Ugrás a tartalomhoz

Laurent-sor

A Wikipédiából, a szabad enciklopédiából
A lap korábbi változatát látod, amilyen Szalakóta (vitalap | szerkesztései) 2012. április 8., 14:05-kor történt szerkesztése után volt. Ez a változat jelentősen eltérhet az aktuális változattól. (Konvergencia: reziduum)

A Laurent-sor egy hatványsorhoz hasonló sor, aminek negatív indexű tagjai is lehetnek. Egy c középpontú, x változójú Laurent-sor alakja:

ahol an és c többnyire komplex számok; ekkor azonban megszokottabb a változót z-vel jelölni.

Nem minden Laurent-sor tartalmaz mindkét irányban végtelen sok tagot. Ha valamettől kezdve az összes együttható nulla, akkor azokat a tagokat nem számítják a sorhoz.

A negatív kitevős együtthatók által alkotott sor a szinguláris vagy főrész. Ha a szinguláris rész nulla, akkor a Laurent-sor hatványsor. Ha véges sok együttható nem nulla, akkor a sor Laurent-polinom. Ha a sor hatványsor és Laurent-polinom is, akkor polinom.

Példa

Legyen , .

-re akárhányszor differenciálható, -re viszont nem komplex differenciálható -ban, ott lényeges a szingularitása.

Ha -et behelyettesítjük az exponenciális függvény hatványsorába, akkor f Laurent-sorát kapjuk 0 középponttal:

Ez a sor minden x komplex számra konvergál, kivéve a -ra, ahol maguk az összeadandók sincsenek értelmezve.

A Laurent-sor közelítése különböző -ekre

Az ábra azt mutatja, hogyan közelíti a

sor a függvényt (az görbe f grafikonja).

Konvergencia

A Laurent-sorok a függvénytan fontos segédeszközei, különösen a szingularitások vizsgálatában. A Laurent-sorok olyan függvényeket írnak le, amelyek körgyűrűn holomorfak. Speciálisan, a hatványsorok körlapon holomorf függvényeket írnak le.

Legyen z változós, c körüli Laurent sor az an komplex együtthatókkal. Ekkor egyértelműen vannak r és R számok, hogy a sor konvegrens az r sugarú körív és az R sugarú körív által határolt nyílt körgyűrűn. Sőt, a konvergencia abszolút -n, és lokálisan egyenletes is minden, a körgyűrű által tartalmazott kompakt részhalmazon. Ez azt jelenti, hogy a sor mindkét része konvergens a megfelelő módon. A Laurent-sor holomorf függvényt definiál a körgyűrűn. A sor nem konvergál azokon a komplex számokon, amelyekre . Ennek az az oka, hogy a két rész valamelyike divergál. A határpontokban a konvergenciát külön kell vizsgálni. Általános érvénnyel csak azt lehet tudni, hogy a belső ésa külső körön is van olyan pont, ahol a sor nem folytatható.

A két sugár, r és R nagysága lehet akár 0, de lehet végtelen is. Lehet az is, hogy a két sugár egyenlő, a konvergencia egy körvonalra korlátozódik. A sugarak a Cauchy-Hadamard-képlettel számíthatók:

ahol a képletekben és .

Megfordítva, ha van egy holomorf függvény a tartományon, akkor a függvény Laurent-sorba fejthető a tartomány középpontjában, és ez a sor a teljes A tartományon konvergál. Az együtthatók így határozhatók meg:

minden -re és egy -ra, ahol is az utóbbi választása lényegtelen a Cauchy-integráltétel miatt.

Különösen érdekes a meromorf függvények és szingularitásaik esete. Ekkor a szingularitás körül sorba fejtett függvény -1 indexű együtthatója, a reziduum különös jelentőséggel bír az integrálszámításban a reziduumtétel szerint.