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Abstract. We evaluate the added value of assimilated re-
motely sensed soil moisture for the European Flood Aware-
ness System (EFAS) and its potential to improve the predic-
tion of the timing and height of the flood peak and low flows.
EFAS is an operational flood forecasting system for Eu-
rope and uses a distributed hydrological model (LISFLOOD)
for flood predictions with lead times of up to 10 days. For
this study, satellite-derived soil moisture from ASCAT (Ad-
vanced SCATterometer), AMSR-E (Advanced Microwave
Scanning Radiometer - Earth Observing System) and SMOS
(Soil Moisture and Ocean Salinity) is assimilated into the
LISFLOOD model for the Upper Danube Basin and results
are compared to assimilation of discharge observations only.
To assimilate soil moisture and discharge data into the hy-
drological model, an ensemble Kalman filter (EnKF) is used.
Information on the spatial (cross-) correlation of the errors in
the satellite products, is included to ensure increased perfor-
mance of the EnKF. For the validation, additional discharge
observations not used in the EnKF are used as an indepen-
dent validation data set.

Our results show that the accuracy of flood forecasts is in-
creased when more discharge observations are assimilated;
the mean absolute error (MAE) of the ensemble mean is re-
duced by 35 %. The additional inclusion of satellite data re-
sults in a further increase of the performance: forecasts of
baseflows are better and the uncertainty in the overall dis-
charge is reduced, shown by a 10 % reduction in the MAE.
In addition, floods are predicted with a higher accuracy and
the continuous ranked probability score (CRPS) shows a per-
formance increase of 5–10 % on average, compared to assim-
ilation of discharge only. When soil moisture data is used, the

timing errors in the flood predictions are decreased especially
for shorter lead times and imminent floods can be forecasted
with more skill. The number of false flood alerts is reduced
when more observational data is assimilated into the system.
The added values of the satellite data is largest when these
observations are assimilated in combination with distributed
discharge observations. These results show the potential of
remotely sensed soil moisture observations to improve near-
real time flood forecasting in large catchments.

1 Introduction

Floods are extreme hydrological events caused by excessive
water availability and may cause large economical, societal
and natural damage. One example is the summer 2013 flood
in central Europe producing historical high-water levels in
large parts of the Danube and Elbe catchments, causing a to-
tal estimated economic loss of EUR 23 billion (Aon Benfield,
2013). Due to their increasing impact on society, forecasting
of these extreme events has become more important to in-
crease preparedness and improve the response to and pre-
vention of floods. This requires an increasing need to de-
velop accurate and reliable flood forecasting systems. Na-
tional forecasting systems have been developed in, for ex-
ample, England (National Flood Forecasting System), Ger-
many (Hochwasservorhersagezentral), the Netherlands, Ger-
many and Switzerland (FEWS-Rhine & Meuse), Czech Re-
public (CHMI-IWSS), Sweden (SMHI) and most other coun-
tries in Europe. For transboundary river basins, national fore-
casting systems are often lacking skill and transboundary
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forecasting systems are preferred. To fulfil this need, the Eu-
ropean Commission developed the European Flood Aware-
ness System (EFAS) for flood forecasting with lead times
of up to 10 days for the European continent (Thielen et al.,
2009). Additionally, EFAS will contribute to the understand-
ing of flood events on a transboundary scale and will support
international crisis management at the European level.

Flood forecasts are made for multiple basins, using dis-
tributed hydrological modelling. Systems like EFAS are
highly dependent on the meteorological forcing provided
as well as the pre-storm initial conditions of the catchment
(Nester et al., 2012; Alfieri et al., 2013). To improve esti-
mates of initial conditions data assimilation techniques have
the potential to update incorrect model states with observa-
tional data to obtain the best possible estimate of the cur-
rent status of the hydrological system. Discharge data is of-
ten used in these data assimilation frameworks, because it
contains the integrated information of all other hydrological
states (e.g.Vrugt et al., 2006; Clark et al., 2008; Rakovec
et al., 2012). However, it is difficult to obtain these measure-
ments in real-time in a way they can be used in EFAS. Ob-
servations might not be available in real-time, quality con-
trol cannot be done in real-time or local data providers are
unfortunately not willing to share the information. Measure-
ments of hydrological states other than discharge are rarely
used for estimating the model’s initial state while these may
be of considerable value. In particular, measurements of the
pre-storm soil moisture conditions could potentially improve
flood forecasting systems, since initial soil moisture condi-
tions are expected to have a large impact on the flood peaks
during a storm event. The soil moisture content determines
the amount of water which can still be stored in the unsatu-
rated zone or percolate to the saturated zone and thereby in-
fluences the precipitation required to generate overland flow.
However, field observations at continental scale are not avail-
able due to the limited number of observational networks
and their low spatial support. Remotely sensed soil moisture
retrievals from the microwave domain could potentially fill
the need for soil moisture observations at the large spatial
scales. Observations are globally available and revisit times
per sensor are between 1 and 3 days depending on latitude.
An additional advantage is that the data is available within
3 h after being observed and the satellites have a global cove-
rage, while single discharge observations are only valid for
the catchment scale.

Multiple studies have used remotely sensed soil mois-
ture to improve discharge simulations in small catchments
(≤ 1000 km2) and to correct for errors in pre-storm soil mois-
ture conditions (Pauwels et al., 2001; Scipal et al., 2008;
Brocca et al., 2010; Chen et al., 2011; Brocca et al., 2012;
Matgen et al., 2012). These studies show that assimilation
of these data improved the simulation of flood events and
especially the height of the flood peak. For large-scale catch-
ments,Draper et al.(2011) assimilated remotely sensed soil
moisture from ASCAT over France to improve discharge

simulations. It was concluded that the assimilation of soil
moisture mainly corrected for biases in precipitation or in-
correct model climatology. However, the potential to improve
flood forecasts was not studied at the large scale. The pre-
viously mentioned studies mainly focussed on the potential
gain for flood forecasting, when only observations from a
single sensor are assimilated. This potential can be increased
by making use of soil moisture retrieved by multiple sen-
sors, thereby increasing the quality and quantity of the ob-
servations. However, the added value of combined assim-
ilation of data from multiple sensors for operational flood
forecasting at a large scale remains unknown. Moreover, it
is equally important to take into account that assimilation of
remotely sensed soil moisture can lead to significant differ-
ences in the parametrization of the hydrological model (e.g.
Santanello et al., 2007; Sutanudjaja et al., 2013; Wanders
et al., 2013) and this will also impact the potential gain from
the assimilation of observations of other hydrological vari-
ables. Additionally the added value of the remotely sensed
soil moisture compared to the assimilation of discharge ob-
servations has not been studied so far. Therefore, more re-
search is required, especially in large-scale catchments using
conjunctively multisensor remotely sensed soil moisture ob-
servations and discharge data.

The aim of this study is to determine the benefits of the
assimilation of multisensor soil moisture observations in op-
erational flood forecasting systems in large-scale catchments.
To achieve this aim, this research focuses on three main re-
search questions: (i) does the assimilation of remotely sensed
soil moisture lead to increased forecasting skills in terms of
forecast uncertainty and forecast bias compared to assimi-
lation of discharge observations? (ii) Does the assimilation
of remotely sensed soil moisture increase the lead times at
which floods can be accurately predicted? (iii) Is it possi-
ble to reduce the number of false flood alerts with the use
of remotely sensed soil moisture? These research questions
are answered using the EFAS model set-up, which enables a
proper validation of the results in the context of a real oper-
ational system. Results of assimilating remotely sensed soil
moisture are compared with assimilation of discharge data
only. Also, the impact of the number of discharge observa-
tions and the benefit of the assimilation of remotely sensed
soil moisture for a model calibrated on discharge are inves-
tigated. These analyses enable a more detailed evaluation of
the potential gain of the assimilation of remotely sensed soil
moisture for operational flood forecasting. As a test basin the
Upper Danube catchment is selected, which is one of the
largest catchments in Europe containing a large number of
locations with time series of discharge. Satellite data from
three microwave sensors (ASCAT, AMSR-E and SMOS) is
used in the assimilation framework to increase the number of
observations and the potential benefits of these observations
for flood prediction.
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Figure 1. Digital elevation map of the Upper Danube catchment,
colours indicate elevation (m), indicated in black is the river net-
work, square symbols indicate locations for calibration on discharge
observations, circles indicate locations for validation on discharge
observations. The large square near the outlet (right) is the location
used for calibration if only one discharge time series is used (Q1
andQ1sat).

2 Material and methods

2.1 Study area

The study area is the Upper Danube catchment upstream of
Bratislava (catchment size 135× 103 km2, Fig. 1). The bor-
der of the Upper Danube is formed by the Alps in the south
and the catchment contains the northern part of Austria, the
southern part of Germany, the south-eastern part of the Czech
Republic and western Slovakia. Elevations range from 150
to 3150 m a.s.l. (above sea level). In the catchment, daily dis-
charge observations for 23 locations are available through the
Global Runoff Data Centre (GRDC) which enable validation
and assimilation (Fig.1). With a split-sample approach dis-
charge observations used for assimilation will not be used
for validation to assure an independent validation of the im-
provements in the flood forecasting after the assimilation.

2.2 European Flood Awareness System

The European Flood Awareness System was developed in
2003 by the European Commission at the Joint Research
Centre in Ispra and is being improved since1. In 2012 EFAS
became an operational service aiming to provide flood fore-
casts up to 10 days in advance over the European continent.
At the core of the EFAS system is the hydrological model
LISFLOOD which was originally developed byDe Roo et al.
(2000), later improved byVan Der Knijff et al. (2010) and
running in the PCRaster modelling environment (Wesseling
et al., 1996; Karssenberg et al., 2010). LISFLOOD was
specifically developed for discharge simulations of large-
scale river basins. The model consists of a vegetation layer,
two layers to simulate the unsaturated zone, two linear reser-

1www.efas.eu
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Figure 2. LISFLOOD model set-up, with fluxes; precipitation (P ),
evaporation (E), recharge from the unsaturated zone to the ground-
water (Rch). The calibration parameters of the model are snowmelt
coefficient (SnCoef), Xinanjiang shape parameter (bxin), saturated
conductivity of the topsoil (KSat1), saturated conductivity of the
subsoil (KSat2), empirical shape parameter preferential macro-pore
flow (cpref), maximum percolation rate from upper to lower ground-
water (GWprec), reservoir constant upper groundwater (Tuz), reser-
voir constant lower groundwater (Tlz), surface runoff roughness co-
efficient (ChanN2), and the channel’s Manning roughness coeffi-
cient (CalMan).

voirs to represent fast and slow responding groundwater sys-
tems and a channel network for discharge routing.

In this study, the original two layer representation of the
unsaturated zone (De Roo et al., 2000; Van Der Knijff et al.,
2010) was replaced by a new unsaturated zone model com-
ponent that uses four layers (Fig.2). This enables a more
detailed representation of the soil moisture in the topsoil
and results in modelled soil moisture that is directly com-
parable to the soil moisture observations retrieved from re-
motely sensed soil moisture. The layers have been added in
the topsoil and possess a depth equal to the typical pene-
tration depth of microwave sensors. The new model set-up
consists of unsaturated zone layers of 2 and 3 cm thick, re-
spectively, the third layer represents the remaining part of the
rooting depth (the topsoil, Fig.2). The root zone is simulated
using the topsoil and evapotranspiration occurs from these
layers. The evaporation for a particular layer is limited if soil
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moisture is below critical soil moisture conditions, in which
case more water is extracted from the other soil moisture lay-
ers to compensate for the reduced evaporation. The abstrac-
tion per layer is linearly related to the total storage capacity
of the layer. Thick layers will thus have a larger contribution
to the evapotranspiration compared to thinner layers. When
the entire root zone is below critical soil moisture conditions
the evaporation is limited for the entire topsoil and actual
evapotranspiration will be lower than potential evapotranspi-
ration. Bare soil evapotranspiration occurs only from the first
layer of 2 cm. Via capillary rise, replenishment of the root
zone can occur from the fourth unsaturated zone layer (the
subsoil). The amount of capillary rise depends on the differ-
ence in hydraulic head between two layers and the average
conductivity of the layers. The first layer will also largely im-
pact the amount of surface runoff in the LISFLOOD model.
The soil wetness of the first layer determines the infiltration
capacity of the unsaturated zone and when the infiltration ca-
pacity is exceeded by rainfall or snowmelt this will generate
overland flow. Subdaily time steps are included to enable a
stable performance of the soil moisture simulation, where the
number of subdaily time steps is dependent on the amount
of potential infiltration and water storage in the unsaturated
zone.

In order to use the best calibrated model for the study area,
the hydrological model LISFLOOD was calibrated for the
Upper Danube. For the calibration, soil moisture and dis-
charge observations were used to calibrate the most sensitive
model parameters. The parameters which were calibrated
were related to the snow accumulation, infiltration and perco-
lation through the unsaturated zone, the groundwater system
and routing of discharge (Fig.2). A dual state and parameter
ensemble Kalman filter was used to calibrate LISFLOOD for
the Upper Danube. A total of 300 members was used to esti-
mate all parameters of the model over the period 2010–2011.
The period was selected because satellite data from multiple
sensors is available for this period. This resulted in calibrated
parameters with distributions defined by 300 realizations of
parameter sets, which could be used for hydrological simu-
lations. The use of these parameter distributions allows ac-
counting for the uncertainty in the initial conditions and for
different hydrological response to identical meteorological
input. More detailed information on the probabilistic model
calibration set-up can be found inWanders et al.(2013).

The meteorological forcing of EFAS consists of daily pre-
cipitation, daily potential evapotranspiration and the aver-
age daily temperature. EFAS uses meteorological forcing
from the 51 members of the European Centre for Medium-
Range Weather Forecasting Ensemble Prediction System
(ECMWF-EPS). This results in 51 hydrological forecasts for
every 12 h at midday and midnight. The new set-up of EFAS
which uses 300 realizations of parameter sets, differs from
the original EFAS set-up which uses one parameter set. Ad-
ditionally, the new set-up also uses a set of initial hydrologi-
cal conditions which are forced with identical meteorological

forcing. The original EFAS set-up only uses one parameter
set and one initial hydrological condition for all meteorolog-
ical forecasts. The EFAS set-up used here will allow account-
ing for the uncertainty in the initial conditions which can be
an important factor in flood forecasting.

Throughout the manuscript the term EFAS will be used
when talking about the entire forecasting system, i.e. the
combination of meteorological forcing, hydrological model
and resulting flood forecasts. The term LISFLOOD will be
used when the focus is specifically on the data assimilation
or the hydrological model.

2.3 Data

2.3.1 Satellite data

Remotely sensed soil moisture data from three satellites is
used, namely SMOS (Soil Moisture and Ocean Salinity), AS-
CAT (Advanced SCATterometer) and AMSR-E (Advanced
Microwave Scanning Radiometer - Earth Observing Sys-
tem). SMOS is the first dedicated soil moisture satellite us-
ing fully polarized passive microwave signals at 1.41 GHz
(L-band) observed at multiple angles (Kerr et al., 2012). The
observation depth of SMOS is 5 cm with a spatial resolu-
tion of 35–50 km depending on the incident angle and the
deviation from the satellite ground track. The revisit time of
SMOS is within 1–3 days depending on the latitude. SMOS
retrievals which are potentially contaminated with radio fre-
quency interference (RFI) have been removed. The observa-
tions from SMOS can be directly compared to the weighted
average soil moisture content of the two top layers of LIS-
FLOOD, together 5 cm thick.

AMSR-E is a multifrequency passive microwave radiome-
ter (6.9 GHz, C-band) and is a widely used sensor for soil
moisture retrievals. The spatial resolution of AMSR-E is be-
tween 36 and 54 km with an observation depth of 2 cm and a
revisit time of 1–3 days. Several algorithms estimating sur-
face soil moisture from AMSR-E observations exist (e.g.
Njoku et al., 2003; Owe et al., 2008). One of the algorithms
using exclusively satellite observations is the Land Parame-
ter Retrieval Model (LPRM) which was used for this study.
LPRM soil moisture products have been validated against in
situ observations (e.g.Wagner et al., 2007; De Jeu et al.,
2008; Draper et al., 2009), models (e.g.Loew et al., 2009;
Crow et al., 2010; Bisselink et al., 2011) and other satellite
products (e.g.Wagner et al., 2007; Dorigo et al., 2010). Ob-
servations from AMSR-E are compared to the first unsatu-
rated zone layer of LISFLOOD.

Unlike SMOS and AMSR-E, ASCAT uses active mi-
crowave at a frequency of 5.3 GHz (C band) to determine
the soil moisture content (Wagner et al., 1999; Naeimi et al.,
2009). ASCAT uses a change detection method (Naeimi
et al., 2009) and data is provided relative to the soil mois-
ture content of the wettest (field capacity) and driest (wilt-
ing point) soil moisture conditions measured (Wagner et al.,
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1999). The spatial resolution of ASCAT is around 25 km, the
observation depth is 2 cm and the temporal resolution equals
a revisit time of 1–3 days. As for AMSR-E, ASCAT obser-
vations are compared to the top layer of the unsaturated zone
of the model simulations.

All satellite soil moisture products are used on an equal
area discrete global grid product (DGG). For the SMOS and
ASCAT soil moisture product a DGG is available (Bartalis
et al., 2006), while for the AMSR-E product a DGG is not
available. Therefore, the AMSR-E data was projected on
the DGG of SMOS using the nearest neighbour approach,
because both satellites have roughly the same spatial reso-
lution. The DGG of ASCAT uses equally spaced areas of
12.5 km while the other DGG uses a slightly lower resolu-
tion of 15 km between points.

Although the passive microwave satellite missions, SMOS
and AMSR-E, give absolute soil moisture values (in
m3 m−3), all satellite data was converted using a rescaling
approach. The converted satellite valuesθs,new (in m3 m−3)
used for calibration are calculated as

θs,new=
θs− θs,5

θs,95− θs,5
(θFC− θWP) + θWP, (1)

whereθs are the observed satellite soil moisture values (−) at
a DGG location,θs,95andθs,5are the 95th and 5th percentiles
of satellite soil moisture values at the DGG location respec-
tively (−), θFC andθWP are field capacity and wilting point
of the modelled soil moisture values (m3 m−3) at the DGG
location. The average model values,θFC andθWP, are depen-
dent on the soil texture and are averaged over the support unit
of the satellite retrieval.

Frozen soils, snow accumulation and RFI hamper the soil
moisture retrieval due to changes in the dielectric constant
when water freezes. Therefore, retrievals done with (1) an
air temperature below 4◦C, (2) simulated snow accumulation
and (3) the presence of RFI were not used in the calibration.

2.3.2 Discharge data

The Upper Danube catchment contains 23 locations where
daily discharge observations are available (Fig.1). Time se-
ries of discharge are available from January 2000 until De-
cember 2011. Using a split sample approach the discharge
of seven stations was used for data assimilation into the fore-
casting system, while the other 16 stations were only used for
validations of the forecasts. This approach is similar to the
experimental set-up ofLee et al.(2012) andRakovec et al.
(2012), who used multiple interior discharge stations for vali-
dation and assimilation. Assimilation and validation stations
are selected such that they are equally distributed over the
catchment and are situated both in small rivers and the main
Upper Danube River. This will allow to evaluate the impact
of the data assimilation at different catchment sizes within
the Upper Danube catchment.

2.4 Data assimilation

The ensemble Kalman filter (EnKF) is a Monte Carlo based
approach which is highly suitable for data assimilation
in high dimensional systems (Evensen, 1994, 2003, 2009;
Burgers et al., 1998), such as the LISFLOOD model. The
EnKF is applied to update state variables of the hydrological
model. The forward model is given as

9(t+1) = f (9(t), F (t), p), (2)

wheref is the set of model equations, i.e. the model struc-
ture, representing the hydrological processes that lead to
change in the system state over time,9(t) is the state of the
model at timet , F(t) the model forcing at timet (e.g. pre-
cipitation and evaporation) andp are the model parameters.
The EnKF is applied on each daily time step using observa-
tions from remote sensing (when available, AMSR-E, SMOS
and ASCAT) and discharge observations. If no observations
of any kind are available no update will be performed. When
only a limited number of observations are available these will
be used to update the model. The general form of the EnKF
(Evensen, 2003) is given as

9a
= 9 f

+ PfHT
(
HPfHT

+ R
)−1(

Y − H9 f
)
, (3)

where9a is the analysis of9 f , the model forecast,Pf the
error covariance matrix of the model,R is the measurement
error covariance, andH is the measurement operator which
relates the model states9 to the satellite or discharge obser-
vationsY. The observationsY can be described as

Y = H9 t
+ ε , (4)

where the true model state (9 t) is transformed to theY, using
H and random noiseε with a zero mean and an error given by
R. The state error covariance matrix of the model prediction
is directly calculated from the spread between the different
ensemble members using

Pf
=

(
9 f − 9 t

)(
9 f − 9 t

)T
, (5)

where9 is the model state vector and the superscripts “f”
and “t” represent the forecast and true state, respectively.
Since the true state is not known it is assumed that

Pf
≈ Pf

e =

(
9 f − 9 f

)(
9 f − 9 f

)T

, (6)

where9 f represents the ensemble average and it is assumed
that the ensemble of model simulations is sufficient to repre-
sent the true state. The EnKF is implemented in the PCRaster
modelling environment (Karssenberg et al., 2010).

For the assimilation of the satellite data with the EnKF,
spatial information on the measurement error covariance (R;
Eqs. 3, 4) is required. The structure ofR is determined
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from estimates ofWanders et al.(2012) over Spain, obtained
by using high-resolution modelling of the unsaturated zone.
From this study the local errors of each satellite product were
determined as well as the spatial correlation of the errors of
the satellites and the correlation between the errors of differ-
ent sensors. The average standard errors of the different sen-
sors fromWanders et al.(2012) are 0.049 (AMSR-E), 0.057
(SMOS) and 0.051 m3 m−3 (ASCAT). This information can
be used to simultaneously assimilate soil moisture observa-
tions from different sensors with the additional information
about the error structure obtained from the observation error-
covariance matrix. To avoid errors produced by downscal-
ing of the satellite soil moisture, the average modelled soil
moisture values are upscaled to the satellite resolution. Each
individual satellite observation is then compared to the cor-
responding model average soil moisture at the same spatial
support. The spatial support will differ for different sensors
and hence it is important to correctly compare modelled soil
moisture to observed soil moisture.

All observations are assimilated as daily averages, since
this is the same temporal resolution as the meteorological
forcing. The error covariance between the discharge obser-
vations is set to zero while the standard error for the dis-
charge observations is assumed to be 30 % of the discharge
(e.g.Di Baldassarre and Montanari, 2009). It is assumed that
the covariance between the satellite soil moisture observa-
tions and discharge observations equals zero.

2.5 Assimilation and ensemble hindcasting

In this study, observed satellite and discharge data for De-
cember 2010–November 2011 are used in a hindcasting ex-
periment for the Upper Danube. Only 1 year was selected
to test the procedure since all satellite products are available
for this time period with sufficient data quality. After the se-
lected time period the AMSR-E sensor was shut down and
before the selected period the quality of the SMOS observa-
tions was still below the potential maximum quality due to
RFI contamination.

A data assimilation procedure was used to create a reana-
lysis time series of all state variables which are used as start-
ing point for the hindcast (t0). Model states are updated with
the observations and used to have a better estimate of ini-
tial condition att0. Figure3 provides a flowchart that shows
the full hindcasting procedure described below. The 300 pa-
rameter realizations from the probabilistic calibration were
used to generate the reanalysis time series. As meteorologi-
cal forcing for the analysis, observed time series of daily pre-
cipitation, daily potential evapotranspiration and the average
daily temperature were used. Observations are interpolated
between meteorological stations with an inverse distance in-
terpolation. For every time step up tillt0, observed state vari-
ables, remotely sensed soil moisture and/or discharge (de-
pending on the scenario), are assimilated into the model. As-
similation is done on a daily time step, since information on
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51 ECMWF 10-day meteorological forecasts
Combine each forecast with two realizations
of the forward model (total 104 forecasts) 

Figure 3. Flowchart of the hindcasting procedure including ini-
tialization of the model and the construction of the reanalysis time
series.

the exact time of the discharge observations is largely un-
known. Additionally, the model uses meteorological input
with a temporal resolution of 1 day. Parameters are not up-
dated in the assimilation. Thus, the same set of 300 parameter
sets is used to generate the 300 ensemble members between
analysis steps with the EnKF.

At t0, the start of the hindcast, the forward model (Eq.2)
is used for the hindcasting of discharge and other state vari-
ables. Aftert0, the daily forcing from the ECMWF-EPS is
used to drive the model simulation. The hindcast is evalu-
ated based on the observed discharge for the hindcasting pe-
riod. Like in EFAS, hindcasts are done at midday and mid-
night based on the latest simulations of the ECMWF-EPS
leading to a total of 730 hindcasts. In the original forecasts
from EFAS only one set of initial conditions is used, thereby
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Table 1. Hindcasting scenarios for the EFAS system including abbreviations and assimilated data used to create a re-analysis time series
from which hindcasts were initiated. The calibration indicates the data used byWanders et al.(2013) to calibrate the hydrological model.

Scenario Hindcast Calibration

Number of Satellite data Data for calibration
discharge
stations

Q0 0 stations None None, expert knowledge
Q0sat 0 stations All satellite data Satellite data
Q1 1 stations None 1 discharge observation
Q1sat 1 stations All satellite data 1 discharge station and satellite data
Q7 7 stations None 7 discharge stations
Q7sat 7 stations All satellite data 7 discharge stations and satellite data

Q7noDA None None 7 discharge stations
Q7satDA None All satellite data 7 discharge stations

neglecting the uncertainty in the initial conditions. In this
experiment, 300 possible realizations of the initial condi-
tions are available from the reanalysis. For each hindcast
the 51 members of the ECMWF-EPS are used twice with
random realizations from the 300 members of the reanaly-
sis to createn = 102 realizations per hindcast. In this ap-
proach different meteorological forcing and initial conditions
are used for each hindcast to have a better estimate of the
forecast uncertainty. A 4-month simulation was performed
using all 300 members in combination with all 51 meteoro-
logical forecasts. An analysis of the probability density func-
tions of each hindcast showed that a total of 102 realizations
showed no significant differences to a simulation using all
possible (51× 300 = 15 300) realizations (for lead times up to
10 days). The significance was tested with a non-parametric
Kolmogorov–Smirnoff test, which showed that distributions
created with 102 realizations and 15 300 realizations are
identical (p = 0.05). In another set of runs, it was shown that
using fixed initial conditions for the hydrological state leads
to significantly different distributions. The same holds for
fixing the meteorological forecast for all 300 ensemble mem-
bers which results in a significantly different probability den-
sity function compared to the run created with 15 300 reali-
zations. With this exercise we concluded that both the un-
certainty in initial states as well as the forcing uncertainty
need to be taken into account, but that it suffices to use a
subset of the possible realizations to model this joint uncer-
tainty. Hence, to reduce calculation times 102 realizations per
hindcast were used in all scenarios. Calculation times for this
new assimilation system are low. For a 10-day forecast with
102 members for the Upper Danube the required calculation
time is 120 s on a 8-core machine with 2.26 GHz processors
and 24 GB RAM (random-access memory).

2.6 Scenarios

The different scenarios used are given in Table1 as well
as the data used in the assimilation before the hindcasting
was done. The parametrization was calibrated for the Up-
per Danube for the period 2010–2011 and was used to cre-
ate analysis time series for each scenario. The calibration
was based on the observations available for the reanalysis,
so if both discharge and satellite data were available these
were also used for the calibration of the hydrological model
(Table1).

Two additional scenarios have been included (bottom half
of Table1) to show the performance of the hindcasts in case
of limited or no data availability. Both scenarios have been
calibrated on discharge and use assimilation of satellite ob-
servations or no data.

2.7 Evaluation

The evaluation of each hindcast was done based on coeffi-
cient of variation (cv), continuous ranked probability score
(CRPS,Hersbach, 2000), mean absolute error (MAE), Brier
score (BS,Brier, 1950) and the number of false and true pos-
itive flood alerts. These scores were calculated for each lead
time separately to evaluate the quality of the hindcast for dif-
ferent lead times.

To assess the spread of the ensemble of simulated dis-
charges, the coefficient of variation was determined as

cv=
1

T

T∑
t=1

σQmod(t)

Qmod(t)
, (7)

whereσQmod(t) andQmod(t) (m3 d−1) are the standard devi-
ation and the mean of the ensemble of modelled discharge at
time t , respectively, andT is the number of time step (days)
in the reanalysis period.
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The CRPS (Hersbach, 2000) was used to calculate whether
the uncertainty of the forecast is correct and not over- or un-
derestimated. The CRPS is given as

CRPS=
1

T

T∑
i=1

x=∞∫
x=−∞

(
F f

i (x, t)−F o
i (x, t)

)2
dx, (8)

whereF f
i (x, t) is the cumulative density function of the hind-

cast at timet , F o
i (x, t) is the cumulative density function of

the observation at timet . F o
i (x, t) is given by a Heaviside

function, with a step from 0 to 1 probability at the observed
value. The CRPS is standardized byQobs for each valida-
tion location to enable a comparison between stations with a
different magnitude of discharge.

To calculate if the hindcasts were biased the MAE was cal-
culated using the ensemble mean of the forecast. The MAE
is given as

MAE=
1

T

T∑
t=1

|Qmod(t)−Qobs(t)|

Qobs
, (9)

whereQmod(t) andQobs(t) (m3 d−1) are the average hind-
casted discharge and observed discharge at timet respec-
tively andQobs is the average discharge over the evaluation
period. The cv, CRPS and MAE were used to evaluate the
performance of each scenario and to determine the quality of
each hindcasting scenario. Scores were standardized to en-
able a comparison between upstream and downstream sta-
tions without correcting for differences in discharge volumes.
In addition these scores were determined per lead time sep-
arately to enable a better comparison between the different
scenarios and also to determine the flood forecasting perfor-
mance of EFAS for different lead times.

To test the accuracy of the flood alerts (both timing and
height of the flood peak), the Brier score is calculated for
different flood thresholds and different lead times. The Brier
score was calculated as

BS=
1

T

T∑
t=1

(f (t)−o(t)), (10)

wheref (t) is the probability that discharge will exceed a cer-
tain threshold (calculated from the probability density func-
tion) ando(t) is a binary value which is 0 if this threshold is
not exceeded and 1 if it is exceeded. The Brier score can be
calculated for different thresholds of discharge and different
lead times. In this study we focussed on two threshold levels
namely the 80th and 90th percentiles of the discharge (Q80,
Q90). Exceedance of these arbitrary levels will not necessar-
ily cause a flood situation, however to allow for evaluation
of hindcasts these high discharge events were used. Further-
more the number of false positives (flood forecast, no flood
observed), missed (no flood forecasted, flood observed) and
correctly forecasted (flood forecasted, flood observed) were

Table 2.Average skill scores for different hindcast scenarios for the
EFAS system. Scores are averaged over different forecasting times
and for different locations with discharge observation in the Upper
Danube (Fig.1).

Scenario cv CRPS MAE BSQ90 BSQ80

Q0 0.272 0.328 0.620 0.130 0.257
Q0sat 0.161 0.252 0.791 0.220 0.363
Q1 0.084 0.203 0.702 0.168 0.314
Q1sat 0.075 0.306 0.508 0.084 0.177
Q7 0.049 0.186 0.382 0.038 0.166
Q7sat 0.047 0.182 0.309 0.029 0.096

Q7noDA 0.055 0.187 0.385 0.042 0.173
Q7satDA 0.053 0.183 0.384 0.040 0.160

calculated for each hindcasting scenario for theQ80 andQ90.
For Q80 andQ90 This resulted in 1035 and 2070 time steps
with flooding Q90 and Q80 respectively divided over 10–
18 flood events on average over the 16 validation locations.

3 Results

3.1 Reanalysis

To analyse the performance of the reanalysis the cv (Eq.7) is
used to determine the uncertainty after the assimilation of the
observations (Fig.4, Table2). In theQ0 scenario, the model
is not calibrated and no data is assimilated into the reanalysis
to correct for incorrect model states. The uncertainty in the
model simulation is large with a cv of 0.25. Uncertainty even
increases during extreme flood events, reducing the potential
to use a model calibrated on expert knowledge without data
assimilation for flood forecasting. The assimilation of three
different satellite products (Q0sat) results in a reduction of
the cv of the discharge simulation to 0.136 compared to 0.25
for Q0 (Fig.4). This reduction is caused by the assimilation
procedure which constrains the model to follow the observa-
tions and hence the spread between ensemble members is re-
duced. Soil moisture observations do not contain information
on groundwater and routing processes, hence they impact the
discharge simulation only indirectly via surface runoff and
percolation to the groundwater from the unsaturated zone.
This results in the fact that the discharge simulations are not
necessarily improved by assimilation of remotely sensed soil
moisture observations.

Two scenarios were created where only discharge is as-
similated into the model, namelyQ1 andQ7. ForQ1 only
discharge from the outlet was used and forQ7 additional dis-
charge observations (Fig.1) upstream were assimilated into
the model. The assimilation of additional observation data re-
duces the cv to 0.08 forQ1 and to 0.04 forQ7, which is for
both scenarios lower than forQ0 (Table2). Q1 shows a small
positive bias in the selected time period compared to the dis-
charge observations. However, on average the bias does not
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Figure 4. Reanalysis time series of discharge at the outlet of the Upper Danube catchment (Fig.1) for part of the hindcasting period. In
grey are all model realizations, the ensemble mean is given by the red line and the solid black line gives the observed discharge value. The
different assimilation scenarios are indicated on the left; for explanation of scenarios see Table1. The different assimilation scenarios are
indicated in the top left corner of each plot.

exist for the entire entire simulation period and no systematic
bias exist between the simulation and the observations.

Finally, two scenarios where both discharge and remotely
sensed soil moisture observations are assimilated into the
model (Q1sat andQ7sat) were evaluated. In these scenarios
the uncertainty is reduced compared to most other scenarios.
However, peak discharge forQ1sat is overestimated, while
baseflow simulations are better compared toQ1. Improved
simulations are also observed withQ7sat compared toQ7
and the problem with overestimated peak discharge is gone
with Q7sat (Fig. 4). An example time series is provided to
show the impact of the satellite observations in theQ7satsce-
nario (Fig.A1 in the Appendix).

It must be mentioned that additional discharge data has a
larger impact on the reduction of the uncertainty, than assimi-
lation of remotely sensed soil moisture. Remotely sensed soil
moisture enables a better simulation of the baseflow com-
pared to assimilation of discharge observation only. The re-
duction in uncertainty of the discharge simulations with the
assimilation of remotely sensed soil moisture shows that this
method has a high potential in sparsely gauged river basins
to reduce uncertainties in simulated discharges.

3.2 Hindcasting performance

The hindcast performance of each scenario was evaluated us-
ing the CRPS (Eq.8) and the MAE (Eq.9). In general the un-
certainty in the hindcast is reduced when more data is assim-
ilated into the system leading to a better hindcast simulation
(Fig. 5). When more discharge data is assimilated, the uncer-

tainty is more strongly reduced than with the assimilation of
only remotely sensed soil moisture data (Figs.4, 5). This is
also confirmed by the CRPS score for the different scenar-
ios (Fig.6), where the decrease in CRPS is strongest when
more discharge data is used (Table2). In general the CRPS
increases with increasing lead times for all scenarios with the
exception ofQ1sat. Due to the larger spread for longer lead
times (Fig.5) the CRPS will increase, because forecasts with
high uncertainty are penalized. The CRPS forQ1sat is the
highest indicating that this scenario has the lowest hindcast-
ing skill of all scenarios (Fig.6, Table2). This is caused by
the overestimation of most flood events, which results in a
high CRPS. When more discharge data is assimilated (Q0
compared toQ1 andQ7) the CRPS is reduced throughout
the catchment for most locations including the outlet near
Bratislava. When a combination of discharge data and satel-
lite data is assimilated (Q7sat), the quality of the hindcast is
highest (Fig.5).

The MAE (Eq.9) is calculated for all scenarios for dif-
ferent lead times and locations (Fig.7). Compared to the
scenario without assimilation of observations (Q0), only the
scenarios where multiple discharge stations are assimilated
(Q7 andQ7sat) show an increase in performance. The best
performance is generated byQ7sat, which shows a low bias
compared to the observed discharge. ForQ1sat the MAE
is relatively low, especially when compared to the CRPS.
This is mainly caused by the accurate discharge simulation
in baseflow periods, resulting in a low MAE.
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Figure 6. CRPS for different forecasting times for EFAS. Each box
only contains the CRPS for the 16 validation locations for a period
of 1 year with two forecasts per day.

3.3 Flood hindcasting skill

The performance of each scenario was evaluated using the
BS (Eq.10) and the number of false positive flood alerts. Due
to the high spread within the ensemble theQ0 in general has
a low forecasting skill (Table2). This is shown by the rela-
tive high BS (Fig.8) and the high number of false positive
forecasts (Fig.9). Almost all flood events are correctly cap-
tured also for long lead times, which is caused by the overes-
timation of discharge in general (Fig.5). The overestimation
of discharge also causes the high number of false positive
flood forecasts, where around 90 % of the exceedances of the
threshold are incorrect and no flooding occurs. Compared to
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Figure 7. MAE for different forecasting times for EFAS. MAEs
are standardized by dividing the MAE through the mean discharge.
Each box only contains the MAE for the 16 validation locations for
a period of 1 year with two forecasts per day.

Q0 the forecasting skill forQ0sat is decreased, shown by an
increasing BS and a higher number of false positives. The
high number of false positives is the result of an even higher
overestimation of the peak discharge in this scenario (Fig.5),
which results in false flood alerts. The number of missed and
correctly forecasted floods remains the same. The BS and
the number of false positives forQ1 andQ7 is considerably
lower than forQ0.Q7 also has a better hindcast skill than the
Q1 caused by the increased number of observations used in
the assimilation framework. The improved forecasting skill is
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also found in the BS for bothQ1satandQ7sat (Fig. 8), which
are for both scenarios lower than without the assimilation
of remotely sensed soil moisture. ForQ1sat this is mainly
caused by an increased performance in the upstream areas of
the catchment, whileQ7sat shows an improved performance
throughout the catchment. The number of false positive flood
forecasts is reduced by 70 % compared to the scenarios with
only discharge assimilation, while the number of missed and
correctly forecasted floods remains the same. This leads to
the conclusion that even when the simulation of discharge
throughout the catchment is used and discharge simulations
are of a high quality, adding satellite data will lead to an im-
provement in the forecasting skills of the hydrological model.

3.4 Hindcasting performance with limited assimilation

Two additional scenarios have been evaluated were the model
was calibrated on discharge observations alone and either re-
motely sensed soil moisture is assimilated (Q7satDA) or no
observations are assimilated (Q7noDA) in the reanalysis pe-
riod (Table2). The reanalysis forQ7noDA shows the largest
spread in the reanalysis (indicated by a large cv), while with
the assimilation of remotely sensed soil moisture (Q7satDA)
this uncertainty is reduced. However, the uncertainties re-
main larger than for scenariosQ7 andQ7sat where in both
cases discharge data has been assimilated.

The uncertainty in the hindcasting performance (CRPS)
is reduced forQ7satDA compared toQ7 and almost equal
to joint assimilation of discharge and soil moisture (Q7sat).
This indicates that the more accurate representation of the
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Figure 9. Relative changes in false positive flood alerts for the
90th percentile threshold, compared to the no-assimilation scenario
(Q0) for different forecasting times. A total of 1035 time steps with
flooding were observed for the Upper Danube.

soil moisture will reduce the uncertainty in model simula-
tions and hence hindcasts. For bothQ7noDA andQ7satDA the
MAE does not show an increased performance, indicating
that the bias is not reduced compared toQ7 orQ7sat.

As expected, the hindcast skills scores (BS) are reduced
when the satellite data is used in the assimilation scenario
compared to the no-assimilation scenario. Compared toQ7
andQ7sat the hindcast skill for the extreme events is not in-
creased. However, compared toQ7 andQ7noDA the assim-
ilation of satellite data (Q7satDA andQ7sat) will increase to
hindcast skill for the less severe flood (BSQ80).
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In general, the assimilation of remotely sensed soil mois-
ture will increase the simulation of discharge. However, the
discharge simulation performance for the extreme events is
less impacted by the assimilation of soil moisture observa-
tions. The assimilation of soil moisture observations results
in a better estimate of the initial soil moisture conditions
and estimate of discharge (CRPS), mainly for the interme-
diate discharge rates. In extreme events with high precipi-
tation totals the relative importance of pre-storm soil mois-
ture conditions is reduced. Assimilation of discharge has the
largest impact on the uncertainty in the hindcast, which will
have an impact on the ensemble spread. Joint assimilation of
soil moisture and discharge observations combines the ad-
vantages of both types of observations and leads to improved
initial conditions and consequently high hindcasting skills,
especially for the extreme events (BSQ90). The low uncer-
tainty as a result of discharge assimilation with the improved
estimate on the soil moisture state in the catchment leads to
increased forecasting performance.

4 Conclusions

In this study we evaluated the added value of remotely sensed
soil moisture in an operational flood forecasting system. The
gain from assimilation of soil moisture observations is com-
pared to assimilation of only discharge and the combina-
tion of discharge and soil moisture observations. The EFAS
was used for a hindcasting experiment in the Upper Danube.
Hindcasts were made for a period of 1 year and the results
compared for six different scenarios.

The assimilation of remotely sensed soil moisture has an
impact on the simulation of discharge as shown by other
studies (e.g.Pauwels et al., 2001; Brocca et al., 2010, 2012;
Draper et al., 2011). However, in this study we show that the
impact is not only limited to small catchments with a spatial
extent close to or smaller than the satellite resolution but also
works for larger catchments.

We show that the assimilation of remotely sensed soil
moisture improves the flood forecasting especially when
used in combination with assimilation of distributed dis-
charge observations. The uncertainty in the discharge sim-
ulations is reduced and biases in the simulation are reduced
when satellite data is assimilated. In scenarios where only
discharge from the outlet is used in combination with satel-
lite observations, the peak discharges are generally overesti-
mated. Although this will result in a less accurate simulation
of discharge it will not impact the forecasting quality of flood
events.

Floods are better predicted when soil moisture data is as-
similated into EFAS in combination with discharge observa-
tions and the number of false alerts is reduced compared to
scenarios where remotely sensed soil moisture observations
are not used. Although the gain of using more discharge ob-
servations remains larger, soil moisture observations improve
the quality of the flood alerts, both in terms of timing and in
the exact height of the flood peak.

Two additional scenarios were studied, where only cali-
bration of the hydrological model was used and no assim-
ilation or assimilation of only satellite data. These scenar-
ios were created to study the added value of the assimilation
compared to only calibration of the hydrological model. We
found that the cv, CRPS, MAE and BS are all reduced by the
assimilation of remotely sensed soil moisture compared to no
assimilation. However, the assimilation of discharge reduces
uncertainties more than assimilation of remotely sensed soil
moisture. Simulations without data assimilation tend to have
biases in the simulation and a larger ensemble spread than
scenarios with data assimilation, while the reduced uncer-
tainty resulting from assimilation will lead to an increased
reliability of flood forecasts. These results show that the as-
similation of soil moisture will result in an increased perfor-
mance compared to not assimilating observations. This is im-
portant for ungauged basins, where satellite data is available
and discharge observations are not available or not available
in near-real time. Additionally these results show the added
value of assimilation of observations into the EFAS system,
compared to the current set-up.

In conclusion, we show that the uncertainty in the flood
forecasts is reduced when discharge observations and satel-
lite data are assimilated into the hydrological model of the
EFAS system for the Upper Danube. The addition of re-
motely sensed soil moisture to existing discharge observa-
tions reduces the number of false positive-flood alerts and
thereby increases the reliability of the flood awareness sys-
tem. Although the number of the data available via satellite
retrievals still remains a challenge in an operational system,
the potential benefits could lead to a significant reduction in
the false flood alerts, possibly also for other catchments. This
will reduce the number of unnecessary precautions taken by
the responsible governments and increase the confidence and
willingness to act upon these flood alerts.
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Figure A1. Example time series (14◦ E, 48◦ N) of simulated soil
moisture for 0–2 cm (upper panel) and the simulated soil moisture
for 0–5 cm (lower panel) for the analysis period,Q7sat scenario.
Observations of remotely sensed soil moisture are shown from three
different sensors. Jumps in the time series at assimilation moments
indicate the update of model states according to the observations.
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