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Abstract

This paper deals with the constrained reconstruction of 3D geometric models of
objects from range data. It describes a new technique of global shape improvement
based upon feature positions and geometric constraints. It suggests a general incre-
mental framework whereby constraints can be added and integrated in the model
reconstruction process, resulting in an optimal trade-off between minimization of the
shape fitting error and the constraint tolerances. After defining sets of constraints
for planar and special case quadric surface classes based on feature coincidence,
position and shape, the paper shows through application on synthetic model that
our scheme is well behaved. The approach is then validated through experiments
on different real parts. This work is the first to give such a large framework for the
integration of geometric relationships in object modelling. The technique is expec-
ted to have a great impact in reverse engineering applications and manufactured
object modelling where the majority of parts are designed with intended feature
relationships.
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INTRODUCTION AND RELATED WORK

The use of constraints in object modelling is an important topic in the CAD
literature. In this area engineering concepts and shape constraints are trans-
formed into shape models through mechanisms of checking, incorporating and
solving constraints in the modelling process. Constraints in this area include
specification of the geometric relationships between object features as well as
engineering constraints (dimensions, material strength and machining para-
meters) [2, 17].

Finding geometric configurations that satisfy the constraints is the crucial
issue and much research has been dedicated to different mechanisms for con-
straint solving. There are two main strategies for solving constraint problems
according to the classification mentioned in [33]. The first strategy, referred
as the instance solver, uses specific values of the constraints and looks for
geometric configurations satisfying these constraints. In the second strategy,
the generic solver investigates first whether the geometric elements could be
placed given the constraints independently of their values. After checking that
the problem is well-constrained the specific placements of the geometric ele-
ments are then determined. In CAD literature, these two strategies have been
implemented through different approaches.

The numerical approaches given in [9, 32, 42, 58| are typical instance solv-
ers. Constraints are translated into a set of algebraic equations and are usu-
ally solved simultaneously by means of iterative techniques, for instance the
Newton-Raphson algorithm. This approach can deal with general cases, over-
constrained systems and inconsistent constraint problems. A good initial value
is required for such solvers and the algorithm should be applied with care since
it may face an ill-conditioned problem.

Symbolic methods [1, 13, 39, 60] are hybrid methods in the sense that they
can involve both the generic solver strategy and instance solver strategy. These
methods also transform the geometric constraints into algebraic equations but
instead of numerical techniques, general symbolic methods are first used to
put the set of equations into a new form which is easy to solve. The set
of equations is sequentially reduced by solving the simplest one at each step
as far as possible. The final set can be then solved numerically. Compared
to numerical approaches, they are not subject to numerical instabilities and
can locate all solutions to the constraint equations. However, they tend to
be computationally expensive. This often restricts the types of geometric
elements and types of constraints allowed to be involved.

A more recent approach solves the constraints through sequential geometric
constructions, as most configurations in engineering drawing are solvable by
ruler, compass and protractor. These approaches can be roughly divided into
two categories: the rule-based [3, 57, 66] and graph-based [10, 16, 24, 25, 33,
34, 35] approaches. In the first category constraints are expressed by rules
or predicates. The procedure starts from an initial set of predicates defining
the constraints and sequentially derives a new set of predicates by applying



logical reasoning techniques, with the predicates converging towards defined
positions for all the characteristic features. However since only constructive
geometries can be handles by these methods they may not be very efficient for
large systems of constraints.

The graph-based approaches handle the problem in a more methodical way.
They start by forming a graph representation of the problem. In this graph
each node represents a geometric element and the edges linking these nodes
indicate the constraints between the associated geometric elements. Each edge
is labelled with the constraint’s type. In a first phase the graph is analysed and
if it is well-constrained a set of sequential construction steps are derived from
it. This phase depends only on the type and the number of constraints, so it
is considered a generic constraint solver. In the second phase the construction
steps are carried out integrating the actual values of the constraints to derive
the solution shape.

In the Computer Vision community, constraints are mainly used in model-
based recognition and localization of objects or environments more generally.
They are used as a prior: information to reduce the search space between,
for example, the model features (already stored and known CAD models) and
the extracted features from visual sensor output (grey level image edges, 3D
range data, etc.) [5, 7, 8, 23, 27, 43]. Some of the approaches for object
recognition in particular [30, 53] use a notion of graph representation close
to the one used in the graph-based approaches for constraint solving, where
the nodes represent object primitives (e.g. points, lines, etc.) and the arcs
present geometric relationships between them (e.g. adjacency, parallelism,
perpendicularity, etc.).

Constraints can be defined over the geometric and topological relationships
between the the object model features (the a priori information) and the
extracted features from the input data. These relationships are derived either
from the properties of the geometric transformation between the vision sensor
frame and the scene frame or the transformation between two vision sensor
frames (stereo-vision) or the intrinsic structure of the objects [31].

So we can conclude that when computer vision applications deal with
model-based recognition and localization, the definition and the concept of
constraints are wider than those considered in CAD applications, although
they may share the same terminology.

There is one area where Computer Aided Design and Computer Vision
share a similar interpretation of geometric constraints, namely reverse en-
gineering referred to as 3D geometric model reconstruction within the vision
community. Reverse engineering is typically concerned with parts and in-
dustrial objects, whereas 3D geometric model reconstruction is a larger field
which includes built environments. But the two terms point to the same goal,
which is the transformation of a real object (in the large sense of the word) to
a model and concept. In parts manufacturing reverse engineering deals with
measuring an existing object so that a surface or solid model can be deduced in
order to take advantage of CAD/CAM technologies. It is also often necessary



to produce a copy of a part when no original drawings or documentation are
available. In other cases we may want to re-engineer an existing part, when
analysis and modifications are required to construct a new improved product.
Even though it is possible to turn to a computer-aided design to fashion a
new part, it is only after the real object is made and evaluated that we can
see if the object fits with real world. For this reason designers rely on real 3D
objects (real scale wood or clay models) as starting points. This procedure is
particularly important to areas involving aesthetic design e.g automobile in-
dustry or generation of custom fits to human surfaces such as helmets, space
suits or prostheses.

A review of the main research in the CAD community [20, 51, 54, 67] and
the Vision community [11, 22, 40] (for reconstruction from single range images)
and [14, 55, 56, 62] (for reconstruction from multiple range images) revealed
that the exploitation of geometric constraints has not been fully investigated.
This lack was noted in the survey work of Varady et al[61].

The first motivation behind considering geometric constraints in this work
is that models needed by industry are generally designed with intended feature
relationships so this aspect should be exploited rather than ignored. The con-
sideration of these relationships is actually necessary because some attributes
of the object would have no sense if the object modelling scheme did not take
into account these constraints. For example, take the case when we want to
estimate the distance between two parallel planes: if the plane fitting results
gave two planes which are not parallel, then the distance measured between
them would have no significance. Furthermore exploiting the available known
relationships would be useful for reducing the effects of registration errors and
mis-calibration, thus improving the accuracy of the estimated part features’
parameters and consequently the quality of the modelling.

The second motivation is that generally in the manufacturing process, once
the part is produced many improvement are carried manually to optimize the
part and make it fit with the real world (e.g. fit with another part, adjust the
part to fit particular customer). These improvements could be represented
by new constraints on the shape of the part. By integrating these constraints
into the CAD process the work piece optimization would be reduced and hence
many cycles in the part production process would be saved. In other cases,
such improvement could not be achieved by hand due to the complexity of the
object or when we want to extend the application of the process to complex
environments such as buildings or industrial plants.

From a CAD viewpoint the way with which the constraint problem is
handled is close to the numerical constraint solver. However it differs rad-
ically from this scope on two levels. First on the level of the components
of the problem. In our case we have already a real object whose shape we
are trying to reconstruct, hence the object real data is used to constraint the
shape. Thus, the solution has to satisfy proximity to measured points as well
as the constraints. Second the numerical technique used to find the solution
overcomes ill-conditioning problems.



The approach for incorporating geometric relationships in object modelling
has to tackle two problems. The first is how to represent the constraints. The
second is how to integrate these constraints into the shape fitting process.
These two aspects are not entirely independent, the shape fitting technique
imposes restrictions on the constraint representation and vice versa. Besides,
the approach should handle the maximum satisfaction of the constraints.

A first step in the direction of incorporating constraints for assuring the
consistency of the reconstruction was done by Porrill [46]. He linearized a set
of nonlinear constraints and combined them with a Kalman filter, as applied
to wire frame model construction. Porrill’s method takes advantage of the
recursive linear estimation of the Kalman filter, but guarantees satisfaction of
the constraints only to linearized first order. Additional iterations are needed
at each step if more accuracy is required.

This last condition has been taken into account in the work of De Geeter et
al [15] by defining a “Smoothly Constrained Kalman Filter”. The key idea of
their approach is to replace a nonlinear constraint by a set of linear constraints
applied iteratively and updated by new measurements in order to reduce the
linearization error. However, the characteristics of Kalman filtering make
these methods essentially adapted for iteratively acquired data and many data
samples. Moreover, there was no mechanism for determining how successfully
the constraints were satisfied and only lines and planes were considered in
both of the above works.

The constraints considered by Bolle et al [6] in their approach to 3D ob-
ject position covered only the shape of the surfaces. They chose a specific
representation for the treated features: plane, cylinder and sphere.

Compared to Porrill’s and De Geeter’s work, our approach avoids the
drawbacks of linearization, since the constraints are completely implemented.
Moreover, our approach covers a larger category of feature shapes. Regard-
ing the work of Bolle [6], the type of constraints which can be held by our
approach go beyond the restricted set of surface shapes and cover also the
geometric relationships between object features. The proposed approach has
been successfully applied first on polyhedral objects [65]. To our knowledge
the work appears the first to give such a large framework for the integra-
tion of geometric relationships for object reconstruction in the field of reverse
engineering.

Although this work is mainly intended for object modelling, it can also
find many other many useful applications, e.g. in object localisation. In re-
gistration tasks, the features represented in different views need to be put
into a single reference frame. For this purpose the transformation between
different views is recovered by matching between the related frames. Since a
reference frame is built from object features, e.g. normals of surfaces which
are supposed to be orthogonal, the estimation of the surfaces has to satisfy
the orthogonality constraints. The proposed paradigm may be extended as
well to any constrained built environment application like creating “as built”
CAD models of a plant for planning new building work. A current method



uses a motorised camera head to create highly detailed panoramic images
which are then used to extract CAD models. Since the different captured
parts of a plant (pipes, reservoirs, etc.) have many geometric relationships
between them, using these constraints in the reconstruction process will help
to have a consistent whole model. The same is true as well for modelling dif-
ferent compartments of buildings or cities. The current methods of extracting,
matching and estimation of large scale buildings’ features from aerial images
have reached reasonable level. This make the application of our method for
modelling different compartments of buildings or cities possible as well.

The organisation of the rest of paper will be as follows: the next section
gives some preliminaries on planes and quadric surfaces and gives the paramet-
rization of such surfaces. The aim is to make clear the relationship between
the constraint formulation and the surface representations. We then state
the problem and develop the proposed approach. Next we define and clas-
sify the different types of constraints. Lastly, we demonstrate the process on
several synthetic and real objects to evaluate the accuracy, the convergence,
repeatability and consistency of the approach.

PRELIMINARIES

This section gives a brief overview about constraining planes, general quadrics
and some particular quadric shapes. A full treatment of these surfaces can
be found in [4]. While the material contained here is is largely elementary
geometry, we present it in order to make clear how the set of constraints used
for each surface type and relationship relate to the parameters of the generic
quadric.

The line

A line is defined by the following equations :

T — Xy Y— %Y 22
= = 1
) m n (1)

where X, = [0, 10, 20]” is an arbitrary point of the line and the vector p =
[1,m,n|T defines the orientation of the line.

The plane

A plane surface can be represented by this equation:

flr,y,2) =n,x+ny+n,z+d=0 (2)

where 77 = [ng,ny,,n,]" is the unit normal vector to the plane and d is the
distance to the origin. A plane can have two different representations (7, d) and



(—7i, —d). This ambiguity is easily removed by orienting the normal toward
the outside of the object.

Given N data points the best parameters which satisfy (2) in the least
squares sense are those minimizing the criterion:

N
i=1

where p’ = [n,, ny,n.,d]" is the parameter vector and H is the data matrix
defined by

—
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H is symmetric and positive definite.

The quadrics
A general quadric surface is represented by the following quadratic equation:
flz,y, 2) = ar® + by? +c2* + 2hay + 2922+ 2 fyz+2ux+ 20y +2wz+d = 0 (5)
which can be written :
XTAX +2X"B+C =0 (6)

where

A= C=d; X=[zy2z" (7
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The type of the quadric depends on the discriminant of the quadric A and the
cubic discriminant D :

a h g
hb f w a h g
A = D=|h b f (8)
g [ ¢ w f e
u v ow d g
and the cofactors of D:
A = be— f? F = gh—af,
B = ac-— g2, G = hf—byg, (9)
C = ab—h* H = gf —ch,

Similarly to the plane case, the best parameters which satisfy (5) for N
data points in the least squares sense are those minimizing the criterion:

N N

Z f (@i, i, sz)2 = ﬁT( hihi )p = ﬁTHﬁ (10)
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where ﬁ: [U,, ba G, h‘a g, fa u, v, w, d]T and h‘iT = [mi2a yi27 Zi2a 27"2yza QTZZ“ 2ylZZa 2.?71‘, 2yza QZia 1}
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The cylinder

The quadric is a cylinder when A = D = 0, uA + vH + wG = 0 and
A+ B+ C > 0. The equation of the cylinder axis is

o § _y-¢ % (11)
/F 16 1/H

This means that the cylinder axis has the direction vector [1/F,1/G,1/H]*

and passes through the point X,= [%f 22 wh]T

%G ) - The axis orientation corres-
ponds to the eigenvector of the matrix A related to the null eigenvalue. The

two other eigenvalues are positive.

The circular cylinder

For a circular cylinder, we can show that the parameters of the quadric should
also satisfy the following conditions:

agh+ f(g> +h*) = 0 cfg+h(f>+g°) = 0 (12)
bhf +g(h*+ f*) = 0 %+§+% _

The matrix A (see (7)) has two identical eigenvalues A and the radius can
be expressed by

r? = (WP f|F +v2g/G 4+ w h/H + d)/ ) (13)
A circular cylinder may be also represented by the canonical form:

(—20)2+ (y—y0)*+ (2 —20)> — (ng(z —20) + 1y (y —v0) +1.(2—2,))° 1> =0
(14)
where X, = [0, 50, z)” is an arbitrary point on the axis, 7 = [n,, n,,7,]” is
a unit vector along the axis and r is the radius of the cylinder.
This form has the advantage of having a minimal number of parameters.
However its implementation in the optimization algorithm may cause some
complexity, indeed it is not possible with this form to get separate terms for
the data and the parameters as in (10) (which allows the data terms to be
computed off line). Consequently this may increase the computational cost
dramatically.
The expansion of (14) and the identification with (5) yields

_ 2 _
a = 1—n; h = —ngn, (15)
_ 2 _
= 1- n, = —ngn,
_ 2 - _
c = 1 * nz f - nynz



The cone

A cone surface satisfies A £ 0, D = (0. The summit of the cone is given by:
X,=A'B (16)

The axis of the cone corresponds to the eigenvector related to the negative

eigenvalue of the matrix A. The two other eigenvalues are positive.

Circular cone

For a circular cone the parameters of the quadric equation have to satisfy the
following conditions

af —gh bg—hf ch—fg
f g h

As for the cylinder case, a circular cone equation has a more compact form:

(17)

[(2—20)2 4+ (y—10)* + (2—25)}]cos® () = [z (2 —20) + 10, (Y= Yo) + 12 (2= 2,)]> = 0

(18)
where [2,, Yo, 7o) is the summit of the cone, [ng,n,,n,|" is the unit vector
defining the orientation of the cone axis and « is the semi-vertical angle. The
quadric equation parameters can thus be expressed explicitly as a function of
the above terms by :

2 2 _

a = n;—cos‘a h = ngn, (19)
2 2

b = n, — cos’«a g = Ngn,

c = n’— cos’a f = nyn,

For the same reasons as mentioned in the cylinder case, the compact form of
the cone equation is not adequate for the optimization algorithm. Nevertheless
it is useful to implicitly impose the conic circularity constraints.

The sphere

A sphere is characterized by equal coefficients for 22, y? and 22 terms and van-
ishing coefficients for the cross product terms xy, 2z and yz so the parameters
h, g and f are all equal to zero. The equation of a sphere can be written as:

a(rx?® +y* + 2%) + 2ur + 20y + 2wz +d = 0 (20)
The centre of the sphere is:
X, =[u/a,~v/a,~w/a]" (21)

and the radius is ) ) ) p
U+ v+ we — aa
r? = (22)

a?
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THE GEOMETRIC CONSTRAINTS

The set of constraints associated with a given object can be divided mainly into
two categories. The first one is the surface intrinsic constraints covering the
geometric properties which reflect the specific shapes of the surfaces. Examples
of these constraints will be given in the next subsection. The second category
named the feature extrinsic constraints, defines the geometric and topological
relationships between the different object features.

Specific shape constraints

In the text below, when we say that an equation (or set of equations) can
be used as a constraint, we mean that the property f(p) = 0 can be used to
define to define a constraint C(p) on the object parameters p by letting

C(p) = f(D)

Circularity of a cylinder

The circularity of a cylinder can be imposed using either equations (12) or
equations (15). These equations have the advantage of imposing implicitly
the circularity constraints of the cylinder and avoid the problem when (12)
has problem if one of the parameters (f, g, h) vanishes. Besides, they make
concrete the geometric relationships between the cylinder and other object
features as we will see in Section 6 (the half cylinder).

Circularity of a cone

This property can be expressed using either equations (17) or (19). Similarly
to the cylinder case the last equations are more convenient.

Sphere Constraint

To require that an ellipsoidal patch represents a perfect sphere, equation (20)
can be used.

Feature extrinsic constraints

These constraints reflect the geometric or topological relationships between
the different features of one object. Table 1 summarizes the relationships that
we have considered. We notice here that points and lines in this table may
be either physical features of the object like cone apexes and edges or implicit
features like centres, axes of symmetry. This list is not exhaustive and the
classification may not be unique. Nevertheless it covers a large number of
constraints in manufactured objects.

11



point line plane quadric surface
point coincident inclusion inclusion inclusion
separation separation separation separation
line - coincident inclusion inclusion
relative orientation | relative orientation | relative orientation
separation separation separation
plane - - coincident relative orientation
relative orientation separation
separation
quadric surface - - - coincident
relative orientation
separation

Table 1: Relationships between features.

Coincidence constraints

It is common that a part contains features which are associated with the
same geometric entity (Figure.l.a) or which coincide at the same position
(Figure.1.b). 1In the first case these constraints are implicitly imposed by
considering the same parameters for each feature. In the second case the
parameters associated to each feature are equated and the resulting equations
have then to be satisfied.

Inclusion constraints

A particular feature point may be included in an object feature e.g line, plane
or quadric patch. The inclusion constraint requires that the point satisfies the
feature’s equation.

A feature line may be included in a plane or a particular quadric surface.
Fig.2 shows an example of this in cylinders. By considering Equations (1) and
(2), the condition that a line should lie in a plane is:

{ Ngl +n,m +n,n =0 (23)
NgTo + NyYo + nyzg + d=20

A necessary and sufficient condition that a line be included in a cylinder
surface is that the line and the cylinder have the same orientation and an
arbitrary point of the line (Xy, Yy, Z)” satisfies the cylinder equation. Thus,
from equations (1), (5) and (11) these conditions can be expressed by

[[.m,n]" = [1/F 1/G,1/H]"
{ f(Xo, Yo, Zg)" =0 (24)

A line is included in a cone if and only if the orientation vector of the
line satisfies the homogeneous equation of the cone (Equation (5) without the

12
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Figure 1: (a): The two edges E; and F» belongs to the same infinite line. The two faces P; and P, lie
in the same infinite plane. (b) The centres of the circles Ciry and Ciry coincide at the same point C.

The cylinders C'yl; and Cyl, have a common axis.

u, v, w and d terms) and it passes through the cone summit. This is formulated
then by
{ fhomogeneous(m =0 (25)

(Xo, Yo, Zp) = cone summit;

Relative orientation constraint

There are many orientation relationships which can be deduced and exploited
in a given part. In particular, the two common particular cases of parallelism
and orthogonality (Fig.3.a). The presence of these two characteristics is easily
detected in an object. More generally, given a pair of features (F;, F;) whose
orientations are defined respectively by two vectors (7;,7,) which make an
angle «, the relative orientation constraint is expressed by

il i, = cos(a) (26)

Relative separation constraint

The relative separation between features can be exploited when the distance
between parallel features (Fig.3.b) is already known or needs to be imposed
or when the object presents a symmetry aspect leading to some separation

13
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Figure 2: (a): The axis of the cylinder patch Cyl is included in the plane P. (b) The line associated
with the edge F is included in the cylinder Cyl.

distance relationships (Fig.3.c). We will take as example the case of planes.
Given a pair of parallel planes (P;, P;) separated by the algebraic distance d
(Fig.3.b), this constraint is expressed by:

di+d; =d (27)

d; and d; are the distance parameters associated respectively to F; and P;.
The planes are oriented in opposite directions.

Given two pairs of parallel planes (P, P;) and (P, P;) separated by the
same distance (Fig.3.c), the constraint is expressed then by:

di +d; =dj +d, (28)

Other constraints

There are also other type of constraints like those imposed directly on the
surface parameters as a consequence of the surface representation e.g. the
representation of a plane by Equation (2) requires that the sum of the squared
elements of the normal be equal to one. Such constraints will be referenced as
the unit constraints.

14
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Figure 3: (a): Each pair of planes (P, P2, P3) makes an angle of 90°, the axis of the cylinder Cyl is
orthogonal to P;. (b): The planes (P, P») are separated by distance d. (c): Each pair of parallel planes

of the hexagonal prism is separated by the same distance.

OPTIMIZATION OF SHAPE SATISFYING THE
CONSTRAINTS

Given sets of 3D measurement points representing surfaces belonging to a
certain object, we want to estimate the different surface parameters, taking
into account the geometric relationships between these surfaces and the specific
shapes of surfaces as well.

A state vector p'is associated to the object, which includes all set of para-
meters related to the different patches. The vector p has to best fit the data
while satisfying the constraints. Consider F'(p) to be an objective function de-
fining the relationship between the measured data points and the parameters.
Such function is generally a minimization criterion (e.g. sum of least squares
residuals, maximum likelihood function, etc.).

Consider Cy(p), k = 1..M, the set of constraint functions defining the geo-
metric constraints where C(p) is a vector function associated with constraint
k. The problem can be then stated as follows:

minimize F(p)
subject to the constraints Cv(p) <m, k=1.M (29)

Here 75, represents the tolerance related to the constraint C}. Ideally the
tolerances have zero values, but practically, for geometric constraints they are

15



assigned certain values which reflects the geometric inaccuracies in the relative
locations and shapes of features. It is up to the designer to set the tolerances,
however an appropriate definition of the tolerances for a given object can be
set up by using the scheme developed by Requicha [48].

When faced with an optimization problem it is necessary to know the char-
acteristics of the components of the problem since techniques that solve the
problem more efficiently depend mainly on these characteristics. The compon-
ents of the problem are the objective function and the constraint functions.
The characteristics to be investigated are the properties of these functions
which include, linearity, smoothness or continuity, differentiability and up to
what degree and the form of these functions, quadratic, sum of squared terms,
etc.

The computation time of the technique should be taken into account as
well. For a reverse engineering task that uses an interactive user environ-
ment, designers could not afford to spend hours waiting to get the optimized
shape. So a reasonable processing time (in the order of minutes) is a necessary
requirement for the optimization technique.

In order to define the appropriate approach let’s examine first the compon-
ents of the problem, the objective function and the constraint functions.

The objective function

Consider S, ., .Sy the set of surfaces and p1, ., .px the set of parameter vectors
related to them. Each vector p; has to minimize a given surface fit error
criterion .J; associated with the surface S;. The set of the parameter vectors
has then to minimize the following object function:

J=h+Jo+ ... Jn (30)

By considering a polynomial description of the surfaces, each surface S;
can be represented by:

=0 (31)

where i;, is the measurement vector with each component of the form z%y%2?
for some (a, 3,7).

The advantage of this formulation is that it leads to a compact quadric
expression of the objective function because of the linearity (with respect to
the parameters) of surface equation (31). Indeed, given m; measurements, the
least squares criterion related to this equation is

mi m; ., L7
J; =Y (bt p)? =p; Hyp; Hy =Y (hihl) (32)
=1

=1

H, represents the sample covariance matrix of the surface S;. By concatenating
all the vectors p;” into one vector = [pi",p5",.,.,.,pn"]" equation (30) can

16



be written as a function of the parameter vector p'and we get the following
objective function:

H (0) . (0)

Fo == wn=| g 0 (3
© - 0 H

Under the above form, the objective equation contains separate terms for
the data and the parameters. The data matrix H can be thus computed
off-line before the optimization.

The inconvenience of the polynomial representation (31) of the surfaces is
that it may over-parametrize the surface. For example a circular cone and
circular cylinder have 10 parameters if they are represented by the quad-
ric equation (5) whereas they actually need only 7 parameters (see (14) and
(18)). Furthermore, the reduced representation imposes implicitly the circu-
larity constraint consequently there is no need to formulate this constraint
within a constraint function. However, the implementation of the reduced
form in the optimization algorithm may cause some complexity, indeed be-
cause of the nonlinearity of the these forms, it has not been possible to get
an objective function with separated terms for the data and the parameters.
Thus, the data terms could not be computed off-line. This may increase the
computational cost dramatically.

The objective function could be taken as the likelihood of the range data
given the parameters (with a negative sign since we want to minimize). The
likelihood function has the advantage of accounting for the statistical aspect of
the measurements. As a first step, we have chosen the least squares function.
The integration of the data noise characteristics in the LS function can be
done afterwards with no particular difficulty, leading to the same estimation
of the likelihood function in the case of the Gaussian distribution.

The constraint functions

The geometric constraints include some linear constraints (e.g. the relative
separation constraint) and mainly non-linear constraints (e.g. relative orient-
ation constraint).

A matrix representation can hold all the types of the constraints mentioned
earlier. It leads to a compact form and avoid expressions with many variables.
As it will be shown later in the experiment sections a close examination of
the non-linear constraints shows that they can be represented by expressions
containing cross-product terms of at most 2 parameters. Thus they can rep-
resented by the quadratic vector function:

LA+ BT+ C (34)

where A and B are respectively a square matrix and a vector having the same
dimension than the parameter vector p, C' is a scalar. This representation
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Figure 4: A slot with two parallel planes orthogonal to a third plane.

can also include linear constraints by setting the matrix A to zero. In the
next sections the constraint functions will use the matrix and vector notation
defined in Appendix.1.

Example

The slot shown in Figure 4 contains three surfaces. The two parallel surfaces
(S1,52) have been associated with a single normal vector nj and the surface
S3 is oriented by the normal n3. The three surfaces are then defined respect-
ively by (n3,d;), (n1,ds) and (n3,d3). The parameters of the slot can be
then encapsulated in the vector p = [Tf,T, dy, do, 15", ds]”. The fixed distance
constraint between the surfaces S; and Sy and the orthogonality constraint
between (S7,S3) and S; are represented respectively by :

dg*d]:d
ST -
nq TL3:0

The first constraint is linear and can be put into the form
B"p+C =0, B=[0,0,0,-1,1,0,0,0,0]", A=0], C = —d

The second constraint is non-linear and can written under the quadratic form:
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The optimization techniques

Optimization techniques fall into two broad branches namely Operation Re-
search techniques and the recent evolutionary techniques.

Evolutionary computation techniques [28, 44] have been having increasing
attraction for their potential to solve complex problems. In short they are
stochastic optimization methods. They are conveniently presented using the
metaphor of natural evolution: they start from a randomly generated set of
points or solutions of the search space (population of individuals). Then this
set evolves following a process close the natural selection principle. At each
stage a new set of population is generated using simulated genetic operations
such as mutation or crossover. The probability of survival of the new solu-
tions depends on how well they fit a given evaluation function. The best are
kept with high probability and the worst are discarded. This process is re-
peated until the set of solutions converges to the one best fitting the evaluation
function.

The main advantages of the evolutionary techniques is that they do not
have much mathematical requirements about the optimization problem. They
are O-order methods, in the sense that they operate only on the objective
function and they can handle linear or nonlinear problems, constrained or
unconstrained.

The main drawback of these techniques is that they are highly time con-
suming. This is due to the fact that to ensure convergence, the number of
generated solutions has to be high, and at each iteration all the solutions have
to be evaluated. This increases the computation time dramatically.

In CAD applications these techniques, and in particular the genetic al-
gorithms have been used in product shape design [59], manufacturing feature
extraction [38], description capture from range data [49] and design specifica-
tion and evaluation [63].

The second branch of the optimization techniques are the classical op-
eration research techniques. They are more mature than the evolutionary
techniques. They involve search techniques, numerical analysis and differen-
tial tools. Most of these techniques use an iterative scheme. A reasonable
initialisation causes significant speedup in convergence. A detailed review and
analysis of these optimization techniques could be found in [21, 26]. Descent
methods, for instance the Newton-Raphson minimization was used in con-
straint solving [32, 42| and surface meshing [41]. Quadratic programming and
sequential quadratic programming were used for curve and surface optimiza-
tion [45, 64].

Which technique should be adopted ?

We believe that the evolutionary techniques make them suitable mainly to the
optimization cases where objective functions and constraints are very complex,
presenting hard-handled aspects such nonlinearity, non-differentiability, or do
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have not explicit forms. Indeed the earlier mentioned characteristics of these
techniques allow them to by-pass these problems.

As our optimization problem does not have these problems, the operational
research techniques are more appropriate. This argument is supported by the
time-consuming characteristic of the evolutionary techniques, where the aver-
age scale of the processing time is on the order of hours. This characteristic
makes these methods not appropriate for interactive user environment and im-
practical for a static verification and checking of the results when experiments
have to be repeated many times.

The other important reason for opting for search techniques is that we
can obtain a reasonable initial estimate of the model parameters. This initial
solution is the estimation of the model parameters without considering the
constraints. This estimation is not far away from the optimal one since it is
obtained from the real object prototype.

The optimization algorithm

Theoretically a solution of the problem stated in (29) is given by finding the
set (7, A1, Ag, ., -, Ax) minimizing the following equation:

M
E(@p) = F@) + > MCr(p)

k=1
F(p) = p Hp (35)
Cw(p = pr A+ Bl P +Cy

Under the Khun-Tucker conditions [21](Chapter 9), namely that the ob-
jective function and the constraint functions are continuously differentiable
and the gradients of the constraint functions are linearly independent, the

optimal set (P, A1, Ag, ., ., \y) minimizing (35) is solution of the system:
OF XL aC
R P Vil (36)
op = 0D

In some particular cases it is possible to get a closed form solution for (36)
such as the generalized eigenvalues methods. This depends on the character-
istics of the constraint functions and whether it is possible to combine them
efficiently with the objective function. When the constraints are linear (having
the form Ap'+ B = 0) the standard quadratic programming methods could be
applied to solve this system.

However the geometric constraints are mainly non-linear. Generally it is
not trivial to develop an analytical solution for such problem. In this case an
algorithmic numerical approach could be of great help taking into account the
increasing capabilities of computing.

Now if we look to the objective function and the constraint functions in (35)
we see that they are explicitly defined in function of the parameters, they are
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smooth, differentiable and they both have a quadratic structure. From (32)

we can notice that each submatrix H; of # in (33) is the sum of cross-product
- T
terms hih. . Thus H; as well as H is positive definite. Consequently the

objective function is convex. Such functions could be efficiently minimized.
Besides it has the important property that its minimum is global. If the
constraint functions are also convex, the optimization problem (35) would be a
convex optimization problem for Ay > 0. For such problem an optimal solution
exists, moreover this solution corresponds to the solution of the system (36)
defined by the Khun-Tucker conditions [50](section 27,28).

The constraint functions are not necessarily convex since their related mat-
rix A is not necessarily positive definite. However the squared constraint func-
tion will have a Hessian matrix which is positive and definite, so is a convex
function. The whole optimization function E(p) in (35) will be then a con-
vex function. So by considering the squared constraint function the problem

would be to determine the set (p, A1, Mg, ., ., Ay) minimizing:
M
E(p) = F@) + > M(Cr(p)*), A >0 (37)
k=1

To provide a numerical solution of this problem we have been investigating
an approach in the framework of sequential unconstrained minimization. The
basic idea is to attach different penalty functions to the objective function
F(p) in such a way that the optimal solutions of successive unconstrained
problems approach the optimal solution of the problem (37). Indeed the term
S A (Cr(p)?) could be seen as a penalty function controlling the constraints
satisfaction. The scheme is then increment the set of )\ iteratively, at each step
minimize (37) by a standard non-constrained technique, update the solution
p, and repeat the process until the constraints are satisfied. For equal values of
Ak, Fiacco and McCormick [19] have shown that the solutions of (37) converge
towards the same solution of the problem (29) when Ay tends to infinity.

In more detail the proposed algorithm is: We start with a parameter vector
1% that minimizes the least squares objective function and attempt to find
a nearby vector pl!l that minimizes (37) for small values Az, in which the
constraints are weakly expressed. Then we iteratively increase the set of A
slightly and solve for a new optimal parameter 5"+ using the previous ",
At each iteration n, the algorithm increases each )\, by a certain amount
and a new p™ is found such that the optimization function is minimized
by means of the standard Levenberg-Marquardt algorithm (see Appendix 3).
The parameter vector p is then updated to the new estimate 7'l which
becomes the initial estimate at the next values of A\;. The algorithm stops
when the constraints are satisfied to the desired degree or when the parameter
vector remains stable for a certain number of iterations.

A simplified version of the algorithm is illustrated in Figure 5.a in which a
single A is associated to the constraints.

A computational problem associated with this algorithm emerges when A
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find pminimizing F(p) + AC(p)
(a) (b)

Figure 5: (a): optim1 - batch constraint optimization algorithm. (b): optim2 - sequential constraint

introduction optimization algorithm.
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become too large. This problem arises in the Hessian matrix of the optimiz-
ation function (37) involved in Levenberg-Marquardt algorithm. This matrix
become ill-conditioned for high values of A\x. This aspect could be detected
from the expression of this matrix:

M
Hess(E(p)) = 2H + > 4\Cr(P)Ax + R'DR (38)
k=1
where
g [9C10C  9Cu
, 7 o5 op
2\, 0 .- 0
0 2\ --- 0
D = o : :
0 - 0 2\y

The rank of R is equal to M since we assume that the derivatives of the con-
straint functions are linearly independent. RY DR will have also a rank equal
to M and since D is a diagonal matrix, the M non-null eigenvalues values of
RTDR will depend of )\,. More exactly, each eigenvalue has the form o\,
where o), is some coefficient. Thus the norm of RT DR will increase as \;
increases. This is not the case with the other terms of the Hessian matrix
(38). Indeed, H is independent of Ay and the product A\;Cy(p) in the other
term is expected either to vanish or to remain stable since the constraint value
Cr(p) decreases as )\ increases. So M eigenvalues of the Hessian matrix (38)
will increase with A\, whereas the N — M others remain independent and not
affected. Consequently as A values increase and become large the condition
number of the Hessian matrix of the optimization function increases and the
matrix become ill-conditioned. Consequently the computation of the inverse
of the Hessian matrix in the Levenberg-Marquardt algorithm will suffer from
high numerical instability and this approach will no longer be appropriate.
Broyden et al [12] have developed a method to overcome this numerical prob-
lem. Their method is applied with penalty function having equal weight for all
the constraints. We have extended the application of this method to different
weights of the constraints. The details are developed in Appendix 4.

The initialization of the parameter vector is crucial to guarantee the con-
vergence of the algorithm to the desired solution. For this reason the initial
vector was the one which best fitted the set of data in the absence of con-
straints. This vector can be obtained by estimating each surface’s parameter
vector separately and then concatenating the vectors into a single one. Nat-
urally, the option of minimizing the objective function F(p) alone has to be
avoided since it leads to the trivial null vector solution. On another hand, the
initial values )\, have to be not too small in order to avoid the above trivial
solution and to give the constraints a certain weight. Practically this condition
should be applied only to the unit constraints (e.g. the normals of the plane
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surfaces or quadric axis have to be unit). A convenient value for the initial
is : o
= F0) (39)
Cr(P1)
where pi is the initial parameter estimation obtained by concatenating the
unconstrained estimates. This ensures the objective function and the penalty
functions have similar values at the first minimization.

Another option of the algorithm consists of adding the constraints incre-
mentally. At each step a new constraint is added to the constraint function
C(p) and then the optimal value of p'is found according to the scheme shown
in Figure 5.b. For each new added constraint C(p), A\; is initialized at A,
whereas p is kept at its current value.

EXPERIMENTS

The experiments were carried out on both synthetic and real data. The real
data was acquired from test objects with a 3D triangulation range sensor. The
range measurements were already segmented into point sets associated with
surfaces by means of the rangeseg [36] program.

The first experiments aimed to check the behaviour and the convergence
of the algorithm. These experiments were applied on surfaces extracted from
a single view of polyhedral objects. Through these experiments the perform-
ances of the batch version of the algorithm (optim1) and the sequential version
(optim?2) were compared (see section “The step model object” ).

In the second series of experiments (second subsection) we have gone fur-
ther in complexity, firstly on the level of features types. Thus, objects contain-
ing quadric features were examined. Secondly the range data was collected
and registered from different views. Thus, the data was additionally corrup-
ted by the registration errors. So one objective was to test the robustness of
the algorithm toward the complexity of the features (thus the diversity of the
constraints) and the registration errors.

At first objects containing single quadric feature were studied. Section
“half cylinder” and Section “the cone object” deal with the cylinder and the
cone case respectively. Multi-quadric objects were examined afterwards (Sec-
tions “Multi-quadric object 17 and “Multi-quadric object 2”). For the first
category we have compared results issued from a single view with those ob-
tained from multiple views. For both categories we checked the impact of
constraint satisfaction on the quality of object shape attribute estimation.

Other tests were carried out in order to give answers to the following ques-
tions:

1. What happens when some features are left unconstrained? What is the
impact on the other constrained features and more generally on the object
shape estimation? Reciprocally what is the impact of the constrained
features on the non-constrained ones?
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2. How stable is the algorithm?
3. How optimal is the solution?
4. What happens if some constraints are invalid or inconsistent?

Experiments carried on the synthetic polyhedral object (step model object)
will give preliminary answers to question 1. Trials on real multi-quadric objects
(Sections “Multi-quadric object 17 and “Multi-quadric object 2”) will bring
additional confirmation.

Answers to questions 2, 3 4 will be developed in the experiments of Section
“multi-quadric object 2”.

Application to polyhedral objects

Polyhedral objects involve mainly relative orientation constraints and relative
separation constraints. Consider N plane surfaces defining a polyhedral object
represented by a parameter vector p.

Given a pair of planes (P;, P;) whose normals (i;, 77;) make an angle «; j,
the angle constraint (26) is expressed by:

Cangleg,.;, (D) = (7" Ai i — 2cos(ai ) = 0 (40)

where A; j is an N x N matrix which according to the notation of Appendix.1
is defined by A; j = L, s2) where r and s are respectively the indices of the
first element of n; and 7n; in the parameter vector p.

The separation constraints (27) and (28) are respectively expressed by (see
Appendix 1) :

Cdist(i,j)(ﬁ) = (i(r,s)ﬁ_ d)2 =0 (41)
Cdist(i,j,k,z) (17) = (i(r,s,t,l)mQ =0 (42)

where 7, s,%, [ represent the indices of the distance parameters d;, d;, dj, d; in
the parameter vector p.

Additionally, the unit constraint has to be taken into account since the
plane’s orientation is defined by a unit normal. For a given surface plane P;,
whose normal is 7i;, this constraint is expressed by:

where U; is an N x N matrix which, according to the notation of Appendix
1 is defined by U; = Uy, 10y, where 7 is the index of the first element of 7; in
the parameter vector p.

The step model object

The first series of tests used a synthetic step model object. This object contains
sets of parallel planes. The prototype object is composed of eight faces. We
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have studied the case when five faces are visible (Fig.6.a). For this view we
assigned a single normal to each set of parallel planes. Three normals n7, n5, 15
are associated respectively to surfaces (S7,S;), (52, 53), and Ss. So, there are
three angle constraints (orthogonality of each two normals) and the three unit
vector constraints.

The set of visible surfaces is defined by the parameter vector

ﬁ: [mT7d17d47@T7d27d37n5 ;d5]

Using the paradigm the Section “Representation of the objective function”,
the objective function associated with this object is expressed by:

. [ Gia (0)5,5 (0)5,4-‘
F(p)=p Hp, H= (0)5,5 Gas (0)5,4

(44)
05 (015 Gs |
where
G],4 - hT Nl 0 s Ggygz h; NQ 0
B0 N, 0 N
- Hs hs

and Hy = SN (XE)(XET, by = SN XE
Xf is a data point which belongs to the plane surface Sy, and Ny is the number
of points of the plane S.

The normals 7}, n3, n; are orthogonal and have to be unit so we set the
following constraint functions

Cuni, () = (P'UH—1)> =0 (46)
Cunits(P) = (P Usp—1)> =0 (47)
Cunit (0) = (0 Usp—1)> =0 (48)
Cangter (P) = Cangle o (0) = (97 Avoff — 2cos(m/2))* = 0 (49)
Cangtes (P) = Cangle, 5 (0) = (97 Av 5P — 2cos(m/2))* = 0 (50)
Cangtes (B) = Cangle o, (0) = (0" AasP — 2cos(m/2))? = 0 (51)

Since the unit constraints are used mainly to avoid the null solution, a single
A is associated to them. The optimization function is then

E(ﬁ) = ﬁTHﬁ_F )‘I(C’u.mitl + Cunitg + Cuni%)(ﬁj
+)\20angle1 (m + )\3C(Lngl82 (ﬁj + )\40(1.719163 (ﬁ)

The results shown below are the average of 100 trials. At each trial the sur-
faces’ points are randomly corrupted with a Gaussian noise of 3 mm standard
deviation. Then optim1 and optim?2 are applied to the same set of data points.
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Figure 6 shows some results obtained with the algorithm optim1. These results
represent the variation and the behaviour of some constraint functions during
the algorithm with respect of their associated A. Other results represent the
variation of the estimation error of some of the object parameters e.g. one
surface’s normal. The actual normals are known since the object is simulated.

Figure 6.b shows the decrease of the unit constraint function (46) as A
increases, similarly for the angle constraint function (50) which decreases as
the associated weight A3 increases in Figure 6.c. We notice that both functions
are decreasing nearly linearly at a logarithmic scale. This suggests that it is
possible to enforce the constraint to any level of tolerance until the numerical
accuracy of the algorithm is compromised. The orientation error related to
the surface normal n] and represented here by the angle formed by the actual
normal and the estimated one decreases and stabilizes to a relatively low value
(around 0.06degree) in figure 6.d. This error is computed as follows: at each
iteration of the algorithm optim1 the estimated normal n; is extracted from
the solution p and then the error with respect to the actual simulated n)
is computed. At each iteration the values of the different A\ change, but the
orientation error is mapped as function of A\; just to show its variation although
it is not depending on A; in particular.

Similar behaviour is observed for the other parameter vectors but they
are not shown here to save space. This first observation of the constraints
behaviour and the parameter estimation is encouraging because it means that
the part’s shape and position stabilizes as a whole. This fact will be confirmed
in next experiments with other objects.

The three figures Fig.7, Fig.8 and Fig.9 illustrate respectively the variation
of the angle constraints values Coypngie, (49) Cangie, (50) and Cipgie, (51) during
the application of the sequential version optim2. The optimization process
has four steps, first the unit constraints are inserted then the three angle
constraints are applied one by one. So that at the first step the optimization
function is

In the second step it will be

E(m = ﬁTHﬁ+ )‘1 (Cunit, + Cunitg + C’u.mi%)(ﬁ') + +)\20angle1 (m (53)

and so on.

The figures shows clearly the significant decrease of the constraint value
when the related constraint function is added to the optimization function.
It is seen also that once the constraint is satisfied the addition of the other
constraints only affects the level of tolerance previously reached by a very
small degree. In Figure 7, it is noticed that at the end of step 2 (Fig.7.b)
the constraint C,pg, is well satisfied although the two others are not yet.
Similarly, Fig.8.(c) shows that at the end of step 3 the constraint Copge, is
well satisfied while the constraint Cy,g, is not yet implemented. Figure 9
shows that during step 2 and step 3 (when Cipge, and Copgre, are applied)
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(a) : Only the unit constraints are considered in the optimization function (see (52)). Step2 (b) : the
angle constraint function Cypge, is added to the optimization function (see (53). Step3 (c): addition of

the constraint function Cypgie, and Step4 (d): addition of the constraint function Cypgie, -
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the constraint Cgpg, almost keeps stable at a reasonable value. This means
that the satisfaction of some constraints is not performed at much cost to the

unconstrained features.
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Figure 9: Variation of the angle constraint value Cypg1, (51) at the four steps of the algorithm optim2.
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Figure 10 shows the the variation of the estimation error of one normal
n; along the four steps of the algorithm. Similar results are obtained for the
other normals. Similar to experiment with optim1, figure 10.d shows that at
the end of the optimization the error in 7] estimation stabilizes at a low value.
The same is noticed for the other normals.

So the experiments carried out on the step model object have provided evid-
ence of the applicability of both versions optim1 and optim2 of the algorithm.
Both versions offers high satisfaction of the constraints, moreover the estim-
ated orientation of the object surfaces extracted from the algorithm’s solutions
are close to the actual one in both versions. This goes towards saying that
the satisfaction of object shape requirements is not performed at the expense
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of object localization, although the purpose of the algorithm is not to recover
the object localization.

However, optim2 is more time-consuming than optim1l (around N times,
where N is the number of constraints). So, since both estimations of optim1
and optim2 are acceptable, we have preferred to use optim1 for the rest of the
work.

The tetrahedron

The second polyhedral object tested is a real tetrahedron. The data has been
extracted from a view representing three visible faces Sy, Sy, S3 (Figure 11).

The parameter vector is o= [pi" ., p3" 0% |”.

S1

4

2

{

Figure 11: A top view of the tetrahedron and the extracted surfaces.

Tetrahedron

In this view, the object surfaces have three angle constraints represented by
the three angles 90° , 90° and 120° between the three surface normals, as well
as the unit vector constraints. So we define the following constraint functions

Cunit, (p) = (P UP—1)"=0 (54)
Cunit,(p) = (p"Usp—1)" =0 (55)
Cunit;(0) = (p"Usp— 1) =0 (56)
Cangter (D) = Cangleqy,, (P) = (P A12P — 2cos(2m/3))? = 0 (57)
Cangles (P) = Cangteq 5 (B) = (7" A139 — 2cos(m/2))* = (58)
Cangtes (0) = Cangle s (B) = (0" Aazp — 2cos(m/2))” = 0 (59)

The application of the paradigm developed in Section “Representation of the
objective function” is straightforward for this object and we get easily the
following optimization function:

PHD A+ N Z Unit,(p) + Z MNClangie,_, (D) (60)

=1 =
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where
G (0)a (0)s
H=|(0)s G2 (0)4
(04 (0)s G

and G}, have the same structure as in equation (45). All the constraints were
applied simultaneously according to algorithm optim1. The results are the
average of 100 trials. At each trial the initial vector p{” is corrupted by a
uniform deviation of scale 5%. These 100 trials are a quantitative criterion
for testing the stability of the algorithm with respect to the perturbations in
the initial value of the solution. Here again all the different constraints values
decrease during the optimization. This is illustrated through the two examples
shown in Fig.12.(a,b) where the unit constraint Cy,;;, (54) and the angle
constraints Cypge, (57) are mapped in function of their associated weighting
values A\; and \,. Figure 12.c represent the variation of the objective function
(the least squares function) p” Hp' during the optimization process; it increases
slightly then it stabilizes. Figure 12.d shows the evolution of the sum of all
the constraints during the algorithm application. Since at each iteration of
the algorithm optiml the A, values increase, the variation of the objective
function and the sum of the constraints during the optimization is mapped
in function of one of the Ay, (Ag). It is seen that the sum of the constraint
values converges to zero at the end of the optimization. It is also noticed that
the constraint values could be decreased further while the least squares error
remains stable. Thus, the final part shape now satisfies the shape constraints
at a slight increase in the least squares fitting error.

Application to surfaces having quadric surfaces

Compared to polyhedral objects this category has more complex constraints
since the objects contain different types of surfaces and consequently more
geometric features. So, besides the constraints related to the plane surfaces
other constraints defining properties and relationships between quadric fea-
tures could be defined as well as relationships between quadric features and
plane features. The objects studied in this section contain cylindrical, conical
and spherical patches. In this section, the constraints’ expressions will use the
notation of Appendix 1.

Also, for all objects, the results of the proposed approach have been com-
pared with object estimation methods which do not consider constraints, in
particular the least squares technique applied to each surface separately.

The half cylinder

This object is composed of four surfaces. Three patches S;, Sy and S3 have
been extracted from two views represented in Figure 13(a,c). These surfaces
correspond respectively to the base plane S;, lateral plane S; and the cyl-
indrical surface S; (Figure 13.b). The parameter vector is 7 = [pi”, p5", p3" |©

Y
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Figure 12: (a): Decrease of the unit constraint function (54) with respect to A;. (b): Decrease of the
angle constraint function with respect to A». (c) and (d) variation of the objective function p7 #p and the
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These functions are mapped in function of Ay just to show their evolution all along the optimization
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half cylinder

(2)

Figure 13: Two views of the half cylinder and the extracted surfaces.

where p_i = [nTlTa dl]Ta p_é = [nj'QTa d?]T and p_l;) = [(I,, ba c, h‘a g, f’ U, U, W, d]T The
least squares error function is given by:

Hy  Ougy  Ouao
F(p)=p"Hp, H=| Ous Hy  Ouu (61)
Oaoy Olaaey  Hs

where H,, Hy, H3 are the data matrices related respectively to Sy, Sa, Ss.

This object has the following constraints:
1. S and S5 are perpendicular.
2. The cylinder axis is parallel to S;’s normal.
3. The cylinder axis lies on the surface S,.
4. The cylinder is circular.

Constraint 1 is expressed by the following condition

Cang(P) = (7”7‘1T7772)2 = (ﬁrL(l,ts,Q)ﬁ)2 =0

Constraint 2 is satisfied by equating the unit vector 7 in (14) to S;’s normal
n;. Constraints 3 and 4 are represented respectively by:

ConeP) = (is

p—Dp L(5,15,2)ﬁ)2 =0
6
Ccirc(m = Z C circy, ﬁ) — 0

(see Appendix 2 for details )
Finally the normals 77; and 7, have to be unit. This is represented by:

Conit (@) = (" U gyp — 1)>+ (" Usnp — 1)* =0
Thus, the optimisation function is:

E(m - _‘THﬁ_'_ )\lcunit (m + )\QCang (m + )\SCaze (m + >‘4Ccirc(m
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Experiments

In the first test, algorithm optim1 has been applied to data extracted from
a single view (Figure 13.c). In Figure 14 the behaviour of the different con-
straints during the optimization have been mapped as a function of the as-
sociated A\, as well as the least squares residual (61) and the sum of the
constraint functions. The figures show a nearly linear logarithmic decrease of
the constraints. It is also noticed that at the end of the optimization all the
constraints are highly satisfied. The least squares error converges to a stable
value and the constraint function vanishes at the end of the optimization. The
figures also show that it is possible to continue the optimization further until a
higher tolerance is reached, however this is limited by the numerical accuracy
of the machine.

In the second test, registered data from view 1 (Figure 13.a) and view 2
(Figure 13.c) was used. The registration was carried out by hand. Results
similar to the first test were obtained for the constraints.

Tables 2 and 3 present the values of some object characteristics obtained
from an estimation without considering the constraints and from the presen-
ted optimization algorithm. These are shown for the first and second test
respectively.

view2 angle(Sy, S2)(degree) | distance(X,, So)(mm) | radius(mm)
without constraints 90.84 6.32 26.98
with constraints 90.00* ! 0.00* 29.68
actual values 90 0 30

Table 2:

from single view of the half cylinder object.

Improvement in shape and placement parameters with and without constraints from data

registered viewl and view2 | angle(S, S2)(degree) | distance(X,, So)(mm) | radius(mm)
without constraints 89.28 2.23 30.81
with constraints 90.00* 0.00* 30.06
actual values 90 0 30

Tabl

e 3:

merged from two views of the half cylinder object.

The characteristics examined are the angle between plane S; and plane Ss,
the distance between the cylinder axis’s point X, (see Section “The cylinder”
(14)) and the plane S, and the radius of the cylinder. The comparison of the
tables’ values for the two approaches show the clear improvement made by
the proposed technique. This is noticed in particular for the radius for which
the actual value is 30mm, although the extracted surface covers considerably
less than a half of a cylinder. As we constrained the angle and distance

1%

means that the estimated value has been constrained to be the true value
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relations, we expect these to be satisfied and they are to almost an arbitrarily
high tolerance, as seen in Fig.14. The radius was not constrained but the
other constraints on the cylinder have allowed the least squares fitting of the
unconstrained parameters to achieve a much more accurate estimation of the
cylinder radius in both cases.

Multi-quadric objects

The third series of tests have been carried out on more complicated objects
with several quadric surface patches. For these objects, all of the surfaces have
been considered. The registration of the different views was done manually,
thus the registered is expected to be corrupted by an additionally systematic
error. By this way we can judge the performances of the algorithm in the
presence of such errors.

Multi-quadric object 1

This object (Fig.15) comprises two lateral planes S; and S;, a back plane
S3, a bottom plane Sy, a cylindrical surface S5 and a conic surface Sg. The
cylindrical patch is less than a half cylinder (40% arc), the conic patch occupies
a small area of the whole cone (less then 30%). The vector parameter for this

lateral plane

cone patch s>

lateral plan et .cylinder patch S5
S1 ,

bottom plane

© (d)
Figure 15: Four views of the multi-quadric object 1.
object is p! = [p_{T,pET,p}T,pZT,pET,p%T] where p; is the parameter vector
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associated to the surface S;.
The surfaces of the object have the following constraints:

S1 makes an angle of 120°? with S,.

S1 and Sy are perpendicular to Sj.

S1 and S5 make an angle of 120° with Sy.

Ss is perpendicular to Sy.

The axis of the cylindrical patch Sy is parallel to S3’s normal.
The axis of the cone patch Sg is parallel to S;’s normal.

The cylindrical patch is circular.

O NS o e

The cone patch is circular.

The first four angle constraints are grouped into a single angle constraint
function:

2
Cont(7) = - Cungi, (7)

Constraints 5 and 6 are imposed by associating the normals i3 and 7,
respectively to the unit vectors of the cylinder axis and the cone axis (see
paragraphs circular cylinder and circular cone in Section “Preliminaries”).

The circularity of the cylinder and the cone are expressed respectively by:

czrccyl czrccylk

CCiT'Ccone C”'Cconek

e
-5

see Appendix 2 for the development of all these constraints.
Finally the unit constraints on the surface normals have to be taken into
account. This leads to the following unit constraint function:

Cunit(D) = (ﬁTU(L?,)ﬁ*1)2+(ﬁTU(E:,?)ﬁ*1)2+(25$TU(9,11)15‘*1)2+(ﬁTU(13,15)ﬁ*1)2

The complete optimisation function is then given by the expression:
E(]j) - ﬁTHﬁ+ )\]Cunit (m + )\QCang (m + )‘3Ccirccyl(m + )\4Cci7‘ccone (m

Experiments

Since the surfaces cannot be recovered from a single view, four views (Fig.15)
have been registered by hand. 100 estimations were carried out. At each trial
50% of the surface’s points are selected randomly. Thus the algorithm starts
with a different initialization each time. The results shown in this section are
the average of these estimations. So by examining the mean of the estimations
we can have a judgement on the algorithm convergence.
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The results regarding the algorithm convergence are shown in Figure 16.
All of the constraint functions vanish and are highly satisfied.

The angles between the different fitted planes are presented in Table 4. It
should be noticed that all the angles converge to the actual values. Table 5
and Table 6 contain the estimated values of some attributes of the cylinder
and the cone. The values show that each of the axis constraints are perfectly
satisfied, the estimated radius and the cone half angle o improve when the
constraints are introduced. We notice the good shape improvement, relative
to the unconstrained least squares method, given by a reduction of bias of
about 22mm and 3° respectively in the radius and the half angle estimation.
The standard deviation of the estimations have been reduced as well.

angle (S1,92) | (S1,95) | (S1,54) | (S2,85) | (S2,S4) | (S5,S4)
without constraints | 119.76 92.08 121.01 87.45 119.20 90.39
with constraints 120.00* | 90.00* | 120.00* | 90.00* | 120.00* | 90.00*
actual values 120 90 120 90 120 90

Table 4: The surface’s relative angle estimation with and without constraints.

cylinder parameters | angle(axis, S3’s normal) | radius | standard deviation of radius
without constraints 2.34 37.81 0.63
with constraints 0.00* 59.65 0.08
actual values 0 60 0

Table 5:

The cylinder characteristic estimates with and without constraints.

cone attributes angle(axis, Sy’s normal) | « | standard deviation of «
without constraints 6.08 26.01 0.30
with constraints 0.00* 31.83 0.13
actual values 0 30 0

Table 6: The cone characteristic estimates with and without constraints.

The radius estimation is within the hoped tolerances, a systematic error of
about 0.5mm is quite nice. However the cone half angle estimation involves
a larger systematic error (about 1.8°). Two factors may contribute to this.
The registration error may be too large since the registration was done by
hand and the limited area of the cone patch which covers less then 30 % of
the whole cone. It is known that when a quadric patch does not contain
enough information concerning the curvature, the estimation is very biased,
even when robust techniques are applied, because it is not possible to predict
the variation of the surface curvature.

2We consider the angle between normals.

42



Leaving some features unconstrained

We have also investigated whether leaving some of the features unconstrained
affects the estimation since one can worry that the satisfaction of the other
constraints may push the unconstrained surfaces away from their actual pos-
itions. To investigate this, we have left the angles between the pair of planes
(S1,S2) and (Sy, S3) unconstrained. The results are shown in Table 7. We see
that the estimated unconstrained angles are still close to the actual ones and
the accuracy is improved compared to the non-constrained method.

angle (51, 52) (51, 53) (51, 54) (52, 53) (52, 54) (53, 54)
without constraints | 119.76 92.08 121.48 87.45 119.20 90.39
with constraints 119.99 90.33 120.00* | 90.00* | 120.00* | 90.00*
actual values 120 90 120 90 120 90
Table 7: Improvement of non-constrained angle estimates.

Multi-quadric object 2

This object (Fig.17) contains six plane surfaces S, S, S3,S4, S5, S, a cyl-
indrical surface S; and a spherical surface Sg. The surfaces Sy, Ss, Sz, S4, S5
form a square prism, the surface Sy is a square plane surface. The cylindrical
patch is a whole cylinder and the spherical patch occupies a half sphere.

plane S1

cylinder patch S7

Sphere patch S8

Figure 17: Four views of the multi-quadric object 2.
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The surfaces of the object have the following relationships:
S1, S5 are parallel.

Sy, Sy are parallel.

S5, Sg are parallel.

S1, S3 are orthogonal to Sy, Sy.

Ss, Sg are orthogonal to S, S3 and S, S;.

S1, 53 and S,, Sy are separated by the same distance.

The cylinder axis is parallel to Sy, .S,, S3 and S; and orthogonal to S5, Sg.

S B o

The cylinder axis is located midway between S; and S3 and midway
between S, and Sy.

9. The cylindrical patch is circular.
10. The sphere centre lies on the cylinder axis.
11. The radius of the cylinder is equal to the radius of sphere.
12. The length diagonal of surface S; is equal to the cylinder diameter.

The constraints 1,2 and 3 allow a single normal to be associated with each of
the pair of planes (S, 53), (S2,54) and (S5, Sg). Consequently the parameter
vector of the object could be defined as:

— - T - T - T T —T1T
P:[nl Jdy,ds,ny”  do, dy,ms”  ds, de, D7, Ps ]

where 17 is the normal associated to the pair of planes (S, S3), di is the
parameter distance of Sy, ds is the parameter distance of Ss, 15 is the normal
associated to the pair of planes (Ss, Sy), do is the parameter distance of Sy,
dy is the parameter distance of Sy, 715 is the normal associated to the pair of
planes (S5, Sg), ds is the parameter distance of S5, dg is the parameter distance
of Sg, p7 is the parameter vector associated to the cylindrical patch S; and pg
is the parameter vector associated to the spherical patch Ss.
The constraints 4 and 5 are expressed by:

3
Cangl (ﬁ) = Z Oan.qli (ﬁ)
i=1

The 6 constraint is formulated by:
2 r —
Caist(P) = (2(4,5,9,10)1))2 =0

The 7" constraint is imposed by associating the normal 77} to the unit vector of
the cylinder axis (see paragraph circular cylinder in Section “Preliminaries”).
The constraints 8,9,10,11 and 12 are expressed respectively by:

Came_pos (m - (*QﬁTL(l,QZ,Q)ﬁ_F 7:4{7517)2 + (*QﬁTL(ﬁ,QZ,Q)ﬁ_F 7:;71015‘)2 =0
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6
CCiTC(m = Z Ccirck (m =0
T

k=1
Copheente, (D) = (0" T 12,22 2317) + (p" Ti11,13,22 24]5) + (p" T(12,13,23 24]5)
Ceguragins (D) = (7(]; 5,30) p +p U 27,29,22,24 15‘) =0
Cmedian(P) = (ﬁT(I 41) — 2U(22,24))7 + 272515j2

Finally the unit constraints related to the planes’” normals and the unit
constraint of the coefficient a of the sphere are grouped into the following unit
constraint

Cunit(P) = (ﬁTU(L?,)ﬁ—1)2+(Z7TU(6,8)§—1)2+(17TU(11,13)ﬁ—1)2+(ﬁTU(26,26)ﬁ—1)2

The optimization function is then:

E(ﬁ) - —THﬁ—i_ )\lc’unit (m + )\QC(mgl (m + )\’30(17#(]7) + )\4Cafr,e_pos (m
+)‘5Ccir0(ﬁ) + Aﬁcsphcenter (ﬁ) + )‘7Cequmdius (ﬁ) + )‘8Cmedian (ﬁ)

The details concerning the formulation of all the above constraints are in
Appendix 2.

Experiments

The surfaces of the objects were recovered from 4 views shown in Figure 17 and
the registration of the range data was done by hand. Similarly to the previous
object 100 trials were performed. At each of them 50% of the surfaces’s points
are selected randomly leading to a different initialisation each trial. In all the
trials, the decrease of all the constraint errors and the high level of satisfaction
of the constraints at the end of the optimization for a slight increase of the least
squares error is essentially similar to that observed in the previous experiments
and so similar graphs are not shown here.

Through these different tests and trials we have been investigating:

How stable is the convergence of the algorithm ?

How close is the estimation to the actual optimal value 7

What are the effects of leaving some features unconstrained ?

What is the effect of constraint invalidity ?

What is the effect of constraint inconsistency ?

Lastly, some results concerning the global shape improvement of the the
object model will be presented.

SANLER I

Stability of the convergence

The previous experiments performed each over 100 trials have shown that
the mean of the estimated shapes obtained form these trials converges close
to the actual solution which satisfies the constraints. The initial solution in
each trial has a different value since the the data points are selected randomly.
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scaled max and min

This experiment aims to check the sensitivity of the algorithm with respect
to the initial value, to test the stability of the convergence of the algorithm
with respect to changes in the initial estimation. One way is to do so is to
compute the difference between the maximum and the minimum value of each
parameter in the set of different solutions. A second way is to examine stat-
ically the “closeness” of the different estimates to the mean solution, known
in the statistic terminology as the distribution of the solutions. This distribu-
tion could be obtained by computing the variance of each parameter from the
solutions issued from the 100 trials. Figure 18.a shows the maximum and the
minimum value (scaled by the absolute value of the mean) for each parameter.
The extrema of the different parameters vary at a very low scale around the
mean solution, in a range lower than 2%. The same is noticed in the standard
deviations of the parameters illustrated in Figure 18.b. This aspect is fur-
ther confirmed in the distribution of the least squares errors of the different
estimations shown in Figure 19. The related relative variance is 1.94%.
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Figure 18: (a): maximum (+) and minimum (o) value for each parameter scaled by the absolute value
of the mean. (b): relative standard deviation of the parameters.

Closeness to the actual optimal solution

By actual optimal solution we mean the estimate obtained from a process
where the constraints are implicitly built into the least squares model. The
solution provided in this case always completely satisfies the constraints. So
one may ask how close is the estimate issued from our approach to this optimal
solution. As we have mentioned previously, such an ideal and elegant formula-
tion is difficult or impossible to achieve for many objects due to the complexity
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and to the non-linearity of the geometric constraints. In fact one purpose and
motivation of our approach is to overcome this problem. Nevertheless it is
possible for some simple particular cases to combine the constraints with the
least squares error.

So, in order to make a comparison with the optimal solution a sub-part
of the multi-quadric object 2 was considered. It is composed of the two par-
allel planes S; and S3. The objective is to estimate the planes’ orientation
taking into account the parallel constraints. For the first case, the parallel
constraint is implicitly considered by associating one normal to both planes.
The optimization function is then:

Al Hit + M1 — 7''i)

where H is the appropriate data matrix. The second term of the function
is the unit constraint. A closed form solution is provided by the eigenvalue
method.

In the second case each plane was assigned a different normal vector. The
equality of the two normals has to be satisfied through the optimization pro-
cess. According to our approach the objective function is:

iy H Ay Hany + M (1 — 1 7m0)? + Ao (1 — n3 7 133)% 4 As(1 — " nig)?

100 tests were applied for each of the two cases. The average of the results
are summarized in Table 8. The estimations are similar in the two cases.
This shows that both solutions converge to the same value and almost equally
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n; 1 13 angle(ny, n3) (degree) | LS error
0.5316
1% case | 0.6733 - - - 9.07
0.5139

0.5316 0.5316
274 ase - 0.6733 0.6733 0.00 9.06
0.5139 0.5139

Table 8: mean estimates of S1 and S3 normal and LS error in the two type of solutions.

minimize the least squares error. The LS of the second solution is slightly
lower than the optimal solution one. This is because in the optimal case the
constraint is perfectly satisfied so the least squares error has to absorb all the
error. The same convergence of the two solutions is further confirmed from
the distribution of the angle (7, 7i.) where 1, is the mean of 7} and n3 and the
distribution of the difference between the LS error related to each of them,
LS and LS; (Fig.20). These dis tributions are issued from 100 trials.
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Figure 20: (a): distribution of the estimation difference. (b): distribution of the LS residuals difference.

Leaving some features unconstrained

Another series of tests has been performed without considering the median
constraint (constraint 12). This is in order to check if this will affect the pos-
ition of the four plane surfaces with respect to the cylinder axis and therefore
the estimation of the edge of the square surface S;. Results are shown in
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Table 9 with the previous results for comparison. It is noticed that the radius
estimation is not affected but the incorporation of the additional constraints
slightly reduces the diagonal length error.

distance(Sy, S3)

distance(Sy, Sy)

diagonal of Sj

cylinder radius

without constraints - - — 14.64
with all constraints 21.17 21.17 29.94 14.97
without median constraint 21.15 21.15 29.91 14.97
actual values 21.28 21.28 30.02 15.01

Table 9:

comparison of the estimation without median constraints with previous results.

Invalidity of the constraints

Suppose that one or more constraints do not reflect the actual relationships
between features and therefore are invalid. What would be the behaviour of
the algorithm? Will these “false constraints” be satisfied? What could be the
resulting estimated model 7

To answer these questions, some angle constraints were set to an incorrect
values. Three tests was carried out, in the first the angle (n, 1) was set to
7/3, in the second the angle (1}, 75) was set to 7/3 and in the third test both
angles (n7,n5) and (15, 175) were set to /3 (the right values are 7/2 for both
angles).

In all these tests the behaviour and the convergence of the algorithm were
qualitatively similar to those of the previous experiments. The algorithm
converges, the least squares error stabilizes and all the constraints are satisfied
at the end of the process although the least squares error is greater than the
valid constraints case (Figure 21). Table 10 summarizes the estimated model
characteristics in each of the three tests.

An examination of Table 10 leads to the following observations:

1. In all of the three tests the cylinder and the sphere characteristics are not
affected by the invalid constraints.

2. The normal n7 which is involved in each of the invalid constraints is affected
in three tests.

3. The normal 75 is changed in the first and third test where it is involved in
the invalid constraints whereas it is unchanged in the second test where it is
not involved.

4. The normal nj is kept unchanged in all the tests even in those where it is
involved in the inconsistent constraints.

From these observations we can deduce that invalid constraints affect the
object feature’s locations by shifting the involved features toward positions
where the invalid constraints are satisfied. Consequently, this will increase the
least squares error (Figure 21). The locations and the characteristics of the
surfaces which are not involved in the invalid constraints are not affected (the
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(b):Constraint error and least squares error function for invalid constraints (37 test).
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o 9 s Reyi | Rpn axeq | Centergpy,
061 | 058 | 072 0.72 86.30
(7, m) =71/3 | —047 | 052 | —0.02 |14.97 | 1497 | —0.02 | -87.38
062 | —0.62 | —0.69 —0.69 17.44
—0.08 | =046 | 072 0.72 86.31
(7, m) =7x/3 | —0.60 | 072 | —0.02 |14.97|14.97| —0.02 | —87.41
078 | 050 | —0.69 —0.69 17.44
o 002 | 005 0.72 0.72 86.31
(m.ms)=n/3 1 gee | o2 | _002 | 1497|1497 | —0.02 | _87.42
(mm5) =7/3 | 079 | 068 | —0.69 ~0.69 17.44
052 | —045 | 0.72 0.72 86.30
true constraints | —0.67 | 0.73 | —0.02 |14.97 |1497| —0.02 | —87.38
051 | =050 | —0.69 —0.69 17.44

Table 10: The object characteristic estimates for invalid constraints and true constraints (last row).

sphere and the cylinder). However the normal 75 seems not to satisfy this rule
since its orientation stays unchanged for all the cases where it is involved in
an inconsistent constraint. This is explained by the fact that unlike 1} and n3,
ny is also involved in other constraints, in particular it is constrained to have
the same orientation as the cylinder axis. The satisfaction of this constraint
keeps it collinear to the cylinder axis and prevents its orientation from being
affected. Thus the algorithm satisfies the invalid constraints in which ng is
involved by acting on the other normals involved in these constraints.

Inconsistency of the constraints

In this test we investigated what would be the behaviour of the algorithm
when some constraints are inconsistent and have a conflict between them. For
this purpose we introduced two additional inconsistent angle constraints by
imposing the angles (n7,75) and (17, 75) to be m/3, which conflicts with the
two other consistent constraints defining each pair of (n7,7n5) and (n7,n5) as
orthogonal vectors. The trial carried out with these inconsistent constraints
revealed that the algorithm converges normally (Figure 22) both the least
squares and the constraint functions stabilizing at the end of the algorithm.
From Figure 22.a we notice that the angle constraints are not satisfied. This
is obvious because it is not possible to satisfy conflicting constraints simultan-
eously. The converging values of the constraint function (the sum of all the
constraints) Figure 22.b and the angle constraints error are practically equal
at the end of the optimization process. This shows that the other consistent
constraints are satisfied. This suggests that an inconsistent set of constraints
can be detected by observing the convergence of the constraint error rather
than its reduction to zero.
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Global shape improvement

The different tables shown in this section compare the geometric character-
istics of the object issued from an optimization with constraints and an op-
timization without and show the improvement of the object characteristics
estimates when constraints are applied. The results presented in the tables
are the average of the 100 estimations. The angles between each pair of sur-
faces (51, 52), (S1,Ss) and (S,, S5) were set as constraints and the constraints
were nearly perfectly satisfied. From Table 11 we notice the satisfaction of the
square property of the prism, illustrated by the equality of the two distances
separating (S, S3) and (Ss, Sy), their values which is close to the actual length
of the edge of the square plane S5 and closeness of the estimated value of the
diagonal of S5 to the actual value when the constraints are considered. The
distances between these last surfaces for an optimization without constraints
is not mentioned in this table since the estimated surfaces are not parallel.
The improvement of the quadric surfaces estimation is confirmed again for
this object ( Table 12 and Table 13). The radius estimation error is less than
0.04mm for both the cylinder and the sphere. The standard deviations of the
cylinder and the sphere radius have been significantly reduced as well.

distance(Sy, S3) | distance(Sy, Sy) | diagonal of Ss
with constraints 21.17 21.17 29.95
standard deviation/mean 0.03 % 0.03% 0.03%
actual values 21.28 21.28 30.02

Table 11: Improvement of the prism characteristic estimates.
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cylinder parameters | angle(axis, S5’s normal) | radius (mm) | o/mean (radius)
without constraints 1.55 14.64 0.12%
with constraints 0.00* 14.97 0.03 %
actual values 0 15.01 0

Table 12: Improvement of the cylinder characteristic estimates.

sphere parameters | distance(center, cylinder axis) | radius (mm) | o/mean (radius)
without constraints 1.36 16.02 0.11%
with constraints 0.00* 14.97 0.03 %
actual values 0 15.01 0

Table 13: Improvement of the sphere characteristic estimates.

CONCLUSION

This work presents a framework for the reconstruction of object models incor-
porating geometric constraints. It can hold a large number of varied constraint
types and incorporates them integrally without the need for linearization. The
geometric constraints are formulated in quadratic matrix functions which are
continuous, differentiable and ensure a compact expression of the constraints
and easy handling by the optimization process.

The proposed optimization algorithm belongs to sequential nonlinear pro-
gramming. Theoretically, the characteristics of the objective function and the
constraint functions satisfy the requirements for an efficient application of the
algorithm. The availability of a good initial solution obtained from the meas-
urement data ensures the convergence of the algorithm towards the optimal
solution. However, the last condition make it inappropriate for constrained
object design applications where a reasonable initial solution is not available.
The practical difficulties of the algorithm manifested in the ill-conditioned
Hessian matrix in the Levenberg-Marquardt algorithm is overcome by using
an appropriate numerical technique.

The constraints can be integrated in a batch form at once or sequentially.
In the sequential version the addition of a new constraint does not affect the
satisfaction of the previously implemented constraints.

The experiments carried out on the different objects empirically confirm
the convergence of the algorithm. The parameter optimization search does
produce shape fitting that satisfies almost perfectly the constraints. They show
in particular that the least squares error grows slightly as the constraints are
applied and the weighting values increased, but this stabilizes above certain
values of the Ay while the constraint errors are still decreasing. Thus it is
possible to satisfy the constraints up to the desired tolerance without seriously
affecting the quality of the data fitting.

The above observations suggest that the proposed approach allows flexibil-

23




ity in the incorporation of the constraints, as well as in their satisfaction. The
sequential version of the constraint implementation allows a human reverse
engineer to supply them interactively whereas the batch form of constraint
incorporation is suitable for being inferred by a knowledge-based system reas-
oning from general engineering principles. The stabilization of the increase of
the least squares error while the constraint errors are still decreasing as Ay in-
creases offers the possibility that the user can control the degree of satisfaction
of the constraints and to set the tolerances as high as necessary.

Regarding the slight increases of the LS error, we have to bear in mind
that the increase of the least squares residuals value may not reflect a bad
estimation in the case when measurement errors are systematic, e.g. mis-
calibration and registration error. This last type of error is expected in our
data since the registration process is performed by hand. We believe that the
slight increase of the least squares error as a consequence of the constraints
satisfaction is a result of the object being located more accurately. Future
work could investigate a more robust form for the objective function involving
the data noise statistics.

The different trials applied on the multi-quadric objects empirically con-
firm the stability of the convergence of the algorithm. The low values of the
parameters’ variances illustrates the stability of the solution provided by the
optimization search process. On the level of the object shape, this aspect is
reflected by the small values of the standard deviations of the object shape
characteristics. The tests have shown as well that the proposed approach leads
to an estimate which is close to the optimal solution (e.g. the solution given
when the constraints could be combined with the least squares error). The ex-
periments also show that applying the constraints to only some features does
not seriously affect the estimation of the unconstrained surfaces. The estima-
tion is still improved compared to the case of unconstrained optimization.

The examination of some constraint invalidity cases has shown the con-
straints are always satisfied whether they are valid or not and the behaviour
of the algorithm is typically the same. The satisfaction of invalid constraints
leads to the relocation of the involved and less constrained features (having
more degrees of freedom) toward positions where the inconsistency is removed.
However this will result in a false object model. The trial performed with con-
straint inconsistencies case revealed the same behaviour regarding the conver-
gence of the algorithm but the inconsistent constraints are not satisfied at the
end of the optimization. This suggests that constraint validity and consistency
checking have to be done before starting the optimization process.

Regarding the model estimation accuracy, the comparison of the object
dimension estimates with those from unconstrained fitting confirms that the
proposed approach improves the quality of the model construction to a high
degree. For the second-quadric object the radius of the cylinder and the sphere
have an estimation error in the range of 0.04mm, the edge of the square prism
has an estimation error around 0.1mm. The radius of the cylinder patch
estimated from the registered half cylinder has an estimation error around
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0.01mm. For a single a view it is less than 0.5mm. The same range of error is
obtained for the radius of the cylinder patch of the first multi-quadric object.

Results for the cone patches are reasonable for the cone object, the half
angle estimation error is less than 0.5°, but less satisfactory for the first multi-
quadric object. This is mainly due to the relatively small area of the conic
patch. In fact, the comparison of the estimation error for the quadric surfaces
shows that the larger the quadric patch, the smaller the estimation error. We
intentionally chose to work with small patches because unconstrained fitting
surface techniques fail to give reasonable estimates in this case (see the radius
estimate in Table 5) even with robust algorithms due to the “poorness” of the
information embodied in the patch.

Regarding the constraint representation, it is noticed that some constraints
involve a large number of equations, in particular for the circularity constraint.
One solution is to implicitly impose those constraints through the representa-
tion of the quadric equation ((X — X,)" (I —nn")(X — X,) —r? = 0) for the
cylinder and ((X — X,)" (77" — cos?*(a))(X — X,) = 0) for the cone, where 7
is the unit orientation vector of the cylinder or the cone axis, X, is a point on
the cylinder axis in the cylinder case and is the apex for the cone case. The
main problem encountered with this representation is the complexity of the
related objective function and the difficulty of separating the data terms from
the parameter terms. It will be also worthwhile investigating some topological
constraints between surfaces which have a common intersection.

Although the experiments presented in this work were performed on single
objects, the proposed approach can optimize multiple objects simultaneously.
Generally industrial parts are designed to fit to each other, so geometric rela-
tionships between the parts may be considered and the resulting constraints
can be incorporated as well in the optimization process.

Another area we are starting to investigate is how one might automatic-
ally identify inter-surface relationships that can have a constraint applied. In
manufacturing objects, simple angular and spatial relationships are given by
design. So, it should be straightforward to define simple Mahalanobis distance
tests that hypothesize standard feature relationships, subject to the feature’s
statistical position distribution. With this analysis, a computer program could
propose a variety of constraints that a human could either accept or reject,
after which shape reconstruction could occur.

It is very likely that the consideration of the constraints tends to shift
the object localization towards the actual position. The experiments carried
out with the synthetic polyhedral objects provides evidence for this. It seems
that the incorporation of the constraints compensate up to certain degree for
the effect of the systematic errors and allows better estimation, although the
authors have not yet a theoretical proof of this interpretation. This issue
was partially justified in the work of Bolle et al [6], but only for the intrinsic
constraints, namely the circularity of the cylinder and perfect sphere. By
considering a larger set of constraints, the proposed framework generalizes
the concept of object localization considering the constraints and make a step
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toward a framework which unifies object localization and object modelling.
All the algorithm procedures have been implemented with C++. The com-

putation time for the reconstruction on a 200M hz sun Ultrasparc workstation

is typically few minutes or less (1-5 minutes), which is suitable for CAD work.
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Appendix 1: Notation

ir is a vector in which all the elements are zero except the r* element which
1s equal to 1.

7(T s) 1s a vector in which all the elements are zero except the r* and the s
elemen‘rq which are equal to 1

2(,« _s) is a vector in which all the elements are zero except the " and the s
elements which are equal to 1 and —1 respectively.

(T s,,0) 18 @ vector in which all the elements are zero except for the rth
and ["" elements which are equal to 1,1, —1 and —1 respectively.
M, is a diagonal matrix in which all the elements are zero except the rth
and the s elements which are equal to 1 and —1 respectively.

Ur,s) is a diagonal matrix defined by:

gth ¢th
0

U UG,i)=1 ifr<i<s
") =\ U(i,i) =0 otherwise

I(y,5) a symmetric matrix defined by:

| /\

[ ]( ) I(j,i)=1 forr<i<s, r<j
(rs) = 0 otherwise

Ui,i) =1 ifr<i<s
U(r,s,p,t) - U(Z, ’L) =-1 lfp <1<t
U(i,i) =0  otherwise

;L) =L =1/2 fotr<i<r+p s<j<stp
(rsp) =) L(i,j) = L(j,i) =0  otherwise

Tir.5p) a symmetric matrix defined by:

| T(rt+5)=T(t+5,r) = (9,p):T( ,5)=1/2
(rs.pit) = T(r,t)=T(t,r)=T(s,p+5)=T(p+5,s) =—1/2
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Appendix 2: Constraints definition

The half cylinder

Constraint 3 is represented by two conditions: axis vector 7 is orthogonal to
Sy’s normal n5, and one point of the axis satisfies Sy’s equation. The first
condition is guaranteed by constraint 2 since n5 is orthogonal to nj. For the
second condition the point X, in Section “The cylinder” has to satisfy the

equation:
Coze(D) = (X 15 +do)* = 0

Using equations (9) and (15) this equation can be written as

- -T
Cafr,e(m = (—[U, an]TTLQ + d2)2 = (7'8 p— ﬁTL(5,15,2)m2 =0

The cylinder circularity constraint is implicitly defined by the equations
(15). From these equations we extract the following constraints on the para-
meter vector p:

=T 5 —~T 5
Ccz'rcl (m = (7‘9 p +13‘TU(1,1)19 - ]-)2 =0 Ccir04 (m - (742 p +pTL(1,2,O)m2 =0

~T o ~T —
Crire,(D) = (i10 D +Z§TU(2,2)Z9 —1)?=0 Clrires (D) = (i13 P +25TL(1,3,0)P)2 =0

~T o —T —
Clires (ﬁ) = (Zu p +Z§TU(3,3)Z9 - 1)2 =0 Clirc (ﬁ) = (Z14 p +25TL(2,3,0)P)2 =0

We group these six constraints into a single one:
6
C{:irc(m - Z C{:irck (m =0
k=1

The cone object

Eliminating cos?a from the cone circularity equations (19) and taking into
consideration constraint 1, the circularity constraints are formulated as:

.2 2

a—b = ny, —mni, h = ni,ny,
_ 2 2 _

a—c = nj —nj g = ni,ni,
_ 2 2 _

b—c = ny, —ni, f= nyny,

A matrix formulation of these constraints as a function of the parameter
vector p'is:

T

C{:irm (m = (j(5,76) ﬁ_ ﬁTM(l,Q)m2 =0 Ccirm(m = (28 ﬁ_ ﬁTL(l,Q,O)IT)Q =0
o= T, =T
Cmirr:g (m = (.7(5,77) p— ﬁTM(l,B)m2 = Cmirr:5 (m = (29 b — ﬁTL(l,B,O)IT)Q =0
-~ T Y

Cmirr:g,(m - (j(G,f?) ﬁ_ ﬁTM(273)]3')2 =0 Cmirr:g (m = (7:10 ﬁ_ p L(2,3,0)m2 =0
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which are grouped into a single constraint:

6
CCiTC(m = Z Ccirck (m =0
k=1

Multi-quadric object 1

The first four angle constraints lead to six equations involving the surface nor-
mals:

mTy = cos(2m/3) = 0.5 iy = cos(n/2) =0
'y = cos(m/2) =0 w1y = cos(2m/3) = —0.5
m iy = cos(2m/3) = 0.5 ny iy = cos(m/2) =0

A vector formulation of these equations as a function of p'is:

L(],5,2)ﬁ+ 05)2 - O, Cangl4 (m - (ﬁTL(5,9,2)m2 =0
L(],g,z)ﬁ)Q =0, Cangis(P) = (25TL(5,13,2)17+ 0.5)>=0
L1320+ 0.5 =0, Cangis(P) = (ﬁTL(9,13,2)15‘)2 =0

Cang (P) = (
Cangi» () = (
Cangi; (P) =

These equations are then grouped into:

6
Cangl (m = Z C(mgli (m =0

The circularity of the cylinder and the cone are ensured using the set of
equations (15) and (19) respectively. This gives the following constraints on
the parameter vector p for the cylinder:

Sy S Sy

—-T 5 —~T

Clircey, (D) = (7 P +ﬁ$TU(9,9)p — 1) Clircey, (P) = (i20 P +ﬁTL(9,10,0)@2
—~T_ 5 =T

thz'rccyl2 (m - (7118 p +Z§TU(10,10)27 - 1)2 Ccirccyls (m - (ZQ] p +ﬁTL(9,1],O)m2

T, N e A
Ccirccyls (p) = (i1 D +Z§TU(11,11)P — 1) Ccirccylfj (p) = (ia2 D ‘1‘1'5TL(10,11,0)Z5')2

and the following constraints for the cone:

Circeone, (P) = (;{27,728)]7_ P Musaap)? Coircemne, (P) = (398 — P" L(13,14,0)9)’
C’circmm2 (m - (;{27’729)]7_ ﬁTM(13,15)ﬁ>2 Ccircmnes (m = (53T117— ﬁTL(B,IE,O)ﬁ)Q
Coirceones (B) = (il3s 20y = 7 Ma1a15)D)>  Ceireeoney () = (il — P L(14.15,0/9)”

The above sets are then grouped in two circular constraints respectively:

6
CCirccyl (m = Z CCirccylk (m = O
k=1

6
CCiT'Ccone (m = Z CCiT'Cconek (m = O

k=1
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Multi-quadric object 2

The orthogonality constraints (4 and 5) between planes are formulated as:
NNy =Ny Ny =

which can be written the following vector formulation.

Cangll (ﬁ) - (ﬁTL(]7612)m2 = O
Canng(ﬁ) = (ﬁTL(Ln,Q)ﬁ)Q =0
Cangts @) = (0" Lsn.29)* =0

and grouped into a single angle constraint function

3
Cangl (m - Z O{mgli (m =0

The 6" constraint can be expressed according to
di+d3 =dy+dy
and then formulated by:

_.7" —
Caist(P) = (2(4,5,9,10)1’0)2 =0

Since we assume that the cylinder axis is parallel to the planes S;, S, S3, Sy,
the distance from the cylinder axis to one of these planes could be defined as
the distance from one particular point X, of the axis and the given plane. The
8 constraint can be formulated by:

d(X,, S1) = d(X,, S3), d(X,,S2) = d(X,, S4)

Taking into account that S, S3 have opposite orientation as well as Sy, Sy,
these equations can be written as:

X'l +dy = —XIn) +ds, Xy +dy = —XInp +dy
leading to:

By considering X, as defined in Section “The cylinder” and by using the set
of equations (9) and (15) the last equations are written as:

—2[u, v, w] iy +dy — ds =0, —2[u, v, w] iy 4 dy — dy =0

where u, v, w are the cross coefficients of the cylinder equation. A vector
formulation of these equations is then given by:

Ca,rr,e_pom (m - (_QZSTL(LQQ,Q)ZT_F 7:4{75]7)2 =0
Ca:z:e_posz (m = (*QﬁTL(G,QQ,Q)ﬁ_‘_ 7:;:7]017)2 =0
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The cylinder axis position constraint is then:

Ca,'r,e_pos (m - Ca,'r,e_pom (ﬁj + Came_pOSQ (m =0

The cylinder circularity constraint (9 constraint) is implicitly defined by the
equations (15) and taking into account the constraint 7 which assumes that
the cylinder axis is the same as normal 75 these equations are written as:
Clircey, (p) = (i1 D +Z§TU(H,H)p — 1) Ceircgy, (p) = (i D +Z7TL(11,12,0)Z5)2
Circey, (p) = (ir7 D +Z§TU(12,12)P —1)? Ccirccyls (p) = (i20 D ‘f‘1'5$TL(11,13,0)Z5')2
~T o ~T
Ccirccy13 (p) = (s D +17‘TU(13,13)Z9 - 1)2 Ccirccylﬁ (p) = (ia1 D +13$TL(12,13,0)17)2

grouped then into a single constraint:

6
CCiTC(m = Z Ccirck (ﬁ) =0
k=1

The 10" constraint is satisfied if the center of the sphere (21) satisfies the cyl-
inder axis equation (11). We can show easily that by assuming the constraint
7, by using the set of equations (9) and (15) and by requiring the coefficient a
of the sphere to be unit that the equation (11) leads to the following equations:

Ny (Vs — Ve) = Ny (Us — )

”ms(ws - w0) = n25(us - UC)

Tlys (ws - wc) = Ny (US - UC)

where u, means the coefficient u related to the sphere equation, etc. Thus,
these equations can be written using the vector form:

(ﬁTT(11,12,22,23)15)2 =0
(ﬁTT(11,13,22,24)15)2 =0
(ﬁTT(12,13,23,24)15)2 =0

The constraint 10 can then be stated as:
Cophoonier (D) = (ﬁTT(11,12,22,23)Z7)2 + (ﬁTT(11,13,22,24)Z5)2 + (ﬁTT(12,13,23,24)Z5)2 =0

The 11 constraint is imposed by equating the sphere radius equation (22)
to the cylinder radius equation (13). Requiring again the coefficient a of the
sphere to be unit and by using the set of equations (9) and (15) this equality
can be written using the vector form:

Cequragin. (P) = (;@5,30)ﬁ+ P Ur,20.22209)° = 0
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The 12" constraint imposes a fixed position of the four plane surfaces S, Ss, S3, S4
with respect to the cylinder axis. It is formulated as:

\/i(dl + d‘z) = 2Tcylinder

By squaring this equation and by using the set of equations (9) and (15) it
can be written as:

(dy +d3)* = 2(u? + v + w? — d?)
Thus this constraint can be put using the vector form:

Conedian (B) = (7" (Iia1y — 2U92.90)) 5 + 2i257)2 = 0
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Appendix 3: Levenberg-Marquadt algorithm

Here are the main steps of the Levenberg-Marquardt algorithm applied to a
simple optimization function:

E(p) = F() + C/P)

= g % initialization
Eiecrease = blg value

while Ejocrense > € % a threshold

Do Gr=Grad(E(p) = %(E(ﬁ))

Loop:  Hgr=Hessian(E(p)) = %(E(ﬁ))
Hp = Hp + a(diag(Hrg))
solve Hgdp = —Gg

—

ﬁ:u,pdated = ﬁ+ 6p
Edecrease - E(ﬁupdated) - E(m

if Edecrease >0

increase

go to Loop
else

ﬁ: ﬁupdated

decrease o
end if

end while

Here a simple example of an optimization function and its derivatives:

E(p) = F(p) + C(p)

F(p)=p"Hp the least squares function
C(p)=Mp"Ap—1)? the weighted constraint function
Gp = DM+ INAFFTAF 1)

Hp = 2H + MN4(pTAp — 1)AT + 8(Ap) (Ap)!]

From this example we can notice the usefulness of the matrix formulation: the
optimization function is compact, its derivatives are easy to compute using
elementary matrix algebra rules and all the data terms are encapsulated into
‘H (which needs to be calculated only once).
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Appendix 4

Solving the linear system HE(S;) = —Gpg in the Levenberg-Marquardt algorithm
has numerical perturbations due to the ill-conditioned matrix Hg for large
values of A\;. The key of the solution proposed to overcome this problem
consist in splitting the system in two subsystems. The matrix associated with
one of the subsystems will hold the matrix components which are sensitive to
A variations, the other matrix will hold the components which are not. Thus,
both of the matrices will be well-conditioned. The two systems will be then
solved consecutively and separately.

Let set the coefficient a in Levenberg-Marquardt algorithm to zero without
loose of generality. The system Hgdp = —G g could be written more explicitly

as:
(L + R"DR)op = -Gy (62)

where

M
k=1

R [0C, 0Cy,  9Cy
L op o 0P
(20, 0 - 0
0 2 - 0
D = . : :
L0 0 2y
Gp = 2Hp+R'V¢ (63)

Ve = MG, 20:C(8), .. 22 Cu(P)]"

As mentioned, the matrix L is well behaved since its condition number remains
stable when the values of \;, increase, whereas the condition number of R" DR
increases with ;.

Consider the matrix S = D~!(RR")"!'R. By multiplying equation (62) on
both sides by S we get a system of M equations:

(SL+ R)ép = —SGp (64)

when A values increase and become large [|S|| tends towards zero whereas
||R|| remain stable since it is independent of \; so we get ||SL|| < ||R| and
thus the system (64) can be approximated by

Rép = —SGy, (65)

So now with this system of M equations and N (size of 6p) unknowns we can
extract M components of dp. The rank of R is equal to M so we can find an
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orthogonal matrix () such:
U
QRT = [ [0] ] (66)

where U is an (M, M) upper triangular non-singular matrix.
Since QQT = I, (65) can be written as

RQ"Qop = —SGy (67)

By splitting Q6p into [5;1,522] where dz, and 62, have a size of respectively
M and N — M we get from (67)

U6z = —SGp (68)

and then 521 could be deduced from this equation. Now it remains to compute
025.

Consider the matrix V' whose columns are the basis of the null space of R.
We have RV = [0]. By multiplying (62) by VI we get:

VI Lép = —VIGy (69)

Now since RV = RQTQV = [0] by using (66) and splitting QV into [JI, J7]7,
where J; and .J, are respectively (M, M) and (N — M, M) matrices we get

This implies that .J; = [0] since U is non singular and J, could be set to an
arbitrarily value say I. Then we can set QV = [[0]T, IT]"
The system (69) can be written:

VIQTQLQTQop = —V'Gy

Q@VTQLRQSp = —V'Gy

o], 1"} QLQ" [ o2 ] = VTG,
622

If we denote the matrix QLQT by W such as: W = [ Wi W ]

War W
we get:

Wn W 0z

01 7T 11 12 Z

0. 1) l War W 029

from which we extract the system

] - —VTGE

WQQ(S;Q — —VTGE - ngégl (70)

and 0z, can be then computed.
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The computation of the term SGy in (68) is expensive. Practically it is
faster to use a simplified expression. From (63) we get
SGr = D '(RR") 'RQ2Hp+ R"V() (71)
= D '(2(RR") 'RHp+ V)
= D'(2(RQ"QR")'RQTQHF+ Ve)
= D '2U " [0)]QHp + V)

ST =T 5 =
By splitting QHp into [l; Iy ]© where I; and I have respectively sizes of
M and N — M we get,

SGp =D U | + V) (72)
and (521 can be then computed with:
U6z = =D '(2U i + Vo) (73)
Similarly the expression of VTG in (70) can be simplified :
VIGy = VI(2Hp+ R'Vo) (74)
= 2VTHp, since RV = [0]
= 2VIQTQHp
= oo |
— 92

and the computation of dz5 is the performed with the following system
WQQ(S;Q — —212 - ngézl (75)
Once 0z, and 0z, are computed the 5_15 vector is deduced with

op= Q52 (76)

To recapitulate, the resolution of the equation HE(s_}; = —(G'i in the Levenberg-
Marquardt algorithm has to be performed through the following steps :

1) Compute D, V¢, R.

2) Compute @ and U from R using elementary geometric transformation (e.g.
Householder transformation [29](p.224)).

-T -
3) Compute QHp and extract [; and Is.

4) Compute 6z, from (73).

)
)
5) Compute W = QLQ" and extract Wy, and Woyy.
6) Compute 6z, from (75).

)

7) Compute ép from (76).
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