Laurent-sor
A Laurent-sor egy hatványsorhoz hasonló sor, aminek negatív indexű tagjai is lehetnek. Egy c középpontú, x változójú Laurent-sor alakja:
ahol an és c többnyire komplex számok; ekkor azonban megszokottabb a változót z-vel jelölni.
Nem minden Laurent-sor tartalmaz mindkét irányban végtelen sok tagot. Ha valamettől kezdve az összes együttható nulla, akkor azokat a tagokat nem számítják a sorhoz.
A negatív kitevős együtthatók által alkotott sor a szinguláris vagy főrész. Ha a szinguláris rész nulla, akkor a Laurent-sor hatványsor. Ha véges sok együttható nem nulla, akkor a sor Laurent-polinom. Ha a sor hatványsor és Laurent-polinom is, akkor polinom.
Példa
Legyen , .
-re akárhányszor differenciálható, -re viszont nem komplex differenciálható -ban, ott lényeges a szingularitása.
Ha -et behelyettesítjük az exponenciális függvény hatványsorába, akkor f Laurent-sorát kapjuk 0 középponttal:
Ez a sor minden x komplex számra konvergál, kivéve a -ra, ahol maguk az összeadandók sincsenek értelmezve.
Az ábra azt mutatja, hogyan közelíti a
sor a függvényt (az görbe f grafikonja).
Konvergencia
A Laurent-sorok a függvénytan fontos segédeszközei, különösen a szingularitások vizsgálatában. A Laurent-sorok olyan függvényeket írnak le, amelyek körgyűrűn holomorfak. Speciálisan, a hatványsorok körlapon holomorf függvényeket írnak le.
Legyen z változós, c körüli Laurent sor az an komplex együtthatókkal. Ekkor egyértelműen vannak r és R számok, hogy a sor konvegrens az r sugarú körív és az R sugarú körív által határolt nyílt körgyűrűn. Sőt, a konvergencia abszolút -n, és lokálisan egyenletes is minden, a körgyűrű által tartalmazott kompakt részhalmazon. Ez azt jelenti, hogy a sor mindkét része konvergens a megfelelő módon. A Laurent-sor holomorf függvényt definiál a körgyűrűn. A sor nem konvergál azokon a komplex számokon, amelyekre . Ennek az az oka, hogy a két rész valamelyike divergál. A határpontokban a konvergenciát külön kell vizsgálni. Általános érvénnyel csak azt lehet tudni, hogy a belső ésa külső körön is van olyan pont, ahol a sor nem folytatható.
A két sugár, r és R nagysága lehet akár 0, de lehet végtelen is. Lehet az is, hogy a két sugár egyenlő, a konvergencia egy körvonalra korlátozódik. A sugarak a Cauchy-Hadamard-képlettel számíthatók:
ahol a képletekben és .
Megfordítva, ha van egy holomorf függvény a tartományon, akkor a függvény Laurent-sorba fejthető a tartomány középpontjában, és ez a sor a teljes A tartományon konvergál. Az együtthatók így határozhatók meg:
minden -re és egy -ra, ahol is az utóbbi választása lényegtelen a Cauchy-integráltétel miatt.
Különösen érdekes a meromorf függvények és szingularitásaik esete. Ekkor a szingularitás körül sorba fejtett függvény -1 indexű együtthatója, a reziduum különös jelentőséggel bír az integrálszámításban a reziduumtétel szerint.
Formális Laurent-sorok
Ha eltekintünk a konvergencia kérdésétől, akkor formális Laurent-sorokat kapunk. Ezekben a határozatlant általában x-szel jelölik. Ekkor a sor együtthatói egy bizonyos kommutatív gyűrűből származnak, ennek jele többnyire R. Középpontnak a gyűrű nullelemét szokás venni. A szinguláris részt minden elemnél véges sok tagra korlátozzák, mert ekkor a szorzat együtthatói konvolúcióval számíthatók. Összeadáskor a megfelelő együtthatókat összegezzük. Mindezek a műveletek megfelelnek a Laurent-sorokkal való számolásnak. Két formális Laurent-sort akkor tekintünk egyenlőnek, ha a megfelelő együtthatói egyenlőek.
Ezekkel a műveletekkel a formális Laurent-sorok gyűrűt alkotnak. Ha az alapgyűrű test, akkor ez a gyűrű integritási tartomány. Hányadosteste izomorf a test feletti Laurent-sorok gyűrűjével.
Források
- Eberhard Freitag & Rolf Busam: Funktionentheorie 1, Springer-Verlag, Berlin, ISBN 3-540-67641-4