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Abstract Hospital readmission has become a critical metric of
quality and cost of healthcare. Medicare anticipates that nearly
$17 billion is paid out on the 20% of patients who are readmitted
within 30 days of discharge. Although several interventions such
as transition care management have been practiced in recent
years, the effectiveness and sustainability depends on how well
they can identify patients at high risk of rehospitalization. Based
on the literature, most current risk prediction models fail to reach
an acceptable accuracy level; none of them considers patient’s
history of readmission and impacts of patient attribute changes
over time; and they often do not discriminate between planned
and unnecessary readmissions. Tackling such drawbacks, we
develop a new readmission metric based on administrative data
that can identify potentially avoidable readmissions from all
other types of readmission. We further propose a tree-based
classification method to estimate the predicted probability of
readmission that can directly incorporate patient’s history of
readmission and risk factors changes over time. The proposed
methods are validated with 2011–12 Veterans Health Adminis-
tration data from inpatients hospitalized for heart failure, acute
myocardial infarction, pneumonia, or chronic obstructive pulmo-
nary disease in the State of Michigan. Results shows improved

discrimination power compared to the literature (c-statistics
>80 %) and good calibration.

Keywords Readmission . Predictive analytics . Patient flow .

Phase-type distribution .Markov chain

1 Introduction

Hospital readmission is disruptive to patients and costly to
healthcare systems. Unnecessary return to hospitals shortly after
discharge has been increasingly perceived as a marker of the
quality of care that patients receive during hospital admission [1].
About one in fiveMedicare fee-for-service beneficiaries, totaling
over 2.3 million patients, are rehospitalized within 30 days after
discharge, incurring an annual cost of $17 billion, which consti-
tutes nearly 20% ofMedicare’s total payment [2]. However, it is
reported by the Medicare Payment Advisory Commission
(MedPAC) that about 75 % of such readmissions can and should
be avoided because they often result from a fragmented
healthcare system that leaves discharged patients with prevent-
able flaws such as hospital—acquired infections and other com-
plications, poor planning for follow up care transitions, inade-
quate communication of discharge instructions, and failure to
reconcile and coordinate medications [3]. Variations in both
medical and surgical readmission rates by different hospitals
and different geographic regions indicate that some centers (or
regions) perform better than others at containing readmission
rates [2, 4]. Studies also show that the adjusted readmission rate
in the US is among the highest ranking in comparison to Euro-
pean countries [5].

In addition, effective October 2012, as directed by Patient
Protection and Affordable Care Act (PPACA, also called
Obamacare), the Centers for Medicare and Medicaid Services
(CMS) started to cut reimbursement funds for hospitals that have
excessive 30-day readmission rates for heart failure, acute myo-
cardial infarction, or pneumonia patients. This included 2,213
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US hospitals with approximately $280million funds nationwide,
which constitutes 1 % of the total Medicare budget. Moreover,
this cut will grow to 2 % and 3 % for FY 2014 and 2015,
respectively, with four additional conditions such as chronic
obstructive pulmonary disease and coronary bypass graft. As a
result, numerous intervention programs have been proposed by
policymakers and healthcare organizations to reduce
rehospitalizations and improve quality and access to care [6].

While it would be perfect to include all patients in a transi-
tional care intervention, due to their resource intensive nature on
one hand and hospital supplies constraints on the other, it is
inevitable to target and deliver such efforts to those subgroups
that are at greater risk. Nevertheless, identifying patients at
increased risk of readmission is challenging and calls for ad-
vanced analytics tools that help to stratify risk into clinically
relevant classes and provide information early enough during
the hospitalization. Various methods have been proposed in
recent years to predict hospital readmission but most of them
do not yield acceptable predictive accuracy, or they are based on
patient factors that are not typically collected during clinical care
[7]. Furthermore, a few methods have tried to distinguish avoid-
able readmission form all other types of readmissions [8], but it
remains a disagreement how to systematically define and identify
those readmissions that can be prevented based on credible
clinical criteria.

In this paper, we propose a predictive analytics framework
that enables medical decision makers to characterize and (more
accurately) predict avoidable readmissions, and to investigate the
effects of different patient risk factors on the likelihood of rehos-
pitalization. The goal of our study is two-fold: (1) to develop and
internally validate an administrative algorithm for characterizing
avoidable readmissions from all types of readmissions, and (2) to
create and validate a simple and real-time readmission risk
prediction model that can produce more desirable prediction
accuracy than the literature (c-statistics >80 %). We use, for
model derivation and validation, all 2011–12 Veteran Affairs
(VA) inpatient records after hospitalization for heart failure, acute
myocardial infarction, pneumonia, or chronic obstructive pulmo-
nary disease in four facilities of the State of Michigan.

2 Study design and methods

2.1 Data used

The dataset used in this retrospective cohort study is provided by
the Veteran Health Administration (VHA), which is the largest
single medical system in the United States, with 152 medical
centers and nearly 1400 outpatient clinics. We analyze inpatient
administrative records gathered from fourmedical facilities in the
State ofMichigan, namely, AnnArbor, Battle Creek, Detroit, and
Saginaw, to identify all hospitalizations for Heart Failure (HF),
Acute Myocardial Infarction (AMI), Pneumonia (PN), and

Chronic Obstructive Pulmonary Disease (COPD) from Fiscal
Year 2011 to FY12. Cohorts are marked with ICD-9-CM (Inter-
national Classification of Diseases, Ninth Revision, Clinical
Modification) codes, similar to the coding utilized by the CMS
for calculating hospital readmission rates. There were no major
changes in the hospital bed supplies, and in the patient
admission/discharge processes through that period of time. Dur-
ing a hospital stay, patients may move to different acute wards
within the hospital and their episodes of care are carefully tracked
with standard computerized means. We use additional data files
for patients with chronic conditions aswell as patients exposed to
environmental hazards such as Agent Orange, to effectively
illustrate those impacts on the risk of readmission.

The dataset set contains 7200 records that correspond to
2985 distinct adult patients with principal (or secondary)
discharge diagnoses of HF, AMI, PN, and COPD (the original
set includes 7237 records form which 37 are dropped since
they have severe data quality issues). General exclusions
include: (1) Hospital admissions within 24 h of index dis-
charge, (2) Hospitalizations with a length of stay less than 24 h
(observation stays) or followed by a death, (3) Patients trans-
ferred to another acute care facility, (4) Patients discharged
against medical advice. To count readmissions in the last
month of FY12, the first month of FY13 is taken into account.
In additions, we omit stays in long term care, nursing home,
psychiatry, rehabilitation, and hospice wards. However, as we
are interested in modeling the effect of patient’s related factor
changes (over time) on the risk of readmission, unlike most
studies in the literature [9–11], we do not exclude recurrent
(re)admissions of the same patient from the analyses. We also
design both internal and external model validations by using
stratified split sample and bootstrap resampling methods.

2.1.1 Controlled variables

We aggregate patient level data files with provider and station
levels in order to obtain various types of risk factors for this study.
To achieve a better picture of the data environment, we further
arrange them into five groups: (1) Demographics: age at dis-
charge, sex, race, and marital status; (2) Socioeconomic: means
tested income, and insurance status (Medicare,Medicaid, private,
none); (3) Utilization: length of stay of the index hospitalization
(LOS), treating facility, source of admission (direct from home,
outpatient clinic, transition from any of the four VA hospital, VA
Nursing Home Care Unit (NHCU), and VA domiciliary), prima-
ry care provider, enrollment priority, and average distance (be-
tween patient’s home zip code and the zip code of the facility he/
she got admitted); (4) Service based: Agent Orange status, Pris-
oner Of War (POW) status, and radiation status; and (5) Comor-
bidity and severity: Diagnosis Related Group (DRG), Hierarchi-
cal Condition Category (HCC), and Care Assessment Need
(CAN) score. The variables are selected based on the relevant
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medical literature and confirmed by a group of VA health
professionals.

The enrollment priority is a priority level assigned according
to the veteran’s severity of service-connected disabilities and the
VA means test. The DRG is a validated reimbursement classifi-
cation scheme exploited to identify the cost of services that a
hospital renders. In its basic version, the groups are organized
with respect to their similarities in patient diagnosis, age, sex, and
the presence of complications or comorbidities; then a measure
of cost is attached to each group [12]. HCCs have been used ad
hoc, mainly for case-mix and risk adjustment in healthcare
utilization and payment systems. Each HCC group forms a set
of clinically and cost—similar conditions reflecting hierarchies
among related diseases as defined by the ICD-9-CM codes [13].
We create dummy variables for both the DRG and HCC vari-
ables in the regression studies; that is, if a patient is a member of
the category, he or she is given a 1 on this variable; otherwise the
score remains zero. The CAN score is a general illness severity
score that reflects the likelihood of admission or death within a
specified time period, and it works somewhat similar to diagnos-
tic cost group (DxCG) risk score [14]. The score is commonly
expressed as a percentile ranging from 0 (lowest risk) to 99
(highest risk) and it shows how a VA patient is compared with
others pertaining to the chances of hospitalization or death. It is
interesting to note that all predictor variables except length of stay
are real time and would be available before patient discharge, so
they can be employed in planning for pre-discharge (transitional
care) intervention programs.

2.1.2 Study outcomes

The main outcome is 30-day avoidable readmission as defined
later in Section 2.2; if no consecutive admission is occurred
within 30 days after the most recent admission, the outcome is
flagged as censored. Unlike large part of the literature that studies
only the occurrence of readmission by logistic (or probit) regres-
sion methods [15, 11], our current method is a hybrid of both
occurrence and timing of readmission, which enables us to
directly incorporate the effect of partially known inforamtion
(censored observations) into the risk of readmission. We further
modify the approach introduced by Goldfield et al. [16], to
distinguish between avoidable and unpreventable outcomes.
The most common causes of readmission for the four cohorts
as well as their changes over time are also investigated as
secondary health outcomes.

2.2 Methods

2.2.1 Measuring potentially avoidable readmissions

Measuring and counting readmissions have been questionable
among health researchers, and a number of different metrics have
been proposed that vary in some ways. For example, the time

period encompassing recurrent admissions after discharge ranges
from one week to 180 days, among which 30-day is the most
common. Some metrics consider readmissions for any cause
(“all-cause readmission”) while others try to exclude subsequent
admissions likely to be planned or unrelated to the initial admis-
sion [16]. Among the metrics, Centers for Medicare and Medic-
aid Services (CMS) 30-day readmission [17] and the 3M Cor-
poration Potentially Preventable Readmissions [18] have been
used more often. The main differences between them are related
to the risk adjustment used and restriction to include only clini-
cally related readmissions. More details about the rationale of
thesemethods and their specific distinctions can be found in [19].

In this study, since our goal is more to develop and validate
a risk prediction model that can be used for clinical applica-
tions (rather than hospital profiling and payment adjustment),
we derive a hybrid approach adopting both the CMS and 3M
rationales to choose from the patient outcomes. In a nutshell,
we first apply the CMS method to exclude those planned
procedures that are followed by a non-acute or a non-
complication of care condition; then the 3M procedure is
implemented on the remaining indices in order to extract
potentially avoidable readmissions. However, we modify the
exclusion criteria of both methods and implement VHA def-
initions of eligible discharge. To increase the overall precision
of the proposal, we also got help from three reviewers to judge
all cases identified, after completing each constituent algo-
rithm. Moreover, instead of the APR DRG system, the newly-
developed Diagnostic Cost Group Hierarchical Condition
Category, Solution version, version 21 (DCG/HCC v21) is
utilized to assess the clinical relationship between each read-
mission and its initial admission(s) [13]. We chose the DCG/
HCC risk adjustment system because 1) it is a part of models
that have been used and evolved over two decades of research;
2) it has special adjustments for elderly beneficiaries as well as
patients with chronic conditions; and 3) it is recalibrated
regularly according to recent modifications on diagnosis and
expenditure data.

The algorithm, which we call Potentially Avoidable Read-
mission (PAR), is stated as follows:

Step 1 (general inclusion/exclusion)

I. Identify heart failure (HF), acute myocardial infarc-
tion (AMI), pneumonia (PN), and COPD cohorts
based on principal (or secondary) discharge diagno-
ses, and eliminate all other conditions. Merge records
of the same patient if he/she had multiple hospitali-
zations on the same day to the same medical unit.
This applies to both medical and surgical patients.

II. Establish 30-day readmission time interval and cate-
gorize each entry as either admission or readmission.
Also, define eligible admissions as all admissions
that are at risk of having a readmission.

A predictive analytics approach



III. Exclude:

a) From the admission set, cases whose discharge sta-
tus is “death,” since they cannot have any readmis-
sion. These correspond to stand-alone admissions.

b) From the admission set, cases whose discharge sta-
tus are “transfer” to another acute care facility, ex-
cept the four hospitals studied. The reason is that the
hospital cannot affect a patient’s consequent care
under such circumstances. If transferred among the
four hospitals, however, the final discharging hospi-
tal is considered responsible for any readmissions.

c) From the admission set, cases whose discharge sta-
tus is “against medical advice.” Because in such
cases, the planned treatment(s) could not be fulfilled
and thus they do not represent a quality-of-care
signal.

d) From the readmission set, those entries that fall
within 24 h of their prior index discharge. This is
consistent with the VHA operations policies.

e) From the readmission set, cases in which any of the
CMS planned procedures are conducted if not
followed by an acute or a complication-of-care dis-
charge condition category. Examples of such proce-
dures include peripheral vascular bypass, heart
valve, kidney transplant, mastectomy, colorectal re-
section, andmaintenance chemotherapy (see [20] for
the full list).

f) From the readmission set, AMI patients hospitalized
for a percutaneous coronary intervention (PCI) or
coronary artery bypass graft (CABG), except those
that are diagnosed for heart failure, AMI, unstable
angina, arrhythmia, and cardiac arrest.

g) From both admission and readmission sets, hos-
pitalizations in long-term care, palliative care,
nursing home, aftercare of convalescence, psychi-
atry, rehabilitation, and hospice wards; or for
fitting of prostheses and adjustment devices.

h) From both admission and readmission sets, stays
for special conditions with high mortality risk, for
which chances of post-discharge death is much
higher than chances of being readmitted. These
include, but are not limited to, patients with ma-
lignant neoplasmwithout specification of site; and
medical patients with cancers of breast, skin, co-
lon, upper digestive tract, lung, liver, pancreas,
head, neck, brain, and fracture of neck of femur
(hip). This is consistent with the CMS approach.

i) From both admission and readmission sets, records
that are related to major or metastatic malignancies,
multiple trauma, burns, neonatal, obstetrical, Human
Immunodeficiency Virus (HIV), and eye care. The
rationale is that these conditions usually require

specialized follow-up cares and are often not avoid-
able. This is consistent with the 3M approach.

j) From both admission and readmission sets, patients
not enrolled in the VA and thus lacking sufficient
historical data for the 12 months prior to the index
admission. The logic is that the information is re-
quired to adjust for the case-mix and comorbidities.

k) From both admission and readmission sets, re-
cords with inconsistent and/or error components
such as age and gender discrepancies, invalid
HCC assignment, discharge date that preceded
the admission date, disagreements between the
patient’s VA status and its service-based attribute
values, hospitalizations charged for less than $200
or greater than $4 million, and records with dis-
tances longer than 3000 miles.

IV. Calculate eligible admissions as all records remain-
ing in the admission set. Note that, situations de-
scribed in a), b), and c), i.e., “death,” “transfer,” or
“against-medical-advice” may happen to both ad-
mission and readmission entries.

Step 2 (labeling PARs)

V. Mark records from the readmission set that have a
clinical relationship with their initial admissions as
defined by one of the eight following categories:

a) Readmissions for an ambulatory care-sensitive con-
dition as specified by the Agency for Healthcare
Research and Quality (AHRQ) [21].

b) Medical readmissions for repeated happening or
extension of the reason for the initial (or a closely-
related) condition.

c) Medical readmissions for an acute decompensation
of a chronic condition that relates back to the care
given in the course or immediately after the initial
admission (e.g., a return hospitalization for diabetes
by an initially diagnosed AMI patient).

d) Medical readmissions for acutemedical complications
acquired during or soon after the first admission (e.g.,
a readmission for addressing a urinary tract infection
of a patient originally hospitalized for hernia repair).

e) Readmissions for a mental health or substance abuse
condition that follows an admission for a non-mental
health or non-substance abuse condition.

f) Readmissions for mental health or substance abuse
reason following a hospitalization for a mental
health or substance abuse reason.

g) Surgical readmissions to deal with repeated happen-
ings or extensions of the condition causing the initial
hospitalization (e.g., a readmission for appendectomy
surgery of a patient who was initially admitted for
abdominal pain and fever).
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h) Surgical readmissions to tackle a medical or surgical
complication resulting during the initial admission or
in the post-discharge course (e.g., a readmission for
treating a post-operative wound resulting from an
initial hospitalization for a bowel resection).

Step 3 (clinical panel review)

VI. All exclusions from step 1 and marked PARs in step 2
are reviewed by three physicians, and final decision
about the outcomes was made by a majority of vote
scheme.

Step 4 (calculating PAR rate)

VII. Define a PAR series as a sequence of one or more
PARs that are all clinically associated with a similar
initial admission. In this way, the succeeding PARs
are always assessed for having a clinical relationship
in reference to the very first admission (which starts
the sequence), not with the intermediate PARs. As a
result, the total time interval encompassing a PAR
series can be larger than 30 days.

VIII. Update the eligible admission set by reclassifying
cases in the readmission set that are NOT found to
be PARs (i.e., not having clinical relationship with
their prior admissions) and at the same time, do not
fall in “death”, “transfer”, or “against-medical-advice”
categories.

IX. Calculate PAR rate as #PAR Series
#Eligible Admissions .

It should be noted that, plus using DCG/HCC system, we
utilize other sources of information such as clinical visits between
admission and readmission, and communication with the patient,
patient’s family and primary care physician assigned to judge
whether the readmission(s) could have been avoidable.

2.2.2 Predicting potentially avoidable readmission

Basically there are two types of prediction models applied in
readmission studies. The first group, which we call classification
models, focus on readmission occurrence and attempt to estimate
it by a learning algorithm trainedwith inputted patient factors and
known class labels. A popular example of this class is logistic
regression [11]. The second group, which we name timing based
models, concentrates on time to readmission and try to relate
some of its probability functions to a given set of covariates in
parametric or semiparametric Schemes. Awell-known example
of this category is the Cox proportional hazardmodel [22]. In this
paper, we take a hybrid approach and propose a tree based
classificationmethod that canmodel the effect of partially known
information (censored observations) into the risk of readmission.
The proposedmethod is also able to directly incorporate patient’s
history of readmission and risk factors changes over time.

Consistent with the CMS logic [20, page 14], we observe that
time-to-readmission curves for the four conditions follow a
similar pattern over time: a quick early increase of rate of
readmission, followed by a stable and constant rate thereafter.
Thus, it is reasonable to assume that time spent until readmission
can be stratified into two groups: one for those who quickly
return to hospital possibly due to poor quality of inpatient care
they receive, and the other for those who slowly readmit because
of poor quality of post-discharge and outpatient follow-up care.
Following this, we develop a conceptual framework for the
movements of patients after discharge from hospital (see
Fig. 1). It is assumed that discharged patients travel between
two major states (Short Stay and Long Stay) in their community
before being returned to the hospital. In other words, patients
begin their post discharge period from the Short Stay (SS) group
consisting of m sequential transient phases; then they are either
readmitted to the hospital at the rate of λSS or move to the Long
Stay (LS) group with rate λm. Patients entering in the LS group
remain another r transient phases in the community before going
back to the hospital at the rate of λLS. Therefore, readmission
from the short stay group is a marker of poor quality of inpatient
care, whereas those from the long stay group represent deficient
quality of outpatient care. Note that the rates are not identical
within or between the two groups.

The current framework results in a special case of order m+r
Coxian phase-type distribution, which is represented by an ab-
sorbing continuous time Markov chain (CTMC) with m+r tran-
sient states and one absorbing state (Hospital). See [23] to get an
overview of phase-type distribution and its applications on
modeling healthcare systems. The dynamics of the underlying
finite state stochastic process {X(t);t≥0} is governed by the
transition intensity matrix A={αhj};h,j∈E,E={1,2,…,m+r} as

αhj tð Þ ¼ lim
Δt↓0

P X t þΔtð Þ ¼ j X tð Þ ¼ hj½ �
Δt

;

αhh tð Þ ¼ −
X
h≠ j

αhj tð Þ :
ð1Þ

Hence, the random variable time to readmission T is equal
to the time spent in the above CTMC until absorption in the
Hospital state, which is also known as the sojourn time. The
probability density function f, the survival function S, and the
k-th (non-central) moment of T are expressed by

f tð Þ ¼ πexp Qtð Þ −Q1ð Þ ð2Þ

S tð Þ ¼ πexp Qtð Þ1 ð3Þ

m kð Þ ¼ −1ð Þkk!Q −kð Þ1; k ¼ 1; 2;… ð4Þ
where π is a row vector row vector of the initial probabilities
over the transient states, Q is a (m+r)×(m+r) transient parti-
tion of the intensity matrix, and 1 represents an (m+r)×1
column vector of 1’s. Based on the transition flow diagram
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shown, the Coxian phase-type distribution is represented by
PH(π,Q) where π=(1,0,…,0) and Q={qhj} is simplified as

qh;hþ1 ¼ λh; h ¼ 1; 2 ; … ; m þ r − 1 ;
qh;h ¼ −λh; h ¼ 1; 2;…;m−1;mþ 1;…;mþ r−1f g;
qm;m ¼ − λSS þ λmð Þ ; qmþr;mþr ¼ − λLS:

ð5Þ

It is worth mentioning that the phases within each major
state (short stay or long stay) do not carry any practical
interpretations, but time spent in each phase follows an expo-
nential distribution. There are a number of approaches to fit a
phase-type distribution to empirical time-to-event data
ti,i∈{1,2,…,N} [23]. Here, we use expectation-maximization
algorithm (EMpht program [24]) to maximize the log-
likelihood function

L ¼
X

iαilog f tið Þð Þ þ 1−αið Þlog S tið Þð Þ; ð6Þ

in which αi=1 if ti is a complete time for the i-th hospitaliza-
tion, and zero if ti is a censored case (i.e., no readmission
occurs within 30 days after discharge).

Further, to develop a tree-based classification method, we
adopt the basic idea of Breiman’s random forest algorithm
[25] and utilize the phase-type likelihood function as a split-
ting criterion instead of the traditional Gini index. The pro-
posed approach can be seen as a special type of random
survival forest [26], and thus we name it as phase-type sur-
vival forest.

& Splitting criterion

We use minimization of the weighted average information
criterion (WIC) as the splitting criterion [27]. The WIC is
calculated as

WIC dð Þ ¼ −2Lþ d þ d
ð log Nð Þ−1ð Þlog Nð Þð Þ N− d þ 1ð Þð Þ2 þ 2N N þ d þ 1ð Þð ÞÞ

2N þ log Nð Þ N− d þ 1ð Þð Þð Þð Þ N− d þ 1ð Þð Þ

 )
;

(
ð7Þ

where d=2(m+r)−1, is the number of degrees of free-
dom for phase-type distribution, and N is the total
number of sampled records. In this way, at each node
of a tree, if covariate ℓ has G values breaking the node
into partition set (ℓ1, ℓ2,…, ℓG), the total WIC for the
split can be expressed by the sum of singular WICs
of every sub-group as WICfull dfullð Þ ¼∑

g ¼ 1

G
WICℓ g dℓ g

� �
.

Also, the information gain is defined as the improvement
made in the WIC after splitting the node like IGℓ=
(WICR(dR))−WICfull(dfull), where R stands for the node
before partition (i.e., the parent node). Beginning from the
root node, at every single node, we apply one covariate at a
time and record the gain for partitioning by that covariate.
Then, we repeat this with other attributes and select a split that
minimizes the WIC the most (or yields the largest gain) to
recursively partition into child nodes. Also, if no positive gain
can be obtained at a node by any possible split, the node
becomes a terminal node.

& Forest development

Because we allow multiple records per patient in our data,
repeated measures and recurrent readmissions are likely. In this
case, the bootstrapped samples are dependent and chances of
having correlated observations in the in bag training set are high.
Consequently, trees grown may be correlated and overfitting is
plausible. To alleviate this problem, we force the forest take a
bootstrap sample at the patient level rather than at the replicate
level, i.e. doing subject specific bootstrap instead of traditional
replicate based bootstrap. This way, when a particular patient is
chosen at random, all of its replicates (repeated measures) that
had the outcome (recurrent events) or did not have the outcome
are attached to it. Consistent with the rule of thumb, subject level
bootstrapping performed in the algorithm ensures that about
63 % of the subjects (rather than replicates) are elected in-bag.
As a result, patients with more repeated measures cannot dom-
inate the learning process.

Community 

Hospital

Long-Stay Group 

 

Short-Stay Group 

 m+r−1 m+2 m+1 m m−1 2 1

 SS  LS

Fig. 1 Markov model for movements of patients after discharge
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The algorithm, phase-type survival forest, is described
below.

Similar to the original Breiman’s random forest, the out-of-
bag (OOB) data (which includes about one third of all
patients) is used to get a running unbiased estimate of
the classification error. Likewise, we use the same permuta-
tion based measure to get a raw importance score for variable
[25].

2.2.3 Data preprocessing

Since the data contains missing values, noise (e.g., errors and
outliers), and inconsistent records, we perform the following
preprocessing tasks:

a) In univariate baseline analysis, missing values are imput-
ed with hot-deck method [28]. In predictive model build-
ing, the default Breiman’s replacement method is
employed [25].

b) Extreme records (outliers) are identified and removed by
local outlier factor [29].

c) Error records and incorrect data combinations (such as
prisoner-of-war status: YES, veteran status: NO) are fixed
manually.

d) Variable ‘distance’ is discretized into three levels (near:
<25 miles; middle: between 25 and 50 miles; far: >50
miles) by k-means clustering. This is done because dis-
tance has a multimodal and highly skewed density
function.

Following these steps, the number of records is reduced to
6975 with 2813 distinct patients.

3 Analyses

We examine the most frequent diagnoses of 30-day
readmissions after hospitalization for heart failure, acute myo-
cardial infarction, pneumonia, and COPD. We compare per-
centages of readmission calculated by our method with those
of the 3M and CMS approaches. We performed a series of
analyses to investigate the calibration of the proposed predic-
tion method. To do this, we first create and enter two new
covariates into the analysis: (1) ‘sequence’ that shows how
many times a given patient is readmitted, and (2) Charlson
comorbidity index with the help of comorbidity software [30].
Then we conduct three sensitivity analyses: (1) sensitivity of
error rates to the parameters of the phase-type survival forest
(i.e., number of trees to grow at each node, and number of
variables to randomly split at each node), (2) sensitivity of
error rates to cutoff point of continuous covariates, and (3)
sensitivity of error rates to class weights (i.e., readmitted class
and not readmitted class). Next, we evaluate observed-to-
predicted ratios of our prediction model at different readmis-
sion risk deciles with the help of calibration curves. Finally we
compare the discrimination power of our prediction model
with four classification methods found in the literature. To this

A predictive analytics approach



end, we use different prediction measures including sensitiv-
ity, specificity, positive predictive value, and negative predic-
tive value.

4 Results

4.1 Potentially avoidable readmission rates

Using the potentially avoidable readmission (PAR) algorithm
and 30-day timeframe for the four conditions, we begin by
classifying all records to admissions and readmissions. After
removing instances from the admission and readmission sets
that meet one or more exclusion criteria (see section III of the
PAR algorithm), we initially identify total of 5,476 eligible
admissions and 941 readmissions. Of the 941 readmissions,
155 cases are found not clinically related to their prior admis-
sions (see PAR algorithm, Section V), form which 31 cases
are fitted in either “death,” “transfer,” or “against-medical-
advice” groups and thus be dropped. The remaining 124
readmissions are then reclassified as eligible admissions,
resulting in 5,600 eligible admissions. Hence, we end up
having 786 PARs, from which 588 examples belong to a
PAR series with only one PAR, and 71 match to a PAR series
with two or more PARs. Consequently, the total number of
unique PAR series becomes 659, and the PAR rate (see section
IX of the PAR algorithm) is found to be 11.77 %. Following
the same approach, rates of PAR for heart failure (HF), acute
myocardial infarction (AMI), pneumonia (PN), and COPD are
13.26, 12.47, 11.16, and 11.18 %. The facility adjusted PAR
rates vary from 12.37 to 13.69 % for HF; 11.83 %–13.16 %
for AMI; 10.74 %–11.93 % for PN, and 10.47 %–12.05 % for
COPD. From all HF avoidable readmissions, 86.3 % are
readmitted once, 11.4 % are readmitted twice and 2.3 % are
readmitted three or more times. These rates are (81.7 %;
14.6 %; 3.7 %), (88.4 %; 10.9 %; 0.7 %), and (85.1 %;
13.5 %; 1.4 %) for AMI, PN, and COPD respectively.

The most common diagnoses of 30 day readmission are
outlined in Table 1. It appears that after admission for HF and

AMI, readmissions happen mostly for heart failure (39.6 %
and 28.3 % of readmissions, respectively), but following
hospitalizations for PN and COPD, patients get readmitted
because of COPD (21.4 % and 31.6 %, in turn). Also, the top
five readmission diagnoses contribute to 63.2 % of all
readmissions after HF, 59.4 % of all readmissions after AMI,
55.6 % of all readmissions after PN, and 62.4 % of all
readmissions after COPD. Also we observe that the most
frequent reasons for avoidable readmissions in all conditions
are related to “recurrence or extension of the reason (Section V,
part b)” and “medical complications (Section V, part d)”, with an
average of 54.7 % and 23.2 % through all the hospitals. As
expected, in none of the acute and chronic conditions is the
proportion of non-clinically related readmissions over 15.4 %.

We compare percentages of readmissions calculated by our
method (PAR) to those of the 3M method for the three acute
conditions in the four hospitals (Fig. 2). It is noticed that with
our approach (PAR), a greater proportion of all readmissions
can be avoided in the first two weeks after discharge,

Table 1 Top readmission diagnoses for patients hospitalized after heart failure, acute myocardial infarction, pneumonia, and COPD

Rank HF cohort AMI cohort PN cohort COPD cohort

Diagnosis Percent of
PAR

Diagnosis Percent of
PAR

Diagnosis Percent of
PAR

Diagnosis Percent of PAR

1 Heart failure 39.6 % Heart failure 28.3 % COPD 21.4 % COPD 31.6 %

2 Renal failure 9.3 % Coronary artery
disease

13.7 % Pneumonia 15.3 % Bronchitis 15.8 %

3 Arrhythmias 6.7 % Pneumonia 8.6 % Heart failure 10.6 % Cardio-Respiratory
Failure and Shock

7.2 %

4 Cardio-respiratory failure
and shock

4.1 % Septicemia/Shock 5.5 % Cardio-respiratory
failure and shock

4.4 % Pneumonia 4.6 %

5 Pneumonia 3.5 % Renal failure 3.3 % Renal failure 3.9 % Hypertension 3.2 %
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but the contribution declines as time passes. Compared to the
3M approach, our method considers (slightly) fewer
rehospitalizations as being avoidable and produces lower rates
of readmission throughout all periods after discharge. A prob-
able reason for this may be related to the CMS and VHA
specific exclusions of our method, which is not found in the
3M approach.

4.2 Descriptive analytics

Turning to the description of the underlying population, we
observe that the mean (standard deviation) patient age of the
readmitted cohort is 78.6 years (3.5 years) for HF, 80.3 years
(4.1 years) for AMI, 79.3 years (2.9 years) for PN, and 77.1 years

(2.9 years) for COPD. Frequent comorbid conditions among
readmissions are coronary artery disease (CAD), atrial fibrilla-
tion, and diabetes for the HF cohort; anemia, congestive heart
failure, and vascular disease with complications for the AMI
cohort; chronic obstructive pulmonary disease, congestive heart
failure, and cardiorespiratory failure and shock for the PN cohort;
and chronic bronchitis, pneumonia, and diabetes mellitus for the
COPD cohort.

Baseline patient characteristics in cohorts with potentially
avoidable readmission (PAR) and without any kind of read-
mission (No readmission) are displayed in Table 2 (for heart
failure and acute myocardial infarction) and Table 3 (for
pneumonia and COPD). The presence of any significant dif-
ference between the cohorts is also tested using univariate

Table 2 Baseline characteristics (mean (SD) for continuous variables; n(%) for categorical variables) and univariate analyses at the time of discharge

Heart Failure
(n=1674)

Acute Myocardial Infarction
(n=1417)

Characteristic No Readmission
(n=1447)

PAR
(n=227)

P-Value No Readmission
(n=1211)

PAR
(n=206)

P-Value

Age (years) 68.6 (5.2) 71.3 (3.2) <.01 69.3 (5.6) 73.3 (3.7) <.01

Sex, Male 1406 (97.2) 215 (96.9) .04 1097 (90.6) 192 (93.2) .07

Race
Black
White
Other

986 (68.1)
432 (29.8)
29 (2.1)

193 (85.0)
29 (12.8)
5 (2.2)

<.01
769 (63.5)
405 (29.8)
37 (3.1)

169 (82.0)
29 (14.1)
8 (3.9)

<.01

Marital status
Current spouse
Never married
Previously married

839 (57.9)
307 (21.2)
301 (20.9)

137 (58.3)
52 (21.4)
38 (20.3)

.35
631 (52.1)
320 (26.4)
260 (21.5)

112 (54.4)
58 (26.7)
36 (18.9)

.42

Primary insurance
Medicare
Medicaid
Private
Not insured 

732 (50.6)
249 (17.2)
107 (7.4)
359 (24.8)

126 (55.5)
27 (11.9)
25 (11.0)
49 (21.6)

.03

624 (51.5)
226 (18.7)
103 (8.5)
258 (21.3)

97 (47.1)
32 (15.5)
28 (13.6)
49 (23.8)

.07

Length of stay (days) 5.2 (6.1) 6.2 (4.4) .07 5.8 (5.8) 5.1 (6.8) .11

Source of admission
Direct from home
Outpatient clinic
Transfer
VA NHCU
VA Domiciliary
Other

797 (55.1)
392 (27.1)
17 (1.2)
62 (4.3)
13 (0.9)

166 (11.5)

129 (56.8)
63 (27.8)
3 (1.3)

12 (5.3)
4 (1.8)

16 (7.0)

.31

623 (51.4)
392 (32.4)
23 (1.9)
62 (5.1)
13 (1.1)
98 (8.1)

107 (51.9)
67 (32.5)
4 (1.9)

10 (4.9)
5 (2.4)

13 (6.3)

.26

Enrollment priority
1
2
3
4
5
6
7
8

126 (8.7)
167 (11.5)
293 (20.2)
173 (12.0)
316 (21.8)
115 (7.9)
103 (7.1)
154 (10.6)

17 (7.5)
9 (4.0)

38 (16.7)
52 (22.9)
66 (29.1)
15 (6.6)
19 (8.4)
11 (4.8)

<.001

104 (8.6)
136 (11.2)
239 (19.7)
133 (11.0)
331 (27.3)
172 (14.2)
26 (2.1)
70 (5.8)

19 (9.2)
13 (6.3)
41 (19.9)
23 (11.2)
56 (27.2)
12 (5.8)
15 (7.3)
27 (13.1)

<.001

Distance to hospital
Near (<25m)
Middle ([25, 50]m)
Far (>50m)

856 (59.2)
549 (37.9)
42 (2.9)

155 (68.3)
69 (30.4)
3 (1.3)

.02
781 (64.5)
406 (33.5)
24 (2.0)

151 (73.3)
53 (25.7)
2 (1.0)

.03

Prisoner of war, Yes 17 (1.2) 8 (3.5) <.01 11 (0.9) 6 (2.8) .01
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logistic regression and the results are shown in terms of P
values (with missing values imputed by the hot-deck method).
Since the same patient could have several avoidable
readmissions during the study period, we used generalized
estimation equation to adjust for serial correlations among
readmissions of the same patient.

During the study, a total of 5,600 eligible admissions were
made in the four VA hospitals, out of which about 13.09 %
were followed by an unnecessary rehospitalization. Note that
this rate is different from what is reported before (which is
11.77 %) because here we count each readmission separately
rather than as members of a PAR series. In all conditions, the
populations are generally male (>86 %), married (>51 %),
older (>67 years), and live within 25 miles of a VA facility
(>60 %). More than 21 % in all conditions do not have private
insurance or insurance through Medicare or Medicaid pro-
grams.More than half of patients in all conditions are admitted
directly from their home and more than 50 % have one to four
past year hospitalizations. On average, the care assessment
score is higher in respiratory diseases (near 69) compared to
circulatory conditions (about 66). Almost 18 % of the patients
are also diagnosed with more than ten HCCs (not shown in the
tables). Note that in the attribute “source of admission,” class
‘transfer’ is related to those patients who are transferred only

among the four VA hospitals, and ‘Other’ is related to some
other admission sources such as observation/examination,
non-VA hospitals not under VA auspices, community nursing
homes under (or not under) VA auspices, non-veteran hospi-
tals, etc. Priority groups 1, 2, and 3 are generally assigned to
veterans with service connected disabilities of >50 %, [30 %,
50 %), and [20 %, 30 %), respectively. Other groups are as
follows: 4, catastrophically disabled veterans; 5, low income
or Medicaid; 6, Agent Orange or Gulf War veterans; 7, non-
service connected with income being belowHUD; and 8, non-
service connected with income being above HUD. For each
condition, patient comorbidities are identified with the help of
comorbidity software, using ICD-9-CM and DRG codes from
the index hospitalization and any admission in the 12 months
prior.

It is observed that patients who are subsequently readmitted
are elderly and usually have a greater number of comorbidi-
ties. Male patients have on average a greater chance to be
readmitted in HF and COPD cohorts rather than females, but
this cannot be generalized since the VA sample here contains
only about 8 % female patients. The analysis shows that
length of stay is not generally associated with odds of avoid-
able readmission, when patient and facility characteristics are
not controlled for. However, after adjusting for the case mix

Table 2 (continued)

Heart Failure
(n=1674)

Acute Myocardial Infarction
(n=1417)

Characteristic No Readmission
(n=1447)

PAR
(n=227)

P-Value No Readmission
(n=1211)

PAR
(n=206)

P-Value

Radiation, Yes 11 (0.8) 5 (2.2) .03 9 (0.7) 6 (2.9) .02

Agent Orange, Yes 63 (4.4) 16 (7.0) .02 42 (3.5) 13 (6.3) .03

CAN score 67.4 (4.1) 71.7 (2.9) <.01 64.5 (4.6) 68.6 (3.7) .02

No. of past year 
hospitalization

0
1-4
>4

663 (45.8)
713 (49.3)
71 (4.9)

71 (31.3)
122 (53.7)
34 (15.0)

<.001
503 (41.5)
616 (50.9)
92 (7.6)

52 (25.2)
124 (60.2)
30 (14.6)

<.001

Comorbidity
CAD
Heart failure
Vascular disease w/c
Cardiorespiratory 
Pneumonia
Atrial fibrillation
Anemia
Diabetes
COPD
Chronic bronchitis
Malignant neoplasm
Mental disorder
Substance abuse

486 (33.6)
—
202 (14.0)
153 (10.6)
97 (6.7)

403 (27.9)
225 (15.5)
351 (24.3)
242 (16.7)
83 (5.7)
71 (4.9)

160 (11.1)
118 (8.2)

94 (41.4)
—
45 (19.8)
37 (16.3)
19 (8.4)
77 (33.9)
47 (20.7)
71 (31.3)
49 (21.6)
12 (5.3)
19 (8.4)
37 (16.3)
31 (13.7)

.04
—
.02
.01
.32
.05
.05
.02
.05
.66
.03
.01

<.01

81 (6.7)
346 (28.6)
306 (25.3)
134 (11.1)
51 (4.2)

291 (24.0)
378 (31.2)
159 (13.1)
63 (5.2)
17 (1.4)
25 (2.1)

102 (8.4)
112 (9.2)

16 (7.8) 
73 (35.4)
67 (32.5)
14 (6.8)
15 (7.3)
62 (30.1)
81 (39.3)
37 (18.0)
17 (8.3)
6 (2.9) 

12 (5.8)
31 (10.7)
33 (16.0)

.53

.04

.02

.06

.05

.04

.03

.05

.07

.14
<.01
<.01
<.01
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and service mix (not shown here), the relation tends to be
negative (about 7.3 % increase for each in hospital day
lower than expected), which implies that shorter indi-
vidual length of stay is generally connected with higher risk of
readmission. Therefore, consistent with [31], we observe that
significant reduction in LOS, without simultaneously improv-
ing inpatient care, is more likely to result in premature dis-
charge and rehospitalization. Enrollment priority turns out to be
highly linked with odds of readmission in all conditions, espe-
cially when it comes to catastrophically disabled veterans (in-
creases of 0.2 % in AMI to 10.9 % in HF). Also the odds of

avoidable readmissions are significantly higher in patients
exposed to ionizing radiation and Agent Orange in all condi-
tions. Among the comorbid conditions, having diabetes and
cancer increases the chance of readmission, as does having
mental disorders and substance abuse (with harsher effect in
circulatory conditions).

4.3 Predictive analytics

Following Algorithm 1, we used the entire set of patient risk
factors to develop a readmission prediction model. For non-

Table 3 Baseline characteristics (mean (SD) for continuous variables; n(%) for categorical variables) and univariate analyses at the time of discharge

Pneumonia
(n=1306)

COPD
(n=1203)

Characteristic No Readmission
(n=1117)

PAR
(n=189)

P-Value No Readmission
(n=1039)

PAR
(n=164)

P-Value

Age (years) 67.7 (4.9) 68.3 (2.8) <.01 64.2 (4.4) 65.1 (2.7) <.01

Sex, Male 1035 (92.7) 182 (96.3) .07 977 (94.0) 160 (97.6) .04

Race
Black
White
Other

731 (65.4)
335 (30.0)
51 (4.6)

153 (81.0)
25 (13.2)
11 (5.8)

<.01
601 (57.8)
398 (38.3)
40 (3.9)

121 (73.8)
38 (23.2)

5 (3.0)
<.01

Marital status
Current spouse
Never married
Previously married

571 (51.1)
244 (21.8)
302 (27.1)

106 (56.1)
32 (16.9)
51 (27.0)

.27
582 (56.0)
208 (20.0)
249 (24.0)

99 (60.4)
38 (23.1)
27 (16.5)

.08

Primary insurance
Medicare
Medicaid
Private
Not insured 

602 (53.9)
185 (16.6)
89 (8.0)

241 (21.6)

91 (48.1)
24 (12.7)
26 (13.8)
48 (25.4)

.06

541 (52.1)
159 (15.3)

95 (9.1)
244 (23.5)

98 (59.8)
15 (9.1)

8 (4.8)
43 (26.3)

.03

Length of stay (days) 4.9 (5.4) 5.7 (4.2) .03 3.8 (5.0) 4.2 (3.2) .08

Source of admission
Direct from home
Outpatient clinic
Transfer
VA NHCU
VA Domiciliary
Other

651 (58.3)
225 (20.1)
21 (1.9)
59 (5.3)
16 (1.4)

145 (13.0)

114 (60.3)
40 (21.2)
5 (2.6)

14 (7.4)
5 (2.6)

11 (5.8)

.09

581 (55.9)
328 (31.6)
33 (3.2)
62 (6.0)
17 (1.6)
18 (1.7)

98 (59.7)
47 (28.7)

3 (1.8)
9 (5.6)
1 (0.6)
6 (3.6)

.39

Enrollment priority
1
2
3
4
5
6
7
8

74 (6.6)
141 (12.6)
219 (19.6)
115 (10.3)
341 (30.5)
172 (15.4)
37 (3.3)
18 (1.6)

22 (11.6)
17 (9.0)
35 (18.5)
29 (15.3)
36 (19.0)

8 (4.2)
14 (7.4)
28 (7.4)

<.001

119 (11.4)
51 (4.9)

182 (17.5)
206 (19.8)
348 (33.5)
22 (2.2)
27 (2.6)
84 (8.1)

25 (15.3)
14 (8.6)
21 (12.8)
38 (23.2)
50 (30.5)

5 (3.0)
6 (3.6)
5 (3.0)

.01

Distance to hospital
Near
Middle
Far

692 (62.0)
421 (37.7)

4 (0.4)

127 (67.2)
59 (31.2)

3 (1.6)
.01

721 (69.4)
312 (30.0)

6 (0.6)

125 (76.2)
35 (21.3)

4 (2.5)
<.01

Prisoner of war, Yes 23 (2.1) 11 (5.8) <.01 27 (2.6) 14 (8.5) <.01

A predictive analytics approach



categorical variables in the candidate set (i.e., age, length of
stay, CAN score, sequence, and Charlson index), we evaluated
different cut off points to split the dataset into binary partitions
and explore the optimal cut-point that most discriminates high
vs. low risk using operating characteristic curves (ROC). We
then used these cut-points for further analyses. Also for cate-
gorical features with more than two classes (like race), fol-
lowing the literature, we optimally select a series of binary
splits (instead of multiway splits) that produce the best dis-
crimination results.

We first begin with the baselinemodel that uses all sampled
data points and we let the forest internally perform cross
validation using out-of-bag (OOB) samples during each run.
The number of trees and the number of variables to try at each
split are set to 6,000 and 5, respectively. Also we set the cut-
points with respect to minimizing the WIC criterion as fol-
lows: age, 68 (years); length of stay, 5 (days); CAN score, 66;
sequence, 3; and Charlson index, 4.5. Results of variable
importance are summarized in Table 4 (Sig. stands for signif-
icance level). As illustrated, almost all statistically significant
variables (Sig. <0.05) refer to overall health and agedness
factors, which may reflect a generalized vulnerability to dis-
ease among recently discharged patients—inpatients regularly
lose their strength and develop new difficulties in doing their
day to day activities. Interestingly, ‘sequence’ turns out
to be (positively) related to readmission risk, which
highlights the fact that the chance of unnecessary
returns to hospital is greater in patients with prior

history of readmission. In the baseline model, the c-
statistics is 0.793; sample-level OOB error rates are
3.16 %, 2.35 %, and 8.05 % for overall, No readmis-
sion class, and PAR class, respectively; and there are
large interactions between Agent Orange and Radiation,
between Priority and Length of stay, and between Pri-
ority and Insurance, to name a few.

& Model calibration

We then calibrated the baseline model as follows: (1) we
focused only on the 16 most important variables found in the
baseline model; (2) we imputed missing values based on
Breiman’s replacementmethod [25]; (3) wemodified the optimal
cut off points with regards tomaximizing the c-statistics (the new
cut-points are 69 years for age, 70 for CAN score, and 4.7 for
Charlson index, while others remain unchanged); and 4) we
altered the class weights to 1 on class ‘No readmission’ and 8
on class ‘PAR’, to adjust for the imbalanced prediction errors in
the classes. Then we rerun the model with 10,000 trees and 4
variables to try at each split. Depiction of variable importance for
the calibrated model is shown in Table 5. Expectedly, the
ranking of variables does not change but we achieved
better results in terms of scores and significance levels.
It is noticed that, though Mental disorder and Malignant
neoplasm are only marginally significant, we decide to
keep them in the final model since 1) they are both
medically significant in contribution to the risk of

Table 3 (continued)

Pneumonia
(n=1306)

COPD
(n=1203)

Characteristic No Readmission
(n=1117)

PAR
(n=189)

P-Value No Readmission
(n=1039)

PAR
(n=164)

P-Value

Radiation, Yes 10 (0.9) 8 (4.2) <.01 13 (1.2) 9 (5.5) <.01

Agent Orange, Yes 39 (3.5) 15 (7.9) <.001 64 (6.2) 21 (12.8) <.001

CAN score 68.3 (4.6) 69.1 (2.8) <.01 71.1 (3.6) 73.2 (2.6) <.01

No. of past year 
hospitalization

0
1–4
>4

485 (43.4)
593 (53.1)

39 (3.5)

56 (29.6)
114 (60.3)

19 (10.1)
<.01

537 (51.7)
449 (43.2)

53 (5.1)

27 (16.5)
114 (69.5)

23 (14.0)
<.001

Comorbidity
CAD
Heart failure
Vascular disease w/c
Cardiorespiratory 
Pneumonia
Atrial fibrillation
Anemia
Diabetes
COPD
Chronic bronchitis
Malignant neoplasm
Mental disorder
Substance abuse

216 (19.3)
335 (27.7)
181 (16.2)
273 (24.4)
—
66 (5.7)
33 (3.0)

132 (11.8)
339 (30.3)

72 (6.4)
31 (3.1)

106 (9.5)
138 (12.4)

31 (16.4)
71 (34.5)
35 (18.5)
58 (30.7)
—

14 (7.4)
10 (5.3)
35 (18.5)
69 (36.5)

9 (4.8)
10 (5.3)
27 (14.3)
33 (17.5)

.3
.03
.4

.05
—
.3

.09

.01

.04
.4

.06

.03

.04

141 (13.6)
131 (12.6)

91 (8.7)
106 (10.2)
366 (35.2) 

39 (3.7)
19 (1.8)

291 (28.0)
—
409 (39.4)
158 (15.2)
233 (22.4)
272 (26.2)

23 (14.0)
15 (9.1)
11 (6.7)
10 (6.1)
66 (40.2) 

6 (3.6)
4 (2.4)

54 (32.9)
—
81 (49.4)
42 (25.6)
47 (28.6)
55 (33.5)

.69

.46

.19

.10

.09

.31

.11

.05
—

<.01
<.001

.04

.03
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readmission, and 2) they together contribute largely to
the model discrimination ability.

In the calibrated model, the c-statistics jumps to 0.836; no
serious interactions remain among variables; and the overall,
No readmission, and PAR error rates become 3.67 %, 2.51 %,
and 2.64 %, respectively. It is remarkable that the calibrated
model considerably decreases PAR misclassification rate, but
at the expense of increasing the overall error rate a little bit.
We perceive that this tuning in class weights is really appeal-
ing for our situation because in readmission prediction
models, the cost of false negatives (which correspond to
readmitted patients incorrectly predicted as No readmission)
is usually much higher than the cost of false positives (which
correspond to non-readmitted patients incorrectly predicted as
PAR cases).

We further check the calibration by evaluating predicted
and actual PAR rates at different risk deciles. These results
appear in Table 6 and Fig. 3. It is noted that both on average
and over the whole range of predictions, the predicted proba-
bility of readmission matches up well with the actual proba-
bilities. Average predicted readmission (not shown here) also
monotonically increases with growing risk, ranging from
8.79 % in the lowest decile to 43.75 % in the highest, a range
of 34.96 % in total. For the 12% of readmissions that happens
between deciles four and five, the proposed model under

Table 4 Variable importance for the baseline model

Attribute Raw score Z-score Sig.

Care Assessment Need (CAN) score 4.87 2.372 0.009

Age 4.53 2.296 0.011

Charlson Comorbidity Index 4.17 2.010 0.022

No. of past-year hospitalization 4.09 1.816 0.035

Sequence 3.85 1.738 0.041

Length of stay 3.79 1.658 0.049

Coronary artery disease 3.36 1.390 0.082

Vascular disease w/c 3.41 1.381 0.084

Admission source 3.21 1.303 0.096

Atrial fibrillation 3.28 1.255 0.105

Priority 2.88 1.068 0.143

Agent Orange 2.52 0.961 0.168

Pneumonia 2.75 0.930 0.176

Sex 2.19 0.869 0.194

Mental disorder 2.66 0.815 0.207

Malignant neoplasm 2.53 0.762 0.223

Race 1.55 0.653 0.257

Radiation 1.43 0.564 0.286

Cardiorespiratory disease 1.71 0.550 0.291

Insurance 1.21 0.483 0.314

Heart failure 1.17 0.466 0.321

Diabetes 1.64 0.454 0.325

Prisoner of war 0.88 0.330 0.371

COPD 1.42 0.323 0.373

Marital status 0.80 0.283 0.389

All others 0.63 0.197 0.422

Table 5 Variable importance for the calibrated model

Attribute Raw score Z-score Sig.

Care Assessment Need (CAN) score 7.88 3.582 <0.0001

Age 7.32 2.874 0.002

Charlson Comorbidity Index 7.06 2.398 0.008

No. of past-year hospitalization 7.18 2.324 0.010

Sequence 6.72 2.077 0.019

Length of stay 6.47 1.957 0.025

Coronary artery disease 6.24 1.898 0.029

Vascular disease w/c 6.31 1.847 0.032

Admission source 5.95 1.794 0.036

Atrial fibrillation 6.03 1.736 0.041

Priority 5.77 1.705 0.044

Agent Orange 5.62 1.682 0.046

Pneumonia 5.66 1.662 0.048

Sex 5.24 1.656 0.049

Mental disorder 5.39 1.632 0.051

Malignant neoplasm 5.27 1.615 0.053

Table 6 Calibration by readmission risk decile

Risk decile Sample size Predicted PAR Observed PAR O/P ratio

1 2286 201 183 0.910

2 1112 149 141 0.946

3 893 106 118 1.113

4 481 94 102 1.085

5 343 79 83 1.051

6 215 77 74 0.961

7 138 48 45 0.938

8 82 31 28 0.903

9 29 17 15 0.882

10 16 7 6 0.857
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Fig. 3 Calibration curve
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predicts by roughly 8.5 %. It also over predicts by about 4 %–
14 % for the small number of readmissions (21 %) which
occur in deciles 6–10.

& Model validation

We used the calibrated model and studied its internal va-
lidity (also called reproducibility), based on the same popula-
tion underlying the sample. To this end, since the proposed
method does perform bootstrapping internally, we slightly
modified the split sample technique for our purposes: we
randomly partitioned the sample into 50 % training and
50 % testing sets and redid this 7 times. For each partition
we ran the proposed algorithm and obtained the c-statistics.
The average c-statistics for the seven runs of training sets
reached 0.839 and for the test sets, it was 0.821. Hence, there
exists an “optimism” of 0.018 in the mean area under the
ROCs for the training and testing splits, and as a result, the
internally validated (or optimism corrected) c-statistics is esti-
mated as 0.818.

To provide more robust evidence of validity, we further
conducted external (in fact: spatial) validation (also called
generalizability) with a new sample of 478 patients admitted
(with primary diagnosis of heart failure, acute myocardial
infarction, pneumonia, and COPD) in the months of August
and September 2012. It is noted that we included the same

patient factors studied in the new sample. The c-statistics in
the external sample decreased to 0.809 (a decrease of 0.027)
which is slightly more than results from internal validation (a
decrease of 0.018). However, both internal and external vali-
dations confirm the superiority of our proposal over the cur-
rent approaches in terms of discrimination power and stability.
Nonetheless, we obtain greater c-statistics (at least 0.813)
when the proposed method is applied separately on each
condition. It should also be remarked that with the current
sample data, the CMS endorsed model can only produce a
c-statistics of about 0.63.

4.4 Comparisons with other approaches

We evaluate our proposed method (PHSF: phase-type random
forest) with logistic regression, Breiman’s Radom Forest,
Support Vector Machine (SVM), and neural network in terms
of different predictive measures such as sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), F-score (which can be interpreted as a harmonic mean
of sensitivity and PPV), Matthews correlation coefficient
(MCC), mean square error (MSE), and area under ROC curve
(AUROC) [32]. The models are built and compared with the
R version 3.0.2 [33] using packages randomForest [34],
e1071 [35], glm2 [36], and also MATLAB neural network
toolbox [37]. It is worth mentioning that we used different
kernels such as polynomial and radial basis function for the
SVM method. For the neural network approach, we tested for
two and three layers with different numbers of sigmoid hidden
neurons and linear output neurons. For the pure random forest
method, we did the same calibration as with the proposed
method, and for the logistic regression, we used generalized
estimation equation to account for clustering at the patient
level. The comparison results are summarized in Table 7 and
Fig. 4. As shown, the proposal works better than other alter-
natives in all predictive criteria. The Breiman’s random forest
approach and SVM produce very close results in this sample
but the neural network approach seems unable to compete
with other models having a modest discrimination of about
0.7. Not surprisingly, all models predict ‘No readmission’
cases better than the PAR cases. It is of interest that SVM

Fig. 4 ROC curves for different predictive models

Table 7 Performance comparisons of our model over the selected methods

Method Predictive accuracy measure

Sensitivity Specificity PPV NPV F-score MCC MSE AUROC

Our proposal 91.95 % 97.65 % 86.61 % 98.65 % 0.892 0.874 0.032 0.836

Random Forest 88.43 % 97.35 % 84.70 % 98.07 % 0.865 0.843 0.039 0.802

SVM 86.16 % 97.52 % 85.20 % 97.70 % 0.857 0.833 0.041 0.775

Logistic Regression 83.40 % 97.21 % 83.19 % 97.25 % 0.833 0.805 0.048 0.721

Neural Network 82.39 % 97.06 % 82.28 % 97.08 % 0.823 0.794 0.051 0.704
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slightly outperforms the random forest in terms of PPV (0.5 %
higher) and true negative rate (0.17% higher). Furthermore, in
the overall spectrum of false positive rates, the proposal as-
signs a higher probability of readmission for a patient with
PAR compared to a ‘No-readmission’ patient, about 83.6 % of
the times. Looking at different ROC stairs graphs, we can infer
that, with a false positive rate varying between 0.09 and 0.25,
our PHSF approach is placed higher than the others, but it falls
behind the SVM and neural network in case of very small
rates of false positive. In higher false positive rates, we ob-
serve that random forest and SVM are very similar in discrim-
ination ability and they work as well as our proposal beyond
0.7 false positive rate. However, logistic regression turns out
to fall short at a false positive rate of 0.8 to 0.9.

5 Conclusion

Concentration on reducing unnecessary readmission has never
been higher, especially with the CMS augmenting the rates of
penalties and introducing new waves of diseases that will be
under scrutiny during next years. In response to this policy
shift, hospitals and clinicians are become more interested in
analytics ways to identify patients at elevated risk of avoidable
readmission, since such tools can ultimately be used to guide
more appropriate discharge planning and efficient resource
utilization. Although a variety of approaches have been pro-
posed to identify patients with higher risk, their potentials
have been limited mainly because they do not incorporate
timing of readmission in their prediction and/or they are not
accurate enough [7].

In this study, we make several contributions to readmission
reduction studies. First, we address the problem of character-
izing avoidable (or unnecessary) readmissions from all other
types of outcomes. Our algorithm (PAR) is based on admin-
istrative data and takes a more accurate look at preventability
components of rehospitalization compared to existing
methods. We also suggest using a more comprehensive risk
adjustment tool (DCG/HCC) in counting avoidable
readmissions, as well as getting help from other sources of
information, like clinic visits between index admission and
readmission, in assessing the avoidability of readmissions.
Second, we propose a hybrid prediction model that exploits
good aspects of classification and timing based analytics
models. We then demonstrate the superiority of our model
over current solutions with respect to various accuracy
criteria. Further, to confirm that the high discrimination ability
of our proposal is irrespective to overfitting, we perform
internal and external validation practices. Also, unlike some
studies in the literature, we do not limit our work to a specific
disease or within a specific hospital, but instead we aggregate
data from four different VA facilities containing inpatients
diagnosed with four different conditions.

Even though our results introduce new aspects of readmis-
sion studies, one should pay attention to some limitations in
interpreting and generalizing them. First, the data used in the
study is from one region (Veteran Integrated Service Network
11, Veterans In Partnership) in the State of Michigan, with a
veteran population that is mostly male and veteran, and a
government funded care delivery system; hence the results
may not be identical in other health care systems. Second, the
study is limited to administrative data (that are regularly
available to all health plans) and it does not have laboratory
test results and vital signs such as hemoglobin or serum level
at discharge, which may affect the risk of unnecessary
readmission.

In future work, we plan to use our proposal to compare and
profile the hospitals on their readmission rates using proper
risk adjustment for case mix and service mix. The approach
currently employed by the CMS (and the VHA) is to calculate
a ratio of observed to expected outcomes for a given hospital,
and evaluate it across the normal range of all other hospitals
given the same mix. Methods in this context are primarily
based on models in which the hospital effects on outcome are
taken as random. Nonetheless, they have been recently argued
because 1) they often produce biased estimates of outcomes at
the provider level; and 2) they cannot prevent confounding
issues when the patient characteristics are correlated with
facility effects [38].
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