
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014 1025

DTRACK: A System to Predict and Track
Internet Path Changes

Ítalo Cunha, Renata Teixeira, Darryl Veitch, Fellow, IEEE, and Christophe Diot, Fellow, ACM

Abstract—In this paper, we implement and evaluate a system
that predicts and tracks Internet path changes to maintain an
up-to-date network topology. Based on empirical observations,
we claim that monitors can enhance probing according to the
likelihood of path changes. We design a simple predictor of path
changes and show that it can be used to enhance probe targeting.
Our path tracking system, called DTRACK, focuses probes on
unstable paths and spreads probes over time to minimize the
chances of missing path changes. Our evaluations of DTRACK with
trace-driven simulations and with a prototype show that DTRACK
can detect up to three times more path changes than traditional
traceroute-based topology mapping techniques.

Index Terms—Path changes, topology mapping, tracking.

I. INTRODUCTION

S YSTEMS that detect Internet faults [1], [2] or prefix hi-
jacks [3] require frequent measurements of Internet paths,

often taken with traceroute. Topology mapping techniques peri-
odically issue traceroutes and then combine observed links into
a topology [4]–[6]. Content distribution networks continuously
monitor paths and their properties to select the “best” content
server for user requests [7]. Similarly, overlay networks mon-
itor IP paths to select the best overlay routing [8]. In all these
examples, a source host issues traceroutes to a large number of
destinations with the hope of tracking paths as they change.
The classical approach of probing all paths equally, how-

ever, has practical limits. First, sources have a limited probing
capacity (constrained by source link capacity and CPU utiliza-
tion), which prevents them from issuing traceroutes frequently
enough to observe changes on all paths. Second, Internet

Manuscript received March 22, 2013; accepted May 24, 2013; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor J. Wang. Date of publica-
tion July 12, 2013; date of current version August 14, 2014. This work was sup-
ported by the European Community’s Seventh Framework Programme (FP7/
2007-2013) No. 223850 (Nano Data Centers) and the ANR project C’MON,
and was also supported in part by the Australian Research Council’s Discovery
Projects funding scheme under Project No. DP120102834. A previous version
of this work was published in the Proceedings of ACM SIGCOMM, Toronto,
ON, Canada, August 15–19, 2011. This version simplifies the discussion on path
change prediction, evaluates an implementation of DTRACK using PlanetLab,
and covers recent related work.
I. Cunha is with the Universidade Federal de Minas Gerais, Belo Horizonte

31270-010, Brazil (e-mail: cunha@dcc.ufmg.br).
R. Teixeira is with UPMC Sorbonne Universités and CNRS, Paris 75015,

France (e-mail: renata.teixeira@lip6.fr).
D. Veitch is with the Department of Electrical and Electronic Engi-

neering, University of Melbourne, Melbourne, Vic. 3010, Australia (e-mail:
dveitch@unimelb.edu.au).
C. Diot is with Technicolor, Issy-les-Moulineaux 92443, France (e-mail:

christophe.diot@technicolor.com).
Digital Object Identifier 10.1109/TNET.2013.2269837

paths are often stable [9]–[11], so probing all paths at the
same frequency wastes probes on paths that are not changing
while missing changes in other paths. Finally, many paths
today traverse routers that perform load balancing [12]. Load
balancing creates multiple simultaneous paths from a source to
a given destination. Ignoring load balancing leads to traceroute
errors and misinterpretation of path changes [11]. Accurately
discovering all paths under load balancing, however, requires
even more probes [13].
This paper shows that a monitor can attempt to optimize

probing to track path changes more efficiently than classical
probing given the same probing capacity. We develop DTRACK,
a system that separates the tracking of path changes into two
tasks: path change detection and path remapping. DTRACK
only remaps, i.e., remeasures, a path once a change is detected.
Path remapping uses Paris traceroute’s multipath detection
algorithm (MDA) [13] because it accurately discovers all paths
under load balancing. The key novelty of this paper is to design
a probing strategy that predicts the paths that are more likely
to change and adapts the probing frequency accordingly. We
make two main contributions.
Investigate the Predictability of Path Changes:We use tracer-

oute measurements collected from 70 PlanetLab nodes over five
weeks to train models of path changes. We use RuleFit [14],
a supervised machine learning technique, to identify the fea-
tures that help predict path changes and to act as a benchmark.
We show that route prevalence, number of past route changes,
number of times a route appears in the past, and route age are
the best predictors of path changes (Section III). RuleFit is too
complex to be used online. Hence, we develop a model to pre-
dict path changes, called NN4, based on the nearest-neighbor
scheme, which can be implemented efficiently and is as accu-
rate as RuleFit (Section IV).We find that prediction is inherently
difficult. Even though NN4 is not highly accurate, it is effective
for tracking path changes, as it can predict paths that are likely
to change in the short term.
Probing strategy to Track Path Changes:We use NN4 to op-

timize the allocation of probes to paths in DTRACK (Section V).
DTRACK adapts path sampling rates to minimize the number of
missed changes based on NN4’s predictions. For each path, it
sends a single probe per sample in a temporally striped form of
traceroute. Our trace-driven simulations show that, for the same
probing budget used by DIMES [15], DTRACK misses 73% less
path changes than traditional traceroute-based mapping tech-
niques and detects 93% of the path changes in the traces. Our
measurements in the real-world deployment show that DTRACK
detects three times more path changes than the state-of-the-art
for the probing budget used by DIMES [15].

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1026 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

II. DEFINITIONS, DATA, AND METRICS

In this section, we define key concepts and present the dataset
we use. We establish the low-level path prediction goals that
underlie our approach to path tracking, and then present a spec-
trum of candidate data features we exploit to that end.

A. Virtual Paths and Routes

Following Paxson [9], we use virtual path to refer to the con-
nectivity between a fixed source (here a monitor) and a destina-
tion . At any given time, a virtual path is realized by a route that
we call the current route. Since routing changes occur, a virtual
path can be thought of as a continuous time process that
jumps between different routes over time.
A route can be simple, consisting of a sequence of IP inter-

faces from the monitor toward , or branched, when one or
more load-balancing routers are present, giving rise to mul-
tiple overlapping sequences (branched routes are called “multi-
paths” in [13]). A route can be a sequence that terminates be-
fore reaching . This can occur due to routing changes (e.g.,
transient loops), or the absence of a complete route to the des-
tination. By route length, we mean the length of its longest se-
quence, and we define the edit distance between two routes as
the minimum number of interface insertions, deletions, and sub-
stitutions needed to make the IP interface sequences of each
route identical. In the same way, we can define autonomous
system (AS) length and AS edit distance for a general route.
Let a virtual path be realized by route at time ,

i.e., . Suppose that the path will next jump to a new
route at time , and last jumped to the current route
at time . Then, the age of this instance of route is

, its residual life is , and its
duration is . Typically, as we
have just done, we will write instead of , and so
on, when the context makes the virtual path, time instant, and
hence route instance, clear.
In practice, we measure virtual paths only at discrete times,

resulting effectively in a sampling of the process . A
change can be detected whenever two consecutive path mea-
surements differ, however the full details of the evolution of
the virtual path between these samples is unknown, and many
changes may be missed. For simplicity, unless stated otherwise,
by (virtual) path change, we mean a change observed in this
way. The change is deemed to have occurred at the time of
the second measurement. Hence, the measured age of a route
instance is always zero when it is first observed. This conser-
vative approach underestimates route age with an error smaller
than the intermeasurement period.

B. Dataset

For our purposes, an ideal dataset would be a complete record
of the evolution of virtual paths, together with all sequences of
IP interfaces for each constituent route. Real-world traces are
limited both in the frequency at which each virtual path can be
sampled and the accuracy and completeness of the routing in-
formation obtained at each sample. In particular, the identifica-
tion of the multiple IP interface sequences for branched routes
requires a lot of probes [13] and takes time, reducing the fre-
quency at which we can measure virtual paths. For this iden-
tification, we use Paris traceroute’s Multipath Detection Algo-
rithm (MDA) [13]. MDA provides strong statistical guarantees
for complete route discovery in the presence of an unknown

Fig. 1. Distribution of all route durations in the dataset.

number of load balancers. It is therefore ideal for reliable change
detection, but is conservative and can be expensive in probe use
(see Section V-D).
We address the above limitations using traces collected with

FastMapping [11]. FastMapping measures virtual paths with
a modified version of Paris traceroute [12] that sends a single
probe per hop. Whenever a new IP interface is seen, FastMap-
ping remeasures the route using MDA. This way, the frequency
at which it searches for path changes is high, but when a change
is detected, the new route is mapped out thoroughly.
We use a publicly available dataset collected from 70 Plan-

etLab hosts during five weeks starting September 1, 2010 [11].
Each monitor selects 1000 destinations at random from a list
of 34 820 randomly chosen reachable destinations. Each virtual
path is measured every 4.4 min on average. We complement the
dataset with IP-to-AS maps built from Team Cymru [16] and
UCLA’s IRL [17]. Although almost all monitors are connected
to academic networks, the destinations are not. As such, this
dataset traverses 7842 ASs and covers 97% of large ASs [17].
We lack ground truth about path changes, and the FastMap-

ping dataset may miss changes. However, all changes that the
dataset captures are real. Fig. 1 shows the distribution of all
route durations in the dataset. It is similar to Paxson’s findings
that most routes are short-lived.

C. Prediction Goals and Error Metrics

We study three kinds of prediction:
1) prediction of the residual lifetime of a route

of some path observed at time ;
2) prediction of the number of changes in the path
occurring in the time interval ;

3) prediction, via an indicator function , of whether the
current route will change in the interval
, or not .

In the case of residual lifetime, we measure the relative pre-
diction error . This takes values in

, with corresponding to a perfect prediction.
For , we measure the absolute error

because the relative prediction error is undefined when-
ever . For , we measure the error , the frac-
tion of time . This takes values in [0,1], with

corresponding to a random predictor.

D. Virtual Path Features

A virtual path predictor needs to determine and exploit those
features of the path and its history that carry the most informa-
tion about change patterns.

CUNHA et al.: DTRACK 1027

Fig. 2. Relationship between virtual path features and residual lifetime:
residual lifetime as a function of (a) route age and (b) route prevalence.

Paxson characterized virtual path stability using the notions
of route persistence, which is essentially route duration ,
and route prevalence [9], the proportion of time a given route is
active. In the context of prediction, where onlymetrics derivable
from past data are available, these two measures translate to the
following two features of the route that is current at time :
1) the route age ; 2) the (past) prevalence, the fraction of
time was active over the window .We set the timescale
to to indicate a window starting at the beginning of

the dataset.
Route age and prevalence are important prediction features.

Their utility is illustrated in Fig. 2(a) and (b), where the me-
dian, 25th, and 75th percentiles of route residual lifetimes are
given as a function of the respective features (computed based
on periodic sampling of all virtual paths in the dataset with pe-
riod 5 min). In Fig. 2(a), for example, we observe that younger
routes have shorter residual lifetimes than older routes, a pos-
sible basis for prediction. Similarly, Fig. 2(b) shows that when
prevalence is measured over a timescale of day, routes
with lower prevalence are more likely to die young.
Although route age and prevalence are each useful for predic-

tion, they are not sufficient as shown by the high variability in
the data [wide spread of the percentiles in Fig. 2(a) and (b)]. Ad-
ditional features are needed to do better. Our aim here is to de-
fine a spectrum of features broad enough to capture essentially
all information computable from the dataset that may have pre-
dictive value. We do not know at this point which features are
the important ones, nor how to combine them to make accurate
predictions. This is a task we address in Section III.
We do not attempt to exploit spatial dependencies in this

paper for prediction, although they clearly exist. For example,
changes in routing tables impact multiple paths at roughly the
same time. The reason is that including spatial network informa-
tion in RuleFit requires one predictive feature per link in the net-

TABLE I
SET OF CANDIDATE FEATURES UNDERLYING PREDICTION

work, which is computationally prohibitive. However, we can
exploit spatial dependencies to improve path tracking efficiency
in the probing scheme, as we detail in Section V-C.
Table I partitions all possible features into four categories:
1) Current route: characterize the current route and its state;
2) Last change: capture any nearest neighbor interactions;
3) Timescale-based:metricsmeasured over a given timescale;
4) Event-based: metrics defined in “event-time.”
We use this scheme only as a framework to guide the selection of
individual features. We aim to capture inherently different kinds
of information and measures both of average behavior and vari-
ability. Only features that are computable based on the informa-
tion in the dataset, together with available side-information (we
use IP-to-AS maps), are allowed.
The last four features in the Timescale-based category allow

us to identify virtual paths that are highly unstable and change
repeatedly, as observed by previous work [9], [18], [19]. The
features in the Event-based category may involve time, but are
not defined based on a preselected timescale. Instead, they try
to capture patterns of changes in the past, like oscillation be-
tween two routes. For computational reasons, we limit ourselves
to looking up to the five most recent virtual path changes. In
most cases, this is already sufficient to reach the beginning of
the dataset. An overview of feature properties for the dataset is
given in our previous work [20].

III. PREDICTION FOUNDATIONS

Our path tracking approach is built on the ability to predict
(albeit imperfectly) virtual path changes. We seek a predictor
based on an intuitive and parsimonious model rather than a
black box. However, virtual path changes are characterized by
extreme variability and are influenced by many different fac-
tors, making model building, and even feature selection, prob-
lematic.We employ RuleFit [14], a supervisedmachine learning
technique, to bootstrap our modeling efforts. We use Rulefit for
twomain purposes. First, to comprehensively examine the spec-
trum of features of Table I in order to determine those that are
most predictive. Second, to act as a benchmark representing in
an approximate sense the best possible prediction when large
(offline) resources are available for training.

1028 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

A. RuleFit Overview

RuleFit [14] trains predictors based on rule ensembles. We
choose it over other alternatives (against which it compares
favorably) for two reasons: 1) it ranks features by their impor-
tance for prediction; 2) it outputs easy-to-interpret rules that
allow an understanding of how features are combined. In other
words, for a black box, it is a lighter shade of gray. We give
a brief overview of RuleFit, referring the reader to the original
paper for full details [14].
Rules combine one or more features into simple “and” tests.

Let be the feature vector in Table I and a specified subset
of the possible values of feature . Then, a rule takes the form

(1)

where is an indicator function. Rules take value one when
features values fall inside their corresponding ranges, else zero.
RuleFit first generates a large number of rules using decision

trees. It then trains a predictor of the form

(2)

where the vector is computed by solving an optimization
problem that minimizes theHuber loss (a modified squared pre-
diction error robust to outliers) with an L1 penalty term. RuleFit
also employs other robustness mechanisms—for example, it
trains and tests on subsets of the training data internally to
avoid overfitting.
Rule ensembles can exploit feature interdependence and

capture complex relationships between features and prediction
goals. Crucially, RuleFit allows rules and features to be ordered
by their importance. Rule importance is the product of the rule’s
coefficient and a measure of how well it splits the training set

where is the fraction of points in the training set where
. Feature importance is computed as the sum of the

normalized importance of the rules where the feature appears

(3)

where is the number of active features in .

B. RuleFit Training Sets

RuleFit, like any supervised learning algorithm, requires a
training set consisting of training points that associate features
with the true values of metrics to be predicted. Here, a training
point, say for residual lifetime, associates a virtual path at some
time , represented by the features in Table I, with the true
residual lifetime of the current route . Separate
but similar training is performed for and .
To limit the computational load of training, which is high

for Rulefit, we control the total number of training points. For
training point selection, first note that a given virtual path has
a change history that is crucial to capture for good prediction
of its future. We therefore build the required number of training

points by extracting rich path change information from a subset
of paths, rather than extracting (potentially very) partial infor-
mation from each path.We retain path diversity through random
path selection and the use of multiple training sets obtained
through using different random seeds (at least five for each pa-
rameter configuration we evaluate).
For a given virtual path, we first include all explicit path

change information by creating a training point for each entry
in the dataset where a change was detected. However, such
points all have (measured) current route age equal to zero
(Section II-A), whereas when running live predictions in
general are needed at any arbitrary time point, with arbitrary
route age. To capture the interdependence of features and
prediction targets on route age, we include additional synthetic
points that do not appear in the dataset but that are functions
of it. To achieve this, we discretize route age into bins and
create a training point whenever the age of a route reaches a
bin boundary. We choose bin boundaries as equally spaced
percentiles of the distribution of route durations in the training
set, as this adapts naturally to distribution shape. Using six bins
as an example, we create training points whenever a route’s
age reaches 0 s, 3 min, 7 min, 24 min, 75 min, and 6.5 h. We
note that route age inference error is less than the measurement
round duration (4.4 min in the FastMapping dataset), which
is smaller than bin sizes and has no noticeable impact on
prediction accuracy.

C. Test Sets

Like training sets, test sets consist of test points that associate
virtual path features with correct predictions. Unlike training
sets, where the primary goal is to collect information important
for prediction and where details may depend on themethod to be
trained, for test sets the imperative is to emulate the information
available in the operational environment so that the predictor
can be fairly tested and should be independent of the prediction
method.
The raw dataset has too many points for use as a test set. To

reduce computational complexity, we build test sets by sam-
pling each virtual path at time points chosen according to a
Poisson process, using the same sampling rate for each path.
This corresponds to examining the set of paths in a neutral way
over time, which will naturally include a diversity of behavior.
For example, our test sets include samples inside bursts of path
changes, as well as many samples from a very long-lived route,
and rare events such as of an old route just before it changes.
We use an average per-path sampling period of 4 h, resulting

in at least two orders of magnitude more test points than
training points. We test each predictor against eight different
test sets (from different Poisson seeds), for a total of 40 different
training-test set combinations.
We ignore routes active at the beginning or the end of the

dataset when creating training and test sets, as their duration,
age, and residual lifetime are unknown. Similarly, we ignore all
virtual path changes in the first hours of the dataset (if)
to avoid biasing timescale-dependent features.

D. RuleFit Configuration

We evaluate different RuleFit configurations to assess the
limits of prediction accuracy and to choose default parameter

CUNHA et al.: DTRACK 1029

TABLE II
FEATURE IMPORTANCE ACCORDING TO RULEFIT

values. We present a summary of our findings and refer the
reader to our previous work for more details [20].
We study the impact of four parameters on prediction error:

the number of rules generated during training, the number of
age thresholds, the timescale , and the training set size. We
find that increasing parameter values improves prediction accu-
racy, but improvement quickly flattens out. Our interpretation
is that, after some point, additional data is redundant, and addi-
tional flexibility is unused as there is no extra information rel-
evant for prediction. We set the default parameter values in the
range where increasing their values does not improve prediction
accuracy. We set the default number of rules to 200, the default
number of age bins to six, the number of path changes in training
sets to 200 000 (around 2.4% of the changes in the dataset), and
the timescale to one day.
We justify our use of RuleFit as a benchmark for predicting

changes, based on a given (incomplete) dataset, on three facts:
1) we provide RuleFit with a rich feature set; 2) RuleFit per-
forms an extensive search of feature combinations to predict
residual lifetimes; and 3) our evaluation shows that changing
RuleFit’s parameters from our default configuration is unlikely
to improve prediction accuracy significantly. This is an empir-
ical approach to approximately measure the limits to prediction
using a given dataset. Determining actual limits would only be
possible given information-theoretic or statistical assumptions
on the data, which is beyond the scope of this paper.

E. Feature Selection

We compute feature importance with (3) and normalize using
the most important feature. Table II shows features ordered by
normalized importance averaged over 50 predictors for each of
residual lifetime, number of changes, and .
Route prevalence is the most important feature, helped by its

correlation with route age. It is clear why route prevalence alone
is insufficient. Route prevalence cannot differentiate a young
current route that occurred repeatedly in the time window of
width , from a middle-aged current route, as both have inter-
mediate prevalence values.
The second, third, and fourth most important features are the

number of virtual path changes, the number of occurrences of
the current route, and route age. Predicted residual lifetimes in-
crease as route age and prevalence increase, but decrease as
the number of virtual path changes and occurrences of the cur-
rent route increase. Results for the number of changes and
are similar.
The fifth most important feature is the times (first up to fifth)

of the most recent occurrences of the current route. The low
importance of this and the other event-based feature suggest

Fig. 3. for predictors trained with the most important features (test points
with route age less than 12 h).

that, contrary to our initial hopes, patterns of changes are too
variable, or too rare, to be useful for prediction.
To evaluate more objectively the utility of RuleFit’s feature

importance measure, Fig. 3 shows for predictors trained
with training sets containing only the top features, for to
. The improvements in performance with the addition of each
new feature are consistent with the importance rankings from
Table II. Importantly, we see that the top four features generate
predictors that are almost as accurate as those trained on all fea-
tures. This will be crucial in what follows.

IV. NEAREST-NEIGHBOR PREDICTOR

We design and evaluate a simple predictor that is almost as
accurate as RuleFit while overcoming its drawbacks, namely its
slow and computationally expensive training, its difficult inte-
gration into other systems, and the lack of insight and control
arising from its black box nature.

A. NN4: Definition

Our starting point is the observation that the top four fea-
tures from Table II carry almost all of the usable information.
Since virtual paths are so variable and the RuleFit models we
obtained are so complex, simple analytic models are not se-
rious candidates as a basis for prediction. We select a nearest-
neighbor approach as it captures empirical dependences effec-
tively and flexibly. Using only four features avoids the dimen-
sionality problems inherent to such predictors [21] and allows
for a very simple method, which we name NN4.
1) Method Overview: Like all nearest-neighbor predictors,

we compute predictions for a virtual path with feature vector
based on training points with feature vectors that are “close” to
. The first challenge is to define a meaningful distance metric.
This is difficult as feature domains differ (prevalence is a frac-
tion, the number of changes and previous occurrences are in-
tegers, and route age is a real), have different semantics, and
impact virtual path changes differently.
To avoid the pitfalls of some more or less arbitrary choice of

distance metric, we instead partition the feature space into four
dimensional “cubes,” or partitions, based on discretizing each
feature. Discretization creates artifacts related to bin bound-
aries and resolution loss, however the great advantage is sim-
plicity, and the retention of a meaningful notion of distance for
each feature individually. To avoid rigid fixed bin boundaries,
for each feature, we choose them as equally spaced percentiles
of their corresponding distribution, computed over all virtual

1030 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

path changes in the training set (as we did for route age in
Section III-B).
We denote the partition containing the feature vector of

path at time as or simply . We predict the
residual lifetime of and the number of changes in
the next interval as the averages of the true values of these
quantities over all training points in the partition

where training point corresponds to the path at time .
Similarly, we predict if more than half the training
points in change within a time interval

The cost of a prediction in NN4 is , while in RuleFit it
is , where is the number of rules in the model. NN4 can
be easily implemented, while RuleFit is available as a binary
module that cannot be accessed directly and requires external
libraries. Finally, training time for RuleFit is orders of magni-
tude higher than for the NN4 predictor.
2) Training: To allow a meaningful comparison in our eval-

uation, each training for NN4 reuses the virtual paths of some
RuleFit training set.
Consider a virtual path chosen for training. As

progresses, the associated feature vector moves between
the different partitions. For example, for long-lived routes,

evolves toward the partition with 100% prevalence,
zero changes, no previous occurrences, and the oldest age bin
(before resetting to zero age, etc., when/if the path changes).
We need to sample this trajectory in a way that preserves all
important information about the changes in the three prediction
goals . Just as in RuleFit, we need to supplement
the changes that occur explicitly in the dataset with additional
training points occurring in between change points. Here, we
need to add additional samples to capture the diversity not
only of age, but also the other three dimensions. In fact, we
can do much better than a discrete sampling leading to a set
of training time points. From the dataset, we can actually
calculate when the path enters and exits the partitions it visits,
its sojourn time in each, and the proportions of the sojourn time
when a prediction goal takes a given value. For each partition
(and prediction goal), we are then able to calculate the exact
time-weighted average of the value over the partition. The
result is a precomputed prediction for each partition traversed
by the path that emulates a continuous-time sampling. Final
per-partition predictions are formed by averaging over all paths
traversing a partition.
3) Configuration: Apart from , the only parameter of our

predictor is the number of bins we use to partition each feature.
We choose a shared number of bins for parsimony since, when
studying each feature separately (not shown), the optimal point
was similar for each. The tradeoff here is clear. Too few bins
and distinct change behaviors important for prediction are av-
eraged away. Too many bins and partitions contain insufficient
training information resulting in erratic predictions. We found
in Section III-D that six bins were sufficient for route age. We
now examine all features together.

Fig. 4. Impact of the number of feature bins on prediction accuracy (test points
with age h).

Fig. 4 shows with h as a function of , restricting to
test points with route age below 12 h where the dependence is
strongest. We see that values in [5, 20] achieve a good compro-
mise. We use in what follows.

B. NN4: Evaluation

We evaluate the prediction accuracy of NN4 and compare it to
our operational benchmark, RuleFit, discovering in the process
the limitations of this kind of prediction in general. For each
method, we generate new training and test sets in order to test
the robustness of the configurations determined above.
1) Predicting Residual Lifetime: Fig. 5(a) shows the distri-

bution of , the relative error of . An accurate pre-
dictor would have a sharp increase close to (dotted
line), but this is not what we see. Specifically, only 33.5% of
the RuleFit and 31.1% of the nearest-neighbor predictions have

(see symbols on the curves). Predictions miss
the true residual lifetimes by a significant amount around 70%
of the time. As this is true not only of NN4 but also for Rulefit,
we conjecture that accurate prediction of route residual lifetimes
is too precise an objective with traceroute-based datasets. The
error of NN4 is considerably larger than that of the benchmark,
but is of the same order of magnitude.
It does not follow, however, that is not a useful quantity

to estimate. Fig. 5(b) shows the marginal distribution of NN4
residual lifetime predictions as a function of true residual
lifetime. Even though predictions are inaccurate, paths with
smaller true residual lifetime [like the solid line in Fig. 5(b)]
have predicted residual lifetimes lower than paths with larger
true residual lifetime (dotted lines). This is enough to distin-
guish stable from unstable paths sufficiently accurately to bring
important benefits to path tracking, as we show later.
2) Predicting Number of Changes: Fig. 6 shows the dis-

tribution of , the error of , for NN4 for all test points
with route age less than 12 h. The errors for RuleFit are sim-
ilar. Errors for test points in routes older than 12 h are signifi-
cantly smaller (not shown) because a predictor can perform well
simply by outputting “no change” . We focus here on
the difficult case of h.
Unlike residual lifetimes, the sharp increase near zero means

most predictions are accurate. For example, 90.2% of test points
have , and accuracy increases for smaller
values of . However, predicting the number of changes over
long intervals such as 24 h cannot be done accurately. Note that
simply guessing that also works well for very small .

CUNHA et al.: DTRACK 1031

Fig. 5. Predicting residual lifetime (routes with age less than 12 h): (a) dis-
tribution of prediction error and (b) marginal distribution of NN4 predictions
conditional on a residual lifetime range.

Fig. 6. Distribution of the number of changes prediction error (routes with
age h).

Although is a less ambitious target than , it remains diffi-
cult to estimate from traceroute-type data. Again, however, pre-
diction is sufficiently good to bring important tracking benefits.
3) Predicting a Change in Next Interval: We now study

whether the current route of a given path will change within the
next time interval of width .We expect to be easier to predict
than or .
Fig. 7(a) shows NN4’s prediction error as a function of route

prevalence for between 1 h and 1 day (results for RuleFit
are very similar and are omitted for clarity). We group route
prevalence into fixed-width bins and compute the error from all
test points falling within each bin (these bins are distinct from
the constant-probability bins underlying NN4’s partitions). For
each bin, we show the minimum, median, and maximum error
among the 40 training and test set combinations. Such a break-
down is very useful as it allows us to resolve where prediction is
more successful or more challenging. For example, since routes
with prevalence 1 are very common, a simple global average
over all prevalence values would drown out the results from
routes with prevalence below 1.
First consider the results for and 4 h. The main ob-

servation is that error drops with increasing prevalence. This

Fig. 7. as a function of route prevalence for various values of prediction
horizon : (a) NN4; (b) comparison to RuleFit.

is mainly because routes with high prevalence are unlikely to
change, and a prediction of “no change” , which the
predictors in fact output increasingly often, becomes increas-
ingly valid as prevalence increases. We also see that, for all
prevalence values, error is lower for smaller . This makes intu-
itive sense since prediction further into the future is in general
more difficult. More precisely, the probability that a route will
change in a time interval decreases as decreases, and predic-
tors exploit this by predicting “no change” more often.
The situation is more complex when h, with errors be-

ginning low and increasing substantially before finally peaking
and then decreasing at very high prevalence. This happens be-
cause for larger values of , routes with low prevalence have a
high probability of changing. Predictors exploit this and output

more often (in fact, more than 80% of the time for
paths with prevalence under 0.2). Prediction error is highest at
intermediate prevalence values, as these routes have a proba-
bility close to 50% of changing in the next 24 h. Finally, predic-
tion error decreases for routes with high prevalence: Ss routes
become stable, the same mechanism noted above for smaller
kicks in.
In summary, prediction is easiest when is small and preva-

lence is high. This is a promising result as most Internet routes
are long-lived and have high prevalence; moreover, applications
like topology mapping need to predict changes within short time
intervals. Fig. 7 shows that NN4 predicts for h with at
least 67% accuracy, with errors ultimately falling to just a few
percent as route prevalence increases and as decreases.
We now provide a comparison against Rulefit, focusing on

small to medium . Fig. 7(b) shows that NN4 and RuleFit have
equivalent prediction accuracy across all values of prevalence.
In fact, NN4 is marginally (up to 2%) better here, where we use
the default Rulefit configuration. Their performance is close to
identical when using the more generous RuleFit configuration
(see Section III) with 500 rules and 12 age bins.

1032 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

The plot also shows results for a simple baseline predictor
that always predicts (no change). Our predictor
is better for routes with prevalence smaller than 0.7, which
are more likely to change than not, but for high-prevalence
routes, all predictors predict “no change” and are equivalent.
For routes with prevalence below 0.7, NN4 reduces the baseline
predictor’s from 0.296 to 0.231 (22%), and from
0.163 to 0.131 (20%).
We have tested the sensitivity of our findings to training and

test sets, monitor choice, and overall probing rate and found it
to be low to very low.

V. TRACKING VIRTUAL PATH CHANGES

We now apply our findings to the problem of the efficient and
accurate tracking of a set of virtual paths over time. We describe
and evaluate our tracking technique, DTRACK.

A. DTRACK Overview

Path tracking faces two core tasks: path change detection
(how best to schedule probes to hunt for changes) and path
remapping (how to update the topology after a change). For the
latter, inspired by FastMapping [11], DTRACK uses Paris tracer-
oute’s MDA to accurately measure the current route of moni-
tored paths both at start up and after any detection of change.
This is vital since confusing path changes with load-balancing
effects makes “tracking” meaningless.
For change detection, DTRACK is novel at two levels.
• Across paths: Paths are given dedicated sampling rates
guided by NN4 to focus effort where changes are more
likely to occur. Without this, probes are wasted on paths
where nothing is happening.

• Within paths: A path “sample” is a single probe rather than
a full traceroute, whose target interface is carefully chosen
to combine the benefits of Paris Traceroute over time with
efficiencies arising from exploiting links shared between
paths. This allows changes to be spotted more quickly.

DTRACK monitors operate independently and use only locally
available information. Each monitor takes three inputs—a
trained predictor of virtual path changes, a set of virtual
paths to monitor, and a probing budget—and consists of three
main routines: sampling rate allocation, change tracking, and
change remapping. When a change is detected in a path through
sampling, this path is remapped, and sampling rates are re-
computed for all paths. A probing budget is commonly used to
control network resource use [4], [15].

B. Path Sampling Rate Allocation

For each path in , DTRACK uses NN4 to determine the
rate at which to sample it. Sampling rates are updated when-
ever there is a change in the predictions, i.e., whenever any vir-
tual path’s feature vector changes its NN4 partition. This can
happen as a result of a change detection or simply route aging.
We constrain sampling rates to the range
. Setting guarantees that all paths are sampled

regularly, which safeguards against poor predictions on very
long-lived paths. An upper rate limit is needed to avoid probes
appearing as an attack (implements the “politeness” of the
tracking method [22]).
Based on the monitor’s probe budget of probes per second,

a sampling budget of samples per second for the change

detection alone can be derived (see Section V-D). To be feasible,
the rate limits must obey , where is
the number of paths.
We now describe three allocation methods for the sampling

rates . The first two are based on residual life, and the third
minimizes the number of missed changes.
Residual lifetime allocation (RL): Since is precisely the

rate that would place a sample right at the next change, allo-
cating sampling rates proportional to is a natural choice.We
will see that despite the poor accuracy of found before, this
is far better than the traditional uniform allocation. We define
rates to take values in and require
that if and for all ,
where is a renormalization constant that respects
while minimizing the number of paths with rates clipped at
or .
We define two variants depending on the definition of .
(RL): is estimated by NN4.
(RL-AGE): is predicted simply as the average residual
lifetime of all route instances in the dataset with duration
larger than , i.e.,

and

where is the set of all route instances in the dataset.
Finally, for comparison, we add an oracular method that

knows the true and is not subject to rate limits:
(RL-ORACLE): where .

Minimizing Missed Changes (MINMISS, used in DTRACK):
We use a Poisson process as a simple model for when changes
occur. With this assumption, we are able to select rates that
minimize the expected number of missed changes over the pre-
diction horizon . This combines prediction of with a notion
of sampling more where the pay off is higher. The rate of
the Poisson change process is estimated as .
We idealize samples as occurring periodically with separation
. By the properties of a Poisson process, the changes falling

within successive gaps between samples are i.i.d. Poisson
random variables with parameter .
Let be the number of changes in a gap and the number of
these missed by the sample at the gap’s end. It is easy to see
that since a sample can see at most one
change (here we assume that there is at most one instance of
any route in the gap). The expected number of missed changes
in a gap is then

(4)

Summing over the gaps, we compute the sampling rates as
the solution of the following optimization problem:

such that

We also evaluate as the basis of rate allocation, but as it is
inferior to MINMISS, we omit it for space reasons.

CUNHA et al.: DTRACK 1033

Implementation: Path sampling in DTRACK is controlled to be
“noisily periodic.” As pointed out in [23], strictly periodic sam-
pling carries the danger of phase locking with periodic network
events. Aided by the natural randomness of round-trip times,
our implementation ensures that sampling has the noise in in-
tersample times needed to avoid such problems [24].
DTRACKmaintains a first-in–first-out (FIFO) event queue that

emits a sample (in fact a probe) every s on average. Path
maintains a timer . When , the next sample re-
quest is appended to the queue and the timer is reset to

. Whenever DTRACK updates sampling rates, the timers are
rescaled as . Path timers are
staggered at initialization by setting , where in-
dexes virtual paths.

C. In-Path Sampling Strategies

We define a sample of a path as a measurement of its cur-
rent route obtained with one or more probes. At one extreme,
a sample could correspond to a detailed route mapping using
MDA. However, when checking for route changes rather than
mapping from scratch, this approach is too expensive. We now
investigate a number of alternatives that are less rigorous (a
change may be missed) but cheaper (require less probes).
In all strategies below, the sample is load-balancing aware.

We make use of the flow-id to interface mapping, established
by the last full MDA, to target interfaces to test in an informed
and strategic way. Thus, although a single sample takes only a
partial look at a path and may miss a change, it will not flag
a change where none exists and can still cover the entire route
through multiple samples over time.
Per-Sequence: A single interface sequence from the route

is selected. A sample probes the sequence’s interfaces in order
from the monitor to the destination using a single probe per
interface. Subsequent samples select other sequences in some
order until all are sampled and the route is covered, before
repeating. This strategy gives detailed information but uses
many probes in a short space of time. FastMapping has a similar
strategy, only it probes a single sequence repeatedly rather than
looping over all sequences.
Per-Probe: The interface testing schedule is exactly as for

per-sequence. However, a sample probes a single interface.
Thus, the probing of each sequence (and ultimately each inter-
face in the route) is spread out over multiple samples.
The above methods treat each path in isolation, but paths

originated at a single monitor often have shared links.
Doubletree [25] and Tracetree [6] assume that the topology
from a monitor to a set of destinations is a tree. They reduce
redundant probes close to the monitor by doing backwards
probing (from the destinations back to the monitor). Inspired
by this approach, we describe methods that exploit spatial
information, namely knowledge of shared links, to reduce
wasteful probing while remaining load-balancing-aware. We
define a link as a pair of consecutive interfaces found on some
path, which can be thought of as a set of links. Many paths may
share a given link.
Per-Link: A sample sends a single probe targeting the far in-

terface of the least recently sampled link in the path. The per-
link sample sharing scheme means that the timestamp recording
the last sampling of a given link is updated by any path that con-
tains it. The result is that a given path does not have to sample

shared links as often, instead focusing more on links near the
destination. Globally over all links, the allocation of probes to
links becomes closer to uniform.
Per-Safelink: As for per-link, except that a shared link only

triggers sample sharing when in addition an entire subsequence,
from the monitor down to the interface just past the link, is
shared. Any method that tries to increase probe efficiency
through knowledge of how paths share interfaces can fail. This
happens when a change occurs at a link (say) in some path ,
but the monitor probes using a path other than , for which
has not changed. To help reduce the frequency of such events,
per-link strengthens the definition of sharing from an interface
to a link, and per-safelink expands it further to a subsequence.
Finally, for comparison, we add an oracular method.
Per-Oracle: A sample sends a single probe, whose perfect

interface targeting will always find a change if one exists.

D. Evaluation Methodology

We describe howwe evaluate DTRACK and compare it to other
tracking techniques.
1) Setting Probe Budgets: The total probe budget is the

sum of a detection budget used in sampling for change de-
tection and a remapping budget or cost for route remapping.
Let the number of probes per sample be denoted by , where
sam is one of sampling strategies above. The total budget (in
probes per second) can be written as

(5)

where is the average number of probes in a remapping,
and is the average number of remappings per second.
When running live in an operational environment, typical es-

timates of and can be used to determine based on
the monitor parameter . Our needs here are quite different. For
the purposes of a fair comparison, we control to be the same
for all methods, and set DTRACK sampling rates ,
where sam is the sampling strategy in use. Our principal mea-
sure of success is the detection of as many changes as possible.
It does not make sense in this context to give each method the
same total budget , as it includes the remapping cost. The
remapping cost is essentially just proportional to the number of
changes detected; it would be contradictory to focus on and
to view its increase as a failing. The total budget is important
for the end system, but not of central interest for assessing de-
tection performance. We provide some system examples based
on equal .
The default MDA parameters are very conservative, leading

to high probe use. However, it is stated that much less conser-
vative parameters can be used with little ill effect [13]. In this
paper, we use default parameters for simplicity since the change
detection performance is our main focus.
2) Performance Metrics: We evaluate two performance met-

rics for path tracking techniques: the fraction of missed virtual
path changes, and the change detection delay.
A change can be missed through a sample failing to detect a

change or because of undersampling. We give two examples of
the latter. If a path changes from to and back to before a
sample, then the tracking technique will miss two changes and
think that the path is stable between the two samples. If instead
the path changes from to to , then tracking will detect
a change from to . For each detected change (and only for

1034 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

detected changes), we compute the detection delay as the time
of the detection minus the time of the last true change.
3) Alternative Tracking Techniques: We compare DTRACK

against two other techniques: FastMapping [11] (Section II-B)
and Tracetree [6] (Section V-C).
Comparing Tracetree against FastMapping and DTRACK is

difficult because Tracetree assumes a tree topology and is also
oblivious to load balancing. As such, Tracetree detects many
changes that do not correspond to any real change in any path.
To help quantify these false positives and to make comparison
more meaningful, in addition to the total number of Tracetree
“changes” detected, we compute a cleaned version by assisting
Tracetree in three ways. We filter out all changes induced by
load balancing, ignore all changes due to violation of the tree
hypothesis, and whenever a probe detects a change, we con-
sider that it detects changes in all virtual paths that traverse the
changed link (even though they were not directly probed). The
result is “Assisted Tracetree.”

E. Evaluation With Trace-Driven Simulations

In this section, we use trace-driven simulations to evaluate
path rate allocation and sampling techniques.
1) Setup: We build a simulator that takes a dataset with raw

traceroutes as input, and for each change in each path, extracts
a timestamp and the associated route description. It then sim-
ulates how each change tracking technique would probe these
paths, complete with their missed changes and estimated (hence
inaccurate) feature vectors.
We use our traces described in Section II-B as input for our

evaluation. Different monitors in this dataset probe paths at dif-
ferent frequencies. Let be the minimum interval between
two consecutive path measurements from a monitor. We set

per-sequence samples per second (the average
value over all monitors is 1/190), and this is scaled appropri-
ately for other sampling strategies. This setting is natural in our
trace-driven approach: Probing faster than is meaning-
less because the dataset contains no path datamore frequent than
every , and lower would guarantee that some changes
would be missed. We set for all monitors.
2) Path Rate Allocation: This section evaluates RL, RL-AGE,

MINMISS, and RL-ORACLE using per-sequence, the simplest sam-
pling scheme. Fig. 8(a) shows the fraction of changes missed as
a function of , the detection budget per path. Normal-
izing per-path facilitates comparison to other datasets. For ex-
ample, CAIDA’s Ark project [4] and DIMES [15] use approx-
imately and probes per second per
virtual path, respectively.
When the budget is too small, not even the oracle can track

all changes; whereas in the high budget limit, all techniques
converge to zero misses. We see that Ark’s probing budget is
in the range where even the oracle misses 72% of changes (not
shown). To track changes more efficiently, Ark would need
more monitors, each tracking a smaller number of paths.
Comparing RL-AGE and RL shows that NN4 reduces the

number of missed changes over the simple age-based predictor
by up to 47% when the sampling budget is small. For sampling
budgets higher than , both RL-AGE and RL perform
similarly as most missed changes happen in old, high-preva-
lence paths where predictors behave similarly. MINMISS reduces
the number of missed changes by less than 11% compared to

Fig. 8. Fraction of missed changes versus detection budget per path :
(a) different path sampling rate allocation schemes and per-sequence sampling;
(b) different sampling strategies and MINMISS rate allocation.

RL. We adopt MINMISS in DTRACK. It is unlikely that we can
improve its performance, even if we could it would require a
significantly more complex model.
3) In-Path Sampling: We now use MINMISS as the path

rate allocation method and compare the performance of the
in-path sampling strategies using Fig. 8(b) [“minimize misses”
in Fig. 8(a) and “per-sequence” in Fig. 8(b) are the same].
The per-probe strategy improves on per-sequence by up to

54%. Per-sequence sampling often wastes probes as once a
single changed interface is detected, there is no need to sample
the rest of the sequence or route; the route can be remapped im-
mediately, and so the search for the next change begins earlier.
Per-probe also has a large advantage in spotting short-lived
routes, as its sampling rate is times higher (around
16 times in our data) than per-sequence, greatly decreasing the
risk of skipping over them.
Each of per-link and per-probe uses a single probe per

sample, but from Fig. 8(b), the latter is clearly superior. This
is because the efficiency gains of the sample-sharing strategy
of per-link are outweighed by the inherent risks of missed
changes (as explained at the end of Section V-C). This tradeoff
becomes steadily worse as probing budget increases; in fact for
this strategy, the error saturates rather than tending to zero in
the limit.
Per-safelink sampling addresses the worst risks of per-link,

and over low detection budgets is the best strategy, with up to
28% fewer misses than per-probe. However, at high sampling
rates a milder form of the issue affecting per-link still arises, and
again the error saturates rather than tending to zero. These re-
sults show that exploiting spatial information (like shared links)
must be done with great care in the context of tracking, as the
very assumptions one is relying on for efficiencies are, by defi-
nition, changing (see Tracetree results below).
By default, we use per-safelink sampling in DTRACK, as we

expect most deployments to operate at low sampling budgets

CUNHA et al.: DTRACK 1035

Fig. 9. Comparison of DTRACK, FastMapping, and Assisted Tracetree: (a) fraction of missed changes, (b) fraction of total probing budget used for remapping,
and (c) distribution of normalized change detection delay.

(e.g., DIMES and CAIDA’s Ark). At very high sampling bud-
gets, we recommend per-probe sampling.
4) Comparing DTRACK to Alternatives: Fig. 9(a) replots the

per-probe and per-safelink curves from Fig. 8(b) on a loga-
rithmic scale and compares against FastMapping and the as-
sisted form of Tracetree. Each variant of DTRACK outperforms
FastMapping by a large margin, up to 89% at intermediate de-
tection budgets. DTRACK also outperforms Assisted Tracetree
for all detection budgets, despite the significant degree of as-
sistance provided. We attribute this mainly to the failure of the
underlying tree assumption because of load balancing, traffic
engineering, and typical AS peering practices. Real (unassisted)
Tracetree also suffers from false positives, which in fact grow
linearly in probing budget. Already for a probing budget of

probes per second per path, Tracetree infers 17 times
more false positives than there are real changes in the dataset.
As an example of the benefits that DTRACK can bring, DIMES,

which uses probes per second per path,
would miss 86% fewer changes (detect 220% more) by using
DTRACK instead of periodic traceroutes.
Fig. 9(b) plots the fraction of the total probing budget that is

used for remapping, – . We omit Tracetree
as it does not perform remapping. At low detection budgets,
techniques sample less frequently, and each sample has a higher
probability to detect a change (as well as to miss others). In such
scenarios, the remapping cost is comparable to the total budget.
As the sampling budget increases, the number of changes de-
tected stabilizes, and the remapping cost becomes less signifi-
cant relative to the total.
Taking again the example of DIMES, even including

DTRACK’s remapping cost, DIMES would miss 73% less
(or detect twice as many) changes using DTRACK instead
of periodic traceroutes, while providing complete load bal-
ancing information.
Fig. 9(b) allows an operator to compute an initial sampling

budget so that DTRACK respects a desired total probing budget
in a real deployment. After DTRACK is running, the operator can
readjust the sampling budget as a function of the actual remap-
ping cost found. Also, real deployments can reduce remapping
costs compared to the results we show by configuring MDA to
use less probes [13].
Fig. 9(c) shows the distribution of the detection delay of de-

tected changes for the different tracking techniques, given a
detection budget of probes per second
per path. Results for other detection budgets are qualitatively

similar.We normalize the detection delay by FastMapping’s vir-
tual path sampling period (which is common to all paths).
We see that FastMapping’s detection delay is in a sense

the worst possible, being almost uniform over the path sam-
pling period. Tracetree samples paths more frequently and
achieves lower detection delay. However, both FastMapping
and Tracetree, are limited by sampling all paths at the same
rate. DTRACK (per-safelink) reduces average detection delay
by 57% over FastMapping and has lower delay 99.8% of the
time, the exceptions being, not surprisingly, on paths with low
sampling budgets.
Low detection delay is important to increase the fidelity of

fault detection and tomographic techniques. To see the benefits,
say that a monitor uses a total budget of 64 kb/s to track 8000
paths. It would detect 52% more changes by replacing periodic
traceroutes with DTRACK (using safelink), and it would detect
90% of path changes with a delay below 125 s. Replacing classic
traceroute by MDA also has the benefit of getting complete and
accurate routes.
Our results indicate that DTRACK not only detects more

changes, but also has lower detection delay, which should
directly benefit applications that need up-to-date information
on path stability and network topology.

F. Evaluation in a Real Deployment

We now compare the number of changes detected by
FastMapping and DTRACK in a real deployment in PlanetLab.
We do not evaluate Tracetree in PlanetLab due to the large
number of false positives (Section V-D3).
1) Experimental Setup: We deploy DTRACK and FastMap-

ping on 72 PlanetLab nodes for one week starting March 4,
2011. As in our previous deployments, each monitor selects
1000 destinations at random from a list of 34 820 randomly
chosen reachable destinations. DTRACK and FastMapping probe
the same destinations. Themeasurements traverse 7315ASs and
97% of the large ASs [17].
We set , which means that DTRACK will sample a

path at most once every 20 s: roughly the probing rate required
to sample each hop in a path every 5 min. We fix the detec-
tion budget of both DTRACK and FastMapping at 8 probes
per second, which is similar to DIMES’ probes
per second per path and in the range where DTRACK yields the
most gains over FastMapping [Fig. 9(a)]. We let the remapping
budget vary as a function of the number of detected changes.

1036 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 10. Evaluation of DTRACK and FastMapping in a real deployment:
(a) distribution of the duration of routes where DTRACK and FastMapping
missed path changes; (b) difference in number of detected changes (DTRACK
minus FastMapping).

We have no ground truth about changes in this deploy-
ment. Changes may be detected by DTRACK, FastMapping, or
both. If only one technique detected a change, we know the
other missed it. Unfortunately, we cannot quantify how many
changes DTRACK and FastMapping missed. We use the union of
the changes detected by DTRACK and FastMapping as ground
truth, similar to how we used our dataset as ground truth in the
trace-driven simulations.
2) Tracking Accuracy: During one week of deployment,

DTRACK and FastMapping detected a total of 1 280 140 changes.
DTRACK detected three times more changes than FastMapping,
an increase from the 2.2 times more changes in the trace-driven
simulations. The traces used in the trace-driven simulations
were collected with FastMapping and limit the number of
changes DTRACK can detect.
The remapping cost grows linearly with the number of de-

tected path changes, with an average of 162 probes per path
remap. As a result, DTRACK’s remapping cost is also three times
larger than FastMapping’s.
Overall, DTRACK detects 94% and misses 6% of the changes

detected by both methods while FastMapping detects 35% and
misses 65%. Fig. 10(a) plots the distribution of the duration of
the previous route, i.e., the age of the previous route just before it
changed, for the sets of path changes missed by one method and
detected by the other. We see that most path changes missed by
FastMapping happen in short-lived routes, i.e., unstable paths.
FastMapping probes all paths at the same rate and misses path
changes during instability periods. In contrast, most changes
missed by DTRACK happen in routes with long duration, i.e.,
stable paths. Since DTRACK shifts probing budget from stable
to unstable paths, it may take longer to detect and miss changes
in stable paths.

Fig. 11. Snapshot of DTRACK path sampling rates for chronos.disy.inf.
uni-konstanz.de on March 7, 2011, 6:30 AM.

Fig. 10(b) plots the distribution of the difference of detected
changes between DTRACK and FastMapping across the 72 000
monitored paths. It shows that there are a few (12%) paths
where FastMapping detects more changes than DTRACK. The
difference in the number of detected changes in these paths
is usually less than five. Conversely, DTRACK detects more
changes than FastMapping in 42% of the paths and can detect
40 changes more than FastMapping for 3.5% of the paths.
Although DTRACK may miss some changes, the probing rate
after a detection is quickly increased, which reduces subsequent
misses substantially. FastMapping, however, systematically
misses changes during instability periods.
We illustrate how DTRACK detects more changes in unstable

paths without missing many changes on stable paths with a
snapshot of path sampling rates allocated by DTRACK at one
PlanetLab node at a given point in time (Fig. 11). We see that
60 paths (6%) are considered unstable by NN4 and receive a
sampling rate equal to , more than six times larger than
FastMapping’s sampling rate. The higher sampling rate at un-
stable paths comes at a cost of decreasing the sampling rate of
stable paths (paths at) by 56%. Because there are few
unstable paths and many stable paths, DTRACK needs to take
only a few probes from each stable path to end up with high
probing rates on unstable paths. This allows effective tracking
in unstable paths without missing many changes in stable paths.
Overall, our findings in the real deployment are consistent with
our trace-driven simulations; shifting probes from stable to un-
stable paths allows for more accurate path change tracking.

VI. RELATED WORK

Forwarding Versus Routing Dynamics: Internet path dy-
namics and routing behavior have captured the interest of the
research community since the mid-1990s with Paxson’s study
of end-to-end routing behavior [9] and Labovitz et al.’s findings
on BGP instabilities [26]. In this paper, we follow Paxson’s
approach of using traceroute-style probing to infer end-to-end
routes and track virtual path changes. Traceroute is appealing
for tracking virtual paths from monitors located at the edge of
the Internet for two main reasons. First, traceroute directly mea-
sures the forwarding path, whereas AS paths inferred from BGP
messages may not match the AS-level forwarding path [27].
Second, traceroute runs from any host connected to the Internet
with no privileged access to routers, whereas the collection
of BGP messages requires direct access to routers. Although
RouteViews and RIPE collect BGP data from some routers

CUNHA et al.: DTRACK 1037

for the community, public BGP data lacks visibility to track
all path changes from a given vantage point [28], [29]. When
BGP messages from a router close to the traceroute monitor are
available, they could help tracking virtual path changes. For
instance, Feamster et al. [10] showed that BGP messages could
be used to predict about 20% of the path failures in their study.
Characterization and Prediction of Path Behavior: Some of

the virtual path features that we study are inspired by previous
characterizations of Internet paths [9], [10], [12] as discussed in
Section II-D. None of these characterization studies, however,
use these features to predict future path changes. Although
to our knowledge there is no prior work on predicting path
changes, Zhang et al. [30] studied the degree of constancy
of path performance properties (loss, delay, and throughput);
constancy is closely related to predictability. Later studies have
used routing updates [31], past path performance (for instance,
end-to-end losses [32] or round-trip delays [33]), or matrix
completion [34] to predict future performance. iNano [35] also
“predicts” a number of path properties including PoP-level
routes, but their meaning for route prediction is different than
ours. Their goal is to predict the PoP-level route of an arbitrary
end-to-end path, even though the system only directly measures
the route of a small subset of paths. iNano only refreshes mea-
surements once per day and as such cannot closely track path
changes. Definition and characterization of new path metrics
like Routing State Distance [36] could inspire path features
useful for predicting path changes. We plan on evaluating
additional features to improve prediction accuracy in the future.
Topology Mapping Techniques: Topology mapping sys-

tems [4]–[6], [37] often track routes to a large number of
destinations. Many of the topology discovery techniques
focus on getting more complete or accurate topology maps by
resolving different interfaces to a single router [38]–[40], mea-
suring reverse routes [41], selecting traceroute’s sources and
destinations to better cover the network [38], [42], [43], using
the record-route IP option to complement traceroutes [39],
detecting routers performing load balancing [13], or identifying
all interfaces on subnets traversed by a path [44]. DTRACK is a
good complement to all these techniques. We argue that to get
more accurate maps, we should focus the probing capacity on
the paths that are changing and also explore spatio-temporal
alternatives to simple traditional traceroute sampling. One
approach to tracking the evolution of IP topologies is to exploit
knowledge of shared links to reduce probing overhead and
consequently probe the topology faster as Tracetree [6] and
DoubleTree [25] do. As we show in Section V, Tracetree leads
to a very large number of false detections. Thus, we choose to
guarantee the accuracy and completeness of measured routes
by using Paris traceroute’s MDA [13]. Most comparable to
DTRACK is FastMapping [11]. Section V shows that DTRACK,
because of its adaptive probing allocation (instead of a constant
rate for all paths) and single-probe sampling strategy (compared
to an entire branch of the route at a time), detects up to three
times more changes than FastMapping.

VII. CONCLUSION

This paper presented DTRACK, a path tracking system that
proceeds in two steps: path change detection and path remap-
ping. We designed NN4, a simple predictor of path changes
that uses as input: route prevalence, route age, number of past

route changes, and number of times a route appeared in the
past. Although we found that the limits to prediction in general
are strong and in particular that NN4 is not highly accurate, it
is still useful for allocating probes to paths. DTRACK optimizes
path sampling rates based on NN4 predictions. Within each
path, DTRACK employs a kind of temporal striping of Paris
traceroute. When a change is detected, path remapping uses
Paris traceroute’s MDA to ensure complete and accurate route
measurements. DTRACK detects up to three times more path
changes when compared to current traceroute-based tracking
techniques, with lower detection delays, and while providing
complete load balancer information. DTRACK finds consider-
ably more true changes than Tracetree and none of the very
large number of false positives. More generally, we point out
that any approach that exploits shared links runs the risk of
errors being greatly magnified in the tracking application and
should be used with great care.
For future work, we will investigate the benefits of in-

corporating additional information, such as BGP messages,
to increase prediction accuracy, as well as the benefits of
coordinating the probing effort across monitors to further
enhance probing.

ACKNOWLEDGMENT

This work was performed while D. Veitch was visiting
Technicolor.

REFERENCES

[1] E. Katz-Bassett, H. Madhyastha, J. P. John, A. Krishnamurthy, D.
Wetherall, and T. Anderson, “Studying black holes in the Internet with
Hubble,” in Proc. USENIX NSDI, 2008, pp. 247–262.

[2] I. Cunha, R. Teixeira, N. Feamster, and C. Diot, “Measurement
methods for fast and accurate blackhole identification with binary
tomography,” in Proc. IMC, 2009, pp. 254–266.

[3] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “iSPY: De-
tecting IP prefix hijacking on my own,” in Proc. ACM SIGCOMM,
2008, pp. 327–338.

[4] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “In-
ternet mapping: From art to science,” in Proc. IEEE CATCH, 2009,
pp. 205–211.

[5] Y. Shavitt and E. Shir, “DIMES: Let the Internet measure itself,”
Comput. Commun. Rev., vol. 35, no. 5, pp. 71–74, 2005.

[6] M. Latapy, C. Magnien, and F. Ouédraogo, “A radar for the Internet,”
in Proc. IEEE Int. Conf. Data Mining Workshops, 2008, pp. 901–908.

[7] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,
“Globally distributed content delivery,” IEEE Internet Comput., vol. 6,
no. 5, pp. 50–58, Sep.–Oct. 2002.

[8] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” Oper. Syst. Rev., vol. 35, no. 5, pp. 131–145, 2001.

[9] V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM
Trans. Netw., vol. 5, no. 5, pp. 601–615, Oct. 1997.

[10] N. Feamster, D. Andersen, H. Balakrishnan, and F. Kaashoek, “Mea-
suring the effects of Internet path faults on reactive routing,” in Proc.
ACM SIGMETRICS, 2003, pp. 126–137.

[11] I. Cunha, R. Teixeira, and C. Diot, “Measuring and characterizing
end-to-end route dynamics in the presence of load balancing,” in Proc.
PAM, 2011, pp. 235–244.

[12] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced
paths in the Internet,” in Proc. IMC, 2007, pp. 149–160.

[13] D. Veitch, B. Augustin, T. Friedman, and R. Teixeira, “Failure con-
trol in multipath route tracing,” in Proc. IEEE INFOCOM, 2009, pp.
1395–1403.

[14] J. Friedman and B. Popescu, “Predictive learning via rule ensembles,”
Ann. Appl. Stat., vol. 2, no. 3, pp. 916–954, 2008.

[15] Y. Shavitt and U. Weinsberg, “Quantifying the importance of vantage
points distribution in Internet topology measurements,” in Proc. IEEE
INFOCOM, 2009, pp. 792–800.

[16] Team Cymru, Lake Mary, FL, USA, “IP to ASN mapping,” [Online].
Available: http://www.team-cymru.org/Services/ip-to-asn.html

1038 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

[17] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang, “Quanti-
fying the completeness of the observed Internet AS-level structure,”
IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 109–122, Feb. 2010.

[18] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah, Y.
Ganjali, and C. Diot, “Characterization of failures in an operational
IP backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp.
749–762, Aug. 2008.

[19] D. Turner, K. Levchenko, A. Snoeren, and S. Savage, “California fault
lines: Understanding the causes and impact of network failures,” in
Proc. ACM SIGCOMM, 2010, pp. 315–326.

[20] Í. Cunha, R. Teixeira, D. Veitch, and C. Diot, “Predicting and tracking
Internet path changes,” in Proc. ACM SIGCOMM, 2011, pp. 122–133.

[21] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When
is “nearest neighbor” meaningful?,” in Proc. Intl. Conf. Database
Theory, 1999, pp. 217–235.

[22] D. Leonard and D. Loguinov, “Demystifying service discovery: Imple-
menting an Internet-wide scanner,” in Proc. IMC, 2010, pp. 109–122.

[23] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot, “The role of PASTA
in network measurement,” IEEE/ACM Trans. Netw., vol. 17, no. 4, pp.
1340–1353, Aug. 2009.

[24] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot, “On optimal probing
for delay and loss measurement,” in Proc. IMC, 2007, pp. 291–302.

[25] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in Proc. ACM SIGMET-
RICS, 2005, pp. 327–338.

[26] C. Labovitz, R. Malan, and F. Jahanian, “Internet routing instability,”
in Proc. ACM SIGCOMM, 1997, pp. 205–218.

[27] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz, “Towards an accu-
rate AS-level traceroute tool,” in Proc. ACM SIGCOMM, 2003, pp.
365–378.

[28] R. Teixeira and J. Rexford, “A measurement framework for
pin-pointing routing changes,” in Proc. SIGCOMM Workshop
Netw. Troubleshoot., 2004, pp. 313–318.

[29] R. Bush, O. Maennel, M. Roughan, and S. Uhlig, “Internet optometry:
Assessing the broken glasses in Internet reachability,” in Proc. IMC,
2009, pp. 242–253.

[30] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the consistency
of Internet path properties,” in Proc. IMW, 2001, pp. 197–211.

[31] Y. Zhang, Z. Mao, and J. Wang, “A framework for measuring and
predicting the impact of routing changes,” in Proc. IEEE INFOCOM,
2007, pp. 339–347.

[32] S. Tao, K. Xu, Y. Xu, T. Fei, L. Gao, R. Guerin, J. Kurose, D. Towsley,
and Z.-L. Zhang, “Exploring the performance benefits of end-to-end
path switching,” in Proc. IEEE ICNP, 2004, pp. 304–315.

[33] A. Bremler-Barr, E. Cohen, H. Kaplan, and Y. Mansour, “Predicting
and bypassing end-to-end Internet service degradations,” IEEE J. Sel.
Areas Commun., vol. 21, no. 6, pp. 961–978, Aug. 2003.

[34] Y. Liao, W. Du, P. Geurts, and G. Leduc, “Decentralized prediction
of end-to-end network performance classes,” in Proc. ACM CoNEXT,
2011, Art. no. 14.

[35] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iPlane Nano: Path prediction for peer-to-peer ap-
plications,” in Proc. USENIX NSDI, 2009, pp. 137–152.

[36] G. Gürsun, N. Ruchansky, E. Terzi, and M. Crovella, “Routing state
distance: A path-based metric for network analysis,” in Proc. IMC,
2012, pp. 239–252.

[37] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krish-
namurthy, and A. Venkataramani, “iPlane: An information plane for
distributed services,” in Proc. USENIX OSDI, 2006, pp. 367–380.

[38] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. ACM SIGCOMM, 2002, pp. 133–145.

[39] R. Sherwood, A. Bender, and N. Spring, “DisCarte: A disjunctive In-
ternet cartographer,” in Proc. ACM SIGCOMM, 2008, pp. 303–314.

[40] J. Sherry, E. Katz-Bassett, M. Pimenova, H. Madhyastha, A. Krish-
namurthy, and T. Anderson, “Resolving IP aliases with prespecified
timestamps,” in Proc. IMC, 2010, pp. 172–178.

[41] E. Katz-Bassett, H.Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,” in
Proc. USENIX NSDI, 2010, p. 15.

[42] R. Beverly, A. Berger, and G. Xie, “Primitives for active Internet
topology mapping: Toward high-frequency characterization,” in Proc.
IMC, 2010, pp. 165–171.

[43] X. Fan and J. Heidemann, “Selecting representative IP addresses for
Internet topology studies,” in Proc. IMC, 2010, pp. 411–423.

[44] E. M. Tozal and K. Sarac, “TraceNET: An Internet topology data col-
lector,” in Proc. IMC, 2010, pp. 356–368.

Ítalo Cunha received the B.Sc. and M.Sc. degrees
from the Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil, in 2004 and 2007, respec-
tively, and the Ph.D. degree from UPMC Sorbonne
Universités, Paris, France, in 2011, all in computer
science.
He worked on Internet troubleshooting with

the University of Washington, Seattle, WA, USA,
during his Ph.D. studies and performed postdoctoral
research with Technicolor Research and Innovation,
Paris, France. He is currently an Assistant Professor

with the Computer Science Department, Universidade Federal de Minas
Gerais. His research interests are in large-scale distributed systems and network
monitoring and troubleshooting.

Renata Teixeira received the B.Sc. degree in
computer science and M.Sc. degree in electrical
engineering from the Universidade Federal do Rio
de Janeiro, Brazil, in 1997 and 1999, respectively,
and the Ph.D. degree in computer science from the
University of California, San Diego, CA, USA, in
2005.
During her Ph.D. studies, she worked on Internet

routing with AT&T Research, Florham Park, NJ,
USA. She is currently a Researcher with the Centre
National de la Recherche Scientifique (CNRS),

LIP6, UPMC Sorbonne Universites, Paris, France. She was a Visiting Scholar
with the University of California, Berkeley/ICSI, Berkeley, CA, USA, in 2011.
Her research interests are in measurement, analysis, and management of data
networks.
Dr. Teixeira serves in the Editorial Board of the IEEE/ACM TRANSACTIONS

ON NETWORKING and the ACM SIGCOMM Computer Communication Review.
She is also a member of the steering committee of the ACM Internet Measure-
ment Conference and has been active in the program committees of ACM SIG-
COMM, ACM IMC, PAM, and IEEE INFOCOM, among others.

Darryl Veitch (M’98–SM’02–F’10) received the
B.Sc. Hons. degree from Monash University, Mel-
bourne, Australia, in 1985, and the Ph.D. degree
in mathematics from Cambridge University, Cam-
bridge, U.K., in 1990.
He worked with TRL, Telstra, Melbourne, Aus-

tralia; CNET, France Telecom, Paris, France; KTH,
Stockholm, Sweden; INRIA, Sophia Antipolis and
Paris, France; Bellcore, Red Bank, NJ, USA; RMIT,
Melbourne, Australia; Technicolor, Paris, France;
and EMUlab and CUBIN at The University of Mel-

bourne, Melbourne, Australia, where he is currently a Professorial Research
Fellow. His research interests are in computer networking and include traffic
modeling, parameter estimation, the theory and practice of active measurement,
traffic sampling and sketching, and clock synchronization over networks.

Christophe Diot received the Ph.D. degree in com-
puter science from INP Grenoble, Grenoble, France,
in 1991.
With INRIA Sophia-Antipolis, Sophia-Antipolis,

France, from 1993 to 1998, he pioneered diffserv,
single-source multicast, and peer-to-peer online
games. With Sprint, San Francisco, CA, USA, from
1998 to 2003, he introduced large-scale Internet mea-
surements. He was with Intel Research, Cambridge,
U.K., from 2003 to 2005, and then joined Thomson,
where he started two research labs: Paris, France,

in 2006, and Palo Alto, CA, USA, in 2011. Thomson became Technicolor in
2010. He is currently a Chief Scientist with Technicolor. He has around 20
patents and more than 300 publications in major conferences and journals. His
research activities now focus on content delivery architectures, recommender
systems, and personalization.
Dr. Diot is a Fellow of the Association for Computing Machinery (ACM).

