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Abstract. We evaluate the added value of assimilated re-timing errors in the flood predictions are decreased especially
motely sensed soil moisture for the European Flood Awarefor shorter lead times and imminent floods can be forecasted
ness System (EFAS) and its potential to improve the predicwith more skill. The number of false flood alerts is reduced
tion of the timing and height of the flood peak and low flows. when more observational data is assimilated into the system.
EFAS is an operational flood forecasting system for Eu-The added values of the satellite data is largest when these
rope and uses a distributed hydrological model (LISFLOOD)observations are assimilated in combination with distributed
for flood predictions with lead times of up to 10 days. For discharge observations. These results show the potential of
this study, satellite-derived soil moisture from ASCAT (Ad- remotely sensed soil moisture observations to improve near-
vanced SCATterometer), AMSR-E (Advanced Microwave real time flood forecasting in large catchments.
Scanning Radiometer - Earth Observing System) and SMOS
(Soil Moisture and Ocean Salinity) is assimilated into the
LISFLOOD maodel for the Upper Danube Basin and results
are compared to assimilation of discharge observations onlyl Introduction
To assimilate soil moisture and discharge data into the hy-
drological model, an ensemble Kalman filter (EnKF) is used.Floods are extreme hydrological events caused by excessive
Information on the spatial (cross-) correlation of the errors inWater availability and may cause large economical, societal
the satellite products, is included to ensure increased perfor@nd natural damage. One example is the summer 2013 flood
mance of the EnKF. For the validation, additional dischargein central Europe producing historical high-water levels in
observations not used in the EnKF are used as an indepef@rge parts of the Danube and Elbe catchments, causing a to-
dent validation data set. tal estimated economic loss of EUR 23 billiokgn Benfield

Our results show that the accuracy of flood forecasts is in-2013. Due to their increasing impact on society, forecasting
creased when more discharge observations are assimilate@f these extreme events has become more important to in-
the mean absolute error (MAE) of the ensemble mean is recfease preparedness and improve the response to and pre-
duced by 35%. The additional inclusion of satellite data re-vention of floods. This requires an increasing need to de-
sults in a further increase of the performance: forecasts o¥€lop accurate and reliable flood forecasting systems. Na-
baseflows are better and the uncertainty in the overall distional forecasting systems have been developed in, for ex-
charge is reduced, shown by a 10 % reduction in the MAE.@mple, England (National Flood Forecasting System), Ger-
In addition, floods are predicted with a higher accuracy andmany (Hochwasservorhersagezentral), the Netherlands, Ger-
the continuous ranked probability score (CRPS) shows a perhany and Switzerland (FEWS-Rhine & Meuse), Czech Re-
formance increase of 5-10 % on average, compared to assinfUblic (CHMI-IWSS), Sweden (SMHI) and most other coun-

ilation of discharge only. When soil moisture data is used, thelfies in Europe. For transboundary river basins, national fore-
casting systems are often lacking skill and transboundary
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forecasting systems are preferred. To fulfil this need, the Eusimulations. It was concluded that the assimilation of soil
ropean Commission developed the European Flood Awaremoisture mainly corrected for biases in precipitation or in-
ness System (EFAS) for flood forecasting with lead timescorrect model climatology. However, the potential to improve
of up to 10 days for the European continemhiglen et al. flood forecasts was not studied at the large scale. The pre-
2009. Additionally, EFAS will contribute to the understand- viously mentioned studies mainly focussed on the potential
ing of flood events on a transboundary scale and will supporgain for flood forecasting, when only observations from a
international crisis management at the European level. single sensor are assimilated. This potential can be increased
Flood forecasts are made for multiple basins, using dis-by making use of soil moisture retrieved by multiple sen-
tributed hydrological modelling. Systems like EFAS are sors, thereby increasing the quality and quantity of the ob-
highly dependent on the meteorological forcing providedservations. However, the added value of combined assim-
as well as the pre-storm initial conditions of the catchmentilation of data from multiple sensors for operational flood
(Nester et al.2012 Alfieri et al,, 2013. To improve esti- forecasting at a large scale remains unknown. Moreover, it
mates of initial conditions data assimilation techniques havds equally important to take into account that assimilation of
the potential to update incorrect model states with observaremotely sensed soil moisture can lead to significant differ-
tional data to obtain the best possible estimate of the curences in the parametrization of the hydrological model (e.g.
rent status of the hydrological system. Discharge data is ofSantanello et al.2007 Sutanudjaja et gl.2013 Wanders
ten used in these data assimilation frameworks, because ét al, 2013 and this will also impact the potential gain from
contains the integrated information of all other hydrological the assimilation of observations of other hydrological vari-
states (e.gVrugt et al, 2006 Clark et al, 2008 Rakovec ables. Additionally the added value of the remotely sensed
et al, 2012. However, it is difficult to obtain these measure- soil moisture compared to the assimilation of discharge ob-
ments in real-time in a way they can be used in EFAS. Ob-servations has not been studied so far. Therefore, more re-
servations might not be available in real-time, quality con- search is required, especially in large-scale catchments using
trol cannot be done in real-time or local data providers areconjunctively multisensor remotely sensed soil moisture ob-
unfortunately not willing to share the information. Measure- servations and discharge data.
ments of hydrological states other than discharge are rarely The aim of this study is to determine the benefits of the
used for estimating the model’s initial state while these mayassimilation of multisensor soil moisture observations in op-
be of considerable value. In particular, measurements of therational flood forecasting systems in large-scale catchments.
pre-storm soil moisture conditions could potentially improve To achieve this aim, this research focuses on three main re-
flood forecasting systems, since initial soil moisture condi-search questions: (i) does the assimilation of remotely sensed
tions are expected to have a large impact on the flood peaksoil moisture lead to increased forecasting skills in terms of
during a storm event. The soil moisture content determinedorecast uncertainty and forecast bias compared to assimi-
the amount of water which can still be stored in the unsatu-lation of discharge observations? (ii) Does the assimilation
rated zone or percolate to the saturated zone and thereby if remotely sensed soil moisture increase the lead times at
fluences the precipitation required to generate overland flowhich floods can be accurately predicted? (iii) Is it possi-
However, field observations at continental scale are not availble to reduce the number of false flood alerts with the use
able due to the limited number of observational networksof remotely sensed soil moisture? These research questions
and their low spatial support. Remotely sensed soil moistureare answered using the EFAS model set-up, which enables a
retrievals from the microwave domain could potentially fill proper validation of the results in the context of a real oper-
the need for soil moisture observations at the large spatiahtional system. Results of assimilating remotely sensed soil
scales. Observations are globally available and revisit timesnoisture are compared with assimilation of discharge data
per sensor are between 1 and 3 days depending on latitudenly. Also, the impact of the number of discharge observa-
An additional advantage is that the data is available withintions and the benefit of the assimilation of remotely sensed
3 h after being observed and the satellites have a global covesoil moisture for a model calibrated on discharge are inves-
rage, while single discharge observations are only valid fortigated. These analyses enable a more detailed evaluation of
the catchment scale. the potential gain of the assimilation of remotely sensed soil
Multiple studies have used remotely sensed soil mois-moisture for operational flood forecasting. As a test basin the
ture to improve discharge simulations in small catchmentsUpper Danube catchment is selected, which is one of the
(< 1000 knf) and to correct for errors in pre-storm soil mois- largest catchments in Europe containing a large number of
ture conditions RPauwels et a).2001 Scipal et al. 2008 locations with time series of discharge. Satellite data from
Brocca et al.201Q Chen et al. 2011 Brocca et al. 2012 three microwave sensors (ASCAT, AMSR-E and SMOS) is
Matgen et al.2019. These studies show that assimilation used in the assimilation framework to increase the number of
of these data improved the simulation of flood events andobservations and the potential benefits of these observations
especially the height of the flood peak. For large-scale catchfor flood prediction.
ments,Draper et al(2011) assimilated remotely sensed soil
moisture from ASCAT over France to improve discharge

Hydrol. Earth Syst. Sci., 18, 23432357, 2014 www.hydrol-earth-syst-sci.net/18/2343/2014/



N. Wanders et al.: Remotely sensed soil moisture for flood forecasting 2345

O Calibration location
50°N — © Validation location

o]
4

[} 3000

- 2500

- 2000

ag°N - SnCoef

[ e & Topsoil
47°N .-""\-""'"- ———-—?— -1 P
o':' 500
[ =)
0  100km
' ' ' ' ' Subsoll
10°E 12°E 14°E 16°E 18°E
Figure 1. Digital elevation map of the Upper Danube catchment, Rch Surface runoff
colours indicate elevation (m), indicated in black is the river net- routing
work, square symbols indicate locations for calibration on discharge Chany,

observations, circles indicate locations for validation on discharge
observations. The large square near the outlet (right) is the location GWpere
used for calibration if only one discharge time series is ugetl (

and leat).

2 Material and methods

Vv Vv
CalMan
2.1 Study area

The study area is the Upper Danube catchment upstream of River channel

Bratislava (catchment S'Z(_a 13510° k?, Fig. 1). The bor- Figure 2. LISFLOOD model set-up, with fluxes; precipitatioR,

der of the Upper Danube is formed by the Alps in the southeyaporation £), recharge from the unsaturated zone to the ground-
and the catchment contains the northern part of Austria, theyater (Rch). The calibration parameters of the model are snowmelt
southern part of Germany, the south-eastern part of the Czectvefficient (SnCoef), Xinanjiang shape parametgy,{, saturated
Republic and western Slovakia. Elevations range from 15Cconductivity of the topsoil (KSa), saturated conductivity of the
to 3150 ma.s.l. (above sea level). In the catchment, daily dissubsoil (KSag), empirical shape parameter preferential macro-pore
charge observations for 23 locations are available through thé0w (cpref), maximum percolation rate from upper to lower ground-
Global Runoff Data Centre (GRDC) which enable validation Water (GWred), reservoir constant upper groundwaté(, reser-
and assimilation (Figl). With a split-sample approach dis- voir _constant lower groundwatefi( ), ?urface r_unoff roughness co-
charge observations used for assimilation will not be useqe.mc'ter(]:t (If/lhaM)’ and the channel's Manning roughness coeffi-
for validation to assure an independent validation of the im-'" (CalMan).

provements in the flood forecasting after the assimilation.

voirs to represent fast and slow responding groundwater sys-
tems and a channel network for discharge routing.

The European Flood Awareness System was developed in In this study, the original two layer representation of the
2003 by the European Commission at the Joint Researchnsaturated zondg Roo et al.200Q Van Der Knijff et al,
Centre in Ispra and is being improved sihce 2012 EFAS 2010 was replaced by a new unsaturated zone model com-
became an operational service aiming to provide flood fore{onent that uses four layers (Fig). This enables a more
casts up to 10days in advance over the European continen@ietailed representation of the soil moisture in the topsoil
At the core of the EFAS system is the hydrological model @nd results in modelled soil moisture that is directly com-
LISFLOOD which was originally developed e Roo et al. parable to the soil moisture observations retrieved from re-
(2000, later improved byan Der Knijff et al. (2010 and motely sensed soil moisture. The layers have been added in
running in the PCRaster modelling environmewesseling ~ the topsoil and possess a depth equal to the typical pene-
et al, 1996 Karssenberg et al2010. LISFLOOD was tration depth of microwave sensors. The new model set-up
specifically developed for discharge simulations of large-consists of unsaturated zone layers of 2 and 3 cm thick, re-
scale river basins. The model consists of a vegetation layeSPectively, the third layer represents the remaining part of the

two layers to simulate the unsaturated zone, two linear reser00ting depth (the topsoil, Fig). The root zone is simulated
using the topsoil and evapotranspiration occurs from these

Iwww.efas.eu layers. The evaporation for a particular layer is limited if soil

2.2 European Flood Awareness System
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moisture is below critical soil moisture conditions, in which forcing. The original EFAS set-up only uses one parameter
case more water is extracted from the other soil moisture layset and one initial hydrological condition for all meteorolog-
ers to compensate for the reduced evaporation. The abstra@zal forecasts. The EFAS set-up used here will allow account-
tion per layer is linearly related to the total storage capacitying for the uncertainty in the initial conditions which can be
of the layer. Thick layers will thus have a larger contribution an important factor in flood forecasting.
to the evapotranspiration compared to thinner layers. When Throughout the manuscript the term EFAS will be used
the entire root zone is below critical soil moisture conditions when talking about the entire forecasting system, i.e. the
the evaporation is limited for the entire topsoil and actual combination of meteorological forcing, hydrological model
evapotranspiration will be lower than potential evapotranspi-and resulting flood forecasts. The term LISFLOOD will be
ration. Bare soil evapotranspiration occurs only from the firstused when the focus is specifically on the data assimilation
layer of 2cm. Via capillary rise, replenishment of the root or the hydrological model.
zone can occur from the fourth unsaturated zone layer (the
subsoil). The amount of capillary rise depends on the differ-2.3 Data
ence in hydraulic head between two layers and the average
conductivity of the layers. The first layer will also largely im- 2.3.1 Satellite data
pact the amount of surface runoff in the LISFLOOD model.
The soil wetness of the first layer determines the infiltrationRemotely sensed soil moisture data from three satellites is
capacity of the unsaturated zone and when the infiltration caused, namely SMOS (Soil Moisture and Ocean Salinity), AS-
pacity is exceeded by rainfall or snowmelt this will generate CAT (Advanced SCATterometer) and AMSR-E (Advanced
overland flow. Subdaily time steps are included to enable aMicrowave Scanning Radiometer - Earth Observing Sys-
stable performance of the soil moisture simulation, where thegem). SMOS s the first dedicated soil moisture satellite us-
number of subdaily time steps is dependent on the amouning fully polarized passive microwave signals at 1.41 GHz
of potential infiltration and water storage in the unsaturated(L-band) observed at multiple anglgss(r et al, 2012. The
zone. observation depth of SMOS is 5cm with a spatial resolu-

In order to use the best calibrated model for the study areation of 35-50 km depending on the incident angle and the
the hydrological model LISFLOOD was calibrated for the deviation from the satellite ground track. The revisit time of
Upper Danube. For the calibration, soil moisture and dis-SMOS is within 1-3 days depending on the latitude. SMOS
charge observations were used to calibrate the most sensitivetrievals which are potentially contaminated with radio fre-
model parameters. The parameters which were calibratequency interference (RFI) have been removed. The observa-
were related to the snow accumulation, infiltration and perco-tions from SMOS can be directly compared to the weighted
lation through the unsaturated zone, the groundwater systeraverage soil moisture content of the two top layers of LIS-
and routing of discharge (Fig). A dual state and parameter FLOOD, together 5cm thick.
ensemble Kalman filter was used to calibrate LISFLOOD for AMSR-E is a multifrequency passive microwave radiome-
the Upper Danube. A total of 300 members was used to estiter (6.9 GHz, C-band) and is a widely used sensor for soil
mate all parameters of the model over the period 2010-2011moisture retrievals. The spatial resolution of AMSR-E is be-
The period was selected because satellite data from multipléveen 36 and 54 km with an observation depth of 2cm and a
sensors is available for this period. This resulted in calibratedevisit time of 1-3 days. Several algorithms estimating sur-
parameters with distributions defined by 300 realizations offace soil moisture from AMSR-E observations exist (e.g.
parameter sets, which could be used for hydrological simuNjoku et al, 2003 Owe et al, 2008. One of the algorithms
lations. The use of these parameter distributions allows acusing exclusively satellite observations is the Land Parame-
counting for the uncertainty in the initial conditions and for ter Retrieval Model (LPRM) which was used for this study.
different hydrological response to identical meteorological LPRM soil moisture products have been validated against in
input. More detailed information on the probabilistic model situ observations (e.giMagner et al. 2007 De Jeu et al.
calibration set-up can be foundWanders et al(2013. 2008 Draper et al.2009, models (e.gLoew et al, 2009

The meteorological forcing of EFAS consists of daily pre- Crow et al, 2010 Bisselink et al. 2011) and other satellite
cipitation, daily potential evapotranspiration and the aver-products (e.gWagner et al.2007 Dorigo et al, 2010. Ob-
age daily temperature. EFAS uses meteorological forcingservations from AMSR-E are compared to the first unsatu-
from the 51 members of the European Centre for Medium-rated zone layer of LISFLOOD.
Range Weather Forecasting Ensemble Prediction System Unlike SMOS and AMSR-E, ASCAT uses active mi-
(ECMWEF-EPS). This results in 51 hydrological forecasts for crowave at a frequency of 5.3 GHz (C band) to determine
every 12 h at midday and midnight. The new set-up of EFASthe soil moisture content{agner et a.1999 Naeimi et al,
which uses 300 realizations of parameter sets, differs from2009. ASCAT uses a change detection methddhéimi
the original EFAS set-up which uses one parameter set. Adet al, 2009 and data is provided relative to the soil mois-
ditionally, the new set-up also uses a set of initial hydrologi- ture content of the wettest (field capacity) and driest (wilt-
cal conditions which are forced with identical meteorological ing point) soil moisture conditions measuratlagner et al.
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1999. The spatial resolution of ASCAT is around 25km, the 2.4 Data assimilation
observation depth is 2 cm and the temporal resolution equals
a revisit time of 1-3days. As for AMSR-E, ASCAT obser- The ensemble Kalman filter (EnKF) is a Monte Carlo based
vations are compared to the top layer of the unsaturated zon@pproach which is highly suitable for data assimilation
of the model simulations. in high dimensional systemd&yensen1994 2003 2009

All satellite soil moisture products are used on an equalBurgers et al.1998, such as the LISFLOOD model. The
area discrete global grid product (DGG). For the SMOS andENKF is applied to update state variables of the hydrological
ASCAT soil moisture product a DGG is availabBgrtalis ~ model. The forward model is given as
et al, 2009, while for the AMSR-E product a DGG is not
available. Therefore, the AMSR-E data was projected on? D) = (¥ @), F@), p), @)
the DGG of SMOS using the nearest neighbour ap'.OroaCh\‘/vheref is the set of model equations, i.e. the model struc-
because both satellites have roughly the same spatial resQ-

. ure, representing the hydrological processes that lead to
lution. The DGG of ASCAT uses equally spaced areas of . ; X
12.5km while the other DGG uses a slightly lower resolu- change in the system state over timgy) is the state of the

tion of 15 km between points. model at timer, F(¢) the model forcing at time (e.g. pre-

. : : _ cipitation and evaporation) arngare the model parameters.
Although the passive microwave satellite missions, SMOS . k S . i
and AMSR-E, give absolute soil moisture values (in The EnKF is applied on each daily time step using observa

m3m~3), all satellite data was converted using a rescalin tions from remote sensing (when available, AMSR-E, SMOS
a roac’h The converted satellite valde (ingm3 m-3) 9and ASCAT) and discharge observations. If no observations
PP o Bew of any kind are available no update will be performed. When
used for calibration are calculated as o : : .
only a limited number of observations are available these will
fs— be used to update the model. The general form of the EnKF

[
Os,new= 222 (Grc — bwp) + bwp, (1)  (Evensen2003 is given as
95,95— 6’5,5

whereds are the observed satellite soil moisture valuepdt
a DGG locationgs gsandfs s are the 95th and 5th percentiles
of satellite soil moisture values at the DGG location respec-where W@ is the analysis oft!, the model forecas®' the
tively (—), 6ec andéwp are field capacity and wilting point ~ €rror covariance matrix of the mod@&, is the measurement
of the modelled soil moisture values {m—3) at the DGG  error covariance, and is the measurement operator which
location. The average model valuésg anddwp, are depen- relates the model statdsto the satellite or discharge obser-
dent on the soil texture and are averaged over the support unitationsY. The observation¥ can be described as
of the satellite retrieval. ¢

Frozen soils, snow accumulation and RFI hamper the soilf =HWV +e, (4)
moisture retrieval due to changes in the d|electr|c_ constan%Nhere the true model staté}) is transformed to th¥, using
when water freezes. Therefore, retrievals done with (1) a

: . . and random noisewith a zero mean and an error given by
air temperature belowC, (2) simulated snow accumulation . . -
. .~ R. The state error covariance matrix of the model prediction
and (3) the presence of RFI were not used in the calibration. " . .
is directly calculated from the spread between the different

ensemble members using

-1
v = w4+ PHT (HP'HT +R) (Y —HY'), ®)

2.3.2 Discharge data

f_ (wf f T
The Upper Danube catchment contains 23 locations wher& = (‘l’ - ‘I’t) (‘I’ - ‘I’t) ) 5)

daily discharge observations are available (Bjg.Time se- where WV is the model state vector and the superscripts “f”

ries of discharge are available from January 2000 until De-and “t" represent the forecast and true state, respectively.

cember 2011. Using a split sample approach the diSCharg%ince the true state is not known it is assumed that
of seven stations was used for data assimilation into the fore-

casting system, while the other 16 stations were only used for ¢ . — : A\

validations of the forecasts. This approach is similar to theP ~Pe= <‘I' -V ) (‘1' -V ) ’ (6)
experimental set-up dfee et al.(2012 andRakovec et al. .

(2012, who used multiple interior discharge stations for vali- wherew® represents the ensemble average and it is assumed
dation and assimilation. Assimilation and validation stationsthat the ensemble of model simulations is sufficient to repre-
are selected such that they are equally distributed over theent the true state. The EnKF is implemented in the PCRaster
catchment and are situated both in small rivers and the maimodelling environment{arssenberg et al2010.

Upper Danube River. This will allow to evaluate the impact For the assimilation of the satellite data with the EnKF,
of the data assimilation at different catchment sizes withinspatial information on the measurement error covariaRge (
the Upper Danube catchment. Egs. 3, 4) is required. The structure dR is determined
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from estimates ofWanders et al2012 over Spain, obtained s
by using high-resolution modelling of the unsaturated zone. = Ensemble generation
From this study the local errors of each satellite product were | e e e inital modele bater —"
determined as well as the spatial correlation of the errors of = Total of N=300 members
the satellites and the correlation between the errors of differ- <
ent sensors. The average standard errors of the different sen- S ;
sors fromWanders et al(2012 are 0.049 (AMSR-E), 0.057 = Forward model
(SMOS) and 0.051 Am~3 (ASCAT). This information can 2 (t+1) = f(w(D), F(), p,)
be used to simultaneously assimilate soil moisture observa- % T .
tions from different sensors with the additional information 7
about the error structure obtained from the observation error- Find available observations (Y)
covariance matrix. To avoid errors produced by downscal- ASCAT, SMOS, AMSR-E, Discharge
ing of the satellite soil moisture, the average modelled soil
moisture values are upscaled to the satellite resolution. Each Calculate error matrix (R)
individual satellite observation is then compared to the cor- 5 ASCAT, SMOS, AMSR-E, Discharge
responding model average soil moisture at the same spatial & Lincluding correlation between observations
support. The spatial support will differ for different sensors £ *
and hence it is important to correctly compare modelled soil ﬁ [Find equivalant model states (y") |
moisture to observed soil moisture. y
All observations are assimilated as daily averages, since Calculate Kalman gain
this is the same temporal resolution as the meteorological P'H'(P'H"+R)*!
forcing. The error covariance between the discharge obser- 7
vations is set to zero while the standard error for the dis- | Update states y?
charge observations is assumed to be 30 % of the discharge
(e.g.Di Baldassarre and Montana#i009. It is assumed that #
the covariance between the satellite soil moisture observa- Initialization of hindcast
tions and discharge observations equals zero. QL ECIMWE 10-day meteorological forecasts
of the forward model (total 104 forecasts)
2.5 Assimilation and ensemble hindcasting = v
S Forward model
In this study, observed satellite and discharge data for De- _E Y(t+10) = f(y2(t), F(t), p,)
cember 2010-November 2011 are used in a hindcasting ex- T +
periment for the Upper Danube. Only 1 year was selected 10-day flood hindcast
to test the procedure since all satellite products are available 102 ensemble members

for this time period with sufficient data quality. After the se-
lected time period the AMSR-E sensor was shut down andrigure 3. Flowchart of the hindcasting procedure including ini-
before the selected period the quality of the SMOS observatialization of the model and the construction of the reanalysis time
tions was still below the potential maximum quality due to series.
RFI contamination.

A data assimilation procedure was used to create a reana-
lysis time series of all state variables which are used as starthe exact time of the discharge observations is largely un-
ing point for the hindcast{). Model states are updated with known. Additionally, the model uses meteorological input
the observations and used to have a better estimate of inwith a temporal resolution of 1 day. Parameters are not up-
tial condition atzg. Figure3 provides a flowchart that shows dated in the assimilation. Thus, the same set of 300 parameter
the full hindcasting procedure described below. The 300 pasets is used to generate the 300 ensemble members between
rameter realizations from the probabilistic calibration were analysis steps with the EnKF.
used to generate the reanalysis time series. As meteorologi- At 7o, the start of the hindcast, the forward model (2).
cal forcing for the analysis, observed time series of daily pre-is used for the hindcasting of discharge and other state vari-
cipitation, daily potential evapotranspiration and the averageables. Afterr, the daily forcing from the ECMWF-EPS is
daily temperature were used. Observations are interpolatedsed to drive the model simulation. The hindcast is evalu-
between meteorological stations with an inverse distance inated based on the observed discharge for the hindcasting pe-
terpolation. For every time step up ti§), observed state vari- riod. Like in EFAS, hindcasts are done at midday and mid-
ables, remotely sensed soil moisture and/or discharge (denight based on the latest simulations of the ECMWF-EPS
pending on the scenario), are assimilated into the model. Asleading to a total of 730 hindcasts. In the original forecasts
similation is done on a daily time step, since information on from EFAS only one set of initial conditions is used, thereby
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Table 1. Hindcasting scenarios for the EFAS system including abbreviations and assimilated data used to create a re-analysis time series

from which hindcasts were initiated. The calibration indicates the data us@tbglers et al(2013 to calibrate the hydrological model.

Scenario Hindcast Calibration
Number of  Satellite data Data for calibration
discharge
stations
Q0 0 stations None None, expert knowledge
Q0sat 0 stations All satellite data  Satellite data
01 1 stations None 1 discharge observation
Qlsat 1 stations All satellite data 1 discharge station and satellite data
Q7 7 stations None 7 discharge stations
O7sat 7 stations All satellite data 7 discharge stations and satellite data
O7nopa None None 7 discharge stations
Q7satpa None All satellite data 7 discharge stations

neglecting the uncertainty in the initial conditions. In this 2.6 Scenarios

experiment, 300 possible realizations of the initial condi-

tions are available from the reanalysis. For each hindcast he different scenarios used are given in Tablas well

the 51 members of the ECMWEF-EPS are used twice withas the data used in the assimilation before the hindcasting
random realizations from the 300 members of the reanalywas done. The parametrization was calibrated for the Up-
sis to creater =102 realizations per hindcast. In this ap- Per Danube for the period 2010-2011 and was used to cre-
proach different meteorological forcing and initial conditions ate analysis time series for each scenario. The calibration
are used for each hindcast to have a better estimate of th&#as based on the observations available for the reanalysis,
forecast uncertainty_ A 4-month simulation was performedSO if both discharge and satellite data were available these
using all 300 members in combination with all 51 meteoro- Were also used for the calibration of the hydrological model
logical forecasts. An analysis of the probability density func- (Tablel).

tions of each hindcast showed that a total of 102 realizations Two additional scenarios have been included (bottom half
showed no significant differences to a simulation using allof Table1) to show the performance of the hindcasts in case
possible (51x 300 = 15 300) realizations (for lead times up to Of limited or no data availability. Both scenarios have been
10 days). The significance was tested with a non-parametri€alibrated on discharge and use assimilation of satellite ob-
Kolmogorov—Smirnoff test, which showed that distributions Servations or no data.

created with 102 realizations and 15300 realizations are )

identical (»=0.05). In another set of runs, it was shown that 2-7  Evaluation

using fixed initial conditions for the hydrological state leads
to significantly different distributions. The same holds for
fixing the meteorological forecast for all 300 ensemble mem-
bers which results in a significantly different probability den-
sity function compared to the run created with 15 300 reali-

The evaluation of each hindcast was done based on coeffi-
cient of variation (cv), continuous ranked probability score
(CRPS,Hersbach2000, mean absolute error (MAE), Brier
score (BSBrier, 1950 and the number of false and true pos-
zations. With this exercise we concluded that both the un-"F'Ve flood alerts. These scores were calculate'd for each Igad

L . . time separately to evaluate the quality of the hindcast for dif-
certainty in initial states as well as the forcing uncertainty ferent lead times

need to be taken into account, but that it suffices to use a . .
. o L To assess the spread of the ensemble of simulated dis-

subset of the possible realizations to model this joint uncer- o e i

. S A charges, the coefficient of variation was determined as
tainty. Hence, to reduce calculation times 102 realizations per
hindcast were used in all scenarios. Calculation times for this T o
new assimilation system are low. For a 10-day forecast withcy=— "} ~ 22mod®) @)
102 members for the Upper Danube the required calculation 1 =1 Qmod(?)
time is 120 s on a 8-core machine with 2.26 GHz processors

and 24 GB RAM (random-access memory). whereo g, o) and Omod(r) (M*d~?) are the standard devi-
ation and the mean of the ensemble of modelled discharge at

time ¢, respectively, and’ is the number of time step (days)
in the reanalysis period.
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The CRPSIHlersbach2000 was used to calculate whether Table 2. Average skill scores for different hindcast scenarios for the
the uncertainty of the forecast is correct and not over- or unEFAS system. Scores are averaged over different forecasting times

derestimated. The CRPS is given as and for different locations with discharge observation in the Upper
Danube (Fig1).
1 T X=00 2
CRPS:? Z / (Fif(x, 1—F2(x, t)) dx, (8) Scenario cv  CRPS MAE B®gy BSQgp
=" 00 0.272 0.328 0.620 0.130 0.257
; ) ] ) ) ] Q0sat 0.161 0.252 0.791 0.220 0.363
wherefF; (x, t) is the cumulative density function of the hind- 01 0.084 0203 0.702 0.168 0.314
cast at time, F°(x, ) is the cumulative density function of Olsat 0.075 0.306 0.508 0.084 0.177
the observation at time F°(x, r) is given by a Heaviside Q7 0.049 0.186 0.382 0.038 0.166
function, with a step from 0 to 1 probability at the observed  Q7sat 0.047 0.182 0.309 0.029 0.096
value. The CRPS is standardized Byys for each valida- O7nopa 0055 0187 0385  0.042 0.173

tion location to enable a comparison between stations with a O7sapa  0.053 0.183 0.384  0.040 0.160
different magnitude of discharge.
To calculate if the hindcasts were biased the MAE was cal-

culated using the ensemble mean of the forecast. The MAEcaIcuIated for each hindcasting scenario fordhg and Ooo.

S given as For Qg0 and Qgo This resulted in 1035 and 2070 time steps
1 . (O — Oobel)| with flooding Qgp and Qgo respectively divided over 10—
MAE=— y == o, (9) 18 flood events on average over the 16 validation locations.
=1 QOobs

- ) 3 Results
where Omod(7) and Qops(r) (M2 d—1) are the average hind-

casted discharge and observed discharge at timspec- 3.1 Reanalysis
tively and Qops is the average discharge over the evaluation
period. The cv, CRPS and MAE were used to evaluate thelo analyse the performance of the reanalysis the cv{js.
performance of each scenario and to determine the quality ofised to determine the uncertainty after the assimilation of the
each hindcasting scenario. Scores were standardized to epbservations (Figd, Table2). In the Q0 scenario, the model
able a comparison between upstream and downstream stis not calibrated and no data is assimilated into the reanalysis
tions without correcting for differences in discharge volumes.to correct for incorrect model states. The uncertainty in the
In addition these scores were determined per lead time sepgnodel simulation is large with a cv of 0.25. Uncertainty even
arately to enable a better comparison between the differenncreases during extreme flood events, reducing the potential
scenarios and also to determine the flood forecasting perforto use a model calibrated on expert knowledge without data
mance of EFAS for different lead times. assimilation for flood forecasting. The assimilation of three
To test the accuracy of the flood alerts (both timing anddifferent satellite productsdOsa) results in a reduction of
height of the flood peak), the Brier score is calculated forthe cv of the discharge simulation to 0.136 compared to 0.25
different flood thresholds and different lead times. The Brierfor Q0 (Fig.4). This reduction is caused by the assimilation
score was calculated as procedure which constrains the model to follow the observa-
tions and hence the spread between ensemble members is re-
duced. Soil moisture observations do not contain information
on groundwater and routing processes, hence they impact the
discharge simulation only indirectly via surface runoff and
wheref (¢) is the probability that discharge will exceed a cer- percolation to the groundwater from the unsaturated zone.
tain threshold (calculated from the probability density func- This results in the fact that the discharge simulations are not
tion) ando(r) is a binary value which is 0 if this threshold is necessarily improved by assimilation of remotely sensed soll
not exceeded and 1 if it is exceeded. The Brier score can benoisture observations.
calculated for different thresholds of discharge and different Two scenarios were created where only discharge is as-
lead times. In this study we focussed on two threshold levelssimilated into the model, namel@1 andQ7. For Q1 only
namely the 80th and 90th percentiles of the discha@g,(  discharge from the outlet was used andd@of additional dis-
Q9g0). Exceedance of these arbitrary levels will not necessarcharge observations (Fig) upstream were assimilated into
ily cause a flood situation, however to allow for evaluation the model. The assimilation of additional observation data re-
of hindcasts these high discharge events were used. Furtheduces the cv to 0.08 fop1 and to 0.04 forQ7, which is for
more the number of false positives (flood forecast, no floodboth scenarios lower than f@r0 (Table2). 01 shows a small
observed), missed (no flood forecasted, flood observed) angositive bias in the selected time period compared to the dis-
correctly forecasted (flood forecasted, flood observed) wereharge observations. However, on average the bias does not

1 T
BS=—) (f(—o(0)). (10)
=1
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Figure 4. Reanalysis time series of discharge at the outlet of the Upper Danube catchmen) Bigpart of the hindcasting period. In

grey are all model realizations, the ensemble mean is given by the red line and the solid black line gives the observed discharge value. The
different assimilation scenarios are indicated on the left; for explanation of scenarios seé. THidedifferent assimilation scenarios are
indicated in the top left corner of each plot.

exist for the entire entire simulation period and no systematictainty is more strongly reduced than with the assimilation of
bias exist between the simulation and the observations. only remotely sensed soil moisture data (Fijs5). This is

Finally, two scenarios where both discharge and remotelyalso confirmed by the CRPS score for the different scenar-
sensed soil moisture observations are assimilated into th@s (Fig.6), where the decrease in CRPS is strongest when
model (Q1sat and Q755 were evaluated. In these scenarios more discharge data is used (TaB)e In general the CRPS
the uncertainty is reduced compared to most other scenariofcreases with increasing lead times for all scenarios with the
However, peak discharge faplsy is overestimated, while  exception ofQ1g4. Due to the larger spread for longer lead
baseflow simulations are better comparedXtb. Improved  times (Fig.5) the CRPS will increase, because forecasts with
simulations are also observed with7sa compared toQ7 high uncertainty are penalized. The CRPS s, is the
and the problem with overestimated peak discharge is gongighest indicating that this scenario has the lowest hindcast-
with Q7sat (Fig. 4). An example time series is provided to ing skill of all scenarios (Fig6, Table2). This is caused by
show the impact of the satellite observations infh&ssce-  the overestimation of most flood events, which results in a
nario (Fig.Al in the Appendix). high CRPS. When more discharge data is assimilag@l (

It must be mentioned that additional discharge data has @ompared toQ1 and 07) the CRPS is reduced throughout
larger impact on the reduction of the uncertainty, than assimithe catchment for most locations including the outlet near
lation of remotely sensed soil moisture. Remotely sensed soiBratislava. When a combination of discharge data and satel-
moisture enables a better simulation of the baseflow comiite data is assimilatedd7s5y), the quality of the hindcast is
pared to assimilation of discharge observation only. The re-ighest (Fig5).
duction in uncertainty of the discharge simulations with the The MAE (Eq.9) is calculated for all scenarios for dif-
assimilation of remotely sensed soil moisture shows that thiferent lead times and locations (Fig). Compared to the
method has a high potential in sparsely gauged river basinscenario without assimilation of observatiom®Q), only the

to reduce uncertainties in simulated discharges. scenarios where multiple discharge stations are assimilated
(Q7 and Q759 show an increase in performance. The best
3.2 Hindcasting performance performance is generated If)7sa;, which shows a low bias

compared to the observed discharge. IEdksy: the MAE
The hindcast performance of each scenario was evaluated ug relatively low, especially when compared to the CRPS.
ing the CRPS (EB) and the MAE (Eq9). In general the un-  This is mainly caused by the accurate discharge simulation
certainty in the hindcast is reduced when more data is assimin baseflow periods, resulting in a low MAE.
ilated into the system leading to a better hindcast simulation
(Fig. 5). When more discharge data is assimilated, the uncer-

www.hydrol-earth-syst-sci.net/18/2343/2014/ Hydrol. Earth Syst. Sci., 18, 234857, 2014



2352 N. Wanders et al.: Remotely sensed soil moisture for flood forecasting

to = 12 Sep 12:00 to = 15 Sep 12:00 to = 18 Sep 12:00 to = 21 Sep 12:00
o
o8
(o4
S I
48
g5
OJ -
o S~~~ \\ &_
S
8
3° |
o S~ \\
§ .
-
33
OJ -

3000 1000

;7
)
/

_ S

Q7sal

1000 30001000

\—\v$\

r T T r T T r T r T T
08-sep 15-sep 22-sep 08-sep 15-sep 22-sep 08-sep 15-sep 22-sep 08-sep 15-sep 22-sep

_ A
NI NN, W

Figure 5. Example forecast time series of discharge at the outlet of the Upper Danube catchmebjtf@iigart of the hindcasting period.
In grey are all model realizations, the ensemble mean is given by the red dashed line and solid black line gives the observed discharge value
Each column of figures gives the hindcast for a particular time, indicated by the vertical line.
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Figure 6. CRPS for different forecasting times for EFAS. Each box Lead time (days)

only contains the CRPS for the 16 validation locations for a period

of 1 year with two forecasts per day. Figure 7. MAE for different forecasting times for EFAS. MAEs

are standardized by dividing the MAE through the mean discharge.
Each box only contains the MAE for the 16 validation locations for

) ) ) a period of 1 year with two forecasts per day.
3.3 Flood hindcasting skill

The performance of each scenario was evaluated using the

BS (Eqg.10) and the number of false positive flood alerts. Due QO the forecasting skill foQ0sztis decreased, shown by an

to the high spread within the ensemble @ in general has increasing BS and a higher number of false positives. The
a low forecasting skill (Tabl@). This is shown by the rela- high number of false positives is the result of an even higher
tive high BS (Fig.8) and the high number of false positive overestimation of the peak discharge in this scenario 8)ig.
forecasts (Fig9). Almost all flood events are correctly cap- which results in false flood alerts. The number of missed and
tured also for long lead times, which is caused by the overeseorrectly forecasted floods remains the same. The BS and
timation of discharge in general (Fig). The overestimation the number of false positives f@1 andQ7 is considerably

of discharge also causes the high number of false positivéower than forQ0. 07 also has a better hindcast skill than the
flood forecasts, where around 90 % of the exceedances of th@1 caused by the increased number of observations used in
threshold are incorrect and no flooding occurs. Compared tdahe assimilation framework. The improved forecasting skill is
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locations for a period of 1 year with two forecasts per day. The Brier scores for the 90 % threshold (top) and the 80 % threshold (bottom) are
given. A total of 1035 and 2070 time steps (90th and 80th percentiles, respectively) with flooding were observed for the Upper Danube.

also found in the BS for botl® 1s5:and Q 754¢ (Fig. 8), which

are for both scenarios lower than without the assimilation
of remotely sensed soil moisture. FOlsy; this is mainly
caused by an increased performance in the upstream areas
the catchment, whil@7s5: shows an improved performance
throughout the catchment. The number of false positive flood =
forecasts is reduced by 70 % compared to the scenarios With%
only discharge assimilation, while the number of missed and ©
correctly forecasted floods remains the same. This leads toz
the conclusion that even when the simulation of discharge &
throughout the catchment is used and discharge simulations
are of a high quality, adding satellite data will lead to an im-
provement in the forecasting skills of the hydrological model.

250

— Q0 — Qlg
o QOga—— Q7
IS Q1 — Qs

false fasitives (%)
150
|

100

50

Lead time (days)

Figure 9. Relative changes in false positive flood alerts for the
3.4 Hindcasting performance with limited assimilation 90th percentile threshold, compared to the no-assimilation scenario
(QO) for different forecasting times. A total of 1035 time steps with
Two additional scenarios have been evaluated were the modépPeding were observed for the Upper Danube.
was calibrated on discharge observations alone and either re-
motely sensed soil moisture is assimilatgdi7,ipa) Or no
observations are assimilate@{,opa) in the reanalysis pe- soil moisture will reduce the uncertainty in model simula-
riod (Table2). The reanalysis foQ7,0pa Shows the largest tions and hence hindcasts. For b@f,opa and Q 7saipa the
spread in the reanalysis (indicated by a large cv), while withMAE does not show an increased performance, indicating
the assimilation of remotely sensed soil moistufe {5ipa) that the bias is not reduced comparedXd or Q 7sat
this uncertainty is reduced. However, the uncertainties re- As expected, the hindcast skills scores (BS) are reduced
main larger than for scenariad7 and Q7s5; Where in both  when the satellite data is used in the assimilation scenario
cases discharge data has been assimilated. compared to the no-assimilation scenario. Comparedto
The uncertainty in the hindcasting performance (CRPS)and Q7s4the hindcast skill for the extreme events is not in-
is reduced forQ7saipa compared toQ7 and almost equal creased. However, compared @ and Q 7,,opa the assim-
to joint assimilation of discharge and soil moistuR7gay). ilation of satellite data @ 7saipa and Q7s45) Will increase to
This indicates that the more accurate representation of théindcast skill for the less severe flood (B&0).
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In general, the assimilation of remotely sensed soil mois- Floods are better predicted when soil moisture data is as-
ture will increase the simulation of discharge. However, thesimilated into EFAS in combination with discharge observa-
discharge simulation performance for the extreme events isions and the number of false alerts is reduced compared to
less impacted by the assimilation of soil moisture observa-scenarios where remotely sensed soil moisture observations
tions. The assimilation of soil moisture observations resultsare not used. Although the gain of using more discharge ob-
in a better estimate of the initial soil moisture conditions servations remains larger, soil moisture observations improve
and estimate of discharge (CRPS), mainly for the interme-the quality of the flood alerts, both in terms of timing and in
diate discharge rates. In extreme events with high precipithe exact height of the flood peak.
tation totals the relative importance of pre-storm soil mois- Two additional scenarios were studied, where only cali-
ture conditions is reduced. Assimilation of discharge has thébration of the hydrological model was used and no assim-
largest impact on the uncertainty in the hindcast, which will ilation or assimilation of only satellite data. These scenar-
have an impact on the ensemble spread. Joint assimilation abs were created to study the added value of the assimilation
soil moisture and discharge observations combines the accompared to only calibration of the hydrological model. We
vantages of both types of observations and leads to improvetbund that the cv, CRPS, MAE and BS are all reduced by the
initial conditions and consequently high hindcasting skills, assimilation of remotely sensed soil moisture compared to no
especially for the extreme events (Bfyo). The low uncer-  assimilation. However, the assimilation of discharge reduces
tainty as a result of discharge assimilation with the improveduncertainties more than assimilation of remotely sensed soil
estimate on the soil moisture state in the catchment leads tmoisture. Simulations without data assimilation tend to have
increased forecasting performance. biases in the simulation and a larger ensemble spread than
scenarios with data assimilation, while the reduced uncer-
tainty resulting from assimilation will lead to an increased
reliability of flood forecasts. These results show that the as-

. aimilation of soil moisture will result in an increased perfor-
In this study we evaluated the added value of remotely sense oo . L
mance compared to not assimilating observations. This is im-

soil moisture in an operational flood forecasting system. The ; . : )
. Lo . . . ; portant for ungauged basins, where satellite data is available
gain from assimilation of soil moisture observations is com-

L : . and discharge observations are not available or not available
pared to assimilation of only discharge and the combina-.

tion of discharge and soil moisture observations. The EFAS" near-real time. Additionally these results show the added

. . . . value of assimilation of observations into the EFAS system,
was used for a hindcasting experiment in the Upper Danube,
¢compared to the current set-up.

Hindcasts were mgde for a periqd of 1 year and the results In conclusion, we show that the uncertainty in the flood
Co_rphpea;eSdSifr(])qr"ZZ(o(ri]lfgefrreenntq:;nasr;onss.e d soil moisture has a forecasts is reduced when discharge observations and satel-
y r]ite data are assimilated into the hydrological model of the

impact on the simulation of discharge as shown by other o i
studies (e.gPauwels et a].2001; Brocca et al.201Q 2012 EFAS system for .the L_Jpper Dangb(_a. Th_e addition of re
motely sensed soil moisture to existing discharge observa-

Draper et al.2011). However, in this study we show that the tions reduces the number of false positive-flood alerts and

impact is not only limited to small catchments Wlth a spatial thereby increases the reliability of the flood awareness sys-
extent close to or smaller than the satellite resolution but alsqem Although the number of the data available via satellite
onr\I;: fsohrcl\?vr%ﬁ;tcﬁcehngifwlilation of remotelv sensed sc)”retrievals still remains a challenge in an operational system,
moisture improves the flood forecastin esyeciall Whenthe potential benefits could lead to a significant reduction in

P 9 esp y the false flood alerts, possibly also for other catchments. This

used in combination with assimilation of distributed dis- . :
. S ! . will reduce the number of unnecessary precautions taken by
charge observations. The uncertainty in the discharge sim;,

. . . : . . the responsible governments and increase the confidence and
ulations is reduced and biases in the simulation are reduce& P 9

when satellite data is assimilated. In scenarios where onI)‘/N'"mgm_}SS to act upon these flood alerts.

discharge from the outlet is used in combination with satel-
lite observations, the peak discharges are generally overesti-
mated. Although this will result in a less accurate simulation
of discharge it will not impact the forecasting quality of flood
events.

4 Conclusions
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Figure Al. Example time series (24, 48 N) of simulated soil
moisture for 0—2 cm (upper panel) and the simulated soil moisture
for 0-5cm (lower panel) for the analysis peria@ysat Scenario.
Observations of remotely sensed soil moisture are shown from three
different sensors. Jumps in the time series at assimilation moments
indicate the update of model states according to the observations.
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