Savings and Consumption Responses to Persistent Income Shocks

Harvard

Brian Higgins Terry O'Malley

Fang Yao Amazon Central Bank of Ireland

December 2023

- Question:

How does consumption react to persistent income shocks?

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:

[Friedman 57]

- 1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$
- 2 Permanent shocks: $dc_t/d\tau = 1$

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:

[Friedman 57]

1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$ Rejected, $dc_t/d\tau_t \approx .5$

[Jappelli-Pistaferri 10, Fagereng et. al. 21]

2 Permanent shocks: $dc_t/d\tau = 1$

Our paper: very persistent shocks!

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:

[Friedman 57]

1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$ Rejected, $dc_t/d\tau_t \approx .5$

[Jappelli-Pistaferri 10, Fagereng et. al. 21]

- 2 Permanent shocks: $dc_t/d\tau = 1$ Our paper: very persistent shocks!
- 1 Data: linked bank account and mortgage data from Ireland

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:

[Friedman 57]

- 1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$ Rejected, $dc_t/d\tau_t \approx .5$
- 2 Permanent shocks: $dc_t/d\tau = 1$ Our paper: very persistent shocks!
- 1 Data: linked bank account and mortgage data from Ireland
 - a Identify unexpected persistent shock to mortgage payments (=income shock)

[Byrne-Kelly-O'Toole 21]

[Jappelli-Pistaferri 10, Fagereng et. al. 21]

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:

[Friedman 57]

- 1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$ Rejected, $dc_t/d\tau_t \approx .5$
- [Jappelli-Pistaferri 10, Fagereng et. al. 21]

- 2 Permanent shocks: $dc_t/d\tau = 1$ Our paper: very persistent shocks!
- 1 Data: linked bank account and mortgage data from Ireland
 - a Identify unexpected persistent shock to mortgage payments (=income shock)

[Byrne-Kelly-O'Toole 21]

b Estimate response of savings

1/14

Introduction

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:
 - 1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$ Rejected, $dc_t/d\tau_t \approx .5$
 - 2 Permanent shocks: $dc_t/d\tau = 1$ Our paper: very persistent shocks!
- 1 Data: linked bank account and mortgage data from Ireland
 - a Identify unexpected persistent shock to mortgage payments (=income shock)
 - [Byrne-Kelly-O'Toole 21]

- b Estimate response of savings
- c Use budget constraint to back out consumption response to shock

[Friedman 57]

[Jappelli-Pistaferri 10, Fagereng et. al. 21]

1/14

Introduction

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:
 - 1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$ Rejected, $dc_t/d\tau_t \approx .5$
- [Jappelli-Pistaferri 10, Fagereng et. al. 21]

- 1 Data: linked bank account and mortgage data from Ireland
 - a Identify unexpected persistent shock to mortgage payments (=income shock)
 - [Byrne-Kelly-O'Toole 21]

[Friedman 57]

b Estimate response of savings

2 Permanent shocks: $dc_t/d\tau = 1$ Our paper: very persistent shocks!

- c Use budget constraint to back out consumption response to shock
- d Explore heterogeneity

1/14

Introduction

- Question:

How does consumption react to persistent income shocks?

- Two predictions of the Permanent Income Hypothesis:
 - 1 Transitory shocks: $dc_t/d\tau_t = \frac{r}{1+r} \approx 0.03$ Rejected, $dc_t/d\tau_t \approx .5$
 - 2 Permanent shocks: $dc_t/d\tau = 1$ Our paper: very persistent shocks!
- 1 Data: linked bank account and mortgage data from Ireland
 - a Identify unexpected persistent shock to mortgage payments (=income shock)

[Byrne-Kelly-O'Toole 21]

[Friedman 57]

- b Estimate response of savings
- c Use budget constraint to back out consumption response to shock
- d Explore heterogeneity
- 2 Model: Can standard consumption-savings explain the estimated responses?

[Jappelli-Pistaferri 10, Fagereng et. al. 21]

1 Average MPC is high :

$$MPC^{data} = dc_t/d\tau = 0.91$$

- $MPC^{model} = MPC^{data}$ with 17 year shock

1 Average MPC is high :

$$MPC^{data} = dc_t/d\tau = 0.91$$

- $MPC^{model} = MPC^{data}$ with 17 year shock

2 Liquidity constraints:

- Low liquid assets:
- $MPC^{data} = 1.0$
- High liquid assets: $MPC^{data} = 0.82$

1 Average MPC is high :

$$MPC^{data} = dc_t/d\tau = 0.91$$

- $MPC^{model} = MPC^{data}$ with 17 year shock

2 Liquidity constraints:

- Low liquid assets: $MPC^{data} = 1.0$
- High liquid assets: $MPC^{data} = 0.82$
- $MPC^{model} \approx MPC^{data}$

\rightarrow Strong evidence of liquidity constraints

[Johnson-Parker-Souleles 01; Parker-Souleles-Johnson-McClelland 13, Kueng 18]

1 Average MPC is high :

$$MPC^{data} = dc_t/d\tau = 0.91$$

- $MPC^{model} = MPC^{data}$ with 17 year shock

2 Liquidity constraints:

- Low liquid assets: $MPC^{data} = 1.0$
- High liquid assets: $MPC^{data} = 0.82$
- $MPC^{model} \approx MPC^{data}$
- \rightarrow Strong evidence of liquidity constraints

[Johnson-Parker-Souleles 01; Parker-Souleles-Johnson-McClelland 13, Kueng 18]

3 Heterogeneity in persistence:

- Novel source of heterogeneity: time-to-maturity upon impact
- > 10 years : $MPC_{10+}^{data} = 0.92$
- ≤ 5 years : $MPC_5^{data} = 0.61$

1 Average MPC is high :

$$MPC^{data} = dc_t/d\tau = 0.91$$

- $MPC^{model} = MPC^{data}$ with 17 year shock

2 Liquidity constraints:

- Low liquid assets: $MPC^{data} = 1.0$
- High liquid assets: $MPC^{data} = 0.82$
- $MPC^{model} \approx MPC^{data}$
- \rightarrow Strong evidence of liquidity constraints

[Johnson-Parker-Souleles 01; Parker-Souleles-Johnson-McClelland 13, Kueng 18]

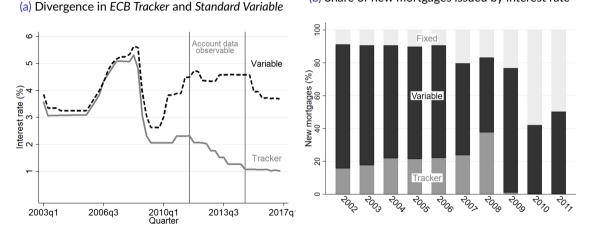
3 Heterogeneity in persistence:

- Novel source of heterogeneity: time-to-maturity upon impact
- > 10 years : $MPC_{10+}^{data} = 0.92$
- ≤ 5 years : $MPC_5^{data} = 0.61$
- MPC5^{data} > MPC5^{model}
- ightarrow Consistent with transitory shock literature

[Kaplan-Violante 14, 22]

1. Data and Consumption Response

2. Model of Consumption & Savings


Payment shock: variable and tracker mortgage interest rates

ശ Account data S Variable Interest rate (%) 2 3 4 1 、ノ Tracker -2003a1 2006a3 2010q1 Quarter 2013a3 2017a⁻

(a) Divergence in ECB Tracker and Standard Variable

(b) Share of new mortgages issued by interest rate

Payment shock: variable and tracker mortgage interest rates

(b) Share of new mortgages issued by interest rate

Data: mortgage and bank account data in Ireland

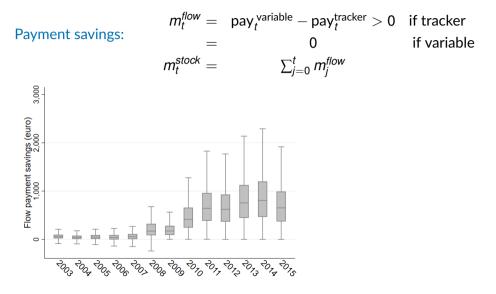
1 Mortgage data

- At origination: age, income, county, house price, mortgage size, interest rate
- Over time: outstanding balance, interest rate, days past due
- 2000-2016 for origination data; 2012-2016 six-monthly updates
- Estimate: current LTV w/ post code price index

2 Bank account data

- Average balance over quarter (quarterly), balance at end date (6 monthly).
- Checking and savings accounts
- Quarterly, Q3 2011 Q4 2014
- Do not see accounts in multiple banks, or non-bank savings

3 Cleaning


- Household view: Link all mortgages, bank accounts for household
- Restrict to active (non-constant/zero) checking accounts (when using savings data)
- Mortgages originated 2000-2008
- Quarterly panel: Q3 2011 Q4 2014
- $\textit{N} \approx$ 10,000 households $\, imes\,$ 14 quarters $\,pprox\,$ 140,000

Size of payment savings

Payment savings:

$$egin{array}{rll} m_t^{\mathit{flow}} = & \mathsf{pay}_t^{\mathsf{variable}} - \mathsf{pay}_t^{\mathit{tracker}} > 0 & ext{if tracker} \ = & 0 & ext{if variable} \ m_t^{\mathit{stock}} = & \sum_{j=0}^t m_j^{\mathit{flow}} \end{array}$$

Size of payment savings

Size of payment savings

 m_t^{flow} $pay_{t}^{variable} - pay_{t}^{tracker} > 0$ if tracker =**Payment savings:** if variable $\sum_{j=0}^{t} m_{j}^{\textit{flow}}$ m^{stock} 50,000 3,000 Stock of payment savings 10,000 20,000 30,000 40,000 Flow payment savings (euro) 1,000 2,000 0 0 2078 2075 2007 2003 2001 2005 2006 2007 2000 2000 2010 2077 , toz toz 2003 2004 2005 2006 2000 2000 20102017 POL 2013 2014 2015

Regression: Savings Response

$$\Delta b_{i,t} = \beta_0 + \beta_1 \Delta m_{i,t}^{stock} + \eta_t (\mathbf{X}_i \times \gamma_t) + u_{i,t}$$

- $\Delta b_{i,t}$ is the change in bank balance of household *i* between quarter *t* and *t* + 1
- $\Delta m_{i,t}^{stock}$ is change in stock payment savings between t and t + 1
 - $\Delta m_{i,t}^{stock} > 0$ if tracker mortgage
 - $\Delta m_{i,t}^{stock} = 0$ if variable mortgage
- X_i is a vector of observable controls
- γ_t are time fixed effects
- Variations:
 - levels and logs
 - pooled and different time horizons

Result: Average Savings Response

	(1) Savings	(2) Log Savings	(3) ∆ Savings	(4) ∆ Log Savings	(5) Savings	(6) Log Savings	(7) Δ Savings	(8) Δ Log Savings
Payment Savings	0.083*** (0.0210)				0.077*** (0.0242)			
Log Payment Savings		0.067*** (0.0241)				0.076** (0.0326)		
D.Payment Savings			0.086*** (0.0221)				0.086*** (0.0219)	
D.Log Payment Savings				0.056*** (0.0154)				0.059** (0.0217)
Observations	144914	144914	134563	134563	144914	144914	134563	134563
Adjusted R ²	0.902	0.907	0.001	0.001	0.903	0.907	0.002	0.002
Individual FE	Yes	Yes			Yes	Yes		
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
$Controls \times QuarterFE$					Yes	Yes	Yes	Yes
Prob($\beta = 1$)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

MPC heterogeneity

1 Average MPC = 0.913 (MPS= 0.087).

2 Split samples

- a Liquid assets at 2011Q3: → table
- Lowest liquid assets quartile: 1.0
- Quartile 2: 0.95
- Quartile 3: 0.93
- Highest balance quartile: 0.82

MPC heterogeneity

1 Average MPC = 0.913 (MPS= 0.087).

2 Split samples

- a Liquid assets at 2011Q3: > table
- Lowest liquid assets quartile: 1.0
- Quartile 2: 0.95
- Quartile 3: 0.93
- Highest balance quartile: 0.82
- b Mortage maturity at 2010Q1: table
- <= 5 years to maturity: 0.6
- 6-10 years to maturity: 0.84
- >10 years to maturity: 0.93

MPC heterogeneity

1 Average MPC = 0.913 (MPS= 0.087).

2 Split samples

- a Liquid assets at 2011Q3: > table
- Lowest liquid assets quartile: 1.0
- Quartile 2: 0.95
- Quartile 3: 0.93
- Highest balance quartile: 0.82

b Mortage maturity at 2010Q1: • table

- <= 5 years to maturity: 0.6
- 6-10 years to maturity: 0.84
- >10 years to maturity: 0.93

- Robustness

- Some evidence of selection ex-ante <a> link
- No evidence of selection ex-post > link
- No evidence of mortgage pre-payment
- Other savings accounts > link

1. Data & Consumption Response

2. Model of Consumption & Savings

Consumption-savings problem by households

Households solve infinite horizon problem

$$\begin{split} \max_{c,a} \sum_{t=0}^{\infty} \mathbf{E}_{\mathbf{0}} \left[\beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma} \right] \\ c_{t} + a_{t} &= (1+r)a_{t-1} + e_{t} + \tau_{t} \\ a \geq 0 \\ \ln e_{t} &= \rho_{e} \ln e_{t-1} + \epsilon_{t} \qquad \epsilon_{t} \sim \mathcal{N}(\mathbf{0}, \sigma_{e}^{2}) \end{split}$$

Consumption-savings problem by households

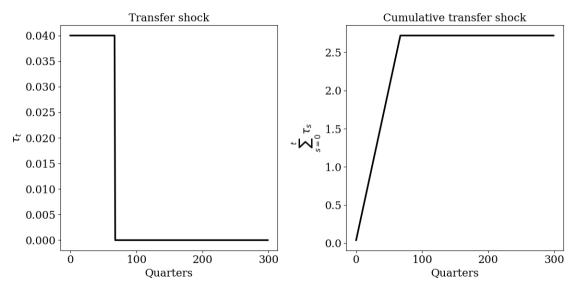
Households solve infinite horizon problem

$$\begin{split} \max_{c,a} \sum_{t=0}^{\infty} \mathbf{E}_{\mathbf{0}} \left[\beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma} \right] \\ c_{t} + a_{t} &= (1+r)a_{t-1} + e_{t} + \tau_{t} \\ a &\geq 0 \\ \ln e_{t} &= \rho_{e} \ln e_{t-1} + \epsilon_{t} \qquad \epsilon_{t} \sim \mathcal{N}(\mathbf{0}, \sigma_{e}^{2}) \end{split}$$

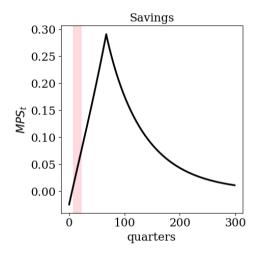
Perfect foresight for path $\{\tau_s\}_{s\geq 0}$. Compare to stationary distribution with $\tau_{ss} = 0$

Consumption-savings problem by households

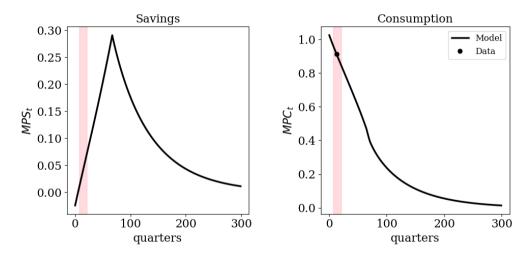
Households solve infinite horizon problem


$$\begin{split} \max_{c,a} \sum_{t=0}^{\infty} \mathbf{E}_{\mathbf{0}} \left[\beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma} \right] \\ c_{t} + a_{t} &= (1+r)a_{t-1} + e_{t} + \tau_{t} \\ a &\geq 0 \\ \ln e_{t} &= \rho_{e} \ln e_{t-1} + \epsilon_{t} \qquad \epsilon_{t} \sim \mathcal{N}(\mathbf{0}, \sigma_{e}^{2}) \end{split}$$

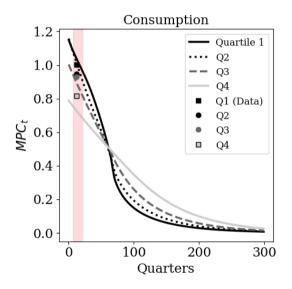
Perfect foresight for path $\{\tau_s\}_{s\geq 0}$. Compare to stationary distribution with $\tau_{ss} = 0$


Calibration: $\sigma = 2$, r = 0.01, $\rho_e = 0.966$, $\sigma_e = 0.54$ [Auclert, et. al.; HFCS] Calibrate discount factor to match average response: $\beta = 0.97$ $\tau = 0.04$

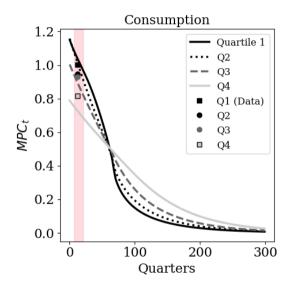
Bellman


The model experiment

Comparing model and data

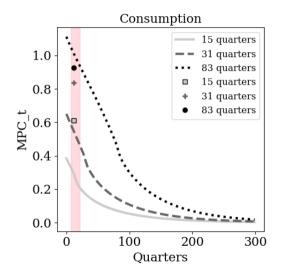


Comparing model and data

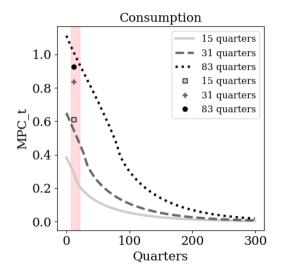


► One period shock at quarter 0 → One period shock at quarter 40 → Savings response → Permanent income hypothesis

Comparing model and data: liquidity constraints



Comparing model and data: liquidity constraints



- Errors: *MPC^{data} MPC^{model}* =[-0.03, -0.05, 0.05, 0.1]
- Similar spread (20pp) as one-time shocks [Fagereng-Holm-Natvik 21]
- Good fit relative to one-time shocks

Comparing model and data: shock persistence

Comparing model and data: shock persistence

- Errors: *MPC^{data}* – *MPC^{model}* =[-0.07, 0.31, 0.37]

- Worst fit for least persistent shock
- Consistent with evidence on one-time shocks [Fagereng-Holm-Natvik 21]

... and motivation for illiquid asset models [Kaplan-Violante 14, 22]

Conclusions

Compared savings response to persistent shocks in data and model

- 1 Average MPC is high : $MPC^{data} = 0.91$
 - ... and consistent with model with 17 year shock

2 Liquidity constraints:

- Low liquid assets: $MPC^{data} = 1.0$ High liquid assets: $MPC^{data} = 0.82$
- MPCmodel ~ MPCdata
- \rightarrow Strong evidence of liquidity constraints

3 Heterogeneity in persistence:

- Novel source of heterogeneity: time-to-maturity upon impact
- > 10 years : $MPC_{10+}^{data} = 0.92$
- \leq 5 years : $MPC_5^{data} = 0.61$
- \rightarrow Worst fit for transitory shocks

Thank you!

brianhiggins@fas.harvard.edu higginsbrian.github.io

Literature: MPCs

- Quasi-Experimental.

Expected One-Time Shock. Shapiro & Slemrod (1995, 2003, 2009), Souleles (1999, 2002), Hsieh (2003), Johnson, Parker & Souleles (2006), Kueng (2018), Baugh, Ben-David, Park & Parker (2021), Lewis, Melcangi & Pilossoph (2021)

Unexpected One-Time Shock. Bodkin (1959), Agarwal & Qian (2014), Fagereng, Holm & Natvik (2020) Expected Persistent Shock. Bernheim, Skinner & Weinburg (2001), Aguiar & Hurst (2005, 2007) Unexpected Persistent Shock. Di Maggio, Kermani, Keys, Piskorski, Ramcharan, Seru, & Yao (2017), Baker (2018), Ganong & Noel (2019)

- Model Comparison. Kaplan & Violante (2014)
- Covariance Restrictions. Hall & Mishkin (1982), Blundell, Pistaferri & Preston (2008)
- Subjective Expectations. Hayashi (1985), Pistaferri (2001)
- Irish Household Finance. Cussen, Lydon & O'Sullivan, (2018), Horan, Lydon & McIndoe-Calder (2020), Byrne, Kelly & O'Toole (2021), O'Malley (2021), Higgins (2021), Acharya, Bergant, Crosignani, Eisert and McCann, (2022), Le Blanc, Lydon (2022), Palmer, Byrne, Devine, King and McCarthy (2022).

Literature: MPCs

- Quasi-Experimental.

Expected One-Time Shock. Shapiro & Slemrod (1995, 2003, 2009), Souleles (1999, 2002), Hsieh (2003), Johnson, Parker & Souleles (2006), Kueng (2018), Baugh, Ben-David, Park & Parker (2021), Lewis, Melcangi & Pilossoph (2021)

Unexpected One-Time Shock. Bodkin (1959), Agarwal & Qian (2014), Fagereng, Holm & Natvik (2020) Expected Persistent Shock. Bernheim, Skinner & Weinburg (2001), Aguiar & Hurst (2005, 2007) Unexpected Persistent Shock. Di Maggio, Kermani, Keys, Piskorski, Ramcharan, Seru, & Yao (2017), Baker (2018), Ganong & Noel (2019)

- Model Comparison. Kaplan & Violante (2014)
- Covariance Restrictions. Hall & Mishkin (1982), Blundell, Pistaferri & Preston (2008)
- Subjective Expectations. Hayashi (1985), Pistaferri (2001)
- Irish Household Finance. Cussen, Lydon & O'Sullivan, (2018), Horan, Lydon & McIndoe-Calder (2020), Byrne, Kelly & O'Toole (2021), O'Malley (2021), Higgins (2021), Acharya, Bergant, Crosignani, Eisert and McCann, (2022), Le Blanc, Lydon (2022), Palmer, Byrne, Devine, King and McCarthy (2022).

- Our contribution

- 1 Estimate MPC using a quasi-experimental persistent income shock
- 2 New evidence that liquidity constraints matter
- 3 Evaluate performance of standard consumption-savings model with persistent shocks

Household finances in Ireland

How much of household savings are captured in our data:

- 1 How much of non-housing assets are in deposit savings
 - Macro data: 91% Quarterly Financial Accounts
 - Micro data: 55% HFCS, evidence of large (\approx 66%) under reporting of deposits (Cussen, Lydon & O'Sullivan, 2018)

Household finances in Ireland

back

How much of household savings are captured in our data:

- 1 How much of non-housing assets are in deposit savings
 - Macro data: 91% Quarterly Financial Accounts
 - Micro data: 55% HFCS, evidence of large (\approx 66%) under reporting of deposits (Cussen, Lydon & O'Sullivan, 2018)

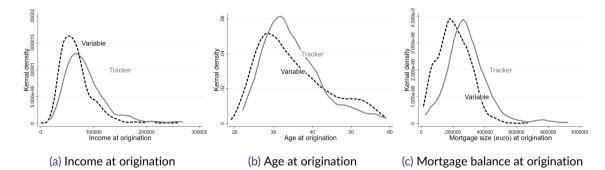
2 How much of deposit savings are in bank accounts

- Bank deposits: 66%
- Non-bank deposits (e.g. credit unions, Post Office): 34%

Household finances in Ireland

How much of household savings are captured in our data:

- 1 How much of non-housing assets are in deposit savings
 - Macro data: 91% Quarterly Financial Accounts
 - Micro data: 55% HFCS, evidence of large (\approx 66%) under reporting of deposits (Cussen, Lydon & O'Sullivan, 2018)

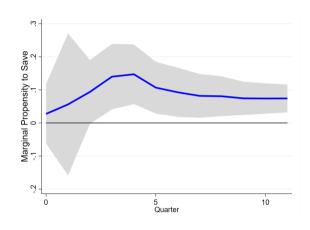

2 How much of deposit savings are in bank accounts

- Bank deposits: 66%
- Non-bank deposits (e.g. credit unions, Post Office): 34%

3 How much of bank deposits are in a single bank

- Bank accounts per household in Ireland: 5.2
- Bank accounts per household in our data: 4
- We can check results for households with both checking and savings accounts
 - Checking account MPC = 0.93; Savings account MPC = 0.95
 - ightarrow Results are similar

Comparing variable and tracker mortgage borrowers (ex-ante)


Comparing variable and tracker mortgage borrowers (ex-post) - back

Q. Were trackers more likely to get income shocks?

- Use survey of mortgage holders 2012Q2 - 2013Q1 (Byrne, Kelly, O'Toole, 2021)

	Inc	come Chang	ge	Unemployed				
	(1)	(2)	(3)	(4)	(5)	(6)		
Tracker	-0.254*** (0.0683)	-0.129 (0.0774)	0.029 (0.0611)	-0.029 (0.0215)	0.001 (0.0244)	0.005 (0.0256)		
Observations Adjusted <i>R</i> ² Origin year and bank FE Controls	616 0.020	616 0.044 Yes	593 0.464 Yes Yes	626 0.001	626 0.026 Yes	593 0.006 Yes Yes		

Result: Savings response at many horizons

- 12 quarter estimate
 - *MPS*_{t+12} = 0.074;
 - Implied MPC= 0.93

-
$$MPS_{t+h} = \sum_{s=0}^{h} (1+r)^{h-s} (1 - MPC)$$

- Average pooled estimate
 - MPS = 0.087;
 - Implied MPC = 0.913

Bellman

The value function at time *t* is

$$V_t(\boldsymbol{e}, \boldsymbol{a}_-) = \max_{\boldsymbol{c}, \boldsymbol{a}} \left\{ \frac{\boldsymbol{c}^{1-\sigma}}{1-\sigma} + \beta \sum_{\boldsymbol{e}'} V_{t+1}(\boldsymbol{e}', \boldsymbol{a}) \mathcal{P}(\boldsymbol{e}, \boldsymbol{e}') \right\}$$
$$\boldsymbol{c} + \boldsymbol{a} = (1+r)\boldsymbol{a}_- + \boldsymbol{e} + \tau$$
$$\boldsymbol{a} \ge 0$$
$$\ln \boldsymbol{e}_t = \rho_{\boldsymbol{e}} \ln \boldsymbol{e}_{t-1} + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(0, \sigma_{\boldsymbol{e}}^2)$$

Perfect foresight for aggregate path $\{\tau_s\}_{s\geq 0}$. Compare against stationary dist with $\tau_{ss} = 0$

Policies $c_t^*(e, a_-; \tau)$ and $a_t^*(e, a_-; \tau)$ Distribution's law of motion $D_{t+1}(e', a) = \sum_{e'} D_t(e', a_t^{*-1}(e, a; \tau)) \mathcal{P}(e, e')$ $\rightarrow back$

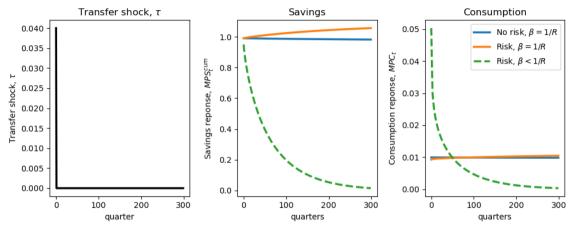
Computing MPCs

Individual MPCs

$$MPC_{t}(e_{t}, a_{t-1}; \tau) = [c_{t}^{*}(e_{t}, a_{t-1}; \tau) - c_{ss}^{*}(e_{t}, a_{t-1}, 0)] / \tau$$

Computing MPCs

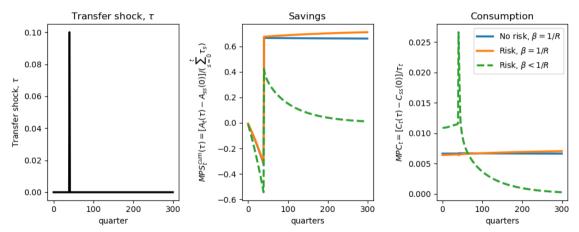
Individual MPCs

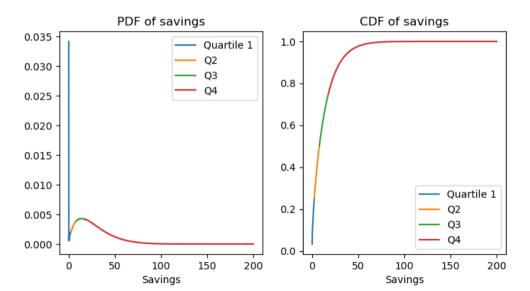

$$MPC_t(e_t, a_{t-1}; \tau) = [c_t^*(e_t, a_{t-1}; \tau) - c_{ss}^*(e_t, a_{t-1}, 0)] / \tau$$

Average
$$C_t(\tau) = \sum_e \int_a c_t^*(e_t, a_{t-1}; \tau) D_t(e_t, a_{t-1})$$

Average MPC

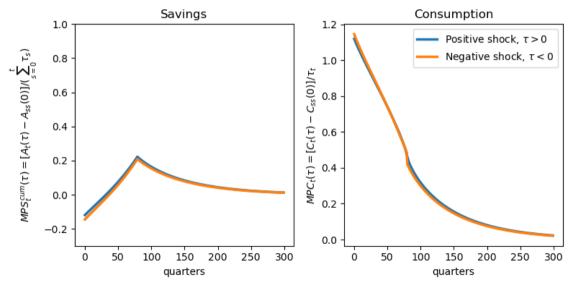
$$MPC_t(\tau) = [C_t(\tau) - C_{ss}(0)] / \tau$$

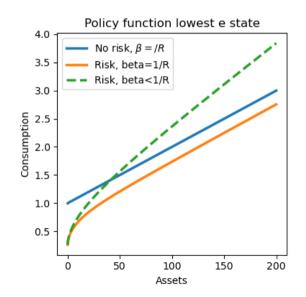



- Here: $MPC_{t=0} = \frac{r}{1+r}$ when $\beta = 1/R$ $MPC_{t=0}$ at impact 0.043 with risk and $\beta < 1/R$;

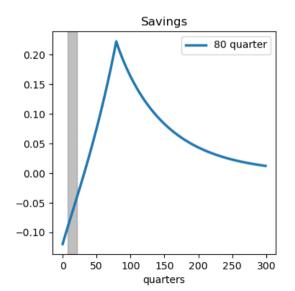
- Kaplan Violante (2014) One-asset: $MPC_{t=0} \approx 0.03$ (non-HtM), 0.15(HtM)
- Data: $MPC_{t=0} \approx 0.5$ Fagereng, Holm and Natvik (2020)

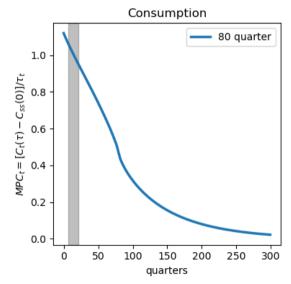
Warm up: one period shock


Asset distribution in steady state

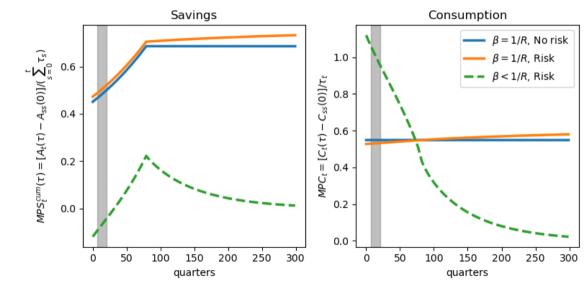

Other model experiments

- Responses are larger to negative shocks, though not by much for this shock size > link


Positive versus negative shocks


Policy functions

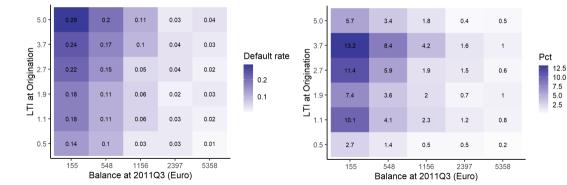
Average savings responses



Average consumption responses

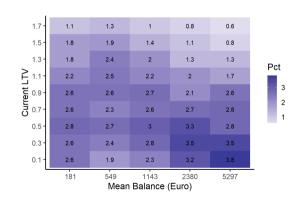
One period shock at quarter 0
 One period shock at quarter 40
 Savings response
 Permanent income hypothesis

Average responses



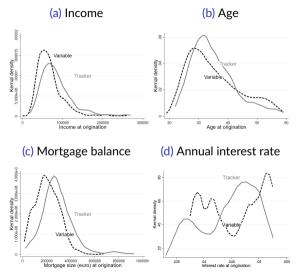
Tracing out the default threshold: LTI-balance space

back


(a) Default propensity

(b) Defaults

Distribution of observations


back

(a) Distribution of observations

Distribution of variable and tracker mortgage borrowers

back

Note: All variables are at origination for new mortgages for house purchases originated in 2006 and 2007. Plates

Pooled Marginal Propensity to save (MPS)

$$\Delta b_{i,t+1} = \beta_0 + \beta_1 m_{it} + \eta X_{it} + \gamma_t + u_{it}$$
(1)

		Δ Savings		Δ Log Savings					
	(1) \leq 5 years	(2) 6 – 10 years	(3) > 10 years	(4) \leq 5 years	(5) 6 – 10 years	(6) > 10 years			
D.Payment Savings	0.389* (0.2053)	0.162 (0.1171)	0.075** (0.0252)						
D.Log Payment Savings				0.138*** (0.0352)	0.003 (0.0352)	0.041 (0.0387)			
Observations Adjusted <i>R</i> ² Individual FE	11011 -0.002	24232 0.006	99320 0.003	11011 -0.008	24232 -0.004	99320 0.003			
Quarter FE Controls \times Quarter FE Prob($\beta = 1$)	Yes Yes 0.012	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000			

MPS heterogeneity: by balance quartiles

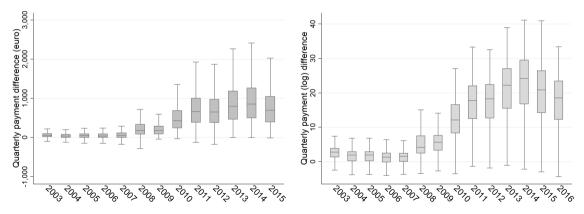
		Δ Sa	vings		Δ Log Savings				
	(1) Lower	(2) Quartile 2	(3) Quartile 3	(4) Upper	(5) Lower	(6) Quartile 2	(7) Quartile 3	(8) Upper	
D.Payment Savings	-0.001 (0.0106)	0.052** (0.0219)	0.070 (0.0416)	0.184*** (0.0542)					
D.Log Payment Savings					-0.023 (0.0596)	0.099 (0.0598)	0.122*** (0.0350)	0.066*** (0.0091)	
Observations Adjusted <i>R</i> ² Individual FE	35828 0.000	31057 0.009	32006 0.000	35672 0.006	35828 0.015	31057 0.005	32006 0.003	35672 0.009	
Quarter FE Controls \times Quarter FE Prob($\beta = 1$)	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	Yes Yes 0.000	

MPS heterogeneity: by quarters to maturity

back

- Compute time to maturity when shock starts 2010Q1

		Δ Savings		Δ Log Savings				
	(1) \leq 5 <i>years</i>	(2) 6 – 10 <i>years</i>	(3) > 10 years	(4) \leq 5 years	(5) 6-10 years	(6) > 10 years		
D.Cumulative Payment Difference	0.394 (0.2059)	0.161* (0.0651)	0.076* (0.0268)					
D.Log Cumulative Payment Difference				0.130*** (0.0206)	0.022 (0.0332)	0.031 (0.0313)		
Observations Adjusted <i>R</i> ²	10634 -0.004	23153 0.003	94835 0.003	10632 -0.005	23149 -0.006	94826 0.003		
Individual FE Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes		
Controls \times Quarter FE Prob($\beta = 1$)	Yes 0.012	Yes 0.000	Yes 0.000	Yes 0.000	Yes 0.000	Yes 0.000		

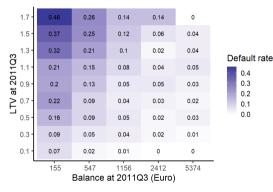

Standard errors in parentheses.

Size of payment shock

Figure: Box plot of size of payment difference

(a) Euro value

(b) Percent difference (relative to variable payment)



Note: Percent is relative to the first lien only.

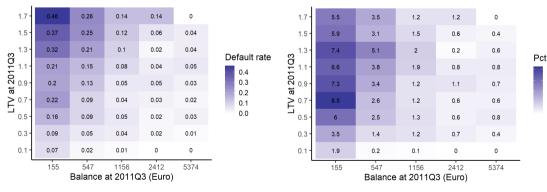
Tracing out the default threshold: LTV-balance space

- Stylized default decision: $V_t(y, b, \frac{m}{p}) = \max\{V_t^{pay}(y, b, \frac{m}{p}), V_t^{default}(y, b, \frac{m}{p})\}$

(a) Default propensity

- Many other dimensions of heterogeneity:

 Balance-LTI-space


 Mean balances
- Do not observe income, but can use our "disposable income" shocks > back

Tracing out the default threshold: LTV-balance space

- Stylized default decision: $V_t(y, b, \frac{m}{p}) = \max\{V_t^{pay}(y, b, \frac{m}{p}), V_t^{default}(y, b, \frac{m}{p})\}$

(a) Default propensity

(b) Defaults

- Many other dimensions of heterogeneity:
 Balance-LTI-space
 Distribution
- Do not observe income, but can use our "disposable income" shocks > back

8

6

4

2

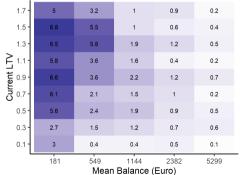
0

Mean balances

Comparing tracker and variable mortgages

		Tracker						Variable]		
	[1.6,1.8] -	0.21	0.19	0.06	0.17	0		0.56	0.29	0.18	0.13	0			
	[1.4,1.6) -	0.34	0.21	0.14	0.03	0.02		0.4	0.26	0.12	0.07	0.09			
33	[1.2,1.4)	0.18	0.16	0.12	0	0.03		0.37	0.24	0.09	0.04	0.05	I	De	fault rate
110	[1.2,1.4) - [1.0,1.2) - [0.8,1.0) - [0.6,0.8) - [0.4,0.6) -	0.14	0.17	0.04	0.05	0.06		0.24	0.14	0.1	0.04	0.03		•	0.5
it 20	[0.8,1.0) -	0.12	0.05	0.03	0.06	0.01		0.24	0.15	0.05	0.04	0.03			0.4 0.3
S	[0.6,0.8) -	0.11	0.06	0.04	0	0		0.26	0.11	0.05	0.03	0.03		1	0.2
	[0.4,0.6) -	0.07	0.07	0.05	0	0.02		0.19	0.09	0.05	0.02	0.03			0.1 0.0
	[0.2,0.4) -	0.05	0.08	0.03	0	0.02		0.09	0.05	0.04	0.03	0.01			
	[0.0,0.2)	0	0	0	0	0		0.08	0.02	0	0	0			
53, 18, 18, 18, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10															
	Balance at 2011Q3 (Euro)														

Tracing out the default threshold: LTV-balance space


back

- Stylized default decision:
$$V_t(y, b, \frac{m}{p}) = \max\{V_t^{pay}(y, b, \frac{m}{p}), V_t^{default}(y, b, \frac{m}{p})\}$$

(a) Default propensity

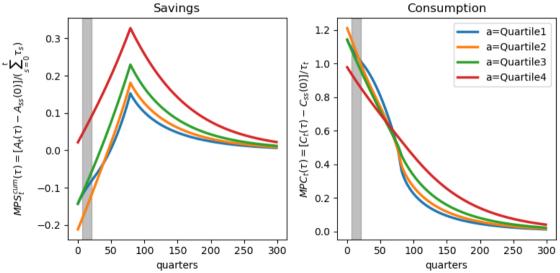
(b) Defaults

l	181	⁵⁴⁹ Mean	1144 Balance	2382 (Euro)	5299	-	
0.1 -	0.11	0.02	0.02	0.01	0		
0.3 -	0.1	0.06	0.04	0.02	0.02		
0.5 -	0.19	0.08	0.06	0.03	0.02	0.0	
O.7 -	0.22	0.09	0.05	0.04	0.01	0.2	Curr
- 1.1 - 0.9 - 0.7 -	0.25	0.13	0.08	0.06	0.03	0.3	Current
₽ <u>1.1</u> -	0.25	0.14	0.07	0.02	0.01		Γl
1.3 -	0.34	0.23	0.09	0.09	0.04	Default rate	
1.5 -	0.37	0.27	0.07	0.05	0.04		
1.7 -	0.45	0.24	0.1	0.1	0.04		

Pct

6

4


2

Summary statistics

	Mean	P10	P25	P50	P75	P90
No of liens	1.69	1	1	1	2	3
No of deposit accounts	3.97	3	3	3	5	6
Dublin (%)	51					
Borrower Age	46.32	35	40	46	52	59
Total Account Balance	8346	42.25	565.17	2230.16	8531.59	25823.85
Total Quarterly Average Account Balance	8060	245.53	619.77	2093.94	8315.22	24498.02
Current Loan-to-Value	72	7	23	59	109	156
Oustanding Balance	137508	16104	44148.76	109519.28	203884.44	300785.29
Quarterly Mortgage Payments	3050.06	973.3	1637.15	2642.15	3913.48	5656.83
Current Interest Rate (%)	4	2	5	5	5	5
Income at Origination	69796.72	31400	44632	62500	87562.18	120146.41
Quarters to Maturity	56.95	13	27	54	85	105
Tracker Rate (%)	18					
SVR Rate (%)	79					
Primary Dwelling Home (%)	83					

Comparing across asset quartiles

- Split SS distribution by asset quartiles + distribution

