
Network Design for Tolerating Multiple Link
Failures Using Fast Re-Route (FRR)
Rakesh K. Sinha∗, Funda Ergun†, Kostas N. Oikonomou∗, K. K. Ramakrishnan∗

∗ AT&T Labs - Research, New Jersey, USA
† School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

and School of Informatics, Indiana University, Bloomington, IN

Abstract—In this paper we present techniques and protocols
for protecting a network against multiple link failures. The
existing link-based restoration with MPLS Fast Re-route (FRR)
is fast, but can create congestion by overloading edges, which is
undesirable since many applications are sensitive to congestion-
related packet loss. The problem is exacerbated with multiple
link failures, frequent enough to be of concern in production
networks. In this paper we investigate enhancements to FRR
restoration in the presence of multiple failures through network
and protocol design. We describe several network designs that
add a small number of edges to an existing topology, intended
for use by backup paths. For each design, we describe a protocol
(that piggybacks on OSPF) for distributing state information and
a distributed algorithm for reconfiguring backup paths, after
each failure, based on the state information. We prove that for
any k, our design, associated protocol, and distributed backup
path reconfiguration scheme can handle k arbitrary link failures
without causing disconnection or congestion. Through a series
of constructions, our final network design is nearly optimal with
respect to the number of additional edges in the topology. We
believe that these network designs are the first to have such
provable guarantees for failures of arbitrary multiplicity.

I. INTRODUCTION

We rely on IP-based networks, exemplified by the Internet,
for much of our communication. Traditionally the focus in car-
rier networks has been on providing connectivity upon failure
of single elements. However, this focus has its shortcomings:

1) Multiple failures are not uncommon in carrier networks.
As noted in [23], analysis of a large commercial IPTV
backbone over four months revealed that in 17% of link
failure events, at least 2 links failed concurrently, and
in 2%, at least 3 failed concurrently. Reasons for these
overlapping failures are the long repair time, and the
well-known case of a fiber cut affecting multiple links.

2) Avoiding packet loss from congestion is as important as
maintaining connectivity. Multimedia occupies a domi-
nant share of the IP traffic in core backbones [7], with
a growth rate of 83% over the last 18 months compared
to 30% for all traffic. Video is particularly sensitive to
packet loss [25]. If the restoration strategy puts multiple
flows on a link without sufficient capacity, there can be
substantial burst losses, resulting in objectionable visual
effects in the reconstructed video signal at the decoder.

In this paper we use MPLS FRR with label stacking to tackle
both problems by techniques and protocols for maintaining

network connectivity after multiple failures without causing
congestion.

Managing congestion upon multiple failures is harder than
just maintaining connectivity. A graph G is (k + 1)-edge
connected if and only if it remains connected after the removal
of any k edges. So designing a network that remains connected
after k edge failures is exactly the well-studied problem of
constructing a (k + 1)-edge connected graph [2]. However,
even if the graph remains connected, edges can be highly
congested, the extent of congestion depending on the restora-
tion method. There are two main restoration methodologies.
A path-based method reroutes the entire flow if any link in
its route fails. A local repair or link-based approach replaces
a failed link with its backup path without changing the rest of
the route.

Observation 1. If a path-based restoration scheme does not
take into account link capacities, e.g. as in OSPF [17], then
after k link failures, in the worst case the flow on each of the
failed links can be rerouted on the same link, increasing the
utilization of this link by a factor of k + 1.

The situation is even worse with link-based restoration,
as, for example, in the FRR protocol [18]. FRR is widely
deployed in carrier networks because of its speed: several
implementations restore within 50ms1. Path reconfiguration
in FRR is achieved by defining a backup path for each
link ahead of time and then stacking an extra label asso-
ciated with the backup path for the failed link. Decisions
are made locally by the head-end nodes of the failed links.

e1

e2
P1

P2

Fig. I.1. Backup paths P1

and P2 for edges e1, e2.

Note that when a backup path in
use experiences an edge failure, it
is “patched” by the backup path of
the failed edge, and not rerouted
completely (local nature of FRR),
as shown in Figure I.1: if e1 fails
we restore it by its backup path P1;
then if e2 in P1 fails, we replace it
by P2, and use the rest of P1. If P1

and P2 shared a link, this common
link will get two copies of the flows: once as part of the non-
failed portion of P1, and then as part of P2. There is no global

1While lab experiments have demonstrated that the re-convergence time
of OSPF can be reduced to sub-seconds by speeding up timers, commercial
networks have been reluctant to do so for fear of creating instabilities [8].



controller that sees a flow doubling over an edge and “corrects”
it by picking an altogether new path for the failed e1.

By continuing this example, we can show that in the
worst case link utilizations can increase exponentially with
the number of failed links (proof available at [21].)

Observation 2. The worst-case edge utilization after k fail-
ures using FRR link restoration can be 2k times the edge
utilization in the absence of failures.

A standard way to avoid the FRR-induced congestion is to
reoptimize the end-to-end primary tunnels after FRR has con-
verged. However, to avoid oscillations, in production networks
reoptimization timers are set at several seconds, so congestion
can last that long.

In conclusion, methods that avoid link congestion due to
failures are important; in this paper we consider the handling
of multiple failures by a local repair, FRR-based approach
without causing congestion due to backup path overlap.

A. Assumptions and overall scheme

At any given time, each edge e has a backup path. When
e fails, this configured path is used for protecting it, and
information about the network and the failure is circulated
to all nodes (routers). Then the head-end of each non-failed
edge reconfigures its backup path ([20], [12]) to avoid path
overlaps and failed edges. (We emphasize that the failed edge
is patched right away with its current backup path so there is
no reconfiguration related delay; only paths that are not being
used currently get reconfigured.) What makes this problem
so tricky is that we need to keep the backup paths of next
failed edge non-overlapping with back up paths currently in
use (Observation 2) without actually knowing which edge will
fail next and with the added restriction that all these backup
paths have to be formed from a small set of edges we add.

We assume that failures are spaced sufficiently apart to al-
low link state advertisements and the reconfiguration protocol
to converge. The mechanism is described in Figure I.2.

Configure initial backup path B(e) for each edge e
After failure of edge e

Use B(e) to protect e
Propagate relevant information to all routers

using OSPF TLV pairs
For each non-failed edge e′, reconfigure B(e′)

Fig. I.2. High-level backup path reconfiguration scheme.

II. FORMAL PROBLEM STATEMENT AND SUMMARY OF OUR
RESULTS

Our goal is to avoid loss of connectivity and congestion un-
der multiple failures in a network employing FRR and backup
path reconfiguration. In order to give worst-case guarantees
under arbitrary traffic variations, we make a conservative
decision to disallow all backup path overlaps.

Thus, our goal is to add a small number of edges to
our network as well as define a non-overlapping backup

path reconfiguration scheme on the resulting design that will
tolerate multiple failures. A more formal statement follows.

PROBLEM STATEMENT. We are given a graph G0(V,E0)
with n nodes, and bidirectional edges. (u, v) denotes an
undirected edge between nodes u and v, whereas [u, v] and
[v, u] denote the two directions of this edge (arcs or directed
edges). These provide independent transport, meaning that
their flows do not overlap. However, an “edge failure” in our
model means failure in both directions. Let k be the number
of edge failures we have to tolerate. Our goals are to

1) Pick the smallest possible set of additional edges Ea to
be used for FRR backup paths, assuming that an edge
can be added between any pair of nodes. In §V we show
how to extend our results to a setting where certain node
pairs cannot be connected, each new edge has a different
cost, and we want to minimize the total cost.

2) Configure initial backup paths for each edge in E0.
3) Define a set of new type-length-value (TLV) tuples for

the OSPF protocol to distribute information needed for
backup path reconfiguration.

4) Specify a distributed backup path reconfiguration mech-
anism for non-failed edges, with the further restriction
that the head-end of any edge computes the new backup
path based only on information from previously defined
TLV tuples.

5) Give worst-case guarantees that the scheme protects
against any k edge failures in E0 or Ea without losing
connectivity or creating backup path overlap.

A. Some intuition on the difficulty of the problem

Observations 1 and 2 in the Introduction can be used to
create (k+1)-way path overlap with OSPF, and 2k-way path
overlap with FRR even if the network remains connected.
This shows that preventing path overlaps with FRR is much
more than maintaining connectivity, and congestion can be
significant without the right network design or backup paths.

1

4

5

3

2

4 3

2

1

5

Fig. II.1. Naive vs intelligent choice
of backup paths for (1, 3) and (2, 4).

Figure II.1 gives one
more example of how the
choice of backup paths
can make a big difference.
Consider a (bi-directional)
cycle to be used for
backup paths, and let the
first failed edge be (1, 3).
On the left, we naively use
the shortest paths 1, 2, 3
and 3, 2, 1 for the two directions of the edge (1, 3). Then if
(2, 4) is the second edge to fail, there is no way to find a non-
overlapping backup path. On the right of the figure we use
paths 1, 2, 3 and 3, 4, 5, 1 to protect edge (1, 3). Then we can
use the non-overlapping paths 2, 1, 5, 4 and 4, 3, 2 to protect
(2, 4). There are four messages here.

1) The naive scheme requires one cycle per failed edge,
whereas an intelligent scheme is twice as efficient.

2) Once we pick the (naive) shortest path for (1, 3), even
reconfiguration does not help; a bad choice of backup

2



path may doom us for future failures.
3) While this example may suggest a simple strategy of

protecting two edges with one cycle, additional com-
plexity arises from failures of edges in back-up paths
that are already protecting failed edges. So if edge e1
fails and is protected by backup path p1, then edge e2 in
p1 fails and is protected by p2, then e3 in p2 fails, and
is protected by p3, FRR does not allow us to go back
and pick a path p′1 for e1 that does not contain e2, e3.
We describe the machinery to handle such “recursive”
protection in §IV-C.

4) The network design, the protocol for distributing state
information, and the distributed algorithm for computing
new backup paths have to work in concert. The reconfig-
uration and path selection must be done in a distributed
fashion by the head-end nodes of each link; even the two
end-points of a bidirectional link cannot coordinate their
decisions. Finally, this information has to be flooded by
OSPF LSAs.

B. Organization of the paper and our contributions

In §IV we give three network designs and associated backup
path schemes. All three designs are straightforward to de-
scribe, but their correctness proofs (no loss of connectivity
and no backup path overlap) increase in complexity. The
final construction almost achieves the theoretical lower bound
on the number of additional links. This section ends with a
numerical comparison of the three constructions. In §V, we
address how to incorporate several practical concerns imposed
by production networks that are not captured by our somewhat
idealized problem definition. Finally, in § VI, we specialize
our results to the case of a single edge failure in a multicast
tree network. In such networks only one direction of any edge
carries normal traffic, and the other can be used in backup
paths; we simplify the results of [5] and [14].

III. RELATED WORK

In [9], [16], [6] and related papers, methods for “the network
design problem with connectivity requirements” are studied.
These ILP- and multicommodity flow-based methods design
a minimum-cost network (from the ground up), able to carry
its demands without congestion under a given set of failure
scenarios, each consisting of a set of link failures.

Several schemes have been proposed for providing con-
nectivity after double edge failures. For the most part, these
do not address preventing congestion (other than by doubling
capacities where flows overlap). In addition, they do not easily
generalize to failures of higher multiplicity. Several papers
extend the idea of constructing disjoint trees, proposed in [11].
In [3], the authors show how to construct optimal pairs of trees
for weighted directed graphs. Paper [13] divides incident edges
to any node into “protection graphs,” at least one of which is
available after a failure: the first failure is dealt by protection
graphs and the second using disjoint trees.

Paper [4] considers the optimization problem of finding
the largest set of preconfigured FRR backup paths under the

following scenario. Suppose that a second failure, e2, happens
in the backup path of a first failed edge, e1, and is patched
using the backup path of e2. Then this backup path must not
include e1. A heuristic is given. In [19], it is shown that a
solution always exists for all dual edge failures as long as the
network graph is 3-connected, and a heuristic is given.

Another way to deal with failures in preconfigured backup
paths is to reconfigure the paths. Such an approach is discussed
in [20], [12] and forms the basis of our schemes in this paper.
Reconfiguration provides a powerful framework because the
backup path for the second failed edge is selected based on the
knowledge of exactly what has failed before (instead of having
to deal with all possible failures). Reconfiguration schemes
also generalize more easily to higher-multiplicity failures.
However, unlike our provable worst-case guarantees, the focus
in [20] and [12] is on evaluation and design of reconfiguration
schemes given a fixed underlying network. The work in [22]
also considers re-provisioning of backup paths, albeit at the
end-to-end connection level.

There is a substantial body of work on “p-cycles” [10].
A p-cycle is a preconfigured cycle of unit capacity formed
out of the spare capacity in the network. It provides fast
restoration for failures on the cycle as well as “straddling”
spans with both end-points on the cycle. The original design
was proposed for single failures, but has been extended to
double failures [1] and SRG (shared risk group) failures [15].
While one of our designs also uses cycles, it is fundamentally
different from p-cycles. To our knowledge, there is no p-cycle
construction guaranteeing congestion-free restoration for an
arbitrary number of failures. Moreover, while many papers
on p-cycles propose integer linear programs (ILPs) to find
“optimal” cycles in a given network, we propose a simple (and
nearly optimal) set of edges that can be added with guaranteed
performance and without computation.

In [24] an ILP is provided which provides an initial
flow assignment (with flow splitting) and “flow redistribution”
scheme that guarantees no congestion with k failures under
the following condition: given any set F of edges with total
utilization up to k, all the flows can be routed on F without
congestion. This work is related to but different from ours;
while we propose a network design, they give a guarantee on a
network satisfying a pre-condition without directly addressing
how to construct such a design.

IV. NETWORK DESIGNS TO SUPPORT k EDGE FAILURES

In this section we present three schemes for protecting
against k failures in a network using FRR, without path
overlaps. Each scheme consists of a set of additional edges
Ea, a protocol for distributing and maintaining relevant state
information related to backup paths, and a distributed algo-
rithm for initial backup path assignment and for backup path
reconfiguration (recall §II).

Before describing the schemes, we point out a lower bound
on the number of additional edges, Ea. We claim that each
node must have at least k incident edges in Ea. The intuition
is that if a node has at most k − 1 incident edges in Ea

3



then we can fail all these k − 1 edges and one more original
edge incident to this node and create a graph where the
(original) failed edge (because there are no surviving edges
in Ea incident to v) has no FRR protection path. Because a
graph has at least (number of nodes)× (min degree)/2 edges,
we get

Observation 3. Supporting k edge failures via FRR without
using any of the original edges in E0 requires at least dkn/2e
additional edges in the worst case.

This lower bound exploits just the fact that to tolerate a
failure each node must have at least one incident edge in
Ea after the failure; it uses nothing about FRR paths, or
restrictions of a distributed protocol for reconfiguring backup
paths.

The three schemes consist of adding (1) a collection of
spanning trees (this is simply a baseline for what can be
achieved), (2) parallel edges, and (3) disjoint spanning cycles.
The schemes are increasingly efficient in the size of Ea. The
size of Ea in our final construction matches the lower bound
for even k, and is n/2 more than the bound for odd k. We
conjecture that this construction is optimal even for odd k,
and that a matching lower bound can be derived by realizing
that a backup path consists of several edges, and that backup
paths for different edges must be disjoint.

To save space, we give the protocol for distributing state
information only for our last, most efficient, construction.

A. A collection of spanning trees

A very straightforward construction is to add a spanning
tree for each possible edge failure:

Construction IV.1. Ea is a union of k edge-disjoint spanning
trees.

This will serve as a baseline to judge the efficiency of the
next two constructions.

B. Parallel edges

A trivial way to protect against k failures is to create
k + 1 copies of each edge. We show that if G0 is single-
edge survivable, a condition satisfied by almost any production
topology, we can get by with adding half as many edges as
the trivial solution.

Construction IV.2. Ea consists of d(k+1)/2e parallel copies
of each edge of E0.

Remember that we are giving a theoretical guarantee on
failure of any set of k edges so, in our model, failure of (say)
two copies of an edge will be counted as two (not one) failure.
In practice, if we are adding two copies of an edge in the IP
layer, we would like to route them differently in the optical
layers to make their failures somewhat independent.
BACKUP PATH SELECTION AND RECONFIGURATION SCHEME

Each edge (in E0 or Ea) picks one of its copies as its backup
path. When an edge discovers that it is the last surviving copy,

it reconfigures its backup path to be the first copy of an edge
along a path in G0 from it head to its tail.

It is possible that this first copy may have failed, but, by
our construction, the failed edges along backup paths are
guaranteed to be backed up by their copies. The edge picking
its backup path does not need to know which edges along this
path have failed, which greatly simplifies the protocol. For
example, if e picks a backup path consisting of e1, e2, e3, e4,
the head-end of e does not need to know that e3 has failed and
was replaced by e′3. It will simply push a label for e1, e2, e3, e4,
and when the packet arrives at e3, the head-end node will push
a label for e′3. This new label will be popped at the tail-end of
e′3 and the packet will continue on e4. In other words, none
of this information needs to be distributed in the network.

Theorem IV.1. If G0 is 2-connected (single edge-survivable),
Construction IV.2 suffices to handle k failures with no backup
path overlap.

Proof: The only bad case we need to handle is when all
copies of an edge e fail. We will assume that k is even; the
proof is similar for k odd.

If all k/2 + 1 copies (one original and k/2 additional) of
e fail, then there are k − (k/2 + 1) = k/2 − 1 edge failures
outside of e and its copies. So for any edge except e, at least
(k/2 + 1) − (k/2 − 1) = 2 copies survive2. That leaves at
least one more copy for each edge in E0, except for e. Then
e finds a path in G0 between its endpoints (such a path exists
because G0 is single-edge survivable) with the modification
that a spare copy is used in place of the original edges.

a

e b

c

a1 a2

c1 c2

e1 e2
d1 d2d

b1 b2

(1) (2) (3)

Fig. IV.1. A graph G0 with parallel edges shown as having an extra two
copies, shown in (2) and (3). The thick lines show the final path from a to d
after failures (a, d), (a1, d1), (e, d), (a2, d2).

An example of this scheme is in Figure IV.1; here a,
a1 and a2 (similarly with b, c, d, e) refer to the same node;
they are numbered in order to distinguish between parallel
edges. After the first two copies of (a, d) fail, its traffic is
routed on (a2, d2). Afterwards, (e, d) fails and (e1, d1) is
used to back it up. When (a2, d2) fails, the backup path
is (a1, b1), (b1, e1), (e2, d2). Notice that (e2, d2) has replaced
(e, d) since (e, d) has failed and (e1, d1) is already in use
backing up (e, d), leaving (e2, d2) as the spare copy.

Note: the construction can be improved for odd k by using
one less copy of each edge and adding a spanning tree.

C. Disjoint spanning cycles

This is our most efficient construction:

2Weaker consequence: at most one edge can lose all its copies.

4



Construction IV.3. Ea is the union of p = dk/2e mutually
edge-disjoint spanning3 cycles.

BACKUP PATH SELECTION AND RECONFIGURATION SCHEME
Remember that an edge (u, v) consists of two (directed)

arcs: node u is responsible for arc [u, v] and node v for arc
[v, u]. In our first two constructions, to keep the exposition
simple, we described all decisions in terms of edges but in
reality, u and v act independently so here we will be more
precise and talk in terms of arcs, not edges.

The main idea of our design is that we add several cycles to
our network. The goal is for each cycle to support two backup
paths, one in each direction. The difficult case is when the
cycle itself experiences a failure, taking out both directions of
an edge. We analyze each case below, and, show that, even if
the cycle experiencing the failure is already carrying a backup
path, we can still reconfigure.

In what follows, we call an arc active if it is in use. The
formal (recursive) definition is: a non-failed arc is active if it
is either (a) part of the original graph G0, or (b) in the backup
path of a failed active arc.

The spanning cycles are used only for backup paths. Let
Ci denote the ith undirected cycle. Ci has two characteristics:
tolerance, and state. The tolerance tol(Ci) is the number of
failures that Ci can be used to back up. Initially all tolerances
are 2 because each orientation of any cycle can restore one
failed edge, as described in “intelligent scheme” in Figure II.1.
If a cycle has one failed edge and no active arcs then it is in
state LinkFail. Such a cycle has tolerance 1 since it can
be used to restore one edge. If the cycle has no failed edges
but its clockwise (but not the opposite) orientation is used for
restoring an edge, its state is alloc and it has tolerance 1.

7

8

4

56

1 2

3

7

8

4

56

1 2

3

7

8

4

56

1 2

3

7

8

4

56

1 2

3

(a)
6 5

4

8

7

1

3

2

(d)

8

7

6 5

44

5

8

7

6

21

3

1 2

3

(c)

(b)
7

8

4

56

1 2

3

Fig. IV.2. (a) shows a Type I allocation from a cycle with tolerance 2, (b)
and (c) from a cycle with tolerance 1 with one active backup path and one
failed edge, Types II and III respectively; (d) shows a Type IV allocation after
(1, 2) fails. After the allocation the dashed edges are in use (active) and the
solid edges remain free.

There are four types of path allocations on a cycle, based
on its tolerance and state. We define Types I, II, and III for
backing up undirected edges in both directions and Type IV
for backing up a single direction. In Types I, II, III, the failed
edge is restored in a cycle Ci that it does not belong to; in
Type IV, the failure and the restoration happen within the same

3i.e., visiting all the nodes, but not necessarily Hamiltonian, since self-
intersection is allowed.

cycle Ci. We demonstrate these allocations in Figure IV.2. For
(a), (b), and (c), the edge to be backed up is (2, 7) ∈ G0.

Type I: Ci has tolerance 2, it is intact. We allocate clockwise
around Ci, with paths 2, 3, 4, 5, 6, 7 and 7, 8, 1, 2 as in Figure
IV.2(a). The resulting cycle has state alloc and tolerance 1.

Type II: Ci has tolerance 1 and state alloc. In this case the
clockwise orientation has been used previously, so we perform
a counterclockwise allocation 2, 1, 8, 7 and 7, 6, 5, 4, 3, 2 as in
Figure IV.2(b). The resulting cycle has tolerance 0.

Type III: Ci has tolerance 1 and state LinkFail. We
perform a bidirectional allocation. Figure IV.2(c) shows an
example, where the backup paths are 7, 8, 1, 2 and 2, 1, 8, 7.
The resulting cycle has tolerance 0.

Type IV: Ci has tolerance 1 and state alloc; additionally,
the failed edge, say (1, 2), is on Ci. By definition, only one
direction, [1, 2] in this case, was used in a backup path. We
use the counterclockwise orientation of Ci to backup the
failed edge. Figure IV.2 shows how this can be done with
1, 8, 7, 6, 5, 4, 3, 2. The resulting cycle has tolerance 0.

D. Distributed protocol details

We have described which restoration path to use after a
failure for illustration, but in reality our scheme must ensure
that the backup paths must get reconfigured before the actual
failure. Figure IV.3 shows how, in our scheme, backup paths
are reconfigured and the parameters of the cycles.

INITIALIZATION PHASE:
for all i, set tol(Ci) = 2
configure Type I backup paths in C1 for all arcs in E0

REROUTING UPON FAILURE OF e = (u, v):
if both [u, v], [v, u] are inactive, i.e. (u, v) 6∈ E0

let Ci be the cycle containing (u, v):
decrement tol(Ci), set its state to LinkFail

else
if e is active in [u, v] direction

let Cj be the cycle with backup path for [u, v]:
restore [u, v] along its backup path in Cj

if e is active in [v, u] direction
let Cj be the cycle with backup path for [v, u]:
restore [v, u] along its backup path in Cj

decrement tol(Cj); if it is 1, set state of Cj to alloc

RECONFIGURATION AFTER RESTORATION OF (u, v):
for all active arcs [u′, v′]

if [u′, v′] is on a Cj with tolerance 1, state alloc,
u′ configures a Type IV path on Cj

else
u′ finds the smallest i such that tol(Ci) = 2 and
configures a Type I path on Ci

if no such cycle exists then
u′ finds smallest i such that tol(Ci) = 1 and
configures a Type II or III path on Ci

Fig. IV.3. Backup path reconfiguration and updating of tolerance values

5



1) Coordinating decisions between two endpoints of an
edge: As pointed out earlier, u and v work independently
on arcs [u, v] and [v, u]. When both arcs need to be restored
(Types I, II, III), we force them to pick the same cycle by
picking the available cycle with the lowest index.

2) Distributing and maintaining states related to cycles:
We assume that each node u knows, for each Ci, (a) the edges
in Ci, (b) tol(Ci) and state of Ci, (c) if tol(Ci) is 1 and state
is LinkFail, which link in Ci has failed. Additionally, for
each incident edge (u, v), it knows (d) whether or not [u, v]
and [v, u] are active.

We briefly describe extensions to OSPF to achieve this
knowledge. Each cycle is assigned an id in the router con-
figuration file. Similar to the link state data base exchange,
where each u floods the entire network with information on
its incident links, we require u to also send ([u, v], i) for each
[u, v] ∈ Ci. Then each node, in addition to maintaining a copy
of all links, also maintains a copy of all links in each cycle. The
pseudocode describes how head-end node u of a failed edge
updates the state and tolerance of one cycle. Node u floods
the id of the cycle used, its new tolerance, and state value to
all other nodes using new type-length-value pairs as described
in [20]. This triggers each edge whose configured backup path
overlaps with the new active backup path to configure a new
path using one of the allocation schemes described above.

We must now infer whether or not [u, v] and [v, u] are
active: if (u, v) ∈ E0 then both directions are active.
Otherwise let Ci be the cycle containing (u, v). If tol(Ci)
is 2 or tol(Ci) is 1 and its state is LinkFail, both [u, v]
and [v, u] are inactive. If tol(Ci) is 1 and its state is
alloc, we consider the clockwise arc to be active and the
counterclockwise arc to be inactive; finally if tol(Ci) is 0,
we consider both [u, v] and [v, u] active. (The last condition
may declare some inactive edges as active, but it keeps
the bookkeeping simple without affecting the correctness of
the scheme.) In other words, the determination of active or
inactive can be made based on tolerance and state of cycles
and does not require any extra distribution of information.

Theorem IV.2. Construction IV.3 handles k failures with
no backup path overlap. Further, this construction uses the
optimal number of additional edges for even k and at most
n/2 edges more than optimal for odd k.

Proof: Recall the notion of tolerance: tol(Ci) = 2 iff Ci

is untouched by failures or backup paths. tol(Ci) = 1 iff the
arcs that have not failed or been used in any backup paths form
either (a) an undirected spanning path after a Type I allocation
or (b) a directed spanning cycle since an edge in Ci has failed.
If tol(Ci) ≤ 0 then Ci cannot be used for any backup path.

Let NT =
∑

i tol(Ci) denote the network tolerance, which
is how many more failures the network can handle at any given
time. We show that after 0 ≤ r ≤ k failures, NT = 2p − r
and the network can survive 2p − r more failures. Initially,
r = 0, tol(Ci) = 2 for each Ci, and NT = 2p ≥ k. We will
show that NT decreases by one after a failure, say, of edge
e = (u, v), by a case analysis. In the rest of this proof, we

abuse notation by using Ci to denote the set of arcs in Ci

that have not failed or been used in any backup paths. E.g, if
C1 experiences a failure, we refer to the resulting undirected
spanning path again as C1. We decompose each undirected
cycle Ci into two directed cycles, one in each orientation,
named C1

i and C2
i .

Case 1: e = (u, v) is an edge in G0. Then we use a Ci

with tol(Ci) ≥ 1 to back up [u, v] and [v, u] and decrease
tol(Ci) by 1. This will result in an allocation of Type I, II,
or III as shown in Figure IV.2. If initially tol(Ci) ≥ 1 then
the existence of the required backup path(s) is guaranteed and
tol(Ci) and NT decrease by 1.

Case 2: e is an edge in Ci not used in any backup paths. We
do not need to back up e. If tol(Ci) = 2, the failure reduces
Ci to an undirected spanning path. If tol(Ci) ≤ 1, Ci will not
be used in any subsequent backup paths. In all cases, tol(Ci)
and NT decrease by 1. 4

Case 3: e is an edge in Ci and e is being used in a backup
path. Because Ci is being used in a backup path, we know
that tol(Cj) ≤ 1. There are two sub-cases.

Case 3.1 If both directions of e are used in backup paths,
then, by the algorithm, Ci must have been used in a Type I
and Type II allocation, dropping its tolerance to 0. Because
NT > 0 by our inductive hypothesis, there must be a cycle
Cj with tol(Cj) ≥ 1, so we can back up e in Cj using a Type
I, II, or III allocation, and decrement tol(Cj) and NT by 1.

Case 3.2 If only one direction of e is used in a backup
path, then we have used one orientation of Ci, say C1

i . C2
i

has now become a directed path from u to v and can be used
to back up [u, v], with a Type IV allocation; see Figure IV.2
(d). The tolerance of Ci decreases by 1 to 0 and every other
cycle remains unchanged so NT decreases by 1. This is the
only case where we back up only one direction of an edge.

We now show the optimality of our construction. From
Theorem 3, we need at least dkn/2e additional edges. For
even k, this is kn/2 which matches the number of edges in
k/2 cycles. For odd k, the construction requires (k + 1)/2
cycles and (k + 1)n/2 edges, which is n/2 more than the
lower bound, as claimed.

E. Numerical Comparison of Constructions

Table I shows the additional edges as a percentage of the
number of original edges for constructions IV.1 to IV.3. This
percentage only depends on the average degree of the graph.
We consider three cases, corresponding to original graph G0

being sparse (average degree 3) to dense (average degree 10).
Optimal construction IV.3 is twice as good as the naive
construction IV.1. Comparing constructions IV.1 and IV.2,
the former is better for dense graphs because we are adding
fixed edge trees instead of making multiple copies of each
edge. While the number of additional edges increases linearly
in all constructions, the performance is impressive. E.g, a
network with average degree 7 and 57% overbuild can support

4Even if the tolerance of a node becomes negative, NT is still a lower
bound on how many failures we can handle.

6



k
2 4 6 8

CIV.1 133 266 400 533
CIV.2 100 200 300 400
CIV.3 66 133 200 266

(a)

k
2 4 6 8

CIV.1 57 114 171 228
CIV.2 100 200 300 400
CIV.3 28 57 85 114

(b)
k

2 4 6 8
CIV.1 40 80 120 160
CIV.2 100 200 300 400
CIV.3 20 40 60 80

(c)

TABLE I
(A) % ADDITIONAL EDGES FOR SPARSE G0 , AVG. DEGREE 3, (B) %

ADDITIONAL EDGES FOR MEDIUM G0 , AVG. DEGREE 7, (C) %
ADDITIONAL EDGES FOR DENSE G0 , AVG. DEGREE 10

FRR-based restoration with guarantees of connectivity and no
congestion for failures of up to 4 edges.

V. SOME EXTENSIONS FOR PRODUCTION NETWORKS

We now discuss several extensions to deal with practical
constraints not addressed by our problem and solution so far.

A. Disallowed edges and different edge costs

Our goal has been to minimize the number of additional
edges. In reality, each new edge may have a different cost and
we want to minimize the sum of the costs. Also, direct links
between certain node pairs may be prohibited.

To address these issues, we generalize the construction of
§IV-C to the case where the Ci’s are not simply cycles, but
arbitrary 2-connected spanning graphs. A spanning cycle is a
special case, so this generalization gives us greater freedom in
selecting additional edges, thereby reducing the overall cost.
Our construction, definitions, and proofs are similar to those
in §IV-C, so here we just highlight the differences.

When Ci is a cycle with tolerance 2, we can back up both
directions of any edge e = (i, j) using one of Ci’s orientations.
This leaves Ci with tolerance 1 and a directed cycle, which can
back up any other edge in both directions. Now assume instead
that Ci is a 2-edge connected graph (but not a cycle) H with
tolerance 2. H contains by definition a cycle containing both i
and j, so we can back up [i, j] and [j, i] using one orientation
of this cycle, reducing the tolerance of H to 1. It is not clear
that after this H can be used to back up another edge: even
though originally there were two disjoint paths between any
pair of nodes in H , both may have lost edges to the backup
path of e. We show that this is not a problem:

Claim V.1. If tol(H) = 1, then H contains edge-disjoint
backup paths for [i, j] and [j, i] for any node pair i, j.

Proof: There are two cases. (a) H is 2-edge connected
minus one edge (which has failed). Then it still has an
undirected path from i to j, which we use to back up [i, j]
and [j, i]. (b) H consists of a 2-edge connected graph minus
a directed cycle (used earlier for backing up a failed edge).
This is described in Figure V.1 where the directed cycle
a, b, y, c, d, x remains after its opposite orientation has been

used. Initially H was 2-edge connected, thus there were two
edge-disjoint paths between i and j. The undirected i → a
path is the portion of first i → j path before it intersects the
directed cycle. Likewise, the i → b path is the part of the
2nd i → j path before it intersects the cycle. The rest of the
construction is similar to that in §IV-C with the k/2 spanning
cycles.

To back up [i, j], we use

i j

x

a d

cb

y

Fig. V.1. A 2-connected graph with a
directed cycle removed.

the i→ b path, then follow
the directed cycle to c and
use the c → j path. Sim-
ilarly, to back up [j, i], we
go from j to d, follow the
cycle to a, then go to i.

Thus, using an argument
similar to that of adding cycles to the network, we see that
adding dk/2e arbitrary 2-connected subgraphs will provide
protection against k failures.

B. Dealing with simultaneous failures

Multiple failures occur for two reasons. First, a second
failure may occur while the first hasn’t been repaired yet,
a third while the first two are still being repaired, and so
on. We refer to these failures as overlapping. Our worst-case
guarantees in §IV apply to these kinds of failures because we
need time to reconfigure backup paths between link failures.
A set of failures can also occur simultaneously when there
is a common cause, such as a fiber cut, failure of an optical
amplifier, etc. No scheme can give a worst-case guarantee
for such failures because, in the worst case, a link and its
configured backup path can fail together. We make some
suggestions below.

Construction IV.2 is resilient against simultaneous failures,
as long as not all k/2 copies of an edge fail together. We
can guarantee this by routing IP layer edges disjointly on the
underlying optical layer. Second, a concern with simultaneous
failures is that our protocols will create many congested edges.
E.g., in Construction IV.3, the backup paths can be selected
from one of k/2 cycles but our deterministic protocols force
each head-end node to pick a path from the same cycle. A
simple change to the protocol may improve its performance
in practice: have each head-end pick its path from a randomly-
chosen cycle. This does not affect any of the worst-case
guarantees for overlapping failures but reduces the probability
of path “collisions” in case of simultaneous failures.

C. Allow original edges in backup paths

In order to give worst-case guarantees under arbitrary traffic
variations, we conservatively assumed that all original edges
are carrying traffic and none of them have the capacity needed
to carry additional flow from a failed edge. Thus all backup
paths had to use (new) additional edges.

However, if the edge utilizations are guaranteed to be small,
one might use available capacities for backup paths instead of
adding edges. One heuristic is to view each edge as a set of
parallel edges where the first one carries traffic and the rest

7



are to be used as additional edges in our scheme. E.g, if the
utilization is under 33%, we split each edge into 3, each with
1/3 the capacity of the original. Since this is a heuristic, our
worst case guarantees do not apply.

VI. SPECIAL CASE: A SINGLE EDGE FAILURE IN A
MULTICAST TREE

We now consider a special case where the original graph G0

is a single-source multicast network. Such networks, because
of their efficient use of capacities, are ideally suited for
multimedia distribution. All of our results so far apply to
multicast networks, but here we exploit their special structure.
A key observation is that only one direction of any edge in a
multicast network carries normal traffic and the other direction
can be used in FRR backup paths. Recall that our techniques
in the previous section assumed that both directions of edges
in G0 carry traffic and therefore the backup paths require the
addition of new edges Ea. Although a few of our results in
this section can be generalized to multiple failures, we focus
on single failures only.

We first show that any 2-(edge) connected graph can be
used to construct a multicast tree and a set of arc-disjoint
(from the tree) backup paths for each arc of the tree. As
first shown in [5], this suffices to guarantee that single edge
failures will not cause congestion. The primary advantage
of our alternate proof is that we map it to a well-studied
graph theory problem of finding strong orientations. Using
known results in graph orientation, our constructions are much
simpler, and hopefully yield better insight into the problem.
We also show that essentially the same construction works for
the problem in [14], of constructing disjoint unicast routes and
a multicast tree.

A. Improved proof of dealing with single edge failures in a
multicast network

A strong orientation of an undirected graph is an assignment
of direction to edges so that the resulting graph is strongly
connected (has a directed path between each pair of nodes.)

Theorem VI.1. (Robbins’ theorem, Ch. 9 of [2]): Given a
simple (undirected) graph G, its edges can be directed to form
a strongly-connected graph iff G is 2-connected.

Given any 2-connected graph G, apply Robbins’ theorem
to get an orientation and let S1 be the resulting strongly-
connected graph. Consider the reverse orientation, resulting
in an arc-disjoint strongly-connected graph S2. Then we can
pick a multicast tree from S1 and backup paths from S2.

There is a subtlety: the actual multicast tree is computed in
a distributed fashion based on link weight assignments. Thus
we need to find a set of link weight assignments that leads
to the selection of a multicast tree in S1. Because of space
limitations, we omit the proof of how this is done.

In [14] the authors construct a multicast tree T and unicast
routes disjoint from T . This can be done with the above
construction by picking the multicast tree from S1 and all
unicast paths from S2.

VII. CONCLUSION

We presented various network designs and backup path
reconfiguration schemes for restoring multiple failures using
FRR. These are the first designs with formal (worst case)
guarantees of no congestion and no loss of connectivity.
Although our proofs of correctness are complex, the descrip-
tions of the designs and protocols are simple. Using a lower
bound argument, we showed that one of our constructions is
nearly optimal in the number of edges. A numerical evaluation
showed that, e.g., a network graph with average degree 7 with
57% overbuild can support failures of up to 4 edges.

REFERENCES

[1] J. Akpuh, J. Doucette. Enhanced failure-specific p-cycle network dual-
failure restorability design and optimization. J. of Optical Networking,
vol. 8 (1), 2009.

[2] C. Berge. Graphs and Hypergraphs, North-Holland, 1979.
[3] Y. Bejerano, P. Koppol. Optimal construction of redundant multicast

trees in directed graphs. INFOCOM, 2009.
[4] J. Choi, S. Subramaniam, H. Choi. On double-link failure recovery in

WDM optical networks. INFOCOM, 2002.
[5] R. Doverspike, G. Li, K.N. Oikonomou, K. Ramakrishnan, D. Wang.

IP Backbone Design for Multimedia Distribution: Architecture and
Performance. INFOCOM, 2007.

[6] M. Garg, J. Cole Smith. Models and algorithms for the design of
survivable multicommodity flow networks with general failure scenarios.
Omega, vol. 36 (6), 2008.

[7] A. Gerber, R. Doverspike. Traffic types and growth in backbone net-
works. OFC, Anaheim, CA, 2011.

[8] M. Goyal, K. Ramakrishnan, W. Feng, Achieving faster failure detection
in OSPF networks. IEEE ICC, 2003.

[9] M. Grötschel, C.L. Monma, M. Stoer. Polyhedral and Computational
Investigations for Designing Communication Networks with High Sur-
vivability Requirements. Operations Research, Vol. 43 (6), 1995.

[10] W. Grover, D. Stamatelakis. Cycle-oriented distributed preconfigura-
tion: ring-like speed with mesh-like capacity for self-planning network
restoration. ICC, 1998, pp. 537–543.

[11] A. Itai, M. Rodeh. The multi-tree approach to reliability in distributed
networks. FOCS, 1984.

[12] S. Kim, S. Lumetta. Evaluation of protection reconfiguration for multiple
failures in optical networks. OFC, 2003.

[13] S. Kini, D. Ramasubramanian, A. Kvalbein, S. Hansen. Fast recovery
from dual link failures in IP networks. INFOCOM, 2009.

[14] G. Li, D. Wang, R. Doverspike. Smart IGP weight setting in multimedia
IP networks. Mini Symposium of IEEE INFOCOM, 2007.

[15] C. Liu, L. Ruan. p-cycle design in survivable WDM networks with shared
risk link groups (SRLGs). J. Photonic Network Communications (3).

[16] T.L. Magnanti, S. Raghavan. Strong formulations for network design
problems with connectivity requirements. Networks, vol. 45, 1999.

[17] J. Moy. OSPF: Anatomy of an Internet routing protocol. Addison
Wesley, 1998.

[18] P. Pan, G. Swallow, A. Atlas. Fast reroute extensions to RSVP-TE for
LSP tunnels. IETF RFC 4090.

[19] S. Ramasubramanian, A. Chandak. Dual-link failure resiliency through
backup link mutual exclusion. IEEE/ACM Transactions on Networking
16 (1), 2008.

[20] A. Todimala, K. Ramakrishnan, R. Sinha. Reconfiguration for surviving
multiple-link failures in backbone networks. OFC, 2008.

[21] www.cs.sfu.ca/˜funda/DRCN/appendix.pdf
[22] J. Zhang, J. Zhu, B. Mukherjee. Backup reprovisioning to remedy the

effect of multiple link failures in WDM mesh networks. IEEE JSAC
24 (8), 2006.

[23] M. Yuksel, K. Ramakrishnan, R. Doverspike, R. Sinha, G. Li,
K.N. Oikonomou, D. Wang. Cross-layer techniques for failure restora-
tion of IP multicast with applications to IPTV. COMSNET, 2010.

[24] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, R. Yang,
R3: Resilient routing reconfiguration. SIGCOMM, 2010.

[25] Q. Zhu, Y. Wang. Compressed Video over Networks. Ming-Ting Sun and
Amy R. Reibman, eds. Marcel Dekker, 2001.

8


