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Abstract — Providing a safe behavior of a vehicle in every
situation is a critical mission in the design of a modern car. To
measure this ability, the standard ISO double lane change test
was designed by consumer unions. The detailed simulation of
such an active safety issue would contribute to shorten the design
cycle time of a vehicle by reducing the number of real world
tests. In this paper we will discuss the use of a trajectory
deformation algorithm to determine a possible motion for a
realistic dynamic car model going through such a test, and the
way to determine the maximum passage speed. The main idea of
this method is to iteratively deform the inputs of the system to
progressively reduce the number of collisions while respecting
the dynamic constraints. This deformation is calculated for each
iteration by taking into account a locally linearized dynamic
model of the system. Consequently, this algorithm can anticipate
correctly the inputs needed to solve the future collisions.

Index Terms — Trajectory deformation, motion planning,
realistic dynamic car model, 1SO double lane change test, motion
optimization.

I.  INTRODUCTION

Ensuring a safe behavior for a vehicle in any situation is a
critical mission in the design of modern cars. To evaluate this
active safety issue, tests need to be designed and performed.
The most classical ones consist in emergency avoidance tests
performed at different speeds and lane configurations. Since
these physical tests are difficult and time consuming, their
simulation would be helpful to car designers. This article
proposes to transfer and adapt techniques coming from the
domain of robotics to the domain of vehicle design.

A.  The ISO double lane change test

This test, which is the central test case of our study, was
originally designed by consumer unions and standardized by
ISO later on (ISO 3888-1). The test consists in going through
a first lane at the highest possible speed, then reaching a
second shifted lane before coming back to the original
trajectory in the last corridor (Fig 1). The objective is to
simulate an emergency avoidance maneuver so as to evaluate
the stability of the vehicle in such extreme conditions. The
whole test is performed by steering only, i.e. no motor or
braking effort is applied once entered in the first lane (Fig 2).
This test is considered as a very difficult one because reaching
the highest speed requires both a strong driving ability and a
fine understanding of the physics of the vehicle being tested.
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Consequently, the simulation and the discovery of such a
subtle dynamic motion is challenging for any algorithm.
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Fig 1 Dimensions of the standard ISO double lane change test
(L is the width of the vehicle in meters)

B.  The classical motion simulation techniques in the industry

Nowadays, the most frequently used methods to simulate
those avoidance maneuvers are the open loop simulation with
a measured steering angle feeding the vehicle model, and the
closed loop simulation where the model is tracking a
predefined trajectory presumed optimal. These generic
approaches can deliver interesting clues about the abilities of
the vehicle, but do not offer any guarantee that the vehicle
really passes the test without any collision. Other techniques
are available, like the optimization of a parameterized steering
profile. But all these methods are rather far away from the real
world tests, where the test driver has to find a trajectory for
each particular car configuration in order to clear the test as
fast as possible. These observations led to the intuition that
motion planning algorithms, which were precisely designed to
solve such problems, could help the car manufacturer to
improve its simulation methodologies.

Measured steering angle (deg)

time (;)
Fig 2 A Peugeot 307 going through an ISO double lane change test at 70km/h
and the corresponding steering angle (deg)

The research domain of kinodynamic motion planning is
very challenging here because the industrial car model we



used is a black box and contains numerous state variables. The
analytical formulas defining the dynamic model of the vehicle
are thus not accessible to us.

II.  THE EXISTING KINODYNAMIC MOTION PLANNING
ALGORITHMS

A.  The general kinodynamic model

The system considered at a time s € [0, 5] is reduced to its

state space representation, q(s)  where vector

q(s):(ql(s), ...,qn(s)) contains the n continuous scalar

states of the system. We use a dynamic model, therefore
q(s) not only includes classical state variables like the

position x,y of the vehicle, but it also contains their
derivates x, y to take into account dynamic phenomenon like

drift or inertia. The evolution of the whole dynamic system is
modeled  with  the  classical  general  equation
q(s) = f(q(s),u(s)) , where u(s)=(u;(s),...,u, (s)) is a vector
containing the k scalar inputs of the system. From now on,
notation ¢ denotes the derivative of q with respect to time s.

B.  Exploration algorithms

Our problem can be posed as a classical kinodynamic
motion planning problem. However, for the dynamic system
we are considering, no local method is available to connect
two given states. Therefore the number of available algorithms
is drastically reduced. The algorithms we are presenting in this
section are all based on a guided exploration of the state
space. Their principle is to dynamically construct a tree
containing states of the system.

The root of the tree is the initial state; from there / inputs
are applied to q(s)=1f(q(s),u(s)) during a time As. These /

short simulations generate / new states. These states are added
to the tree if they are not in collision and respect a filtering
criterion that avoids a combinatorial explosion. Afterward a
node of the tree is selected, and other inputs are tested. The
loop goes on until the goal region is reached by the tree (Fig
3). The solution is read by going backward through the tree
from the end to the origin.

These algorithms vary by the selection method of the
current node, the manner of selecting the applied inputs, and
the criterion accepting or not the nodes in the tree. For
instance, FDP algorithm [1] chooses a leaf thanks to a cost
calculated for every node, then tries a fixed set of inputs and
filters the generated states with a grid allowing only one node
per cell. The RRT algorithm [2] randomly chooses a state and
selects the nearest node of the actual tree (using a certain
metric). From there, it applies the input that makes the new
node as close as possible to the randomly chosen node.
Another example is KDP algorithm [3] which randomly
chooses a leaf and applies a random input during a random
time Af. Note that numerous other variants exist for this
category of algorithms.
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Fig 3 Exploration algorithms can find solutions to dynamic motion planning
problems only in low dimensions spaces and without much accuracy

C.  Our solution

The main drawback of these techniques is their intrinsic
lack of accuracy. This problem is mainly caused by the large
time step Af and the poor number of tested inputs needed to
restrict the number of computed nodes. A trade-off has to be
established between computing time and accuracy of the
exploration. The problem encountered by these algorithms is
as hard as trying to find a long and narrow corridor connecting
two large empty regions of state space [4]. Meanwhile, in our
avoidance tests, the narrowness of the corridor is mainly due
to the dynamics of the system. Improvements were brought to
these algorithms to deal with dynamic systems (Cf [5], [3]).
We have implemented these improvements but we did not
manage to significantly improve the determination of the
maximum speed allowing a car to successfully pass the ISO
double lane change test (from now on, we will refer to this
speed as the maximum passage speed).

Nevertheless, when trying to compute low speed motions
through such tests, exploration algorithms are very efficient
because the state space is less constrained by the dynamics
(and the corridor of solutions is much wider). The idea
presented here is to first use one of these algorithms at a low
speed so as to obtain an initial possible trajectory that clears
the test. Then, we increase the initial speed of the trajectory
while using the same steering angle profile. This simulation
generates several collisions (Fig 9). We solve these collisions
using the trajectory optimization algorithm presented in III.
This algorithm is a local optimization algorithm the state of
which is a trajectory. The input of the algorithm is thus an
initial trajectory. Trajectory optimization techniques already
exist (like [6] or [7]), but few address the general dynamic
case we are interested in.

III. THEORY OF TRAJECTORY DEFORMATION

The algorithm we are presenting here is based on the
work presented in [8]. The notations we recall here are taken
from this article. We have extended this algorithm to address
the particular issues of our problem (dynamic model, no final
constraints...)

A.  The inputs

The inputs of the algorithm are:
o The obstacles and vehicle geometry definition
o The dynamic model of the car (1)
o Aninitial state configuration.
o An initial guess for the input u(s) provided by II



B.  Principles of the trajectory deformation

The basic idea of this method is to iteratively deform the
trajectory q(s) by perturbing the input u(s). Therefore we have
to work on a set of trajectories q(s,7) similar to the one

presented in Fig 4. This set is indexed by parameter
Te [0,+oo[ that is increased between two iterations (as
described in [8]). Notice that u(s,7) is the input corresponding
to the deformed trajectory q(s,7).

q(s,0)

4(0,0)=q(0,7)
q(s,0)

q(S.0)
Fig 4 Each value of the variable 7 defines a different trajectory

The dynamic system of II.A can now be rewritten as:

q(s,7) =f(q(s,7),u(s,7)) M

(5,0

If we derivate this expression with respect to 7, we
obtain:

% _or

aq
il .= (T)+—(q,u)

(S 7)

Let us define A(s,1) as the following nXn matrices:

A(s,r)=§—£<q(s,r),u(s,r)> @

and B(s,t) the nxk matrices:

B(s,7) = g—fl(q(s,rxu(s,r)) 3

We call respectively input perturbations and directions of
deformation the following vector valued functions:

[0, S]X[0,+oo[— R*

v(s,7) = g—:(s, 7)

[0,S]X[0,4eo[— R”
(s,7)

and d
n(s,7) =a—q
T

With this notation, we obtain the time dependent
differential equation (4) that is the linearized system about the
current trajectory q(s,7):

N(s,7) = A(s,7)(s,7) + B(s,7).v(s,7) @)

To be able to integrate this equation, the initial condition
1(0,7) =0 is added (i.e. the initial state must not move). This

equation allows the calculus of the direction n(s) in which the
trajectory will move when the perturbation v(s) is applied

(Fig 5).

(s, 7) n(s,7)

v(s,7)

A(s,7)M(s,7)+B(s,7).v(s,7)

Fig 5 The dynamic system giving the direction of deformation induced by a
perturbation

C. Decomposition of the perturbation

The perturbation belongs to the C* infinite-dimensional
vector space. To approximate this vector space, we choose
v(s) in a finite-dimensional subspace generated by the basis
{e; (s)}ie[l,p] of p linearly independent functions (p>n):

p
V(s,7)= D A (2)e;(s) (5)
i=1
Consequently, the corresponding direction of deformation
n(s) can be decomposed into elementary directions of

deformations E;(s) :

p
(s, 7)= Y A (OE;(s,7) (6)
i=1
The elementary directions of deformations E;(s,7) can be
computed for every perturbation e;(s) by integrating (4).
These E;(s,7)represent the deformation corresponding to the
application of the elementary perturbation e;(s) to the
linearized system.

D. The potential function

A local potential U(q(s,7)) is introduced for every state

configuration. It is designed to be strong near obstacles and
zero when far away from them. To characterize the proximity
of the trajectory to the obstacles, we introduce a global
potential function V' (7) that sums up the elementary potentials

U(q(s,7)) along the trajectory:

N
V(o) = [Uta(s. s

The objective is to get this global potential function
diminishing, therefore we need:

- j—(q( 02215 <0

ie. —(r) Z/l (T)I—(q(s 0)E, (s,7).ds < 0

This can be ensured by choosing:

S
4@ =[S @B 0ds ™
0



The nx1 gradient %—U(q(s,”[)) can be assimilated to a
q

force in the configuration space (Fig 6), this force pushes the
trajectory away from obstacles. Directions of deformation
1(s,7) are computed thanks to (7) and (6) . These directions

are different from the directions of the forces because they
take into account the dynamic behavior of the system. This
allows our extension of the trajectory optimization algorithm
to anticipate the inertia and the drift of the system to solve the
punctual collisions represented by the forces.

Obstacles

—_—

Fig 6 The iterative deformation process, where the trajectory goes away from
the obstacles under the action of forces while respecting the dynamic
constraints

E.  Perturbing the inputs

The maximum intensity K of the forces can be as strong
as we want since we are only interested in their directions.
Therefore, the parameters A7 and n,,,, are introduced to limit
the intensity of the resulting trajectory perturbation. Parameter
Tmax 18 experimentally chosen to ensure that the trajectory
won’t move too much between two iterations and will respect
the linearization computed in (4). We impose:

n
At =D if ] zn o

[l

AT =1 otherwise

To deform the input, we simply add to the current input
the deformation we have calculated with (5) and (7) and limit
the intensity of the deformation with the global coefficient
AtT:

u(s,7) =u(s,7)+Ar.v(s,7) ®)

The iteration is now over, we can increment the index t of
the trajectory set: 7« 7+A7 and loop again until all
collisions are solved.

F.  Summary of the algorithm

The algorithm consists in iterating over the following
loop until all the collisions are eliminated:
1.  Compute q(s) by integrating (1) with ITII.A

2. Compute A(s) and B(s) by finite differences of
2).3)

3. Compute every E;(s) by integrating (4)

4. Compute the gradient of U(s) by detecting collisions

5. Compute each 4, by integrating (7)

6. Compute v(s) using (5)

7. Deform the inputs using (8)

IV. IMPLEMENTATION
A.  The industrial car model

The dynamic car model we used is named SimulinkCar
and is implemented on the Matlab/Simulink™ platform. It has
24 dimensions (n = 24) and can be parameterized by a
configuration file generated by PSA Peugeot Citroén
engineers to adapt the model to the car being simulated. This
file sets up numerous variables like mass, inertia, tire model
parameters, or the response cartography of springs, dampers. ..
This model is precise and fast enough to meet our
requirements. The ISO double lane change test is performed
by steering only, therefore our input u(s) is reduced to the
one-dimensional steering wheel angle value (k= 1).

B.  Numerical approximations

The initial trajectory is sampled using approximately 100
points for a 4 seconds test run (much more than what was
possible in II). As a consequence, it is an equivalent discrete
version of the algorithm presented in III that we are currently
using (Cf [8]). The Simulink modeling used by our algorithm
is a black box, i.e. no analytical expression of (1) is available,
and the calculus of the A and B matrices has to be done by
finite differences. This process is extremely time-consuming
and not very precise; this point is one the main drawback of

the implementation. The {ei (s)}ie[1 . functions are chosen as a

classical Fourier basis decomposition. Since, we want our
one-dimensional perturbation to be equal to zero in s =0, we
only need a weighted sum of sine functions:

Vie [1, p], Vse [O’S ] ei(s) - Sin(stj

This Fourier decomposition can create unwished border
effects in several zones of the trajectory (typically, beginning
and end). These border effects may result in perturbations
without real physical meaning. From now on, notation x,y
denotes the physical position of the center of gravity of the
vehicle, the ISO double lane change test is oriented along the
increasing x axis values. Fig 7 presents examples of the three
first steering perturbations e;, e, ,e; and the three resulting
directions of deformation E;, E,, E; (projected along the
transversal y direction). The perturbation e, corresponding to a
progressive steering angle on the left and a return to the origin
results in a trajectory deformation E; on the left (i.e. the car
turns left), what is perfectly coherent. We plan to test other
function bases in the future.
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Fig 7 Projection along y of the 24x1 vectors E,, E, and E; corresponding to
the 1x1 perturbations ey, ¢, and e;

€1, €2, €3 (rad)

Ei, E, E; projected along y




C. Gradient calculus and collision detection algorithm

We used the PQP collision detection package from the
University of North Carolina [9] to detect the collision of our
car geometry with the defined obstacles. In case of collision,
we chose to apply forces only in the y direction: the bottom
obstacles (right of the car) are pushing upward while the top
obstacles are pushing downward (Fig 8). We apply directly:

a—U(q(s,T))z 0,£K,0,---,0
dq oean
22 times

This simple gradient works well in our case but is not
optimal and probably causes unnecessary iterations. More
complex gradients will be tested, including a rotational
moment depending on the impact point of the collision on the
car.
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Fig 8 The direction of deformation 1 is mainly along the y axis due to the
simple y oriented gradient we chose here

D. Determination of the maximum passage speed

When a solution is found, the vehicle initial speed is
increased and the same input is applied. We observe on Fig 9
that new collisions occur and the trajectory has to be deformed
to solve these collisions.
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Fig 9 Collisions generated by changing the speed of the vehicle while feeding
the same input

After a certain amount of unsuccessful iterations, we stop
and consider the last good speed as the maximum passage

speed. The 77,,,,, parameter need to be small enough to ensure

that the iterative process won’t oscillate because of too
important perturbations between two iterations. In our
example, we stopped after 100 unsuccessful iterations, with

Mmax = 0.1, and a speed increment of 1km/h.

V. EXPERIMENTAL RESULTS

The main objective here is to be able to robustly predict
the influence of a parameter of the model over the maximum
passage speed of the test. The correlation with the real
maximum passage speed of the real vehicle is not important
here. To test this ability, we performed several tests consisting
in simple parametric modifications of the model. These
modifications are chosen to improve the maximum passage
speed of the car. Such influent parameters can be: a lighter
weight, a better yaw inertia, or parameters of the tire model.

A. Lateral behavior of a tire

When a tire is drifting i.e. when its real orientation is
different from the one of its speed vector. The tire generates a
lateral force F,that allows the car to turn (Fig 10). This force
is modeled by several parameters in the Pacejka tire model:
the cornering stiffness is the slope at the origin, and the
asymptote of the curve can be considered as an image of the
maximal adhesion of the tire. These values depend on the
vertical force F, applied to the tire.

Speed

Maximum of adhesion

Orientation

@
S
3
5]

Drift angle @

2000

1000 4 /3 L Cornering stiffness

Fy force generated (N)

Rolling tire

Fy force

generated by o 0 2 4 6 8 10 12 14

Drift angle a (deg)
Fig 10 The force generated by the drifting of the tire allows the car to turn

B. Elementary tests

We performed several simple improvements on the
cornering stiffness and the maximum of adhesion (Fig 11) to
test their influence on the maximum passage speed of the test.

3000 3000
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0 2 14 0 14
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Drift angle (deg) Drift angle (deg)
Fig 11 The modified characteristics of the tire, with F,=3000N

The results of these tests are presented on Table 1. The
algorithm seems to be predictive and robust when trying to
determine this speed. Many other parameters can be tuned, so



we can observe their impact on the maximum passage speed
of the ISO double lane change test.

Vehicle ISO double lane change maximum
passage speed
Reference 19.6 m/s
Maximum of adhesion * 1.1 20.1 m/s
Cornering stiffness * 1.1 20.1 m/s
Maximum of adhesion * 1.1 20.8 m/s

+ Cornering stiffness * 1.1

Table 1 Impact of various improvements of the tire behavior on the maximum
passage speed of the ISO lane change.

An example of a real steering angle and the result of a
simulation are presented on Fig 12. The profiles of the two
curves are very close with three main peaks at
12 rad corresponding to the minimum steering actions needed

to pass such a test. Nevertheless several differences exist
between the two curves. For instance the small oscillation
applied at the beginning of the simulated input (doted circle)
allows the car to pass the test more easily. This maneuver is
very difficult to realize in real tests because of the narrowness
of the first corridor, but real pilots know that this is a crucial
maneuver to improve the passage speed of the test. Re-
discovering this experimental knowledge thanks to our
simulations is really satisfying and strengthens the credibility
of our result.

Measured steering angle (deg)
Simulated steering angle u (rad)

timea(s) ‘ : time (s)
Fig 12 Comparison between a measured and a simulated steering angle

Despite these encouraging results we cannot give any
formal guarantee that the maximum speed we reached is really
the right one, or that the steering profile we discovered is the
optimal one. Indeed, the algorithm can be trapped in a local
minimum and give wrong results. Nevertheless the
exploration algorithms of II provide good initial solutions and
makes us confident in the quality of the results.

VI. CONCLUSIONS AND PERSPECTIVES

As a conclusion, this paper has presented a transfer of
robotics research results to the domain of car design. The
methodology we have proposed to compute trajectories that
pass driving tests consists in computing a first coarse
trajectory that pass the test at low speed and then to optimize
this trajectory. The first step is performed using classical
exploration methods, while the second step is performed using
an extension to dynamic systems of an existing trajectory
optimization method.

The main drawback of our approach is the rather long
computing time induced by the numerical calculus of A and B,
even though several computing tricks can improve it by an
order of magnitude. Other limitations are the lack of formal
guarantee of success and the border effects of the input
perturbation functions.

Meanwhile, this powerful approach is truly generic and
works for any dynamic system (even for black boxes).
Therefore we plan to extend it to many other tests like a curve
braking situation, i.e. a solicitation that can cause a strong
instability of the wvehicle. In this problem, there are no
considerations of maximum passage speed but the objective is
to find a representative set of solutions allowing the passage
of the test. These data could help PSA Peugeot Citroén
engineers to evaluate the quality of the behavior of a car in
such critical situations, and contribute to find adequate
solutions.
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