo, and the higher part of the pre-alpine zone
having coniferous forests (mainlyP. sylvestris, P. cembra, L.
decidua) which are widely diffused. Very few pixels belong-
ing to this altitude range are located in the central part of the
Apennine chain or in the surrounding areas of Mt. Etna in
Sicily.

Figure 8, obtained by dividing altitude in classes having
a range of 500 m, neatly summarizes the smooth behaviors
of characteristic time scales vs. altitude. This plot is very
impressive. Characteristic times of negative trends tend to
slightly increase according to altitude, whereas characteristic
times of positive trends decrease with altitude. The highest
levels of variation are seen within positive trends, whose re-
covery times are more than halved during the passage from
low to high altitudes. Altogether, Fig. 8 depicts a warning
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Fig.8. Mean life times of negative and positive NDVI trends vs altitude. 

 

 

Fig. 8. Mean life times of negative and positive NDVI trends vs.
altitude.

scenario, since natural vegetation covers of high ecological
value are mainly confined to mountainous areas.

5.3 Characteristic times per climatic regions

Problems enhanced for high altitude seem to be confirmed
by decay times estimated for the different climatic regions
(Table 2). In fact, areas having a Temperate mountainous
climate regime, mainly the alpine region, showed negative
trends persisting for longer time periods compared to the pos-
itive ones (about 40% more); in particular, the decaying be-
havior of positive trends was mainly driven by the drastic
trend extinction between 1997 and 1998.
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Table 2. Same as Table 1 but obtained for the different Italian climatic regions.

Positive trends Negative trends

Climatic Regions % τ (years) R2 % τ (years) R2

Temperate – sub oceanic 74.5 32.3 0.80 25.5 10.5 0.93
Warm Temperate – sub continental 69.4 23.3 0.94 30.6 9.8 0.98
Temperate Mountainous 66.9 13.0 0.92 33,1 21.3 0.96
Mediterranean – sub oceanic 59.8 19.6 0.94 40.2 14.3 0.97
Mediterranean – sub continental 42.3 18.9 0.94 57.7 18.2 0.96
Mediterranean – sub tropical 38.9 11.5 0.92 61.1 17.9 0.95
Mediterranean – Mountainous 63.8 37.0 0.92 36.2 8.5 0.98
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Fig.10. Clusters representative of the main phenological patterns obtained by applying fuzzy 
k-means algorithm to the intra-annual NDVI averaged from 1983-1993-2003 data. 

 

Fig. 10. Clusters representative of the main phenological patterns
obtained by applying fuzzy k-means algorithm to the intra-annual
NDVI averaged from 1983-1993-2003 data.

On the contrary, mountainous regions with a Mediter-
ranean climate revealed the best ratio between positive and
negative decay with a marked divergence between the two

extinction laws (Fig. 9a). Evidence of vegetation of healthy
status was found for temperate zones and for Mediterranean
ecosystems under sub-oceanic climatic conditions; whereas
the Mediterranean sub-continental region showed signs of
stressed vegetation since the mean recovery time for nega-
tive trends is quite high (about 18 years).

As for alpine regions, sub-tropical Mediterranean areas
show a reduction in photosynthetic activity that persists
longer than the positive trends (Fig. 9b); such areas, located
in Apulia, Sardinia, and in the southern part of Sicily, par-
tially correspond to areas recognized as highly affected by
land degradation processes (APAT, 2006).

5.4 Characteristic times per phenological patterns

Results from clustering are shown in Fig. 10, whereas Fig. 11
reports the characteristic phenology of each cluster. As can
be noted, clusters related to the principal phenological pat-
terns synthesize the main features of the land cover map, al-
titudes and climatic regions. For the same land cover type,
the standard phenological cycle is modified (start and end
timing, amplitude) by thermo-pluviometric conditions that
are directly linked to altitude and climatic regime; clustering
analyses are able to identify such differences.

In the northern part, a large cluster characterizes the Po
Plain (cluster 4) for the most part occupied by crop cultiva-
tions. Such a cluster is also present, at times scattered, along
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Table 3. Same as Table 1 but obtained for the different clusters deriving from the fuzzy k-means unsupervised classification.

Positive trends Negative trends

Phenological Patterns % τ (years) R2 % τ (years) R2

Cluster 1 65.8 8.3 0.96 34.2 13.3 0.98
Cluster 2 46.5 9.1 0.94 53.5 14.1 0.97
Cluster 3 24.1 6.8 0.94 75.9 12.7 0.93
Cluster 4 70.2 20.8 0.91 29.8 7.5 0.94
Cluster 5 64.4 10.1 0.98 35.6 7.1 0.97
Cluster 6 75.5 14.3 0.97 24.5 5.9 0.98
Cluster 7 68.5 11.6 0.94 31.5 16.4 0.94

the Apennine chain under the Mediterranean sub-continental
climatic regime. From a phytoclimatic point of view, it
roughly represents theCastanetumregion.

There is a net separation from the Tyrrhenian side (cluster
5) that is characterized by higher NDVI values and lower an-
nual variation. The separation element is constituted by clus-
ter 6 that extends along the Apennine chain and mainly rep-
resents the phytoclimaticFagetumregion covered by broad-
leaved forests (beeches, hornbeam, etc.) often mixed with
firs. In fact, such a cluster showed the highest photosynthetic
activity values for the greening period (from May to Septem-
ber).

The cluster corresponding to the lowest mountainous Alps
and central Italy regions (cluster 7) was characterized by
growing season NDVI values being generally lower than
those of the forested Apennine areas, except for in the mid-
dle of the season (June–August) where they reached similar
values.

The highest alpine mountains were identified by a cluster
(1) showing a phenological pattern similar to the previous
one, but shifted towards having lower NDVI values.

The warmest regions (Sicily, Apulia and south-eastern
Basilicata) are mainly divided into two parts that generally
correspond to cultivations at higher (cluster 3) and lower
(cluster 2) altitudes. The hilly one shows the highest spring
photosynthetic activity that rapidly decreases after the crop
harvesting period; whereas the second (plains) with tree
plantations presents a more constant behavior.

For each cluster, we estimated the corresponding persis-
tence probability and the relative mean life time (Table 3).
The largest difference between positive and negative trends
was found for the cluster mainly corresponding to the heavy
cultivated Po Plain. The negative situation highlighted within
the areas under the Temperate mountainous climate was con-
firmed by the clustering analysis. Both the two clusters (1
and 7), identified within this climatic region, showed a recov-
ery time from negative shocks lasting longer than that of the
positive ones (Figs. 12a and b). In particular, the first one is
related to the alpine ecosystems at higher altitudes, whereas
the second one represents the pre-alpine ecosystems with a
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Fig.11. Phenological responses for clusters shown in Fig. 10. 
 Fig. 11. Phenological responses for clusters shown in Fig. 10.

higher presence of broad-leaved forests and has dynamics
common to the central Apennine. Several field surveys per-
formed in these areas seem to confirm the obtained results.
In fact, a crown condition assessment, carried out for the
period 1996–1999 from the CONECOFOR network (Bus-
sotti et al., 2002), highlighted leaf color alteration and leaf
damage in beech trees present in western alpine ecosystems
(Piedmont) and in Norway spruces present in the middle-
eastern Alps (Trentino). The principal causes were mainly
parasite and fungi attacks that could be indirectly linked to
climate conditions; in fact, repeated dry periods accentuate
the xeric condition of internal and middle Alps (Ambrosi at
al., 1998). In the central Apennine region, leaf damage due
to drought and fungi attacks were found for turkey oaks in
1998 and 1999 (Bussotti et al., 2002); signs of desegrega-
tion processes were also identified in successive years and a
reduction of thearealeextension of many sensible species
was estimated for further temperature increases (Petriccione,
2007). Also in Lombardy, a classification of crown trans-
parency showed an increase of total injury between 1995 and
1999 with a particularly increasing trend forL. deciduasand
P. abies(Balestrini et al., 2002).

Decay times estimated for clusters 2 and 3 confirmed re-
sults obtained for the Mediterranean sub-tropical climate ar-
eas and enhanced some differences among the Mediterranean
sub-continental areas showing more stressed vegetation
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Fig. 12. Best fits of the persistence probability q(t) of negative and positive NDVI trends obtained by 
exponential decay laws for phenological patterns: (a) cluster 1; (b) cluster 7; (c) cluster 2. 
 
 
 
 
 

Fig. 12. Best fits of the persistence probabilityq(t) of negative
and positive NDVI trends obtained by exponential decay laws for
phenological patterns:(a) cluster 1;(b) cluster 7;(c) cluster 2.

covers for Apulia, Sicily and south-eastern Basilicata than
for the areas in eastern Sardinia that belong to cluster 5. Such
areas are in accordance with areas identified as being more
sensitive to desertification at regional scale (APAT, 2006).
Figure 12c shows the best fits for cluster 2 that are similar to
those estimated for cluster 3.

6 Conclusions

Vegetation cover resilience for the Italian territory was ana-
lyzed by estimating persistence probability and characteristic
decay times of NDVI trends derived from the 8 km GIMMS
dataset. Values for positive and negative trends were com-
pared in order to derive information on vegetation status,
since the presence of negative photosynthetic activity trends
that exhibit longer persistence than the positive ones can be
interpreted as sign of reduced vegetation resilience. Analyses
were performed by considering the main controlling factors
of vegetation activity, i.e. type of cover, altitude, and climate.

Results obtained per cover types showed that, by averag-
ing information on the whole peninsula, the aggregate vege-
tation status is quite good (all vegetated classes are charac-
terized by positive trends that persist longer than the negative
ones).

Decay times estimated per altitude ranges revealed an in-
teresting behavior since the persistence of negative NDVI
trends increases according to elevation, whereas the positive
ones have an opposite relationship. This contrasting depen-
dence on elevation suggested inefficient resilience of vegeta-
tion activity in areas at high elevation.

The analysis of mountainous regions on a climate basis
showed a net differentiation between high-altitude areas un-
der Temperate and Mediterranean regimes respectively. In
particular, the Temperate mountainous areas are character-
ized by the longest negative trend persistence, whereas those
located under the Mediterranean regime are characterized by
the shortest one. This result showed that most of the vegeta-
tion located on the southern Apennines is more resilient than
that belonging to alpine and pre-alpine ecosystems, which,
therefore, can be considered as the main responsible for the
inefficient resilience found at highest altitudes. Among the
different climate regions, low vegetation resilience was also
found for areas having a Mediterranean sub-tropical climate.
These areas partially include regions that are identified as be-
ing at risk of desertification.

More detailed results, in term of spatial distribution and re-
silience, were obtained by estimating decay times according
to phenological patterns derived by clustering intra-annual
NDVI data. Such an analysis allowed for a better differenti-
ation among the coldest and warmest climates.

In particular, it was able to separate alpine and pre-alpine
ecosystems showing that both of them are characterized by
recovery times from negative trends that are longer than the
positive ones, but the first has more rapid extinction rates
for positive trends. Moreover, clustering also highlighted
that vegetation in the central Apennine areas having a Warm
Temperate sub-continental climate shows signs of reduced
resilience. These results seem to correspond with field net-
work monitoring observations that have highlighted signs of
forest deterioration that can be linked directly (drought) or
indirectly (increase in parasite and fungi attacks) to climate
change.
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Within the warmest climates, we also found different
ecosystem responses; in particular, the vegetation resilience
level of the corresponding clusters are more in accordance
with the level of sensitivity to desertification of these areas
than the resilience levels obtained by only considering the
climatic regime.

This is mainly due to the efficiency of NDVI in detecting
peculiar vegetation activity in anthropized areas. In fact, in
such areas, the reduction in biomass production has a double
component: climatic (repeated drought periods) and anthro-
pogenic (unsuitable land management).

On the whole, the combined use of clustering based on
phenological patterns and NDVI trend persistence estima-
tions seems to be a promising tool for deriving vegetation
characteristic time scales that could be used to improve
hydrological and climate modeling. Moreover, the 8 km
GIMMS NDVI data seem appropriate also for characteriz-
ing vegetation cover in studies at spatial scales higher than
the commonly investigated global scale.
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