
82 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

Data Compression and Transmission Aspects of
Panoramic Videos

King-To Ng, Member, IEEE, Shing-Chow Chan, Member, IEEE, and Heung-Yeung Shum, Senior Member, IEEE

Abstract—Panoramic videos are effective means for repre-
senting static or dynamic scenes along predefined paths. They
allow users to change their viewpoints interactively at points in
time or space defined by the paths. High-resolution panoramic
videos, while desirable, consume a significant amount of storage
and bandwidth for transmission. They also make real-time
decoding computationally very intensive. This paper proposes effi-
cient data compression and transmission techniques for panoramic
videos. A high-performance MPEG-2-like compression algorithm,
which takes into account the random access requirements and
the redundancies of panoramic videos, is proposed. The trans-
mission aspects of panoramic videos over cable networks, local
area networks (LANs), and the Internet are also discussed. In
particular, an efficient advanced delivery sharing scheme (ADSS)
for reducing repeated transmission and retrieval of frequently
requested video segments is introduced. This protocol was verified
by constructing an experimental VOD system consisting of a
video server and eight Pentium 4 computers. Using the synthetic
panoramic video Village at a rate of 197 kb/s and 7 f/s, nearly
two-thirds of the memory access and transmission bandwidth of
the video server were saved under normal network traffic.

Index Terms—Image-based rendering, panoramic video, video
coding and transmission, video-on-demand (VOD), virtual reality.

I. INTRODUCTION

IMAGES and videos are effective means to represent objects
and scenes. With increasing demand for better user expe-

rience in interactive applications such as virtual walkthrough,
computer games, and medical simulation, virtual reality tech-
niques have become increasingly more important. Image-based
rendering (IBR) using the plenoptic function [1] has recently
emerged as a simple yet powerful photo-realistic representation
of real-world scenes [2]–[6]. Its basic principle is to render new
views of a scene using rays that were previously captured in
densely sampled pictures of the scene. In its most general form,
the plenoptic function is a seven-dimensional (7-D) function
allowing one to reconstruct any novel view at any point in
space and time. Due to the difficulties in capturing and storing
the function, various simplifications have been advocated. By
ignoring time and wavelength, the dimension of the plenoptic
function can be reduced from seven to five [3]. Using the two

Manuscript received May 14, 2002; revised May 6, 2003. This work was sup-
ported in part by the AoE, Information Technology, Hong Kong Research Grant
Council. This paper was recommended by J. Ostermann.

K. T. Ng and S.-C. Chan are with the Department of Electrical and Elec-
tronic Engineering, University of Hong Kong, Hong Kong (e-mail: ktng@grad-
uate.hku.hk; scchan@eee.hku.hk).

H.-Y. Shum is with Microsoft Research Asia, Beijing 100080, China (e-mail:
hshum@microsoft.com).

Digital Object Identifier 10.1109/TCSVT.2004.839989

planes parameterization in a free space, one can further sim-
plify the plenoptic functions to four dimensions, leading to the
four-dimensional (4-D) light field [4] and the 4-D lumigraph
[5]. More recently, Shum and He [6] have proposed a new
three-dimensional (3-D) plenoptic function representation, the
concentric mosaic, by restricting the viewer movement inside
a planar circle. The capturing and rendering of concentric
mosaics are very simple due to the lower dimensionality. If
the viewpoint is also fixed and only the viewing directions and
camera zoom can be altered, the plenoptic function simply
becomes the two-dimensional (2-D) panorama (cylindrical [2]
or spherical [7]). Panoramas are relatively simple to construct
by stitching together a set of images taken at different angles
along a given axis. During rendering, part of the panoramic
image is reprojected onto the screen to emulate the effect of
panning and zooming.

Most image-based representations reported so far in the lit-
erature deal with static scenes. It is largely attributed to the lo-
gistical difficulties in capturing and transmitting dynamic repre-
sentations, which involve huge amounts of data. This has stim-
ulated considerable research interests in the efficient compres-
sion of various image-based representations such as light fields,
lumigraphs, concentric mosaics and panoramas [4], [8]–[14],
[41]. For example, vector quantization (VQ) has been used in
[2], [4], [6] and it has the advantage of fast and simple de-
coding using table lookup operations. It also simplifies the im-
portant random access problem of image-based representations
in concentric mosaics and light fields. However, VQ encoding
is complex and time consuming, and its compression ratio is
somewhat limited. In [6], a compression ratio of 12:1 has been
reported. Since image-based representations are usually highly
correlated, codecs using JPEG or MPEG-2-like algorithms have
been proposed for the compression of light fields/lumigraphs
[11]–[13], and concentric mosaics [8]–[10]. The MPEG-2-like
algorithm in [10] achieves a very high compression ratio by
exploring the redundancy in adjacent image frames of concen-
tric mosaics. Moreover, the MPEG-2 algorithm can be modified
to support random access of the compressed image sequence.
Another approach that is more complicated includes the 3-D
wavelet coding proposed in [14]. It is envisioned that data com-
pression will continue to be an important issue in IBR appli-
cations. More recently, panoramic videos have been proposed
to capture dynamic environment maps for applications such as
tele-presence and autonomous vehicles [15]–[17]. A panoramic
video is a sequence of panoramas taken at different time in-
stants. It can be used to capture dynamic scenes at a stationary
location or in general along a path, which is also known as a dy-
namic or time-varying environment map. It is basically a video

1051-8215/$20.00 © 2005 IEEE

NG et al.: DATA COMPRESSION AND TRANSMISSION ASPECTS OF PANORAMIC VIDEOS 83

with 360 degrees of viewing freedom. Another application of
panoramic videos is to implement virtual walkthrough appli-
cations where a series of panoramas of a static scene along a
given path is captured. Therefore, it is a static environment map
where one can freely navigate along the predefined paths and
freely change their viewpoints. Much emphasis has been put on
the construction of panoramic videos and how they can be con-
structed and rendered [15]–[19], [33]. Although the amount of
data associated with panoramic videos is significantly reduced
when compared to other possible dynamic image-based repre-
sentations, it can still be very high, thereby posing a number
of practical problems when good resolution and interactive re-
sponse are required. To illustrate the severity of this problem, let
us consider a 2048 768 panoramic image without compres-
sion. It will occupy about 4.5 MB of storage. A 25 f/s video
at this resolution would require 112.5 MB/s of digital storage
or transmission bandwidth. Another problem of high-resolution
panoramic videos is the high computational complexity in soft-
wareonly real-time decoding.

In this paper, we are concerned with efficient methods
for the compression and transmission of high-resolution
panoramic videos for both dynamic environment maps and vir-
tual walkthrough applications. For dynamic environment map
applications, a high-performance MPEG-2-like compression
algorithm, which takes into account the random access require-
ment in changing one’s viewing angle and the redundancy of
panoramic videos, is proposed. For virtual walkthrough appli-
cations, the indexing structure proposed in [10] is employed
to support random access for individual panoramic images so
that the user can freely change his viewing position in the path
as well as his viewing angle. The transmission of panoramic
videos over cable networks, local area networks (LANs) and
the Internet are also briefly discussed. In particular, we de-
scribe in detail a video-on-demand (VOD) system that delivers
panoramic videos to users over high-speed networks such as
high-speed LANs. It is a very challenging problem because
typically a VOD system has to serve many users and it requires
a very high disk bandwidth [i.e., the data transfer rate of the
disk storage, e.g., in a redundant array of inexpensive disks
(RAID)] and transmission bandwidth. If fixed amount of server
resources and transmission bandwidth are allocated to each
user, the VOD system is only able to support a small number
of users and it will be very expensive. As some videos are
more popular than others, different methods for sharing video
streams among users via batching [20]–[23] or broadcasting
[24]–[31] were proposed. In batching, a user requests for a
video and waits for the availability of the server channel. The
server then selects a batch of users to whom the video will be
multicast according to certain policies in order to maximize
the possible sharing of video streams [20]–[23]. In the broad-
casting method [24]–[31], channels are reserved to broadcast
frequently requested videos. The broadcasting protocols further
improve the efficiency of the systems by reducing the trans-
mission bandwidth for videos that are simultaneously watched
by many users. More precisely, a video is partitioned into a
number of segments and each segment is repeatedly broadcast
on a different channel. The play-out latency depends on how
frequently the first segment is broadcast. Subsequent segments

might be received before they are actually being played back.
Thus, memory buffers are needed to store these video segments.
Essentially, these broadcasting schemes take advantage of the
resources (e.g., disk) at the user side so as to guarantee a latency
independent of the number of requests.

In order to reduce the disk bandwidth of the server and the
transmission bandwidth of the network required for dynamic
situations other than simply broadcasting, a new video sharing
scheme called advanced delivery sharing scheme (ADSS) is de-
veloped. The ADSS is equipped with an efficient protocol that
allows users to specify in advance those video data that are
useful in the future. In so doing, the multimedia server can ef-
fectively determine whether the current video segment retrieved
is also useful to other users. By broadcasting or multicasting this
segment to other intended users, the number of unnecessary ac-
cesses and repeated transmission of the same segment of video
data can be minimized. An efficient scheduling algorithm for the
server to support the ADSS is also proposed. In order to exploit
the possible sharing of video data using the ADSS, the users
need to have a relatively large memory buffer and receiving
bandwidth. As fast and low-cost secondary storages (such as
hard disks) and high-speed networks will be widely available
in the nearest future, it is envisioned that these requirements
can be easily satisfied. Besides, the cost of memory buffers and
network resources can be shared with other applications in the
set-top box, such as web browsing, video games, and other com-
munication functions. Furthermore, the proposed scheme can
be easily extended in a hierarchal manner to include distributed
servers.

The rest of this paper is organized as follows. The principle
of panoramic videos, their construction and rendering are dis-
cussed in Section II. Section III is devoted to the proposed com-
pression and rendering algorithms. The transmission aspects of
panoramic videos are briefly discussed in Section IV. Details
of the proposed ADSS VOD system and its implementation are
described in Section V. Finally, concluding remarks are given in
Section VI.

II. CONSTRUCTION OF PANORAMIC VIDEOS

A. Panoramic Videos

Panoramas belong to the family of the plenoptic function.
In [1], the plenoptic function, , is defined as the intensity
of light rays passing through the camera center at every loca-
tion at every possible elevation and azimuth angles

, for every wavelength and at every time . Hence, it is
a 7-D function given by

(1)

The basic idea of IBR is to reconstruct a continuous represen-
tation of the plenoptic function from its observed samples.

By dropping the time variable (i.e., static environment) and
the wavelength of light , McMillan and Bishop [3] introduced
plenoptic modeling using the following five-dimensional (5-D)
plenoptic function

(2)

84 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

Fig. 1. Construction of a panoramic mosaic.

Fig. 2. Mapping of images onto a cylinder to generate a panoramic image.

The simplest plenoptic function is a 2-D panorama (cylin-
drical [2] or spherical [7]) where the viewpoint is fixed. A
panoramic mosaic can be obtained by projecting a series of
images (after registering and stitching) on a cylindrical or spher-
ical surface. Figs. 1 and 2 show the construction of a panoramic
mosaic. Since it is obtained by stitching several images to-
gether, its resolution is usually very large (e.g., 2048 768).
Several algorithms for constructing such mosaics or panoramas
were previously reported in [2], [7], [32], and [41]. Using the
panorama, it is possible to emulate “virtual camera panning and
zooming” by projecting appropriate portions of the panorama
onto the user’s screen [2]. Different projections can be used to
map the environment map to 2-D planar coordinates. The cylin-
drical projection is the most popular for general applications
since it is very easy to be captured. One drawback of the cylin-
drical projection, however, is the limited vertical field of view
as compared to the spherical projection. The cubic projection
[34] is another efficient representation of environment maps.
The captured environment map is projected onto the sides of
the cube. Therefore, each environment map consists of 6 im-
ages each associated with one face of the cube, making it very
simple to manipulate. A panoramic video refers to a sequence
of panoramas captured at different time instants. Although
panoramic videos are very compact when compared to other
possible dynamic simplifications of the plenoptic function, the
amount of storage and transmission bandwidth can still be very
large as compared with conventional videos. Next, we consider
methods for capturing panoramic videos.

Fig. 3. Frame 8 of the Cafeteria panoramic video sequence.

B. Capturing of Panoramic Videos

A time-varying environment map can be obtained by taking
panoramas at regular time interval either at a given location
or along a trajectory. Such time-varying environment map
or panoramic video closely resembles a video sequence with
very high resolution. There are different methods to capture
a panoramic video [15], [16], [19], [33], [35]. For example,
in the FlyCam system [15], multiple cameras are mounted on
the faces of an octagon with each side equal to 10 cm. In the
system reported in [16], the camera is fitted with a mirror to
produce panoramic videos. Specialized hardware for capturing
panoramic videos has also been reported in [19], where six
closely spaced charge coupled devices (CCDs) are assembled
together to minimize parallax. Each CCD is used to capture an
image pointing at one of the six faces of a cube. Their outputs
are synchronized and streamed directly to disk for storage.

Both real-world and synthetic panoramic videos are consid-
ered in this work. For real-world scenes, we use panoramic
videos captured by the omni-directional setup proposed in
[35]. It comprises a catadioptric omni-directional imaging
system [36] with a 1300 1100 pixel camera, all placed on a
movable cart. To capture a panoramic video, four video streams
of the omni-directional video are taken at different camera
orientations (front, left, back, right) along the same path. This
arrangement is used because each omni-directional image has
blind spots in the middle, and has only about 200 degree field
of view from side to side. The resulting panoramic video (with
a frame resolution of 2048 768) is created by stitching these
four video streams frame by frame. The panoramic video con-
sists of 381 panoramic images. Fig. 3 shows a typical panorama
of the Cafeteria panoramic video sequence.

For the synthetic scene, the mosaic images of the environment
map were rendered using 3-D Studio Max. Cubic projection is
used for storing the panoramic video. Each panorama has six
input images with a resolution of 256 256 and there are alto-
gether 2910 images. Fig. 4 shows a typical cubic environment
map of the synthetic panoramic video sequence Village.

C. Rendering of a Novel Video View

Fig. 5 is a flow chart showing the decoding of panoramic
videos. At the viewer side, the compressed videos are decoded
and rendered to create a scene at a given viewing angle. As the
resolution of the panoramic video is usually very large, the de-
coding or transmission of the whole panoramic video is very
often time-consuming. This problem can be remedied by re-
ducing the resolution of the decoded video and/or decoding only

NG et al.: DATA COMPRESSION AND TRANSMISSION ASPECTS OF PANORAMIC VIDEOS 85

Fig. 4. Typical cubic environment map of the synthetic environment.

Fig. 5. Rendering of panoramic video.

a given portion in the whole video frame. In virtual walkthrough
applications, it is unnecessary to decode the entire video frame
because only a fraction of the panorama will be used for ren-
dering the novel view. Because of this reason, the panorama is
usually divided into tiles to simplify decoding and data transfer
from slower devices such as CD ROM [2].

For a panoramic video sequence with 2-D planar images, like
the real panoramic video Cafeteria, each panoramic video frame
is divided into six vertical tiles as shown in Fig. 5. If the whole
panorama has a view of 360 degrees, the maximum viewing
angle of each tile is 360/6 = 60 degrees, which is sufficient
for most applications. It is therefore only necessary to concur-
rently decode at most two tiles at a time. Based on the current
viewing angle, the tiles involved (the shaped ones) are decoded
and placed in the decoding buffer. Appropriate portion of the
panorama inside the buffer is used to render the novel view. Tile
switching might happen when the user changes his/her view-
point during the playback of the panoramic video. Therefore,
additional mechanism must be provided in the compressed data

stream to provide fast tile seeking. This issue is discussed in the
following section on the compression of panoramic video.

III. COMPRESSION AND RENDERING OF PANORAMIC VIDEOS

As mentioned earlier, a panoramic video can be used to cap-
ture dynamic scenes at a stationary location or along a given
path. It can also be used to provide seamless walkthrough by
constraining the virtual camera location to a predefined path for
image acquisition. Both of these applications are investigated as
follows.

A. MPEG-2 Video Coding of Subtiles for Dynamic
Environment Map

Similar to traditional videos, successive panoramic images
have significant amount of temporal and spatial redundancies.
These can be exploited for data compression by video coding
techniques such as motion estimation in video coding.

Also mentioned in Section II, each mosaic image is usually di-
vided into smaller tiles to avoid decoding the whole panoramic
videoandtoreducethedatatransferrequirementwhenslowersec-
ondarydevicesareused.It is thereforenatural to treateachofthese
tiles as a video sequence and compressed these tiles individually.
If a panoramic video with a resolution of 2048 768 is divided
into six nonoverlapping tiles, it yields six video sequences each
ofwhich has a resolution of 352 768.To provide functionalities
such as fast forward/backward and to make the panoramic video
compatible tomostdecoders,onecanemploy thecommonlyused
MPEG-2 video coding standard [37] to compress each of these
video streams. Another advantage of MPEG-2, as we shall see
in Section III-D, is that it is very efficient in compressing high
resolution panoramic videos with a compression ratio of more
than 100 times, yet with reasonably good reconstruction quality.
For applications involving frequent editing of the videos, sepa-
rate coding of the mosaic images might be desirable. Under these
circumstances, the use of still image coding techniques such as
JPEG2000are desirable. Next,we shall consider the organization
of compressed video streams to provide efficient access to indi-
vidual tile during decoding.

1) Selective Decoding Problem (Tile Seeking): For trans-
mission and storage of panoramic videos for dynamic environ-
ment map, individual tiles must be organized in an efficient
manner in order to support fast switching between tiles during
decoding. Fig. 6 shows the format of a tile or video stream en-
coded using the MPEG-2 standard. Consecutive image frames
of a given tile are arranged in groups called group of pictures
(GOP). In each GOP, the image frames are encoded as I-, P-, or
B-pictures. I-pictures are intracoded and are used as references
for predicting the next P- and other B-pictures in between
using motion estimation. P-pictures are predicted using motion
estimation from the previous I- or P-pictures. B-pictures are
bidirectionally predicted from the nearest reference pictures.
The arrows in Fig. 6 show the interdependency of this predic-
tion method between various pictures in a GOP. In the proposed
coder for dynamic environment map, there are seven pictures in
each GOP, which consists of one I-picture, two P-pictures, and
four B-pictures. Also shown in Fig. 6 is the sequence order of
the compressed image frames to be transmitted. Note that the

86 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

Fig. 6. GOP setting in MPEG-2 bitstream.

reference pictures are transmitted before the B-pictures because
they must be decoded before the B-pictures. They serve as
references for reconstructing the B-pictures in between.

Fig. 7 illustrates how the six tiles (video streams) of the
panoramic video are multiplexed in the proposed method. Each
tile is encoded by the MPEG-2 standard with the same GOP
structure shown in Fig. 6. The compressed data of the tiles in the
same panoramic video frame are packed together. This allows
the decoder to locate very quickly the corresponding I-pictures
when decoding the required tiles. An individual picture in each
tile can be accessed randomly by searching for the appropriate
picture header. During decoding, the viewer can selectively
decode the tiles required by the user, for example, streams 1 and
2 in Fig. 7. The novel view can then be generated by remapping
appropriate pixels in the tiles onto the user’s screen.

When the viewing angle is changed in such a way that some
of the required pixels are no longer in the tiles currently being
decoded, switching to the new tile(s) has to be performed. If this
happens during the decoding of P- and B-pictures in a GOP, tile
switching can only begin in the next GOP. It is because the I-pic-
tures of the new tiles in the current GOP might not be available.
(In practice, previous data of new tiles is usually not buffered.)
Hence, the separation of I-pictures in panoramic video streams
should not be very large. Otherwise, it would introduce unac-
ceptable delay in switching from one stream to another. As men-
tioned earlier, there are seven images in each GOP. At a frame
rate of 25 f/s, the maximum delay during tile switching is there-
fore 0.28 second, which is quite acceptable. Other values can
be chosen according to one’s tradeoff between the compres-
sion performance and the response time delay. The synchro-
nized I-pictures also allow us to preserve the fast forward and
fast backward capability in the MPEG-2 standard. Notice that
the number of P- and B-pictures in GOPs from different tiles
can be different (as well as GOP from the same tile), provided
that their I-pictures are synchronized. It helps to improve the
compression performance, but at the expense of more compli-
cated encoding and decoding processes.

B. Modified MPEG-2 Video Coding for Virtual Walkthrough
Over Static Scenes

For virtual walkthrough applications, users are allowed to
move along a given path and change freely their viewpoints.

Therefore, a slightly different GOP structure to be described
below is employed. The compressed panoramic video bitstream
is usually stored in local storage or downloaded from the
network before decoding. The image frames of the panoramic
video are then accessed on demand for rendering according to
the user’s viewing position. In fact, it is very time-consuming
to retrieve the image frames if the bitstream does not support
any mechanism for random access. Therefore, we modify the
MPEG-2 algorithm in order to support random access to indi-
vidual image frames. In Fig. 8, a set of pointers to the starting
locations of each image frame in the compressed data is first de-
termined and stored in an array prior to rendering. Alternatively,
the pointers can be embedded in the compressed bitstreams to
avoid creating the pointer arrays when new panoramic videos
are loaded into the memory at the expense of slightly lower
compression ratio. During rendering, the compressed data for
the required image frame can be located very quickly. For an
I-picture, the pointer structure mentioned earlier can be used to
access the compressed data. If B-pictures are added, for higher
compression ratios, the pointer structure would only allow us to
efficiently decode the motion vectors and the prediction resid-
uals. The two reference I-pictures are required to be decoded
first. Furthermore, if P-pictures are employed, then when a user
moves backward along a path, a number of previous P-pictures
have to be decoded due to their interdependence. Therefore,
for efficient rendering, we do not employ P-pictures in the
proposed compression algorithm for static scenes. As shown
in Fig. 8, each GOP has one I-picture and six B-pictures. For
simplicity, no rate control algorithm is applied and a uniform
quantizer is used for the I- and B-pictures.

C. Rendering of Panoramic Videos

For dynamic environment maps, the panoramic videos are
streamed from the server. The panoramic video viewer of the
proposed system is implemented using the Microsoft Direct-
Show and Direct3D application programming interfaces (APIs)
[38]. The DirectShow API is a media-streaming architecture for
the Microsoft Windows platform, which provides high-quality
capture and playback of multimedia streams. The basic building
block of DirectShow is a software component called a filter. A
filter generally accepts a multimedia stream as its input and per-
forms a single operation on it to produce the output. For ex-
ample, a filter for decoding MPEG-2 videos has its input an
MPEG-encoded stream and the output is an uncompressed RGB
video stream. Fig. 9 shows the filter graph of the panoramic
video viewer for each user. Multiple data streams associated
with a single panoramic video are retrieved from local storage
devices or from the video server. Each data streams are then
decoded using the Elecard MPEG-2 Multiplexer and Video De-
coder filter [39]. The decoded video frames are copied to the
texture buffer of the Panoramic Video Renderer filter for ren-
dering. For fast rendering speed, we also make use of Direct3D
to render and display the output images in the Panoramic Video
Renderer filter. More precisely, the decoded panoramic image
is projected onto a geometry model, which can be cylindrical,
spherical or cubical. Subsequent rendering of the scene at dif-
ferent viewing angles is handled by Direct3D APIs. The viewer

NG et al.: DATA COMPRESSION AND TRANSMISSION ASPECTS OF PANORAMIC VIDEOS 87

Fig. 7. Multiplexing of the tiles (streams) in the MPEG-2 compressed panoramic video.

Fig. 8. GOP setting in MPEG-2 bitstream for virtual walkthrough over static
scenes.

allows the user to pan, zoom and navigate interactively in the
video by choosing his/her rotation angle of the viewing camera.

For the virtual walkthrough application, the modified
MPEG-2 video decoder retrieves the panoramic images from
the compressed bitstream. The rendering and display are also
implemented using Direct3D APIs. The user interface for the
virtual walkthrough application has two windows: the viewport
and the plan map of the scene. The viewport renders the virtual
camera view at the current location. The plan map indicates the
current position of the virtual camera and the current viewing
direction. The user can freely navigate in the static enviroment
map or change its location along the path by clicking at the
desired destination on the plan map.

D. Experimental Results

The Cafeteria panoramic video sequence described in Sec-
tion II was compressed using the proposed coding algorithms
for dynamic scene environment application. Although the Cafe-
teria sequence was captured from a static scene, it is used for
simplicity to illustrate our algorithm in the dynamic situation.
The six tiles of the panoramic video were encoded using the
MPEG-2 video coding standard with the TM5 model. Each
stream has a GOP consisting of seven image frames with two
B-pictures between successive I- or P- pictures as illustrated
in Fig. 6. Table I shows the compression performance of the

panoramic video sequence using the proposed algorithm at
different bit rates (target bit rate of 1 and 1.5 Mb/s per tile).
Figs. 3 and 10 show respectively a typical panorama and the
decompressed tiles of the panorama. The results show good
quality reconstruction with a compression ratio of 108. When
the compressed data is streamed from a remote PC throught
a LAN, the rendering speed of the viewer is about 7 f/s (ne-
glecting network congestion) using a Pentium 4 1.8 GHz PC
with 256 MB memory.

For the virtual walkthrough (static scene) experiment, we
used the synthetic panoramic video sequence Village. For
simplicity, it was projected onto a cubic geometric model. Each
environment map therefore consists of six images, one for
each face of the cube. The image sequence of each face was
compressed as a video stream. The appropriate image frames,
according to the current viewing angle, were decoded during
rendering. Table II shows the compression performance of
the synthetic panoramic video sequence. Example screenshots
of the synthetic environment during the virtual walkthrough
experiment are shown in Fig. 11. The perceptual quality is quite
good with a compression ratio of 30. The low compression
ratio of the synthetic scene as compared with the real scene
is due to its lower resolution, complicated textures, and sharp
edges, which make coding more difficult. The overall results
demonstrate that panoramic videos are efficient means for
providing impressive 3-D visual experience to the users. For
real-time rendering, we can achieve 20 f/s from raw data and
15 f/s from compressed bitstream using a Pentium 4 1.8 GHz
PC with 256 MB memory. It is expected the frame rate can
be increased after further optimization/enhancement of the
C++ source program. Next, we briefly outline the transmission
aspect of panoramic video over cable networks, LANs and the
Internet.

IV. TRANSMISSION OF PANORAMIC VIDEOS

In order to deliver the interactive virtual walkthrough experi-
ence offered by panoramic videos, the compressed data stream
can be broadcast or transmitted using VOD systems over, for ex-
ample, the Internet, LANs, or cable networks. For broadcasting
applications, say, over cable networks, the whole panoramic
video can be transmitted through a few cable TV channels with
each channel carrying one or more tiles of the video streams.
The set-top box can be configured according to the user input so

88 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

Fig. 9. Filter graph of panoramic video viewer.

TABLE I
COMPRESSION PERFORMANCE OF THE PANORAMIC VIDEO

SEQUENCE CAFETERIA

Fig. 10. Frame 8 of the decompressed panoramic video sequence Cafeteria at
the bit rate of 1.5 Mb/s per tile.

TABLE II
COMPRESSION PERFORMANCE OF THE SYNTHETIC PANORAMIC

VIDEO SEQUENCE VILLAGE

Fig. 11. Example screenshots of the synthetic environment during the virtual
walkthrough.

that the appropriate tiles in the panoramic video will be decoded.
Since the panoramic videos are divided into tiles, only a limited
number of tiles, two in the proposed system, have to be decoded.
Additional hardware is required to render novel views from
the decoded video streams. For broadcasting over LANs, the

decoding and rendering are most likely performed by a work-
station or PC. With present-day technology, real-time rendering
and decoding of panoramic videos do not present significant
problems. In applications where the channel has limited and/or
dynamic bandwidth such as communications over the Internet,
the tiles can be transmitted on an “on-demand” basis, where only
the required video streams are transmitted. Further reduction of
bandwidth for transmission can be achieved by creating a scal-
able bitstream using, for example, multiresolution techniques.

The performance of such a VOD system is usually limited by
the transmission bandwidth of the network and the capability
of the server. The latter in turn is limited by the relatively slow
access time or disk bandwidth of the secondary devices in the
server and its scheduling algorithm. In the following section,
a concept called “advanced delivery sharing” for reducing the
transmission and disk bandwidth required in the VOD system is
introduced.

V. ADVANCED DELIVERY SHARING SCHEME

A. Basic Principle

Fig. 12 shows the architecture of a distributed VOD system
where video servers with video archives are connected through
a high-speed network such as SONET. Each video server sup-
ports the VOD requests from its local users through a LAN such
as Gigabit Ethernet. If the videos requested by the users are not
available at the local server, the requests will be forwarded to
other servers in the network that possess these video data. Apart
from forwarding requests for video data to other servers, the
major task of the server is to schedule the requests, both from
its local users and from other servers, and deliver the required
video data that it has archived. The motivation of using the pro-
posed scheme is to reduce disk and/or transmission bandwidths
when multiple copies of the same video stream are simultane-
ously retrieved from these servers. Because of the large band-
width requirement of panoramic videos, it is very likely, as in
other applications, that the bottleneck will be the disk bandwidth
of the servers. Fig. 13 shows a simple scenario where two iden-
tical video streams are retrieved from a server. User 1 starts the
video at time while another user, User 2, starts viewing the
same video at a later time . If and are close to each other,
it might be possible to delay User 1 so that the two streams can
be merged together to reduce disk and transmission bandwidths.

NG et al.: DATA COMPRESSION AND TRANSMISSION ASPECTS OF PANORAMIC VIDEOS 89

Fig. 12. System model of a distributed VOD system.

There are two practical problems associated with this simple
approach. First, the time difference has to be small enough so
that the two streams can be merged together without introducing
excessive delay to User 1. Second, such merging is no longer
feasible when some of the users perform fast forward/backward
operations on the video at a later time. It might also require com-
plicated hardware or algorithms to detect whether two or more
streams can be merged together, and to delay them appropri-
ately. Merging is, however, useful to reduce the number of new
but identical video streams. It can be accomplished by treating
adjacent requests as a batch. For example, one can merge re-
quests for a given video that occur within a given interval to-
gether into a single new video stream. A disadvantage, though
quite acceptable in practice, is that some of the users might ex-
perience a worst-case delay time of as a result of merging.

Although it is somewhat difficult in the previous example to
merge the two streams together if is much larger than ,
the video data retrieved from the server for User 1 is obviously
useful to User 2 at a later time. Let us examine it more carefully
and assume that the video data stream is divided into seg-
ments: , each of equal size. Suppose further
that at time , the server retrieves the segment for User 1 as
shown in Fig. 13. This segment and the subsequent ones, though
not immediately requested by User 2 and other users, are useful
to them at a later time. If these segments are also sent to other
users who will be using them later, the disk bandwidth of the
server and probably the network transmission can be drastically
reduced. It is because segment , while retrieved once, is able
to serve many other users requesting it at a later time. The above
discussion is the basic idea of the proposed ADSS. To achieve
the sharing of video data, an efficient protocol that allows users
to specify in advance those video data that they will be using in
the future has to be developed. It can be seen that the effective-
ness of this scheme is improved by increasing the cache size of
the viewers, the network bandwidth and its capability for sup-

Fig. 13. Simple scenario where two identical video streams are retrieved from
the server.

porting multicasting. With the rapid development of high-speed
secondary storage technology over the past few years, it is envi-
sioned that set-top boxes and personal computers in the nearest
future will be equipped with considerable amount of reasonably
fast secondary storage. Secondary storage for video caching in
the order of 500 MB to even 1 GB is therefore quite afford-
able. This additional storage also helps to smooth out the video
traffic during fast forward/backward operations. Similar kind of
caching scheme can also be used at the server level to reduce
frequent requests for video data that are not stored locally or to
reduce the cache size at the user’s set-top box.

In what follows, we shall propose a simple but efficient pro-
tocol to support the ADSS together with a scheduling algorithm
of the server.

B. ADSS Protocol (ADSP)1

We will discuss the protocol at the user’s side followed by the
scheduling algorithm of the server.

1) Users: The computer terminal or set-top box at the user
side consists of two major parts: the video player and the cache

1The ADSP was first studied by the second author and a preliminary system
was implemented in the report [40].

90 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

manager. The video player decodes the multimedia data and dis-
plays the output on the user’s screen. The cache manager com-
municates with the server to ensure proper delivery of data and
forward the data sequence to the video player for decoding. In
the ADSS, the user terminal is assumed to have a cache of cer-
tain size, say, . The cache manager is responsible for making
requests to the server 1) to maintain the normal real-time play-
back of the video and to avoid buffer overflow, for instance, due
to fast forward operation of the user, and 2) to inform the server
what additional future video data it would like to receive. To carry
out the latter, thecachemanagerhas toperformsimplecacheman-
agement such as deleting some video segments that have not been
used for a long time. We call request 1) and request 2) the primary
request and the secondary request, respectively.

A primary request is associated with requests for video
segments which should be handled immediately in order to
maintain the continuous playback of the video. As a simple
example, consider the situation where a user first requests for a
new video. The cache manager then sends a primary request to
the server consisting of the name of the video and the time of
initial viewing (say 15 min) measured in terms of the number
of video segments, say, . After a sufficient amount of data
is received (for example, a certain fraction of), the cache
manager informs the video player to start playing the video.
The cache manager then issues a similar primary request to
the server when the amount of data left in the data buffer to
maintain continuity of the video is less than a certain level,
say, . Furthermore, when the rate of data consumption
is greater than the normal one, as a result of user’s interaction
such as fast forward or fast backward operations or transmission
delay, the priority level of the primary request, Pri_level, can
be increased accordingly. In its simplest form where only two
levels of priority are used, Pri_level can simply be set to 1 to
indicate to the server that the current request should be served
prior to other normal primary requests. A possible way to
measure the data consumption rate is to examine the decoding
buffer at regular intervals and compare it with the bit rate of the
video. Other possible variation of this basic scheme includes
sending reminder messages to the server if the primary request
has not yet been served (resulting in severely limited data in
the playback buffer). The choice of and various other
parameters are tradeoffs of communication overheads between
the users and the server, initial delay, and memory requirement.

Secondary requests are primarily used to support sharing of
active video streams as mentioned in Section V-A. In the pre-
vious example, in making the first primary request, the cache
manager might also inform the server that it would like to re-
ceive video segments up to , judging from its current cache
size. It is possible that other users have already sent primary
requests for some of these additional segments. Consequently,
the server can multicast or broadcast copies of these segments
to the current user and other similar users who have specified
them in previous secondary requests. Since secondary requests
are mainly associated with future but useful video segments,
they are of lower priority than primary requests and might not
be immediately entertained by the server. Apart from reducing
the disk bandwidth of the server and probably network traffic,
secondary requests also help to smooth out their momentary

Fig. 14. Pseudocode of the cache manager.

fluctuations resulting from user’s interaction such as fast for-
ward/backward operation, if the additional segments are already
inside the user’s buffer as a result of advanced delivery through
secondary requests. The pseudocode of the cache manager is
summarized in Fig. 14.

2) Scheduling Algorithm of the ADSS Server: In addition
to the logistic function of transmitting the video segments to
the users, another important function of the ADSS server is
to schedule appropriately these data retrivals based on the re-
quests from the users, so that buffer underflow in the user side
can be minimized. When a request (primary and probably sec-
ondary) for a new video stream is received, the server tries to
merge similar requests for the same video that occurs within a
period of time so as to reduce the actual number of streams
being served. The server also performs admission control. When
the system resources exceed a limit (for instance, the maximum
number of streams, after merging, has been reached), the users
may be blocked from using the VOD services or queued in the
system waiting for these services, depending on certain admis-
sion policies [20]–[22]. If the request is accepted, the server ap-
pends the primary request to the end of its task list as depicted in
Fig. 15. The task list is the list of video streams, in descending
order of their serving priority, that the server is currently serving.
Each node in the list contains the identity of the video, the index
of the next video segment to be served, the users requesting it as
primary requests (user list) and secondary requests (secondary
request list). Fig. 15 shows an example of the task list. Each node
in the task list contains the following fields: video_id—index of
the video associated with this task, segment_id—segment index
of the video to be served, pointer to user_list—pointer to the
list of users supported by this video stream, and pointer to sec-
ondary_request_list— pointer to the users having secondary re-
quests for the current video.

Each node in the user list contains the following fields:
user_id—identity of the user supported by this video stream,
and segment_list—list of video-segment requests by the corre-
sponding user in his/her primary request.

Normally, the server serves the first node in its task list by
sending the video segment specified in the segment_id of the
video, which in turn is specified in the video_id field, to those
users that are specified in the user list. If the current segment
is the last segment of a user in the user list, it is removed from

NG et al.: DATA COMPRESSION AND TRANSMISSION ASPECTS OF PANORAMIC VIDEOS 91

Fig. 15. Scheduling algorithm of the ADSS server.

the user list. Also, the segment index segment_id is updated ac-
cordingly. For example, it will be increased by one if the video is
playing in the forward direction and vice versa. The segment_list
is also updated. If the served video segment is the last video seg-
ment of the entire node, the current node is removed from the
task list. Otherwise, the served node is moved to the end of the
list with the lowest priority. Effectively, a round robbin type of
priority scheme is used. As mentioned earlier, there might be
situations where primary requests or reminders from the user
with high priority are received due to transmission delay or other
users’ interaction such as fast forward/backward (which results
from running out of buffered data at the user side). In this case,
these higher priority primary requests or reminders are served
by the server immediately, after serving the current node in its
task list. The server can use its user list to locate the corre-
sponding node of this urgent user in its task list. The user list
is a list recording all the users in the system as shown in Fig. 15.
Each node contains the user identity and a pointer to the corre-
sponding task node in the task list. After serving it, the server
resumes its normal serving order. A user can readily extend its
period of viewing by sending one or more primary requests to
the server. (If previous secondary requests hit, i.e., successful,
it is unnecessary to do so.) The server then locates its corre-
sponding node in the task list and updates its segment_list field.
Other modifications, such as stop viewing the video (removing
it from the user list, etc.) can also be made to the task list.

The ADSS protocol can also multicast the current video
segment being served to other users who have specified it in
their secondary requests. To support this, the server needs to
maintain a secondary request list indexed by the identity of
the videos, video_id, as indicated in Fig. 15. Each node of the
secondary_request_list has two fields: video_id—identity of
the video in the achive, and ptr_secondary_request—pointer

to the list of secondary requests from users for the video with
identity video_id.

Each node of the list contains the following two fields:
user_id—identity of the user associated with this secondary
request, and segment_list—list of video segments specified for
this secondary request.

When the server processes a given node in its task list, it uses
the video_id field in the node and the secondary request list to
locate those secondary requests related to the current video. If
the segment_id lies within the range specified in the segment_list
of any of these secondary requests, the server will multicast a
copy of the current video segment to the corresponding users.
The segment_list field of the node is updated accordingly. Since
the video segment is retrieved once, the segments are shared by
all users (both primary and secondary). Hence, the read-write
access and/or the network traffic can be reduced. Further modifi-
cations of secondary requests from users can readily be achieved
by using the data structure considered here.

3) Extensions to Panoramic Videos: Stream sharing in
panoramic videos is more complicated than just ordinary
videos. The reason is that even if two users are watching the
same panoramic video, they might not use the same set of tiles.
One might be using tiles 1 and 2 and the other tiles 3 and 4.
To simplify the handling and exploration of tile sharing, the
primary requests for the same panoramic video at the very
beginning are still kept in the same task node. An additional
field, tiles, in the node of the user list is added as follows:
user_id— identity of the user supported by this video stream,
segment_list—the list of video segments requests by the cor-
responding user in its primary request, and tiles—tiles that the
current user is using.

When this task node is served, all the tiles required by the
users as specified in the tiles field are served. Those tiles in

92 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

Fig. 16. Operation of the ADSS in a broadcasting scenario.

common are retrieved only once and transmitted either through
multicasting or broadcasting. Since it is very difficult to pre-
dict which tiles a given user will be using in the future, we do
not distinguish tiles in secondary requests. That is, if the cur-
rent video segment was specified in some secondary requests
of some users, any tiles within this segment will be multicast or
broadcast to those users. As the ADSS is a highly flexible frame-
work for providing stream sharing, other modifications such as
different admission policies or incorporation of special videos
for supporting fast forward/backward can also be used to fur-
ther improve its performance. A simple system was developed
to verify the proposed ADSS protocol in a network of PCs con-
nected by a 100 BaseT LAN. The details will be given at Sec-
tion V-D.

C. Performance Comparison With Other Broadcasting
Schemes

Considering a special configuration of the ADSS, where a
group of new users requesting for the same video within an in-
terval of time are merged together. The first batch of users is
denoted by group a, while the second group is group b, and so
on, as shown in Fig. 16. The situation is similar to a broadcasting
scenario, where users arrive at regular time interval and the max-
imum waiting time is . As shown in Fig. 16, the server serves
the users in group a by sending one video segment every time
interval to maintain the continuous playback of the video.
The video segments are denoted by a1, a2, etc. As the users
are assumed to be the only users requesting for that video in
the system and there is no sharing with other users, these video
segments have to be retrieved continuously and are denoted in
gray color. For users belonging to group b, who request the same
video in the next interval of time , the video server has to send
them a video segment b1 because no sharing with group a users
is possible. It is also marked in gray color to indicate the sit-
uation of no sharing. However, because of their secondary re-
quests at the very beginning, it is unnecessary for the server to
send all the subsequent video segments to group b users (marked
with white color). They receive them simply by multicasting or

broadcasting. For users in group c, who request the same video
in the next time period , the first two segments of the video
have to be sent to them by the server (c1 and c2 in gray color),
and all subsequent video segments can be shared with group a
users via secondary requests. Fig. 16 also illustrates the situation
where other user groups up to group enter into the system reg-
ularly. All the shared video segments as a result of secondary re-
quests are marked in white. The segments that cannot be shared
by the protocol are marked in gray. Suppose that the bandwidth
to retrieve each video segment from the disk (e.g., a RAID disk)
is and there are segments in the video, then the average disk
bandwidth to support all users is

(3)

where is the harmonic number of . Here we have assumed
for simplicity that the disk cache of the user is large enough to
maximize the sharing. In practice, the transmission bandwidth
is larger than . If the multicast transmissions are simply
implemented as broadcasting, (3) also represents the average
transmission bandwidth over the broadcasting channels. Inter-
estingly enough, this situation is identical to the one proposed in
the harmonic broadcasting scheme [28], which has been shown
to achieve the minimum bandwidth requirement for the same
waiting time [31]. For more general situations, it is expected that
the ADSS protocol is able to support efficiently more dynamic
user requests and to achieve significant bandwidth savings re-
sulting from possible sharing of video segments.

D. Experimental Results

An experimental system with nine computers was built to
verify the proposed ADSS protocol. An Intel XEON 1.8-GHz
workstation with 512 MB memory was used as the video server.
A 100 BaseT hub was employed to connect eight other Pen-
tium 4 1.8 GHz user PCs each with 256 MB memory. The pro-
posed ADSS protocol is implemented in C++ programming lan-
guage. For simplicity, we assume that the server will merge the

NG et al.: DATA COMPRESSION AND TRANSMISSION ASPECTS OF PANORAMIC VIDEOS 93

Fig. 17. Disk bandwidth required for four different scenarios (a) TCP 10 s, ADSS 10 s, and ADSS 15 s. (b) TCP 10 s and ADSS nonuniform.

same video request within a period of 1 s. The cache size allo-
cated to the video segments in the user terminals was 20 MB. In
order to demonstrate the sharing among users, only the Village
panoramic video was used. Its bit rate is 197 kb/s at 7 f/s and the
total duration is 95 s. The lower frame rate was chosen so that
the network will not be overloaded. As a result, other factors
such as traffic congestion will not affect the performance mea-
surement of the proposed ADSS protocol. All six tiles of the
panoramic video are transmitted to the users. Each user then se-
lectively decode the panoramic images from the compressed bit-
stream using a software MPEG-2 video decoder. The rendering
and display of the panoramic video were implemented using Di-
rect3D APIs. The rendering speed of the viewer is 7 f/s and the
maximum latency time measured in normal operating condition
(i.e., without network congestion) is 2 s. Higher frame rate can
be obtained by further code optimization. Fig. 17 shows the disk
bandwidth measured for four different scenarios.

1) TCP 10 s: The eight PCs request the panoramic video suc-
cessively and the time difference between two successive
requests to the server is 10 s. This is similar to the batching
or broadcasting situation where users enter the system at
regular interval. The server opens a TCP socket for each
user and sends the whole video to the users periodically.

2) ADSS 10 s: The sequence of user requests is identical
to 1) except that the server is running the ADSS and it
broadcasts data segments to the users using UDP2 sockets
according to the scheduling algorithm described in Sec-

2UDP is chosen to demonstrate the saving of transmission bandwidth in the
ADSS protocol by means of multicast. TCP/IP can also be used.

tion V-B2. In order to prevent the loss of UDP packets,
each user will send a reply to the server after the data is
received. There are occasionally collisions of the replies
from different users and the network performance will be
slightly degraded.

3) ADSS 15 s: Same as 2) except that the time difference
between successive requests is increased to 15 s. This is
to test the effect of increasing the time interval between
successive requests on the performance of the proposed
sharing scheme.

4) ADSS nonuniform: Same as 2) except the time differ-
ence between successive requests are chosen randomly
between 5–15 s (the mean arrival time is 10 s). This is
to test the effect of nonuniform arrivals of the request on
the performance of the proposed sharing scheme.

From Fig. 17, it can be seen that the ADSS provides signif-
icant savings in disk bandwidth over direct streaming of the
videos. The bandwidth required for 2) is slightly lower than
3), since shorter arrival time allows greater sharing between
the video streams. The bandwidth required for 4), the nonuni-
form case, is similar to 2) and 3), indicating the effectiveness of
the proposed scheme in handling time-varying traffic. Finally,
Table III shows the bit rate in terms of memory access, which
is the same as the transmission bit rate, of the video server for
the four scenarios. It can be seen that the ADSS reduces the
transmission bandwidth to one-third of the original unshared
value. Again, it can be seen that the sharing among users be-
comes smaller when the time between successive requests in-
creases. Also, the performance of the ADSS is not too sensi-

94 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

TABLE III
MEMORY ACCESS AND TRANSMISSION BANDWIDTH FOR PANORAMIC

VIDEO SEQUENCE VILLAGE

tive to nonuniform arrival of users. If UDP is used to transmit
the data packets, error concealment techniques can be used to
handle the packet loss.

VI. CONCLUSION

In this paper, we have presented new compression and trans-
mission techniques for panoramic videos. A panoramic video
allows users to change their viewpoint interactively in a static
or dynamic scene along a predefined path or trajectory. In par-
ticular, we have presented a high performance MPEG-2-like
compression algorithm, which takes into account the redundan-
cies of panoramic videos and the random-access requirements.
Data pointer arrays were proposed to support effective access
of the compressed data and the GOP is chosen so as to avoid
possible interdependency during decoding. It helps to reduce
the amount of storage and transmission bandwidth of high-res-
olution panoramic videos and simplify their real-time software-
only decoding. Transmission aspects of panoramic videos over
cable networks, LANs and the Internet have also been discussed.
An efficient ADSS for reducing repeated transmission and re-
trieval of frequently requested video segments was introduced.
The protocol and the scheduling algorithm of the ADSS were
described in detail. They were implemented and verified in an
experimental VOD system, which consists of a video server and
eight Pentium 4 computers. Considerable savings in memory ac-
cess and transmission bandwidth of the video server were mea-
sured under normal network traffic.

ACKNOWLEDGMENT

The authors would like to thank Dr. S. B. Kang of Microsoft
Research, Redmond, WA, for providing them the panoramic
video Cafeteria which was studied in this work.

REFERENCES

[1] E. H. Adelson and J. Bergen, “The plenoptic function and the
elements of early vision,” in Computational Models of Visual Pro-
cessing. Cambridge, MA: MIT Press, 1991, pp. 3–20.

[2] S. E. Chen, “QuickTime VR – An image-based approach to virtual en-
vironment navigation,” in Proc. Computer Graphics (SIGGRAPH’95),
Aug. 1995, pp. 29–38.

[3] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based ren-
dering system,” in Proc. Computer Graphics (SIGGRAPH’95), Aug.
1995, pp. 39–46.

[4] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. Computer
Graphics (SIGGRAPH’96), Aug. 1996, pp. 31–42.

[5] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumi-
graph,” in Proc. Computer Graphics (SIGGRAPH’96), Aug. 1996, pp.
43–54.

[6] H. Y. Shum and L. W. He, “Rendering with concentric mosaics,” in Proc.
Computer Graphics (SIGGRAPH’97), Aug. 1999, pp. 299–306.

[7] R. Szeliski and H. Y. Shum, “Creating full view panoramic image mo-
saics and texturemapped models,” in Proc. Computer Graphics (SIG-
GRAPH’97), Aug. 1997, pp. 251–258.

[8] W. H. Leung and T. Chen, “Compression with mosaic prediction for
image-based rendering applications,” in Proc. IEEE Int. Conf. Multi-
media and Expo, vol. 3, Jul. 2000, pp. 1649–1652.

[9] J. Li, H. Y. Shum, and Y. Q. Zhang, “On the compression of image based
rendering scene,” in Proc. IEEE Int. Conf. Image Processing, vol. 2, Sep.
2000, pp. 21–24.

[10] H. Y. Shum, K. T. Ng, and S. C. Chan, “Virtual reality using the con-
centric mosaic: Construction, rendering and data compression,” in Proc.
IEEE Int. Conf. Image Processing, vol. 3, Sep. 2000, pp. 644–647.

[11] C. Zhang and J. Li, “Compression of lumigraph with multiple reference
frame (MRF) prediction and just-in-time rendering,” in Proc. IEEE Data
Compression Conf., Snowbird, UT, Mar. 2000, pp. 254–263.

[12] M. Magnor and B. Girod, “Adaptive block-based light field coding,”
in Proc. 3rd Int. Workshop Synthetic and Natural Hybrid Coding and
Three-Dimensional Imaging, Santorini, Greece, Sep. 1999, pp. 140–143.

[13] , “Model-based coding of multi-viewpoint imagery,” in Proc. SPIE
Visual Communications Image Processing (VCIP’2000), vol. 4067,
Perth, Australia, Jun. 2000, pp. 14–22.

[14] L. Luo, Y. Wu, J. Li, and Y. Q. Zhang, “Compression of concentric mo-
saic scenery with alignment and 3-D wavelet transform,” in Proc. SPIE
Image and Video Communications and Processing, San Jose, CA, Jan.
2000, Paper no. SPIE 3974–10.

[15] J. Foote and D. Kimber, “FlyCam: Practical panoramic video and auto-
matic camera control,” in Proc. IEEE Int. Conf. Multimedia and Expo,
vol. 3, 2000, pp. 1419–1422.

[16] J. Baldwin, A. Basu, and H. Zhang, “Panoramic video with predictive
windows for telepresence applications,” in Proc. IEEE Int. Conf.
Robotics and Automation, vol. 3, 1999, pp. 1922–1927.

[17] T. Boult, “Remote reality demonstration,” in Proc. Conf. Computer Vi-
sion Pattern Recognition, 1998, pp. 966–967.

[18] Be Here Technologies [Online]. Available: http://www.behere.com
[19] iMove Inc. [Online]. Available: http://www.imoveinc.com
[20] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an

on-demand video server with batching,” in Proc. ACM Multimedia, San
Francisco, CA, Oct. 1994, pp. 15–23.

[21] S. Sheu, K. A. Hua, and W. Tavanapong, “Chaining: A generalized
batching technique for video-on-demand systems,” in Proc. IEEE Int.
Conf. Multimedia Computing and Systems, Jun. 1997, pp. 110–117.

[22] W. Liao and V. O. K. Li, “The split and merge protocol for interactive
video-on-demand,” IEEE Multimedia, vol. 4, pp. 51–62, Oct.-Dec. 1997.

[23] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for
true video-on-demand services,” in Proc. ACM Multimedia, New York,
Sep. 14–16, 1998, pp. 191–200.

[24] S. Viswanathan and T. Imielinski, “Pyramid broadcasting for video on
demand service,” in Proc. IEEE Multimedia Computing and Networking
Conf., San Jose, CA, 1995, pp. 66–77.

[25] , “Metropolitan area video-on-demand service using pyramid
broadcasting,” Multimedia Syst., vol. 4, pp. 197–208, Aug. 1996.

[26] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A permutation-based pyramid
broadcasting scheme for video-on-demand systems,” in Proc. IEEE Int.
Conf. Multimedia Systems, Hiroshima, Japan, Jun. 1996, pp. 118–126.

[27] K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting
scheme for metropolitan video-on-demand systems,” in Proc. SIG-
COMM, Cannes, France, Sep. 1997, pp. 89–100.

[28] L. Juhn and L. Tseng, “Harmonic broadcasting for video-on-demand
service,” IEEE Trans. Broadcast., vol. 43, no. 3, pp. 268–271, Sep. 1997.

[29] L. S. Juhn and L. M. Tseng, “Enhanced harmonic data broadcasting and
receiving scheme for popular video service,” IEEE Trans. Consumer
Electron., vol. 44, pp. 343–346, 5 1998.

[30] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “Design and analysis of per-
mutation-based pyramid broadcasting,” ACM Multimedia Syst., vol. 7,
no. 6, pp. 439–448, 1999.

[31] Z. Y. Yang, L. S. Juhn, and L. M. Tseng, “On optimal broadcasting
scheme for popular video service,” IEEE Trans. Broadcast., vol. 45, no.
3, pp. 313–322, Sep. 1999.

[32] R. Szeliski, “Video mosaics for virtual environments,” IEEE Comput.
Graph. Applicat., vol. 16, no. 2, pp. 22–30, Mar. 1996.

[33] C. Geyer and K. Daniilidis, “Omnidirectional video,” Vis. Comput., vol.
19, no. 9, pp. 405–416, 2002.

[34] N. Greene, “Environment mapping and other applications of world pro-
jections,” IEEE Comput. Graph. Applicat., vol. 6, no. 11, pp. 21–29,
Nov. 1986.

[35] S. B. Kang, “Catadioptric self-calibration,” in Conf. Computer Vision
and Pattern Recognition, vol. 1, 2000, pp. 201–207.

NG et al.: DATA COMPRESSION AND TRANSMISSION ASPECTS OF PANORAMIC VIDEOS 95

[36] S. Nayar, “Catadioptric omnidirectional camera,” in Conf. Computer Vi-
sion and Pattern Recognition, 1997, pp. 482–488.

[37] “Generic Coding of Moving Pictures and Associated Audio Information:
Video,”, ITU-T Rec. H.262-ISO/IEC 13 818-2, 1994.

[38] Microsoft document, “Creating compressed textures,” in DirectX SDK
Documentation: MSDN Library.

[39] [Online]. Available: http://www.moonlight.co.il
[40] K. K. Chu and H. C. Lau, “The transmission of multimedia object over

high speed LAN,” Dept. Elect. Electron. Eng., Univ. Hong Kong, Hong
Kong, 1998.

[41] C. Granheit, A. Smolic, and T. Wiegand, “Efficient representation and
interactive streaming of high-resolution panoramic views,” in Proc.
IEEE Int. Conf. Image Process., vol. 3, Sep. 2002, pp. 209–212.

King-To Ng (S’96–M’03) received the B.Eng.
degree in computer engineering from the City
University of Hong Kong, Hong Kong, in 1994,
and the M.Phil. and Ph.D. degrees in electrical and
electronic engineering from the University of Hong
Kong, in 1998 and 2003, respectively.

In 2004, he worked as a Visiting Associate Re-
searcher at Microsoft Research Asia, Beijing, China.
Currently, he is a Postdoctoral Fellow in the Depart-
ment of Electrical and Electronic Engineering, Uni-
versity of Hong Kong. His research interests include

visual communication, image-based rendering, and video broadcast and trans-
mission.

S. C. Chan (S’87–M’92) received the B.Sc.Eng. and
Ph.D. degrees from the University of Hong Kong,
Hong Kong, in 1986 and 1992, respectively.

He joined the City Polytechnic of Hong Kong,
in 1990 as an Assistant Lecturer and later as a
University Lecturer. Since 1994, he has been with
the Department of Electrical and Electronic Engi-
neering, University of Hong Kong, and is now an
Associate Professor. He was a Visiting Researcher
at Microsoft Corporation, Redmond, WA, and at
Microsoft China, Beijing, in 1998 and 1999, respec-

tively. His research interests include fast transform algorithms, filter design and
realization, multirate signal processing, communications signal processing,
and image-based rendering.

Dr. Chan is currently a member of the Digital Signal Processing Technical
Committee of the IEEE Circuits and Systems Society. He was Chairman of the
IEEE Hong Kong Chapter of Signal Processing from 2000 to 2002.

Heung-Yeung Shum (SM’01) received the Ph.D. de-
gree in robotics from the School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, in
1996.

He worked as a Researcher for three years in the
Vision Technology Group at Microsoft Research,
Redmond, WA. In 1999, he moved to Microsoft
Research Asia, Beijing, China, where he is currently
a Senior Researcher and the Assistant Managing
Director. His research interests include computer
vision, computer graphics, human computer interac-

tion, multimedia systems, pattern recognition, statistical learning, and robotics.
Dr. Shum was the General Co-Chair of 9th International Conference on Com-

puter Vision (ICCV), Beijing, 2003. He currently serves as an Associate Editor
for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY.

	toc
	Data Compression and Transmission Aspects of Panoramic Videos
	King-To Ng, Member, IEEE, Shing-Chow Chan, Member, IEEE, and Heu
	I. I NTRODUCTION
	II. C ONSTRUCTION OF P ANORAMIC V IDEOS
	A. Panoramic Videos

	Fig.€1. Construction of a panoramic mosaic.
	Fig.€2. Mapping of images onto a cylinder to generate a panorami
	Fig.€3. Frame 8 of the Cafeteria panoramic video sequence.
	B. Capturing of Panoramic Videos
	C. Rendering of a Novel Video View

	Fig.€4. Typical cubic environment map of the synthetic environme
	Fig.€5. Rendering of panoramic video.
	III. C OMPRESSION AND R ENDERING OF P ANORAMIC V IDEOS
	A. MPEG-2 Video Coding of Subtiles for Dynamic Environment Map
	1) Selective Decoding Problem (Tile Seeking): For transmission a

	Fig.€6. GOP setting in MPEG-2 bitstream.
	B. Modified MPEG-2 Video Coding for Virtual Walkthrough Over Sta
	C. Rendering of Panoramic Videos

	Fig.€7. Multiplexing of the tiles (streams) in the MPEG-2 compre
	Fig.€8. GOP setting in MPEG-2 bitstream for virtual walkthrough
	D. Experimental Results
	IV. T RANSMISSION OF P ANORAMIC V IDEOS

	Fig.€9. Filter graph of panoramic video viewer.
	TABLE I C OMPRESSION P ERFORMANCE OF THE P ANORAMIC V IDEO S EQU
	Fig.€10. Frame 8 of the decompressed panoramic video sequence Ca
	TABLE II C OMPRESSION P ERFORMANCE OF THE S YNTHETIC P ANORAMIC
	Fig.€11. Example screenshots of the synthetic environment during
	V. A DVANCED D ELIVERY SHARING S CHEME
	A. Basic Principle

	Fig.€12. System model of a distributed VOD system.
	Fig.€13. Simple scenario where two identical video streams are r
	B. ADSS Protocol (ADSP) 1
	1) Users: The computer terminal or set-top box at the user side

	Fig.€14. Pseudocode of the cache manager.
	2) Scheduling Algorithm of the ADSS Server: In addition to the l

	Fig.€15. Scheduling algorithm of the ADSS server.
	3) Extensions to Panoramic Videos: Stream sharing in panoramic v

	Fig.€16. Operation of the ADSS in a broadcasting scenario.
	C. Performance Comparison With Other Broadcasting Schemes
	D. Experimental Results

	Fig.€17. Disk bandwidth required for four different scenarios (a
	TABLE III M EMORY A CCESS AND T RANSMISSION B ANDWIDTH FOR P ANO
	VI. C ONCLUSION
	E. H. Adelson and J. Bergen, The plenoptic function and the elem
	S. E. Chen, QuickTime VR An image-based approach to virtual envi
	L. McMillan and G. Bishop, Plenoptic modeling: An image-based re
	M. Levoy and P. Hanrahan, Light field rendering, in Proc. Comput
	S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, The
	H. Y. Shum and L. W. He, Rendering with concentric mosaics, in P
	R. Szeliski and H. Y. Shum, Creating full view panoramic image m
	W. H. Leung and T. Chen, Compression with mosaic prediction for
	J. Li, H. Y. Shum, and Y. Q. Zhang, On the compression of image
	H. Y. Shum, K. T. Ng, and S. C. Chan, Virtual reality using the
	C. Zhang and J. Li, Compression of lumigraph with multiple refer
	M. Magnor and B. Girod, Adaptive block-based light field coding,
	L. Luo, Y. Wu, J. Li, and Y. Q. Zhang, Compression of concentric
	J. Foote and D. Kimber, FlyCam: Practical panoramic video and au
	J. Baldwin, A. Basu, and H. Zhang, Panoramic video with predicti
	T. Boult, Remote reality demonstration, in Proc. Conf. Computer

	Be Here Technologies [Online] . Available: http://www.behere.com
	iMove Inc. [Online] . Available: http://www.imoveinc.com
	A. Dan, D. Sitaram, and P. Shahabuddin, Scheduling policies for
	S. Sheu, K. A. Hua, and W. Tavanapong, Chaining: A generalized b
	W. Liao and V. O. K. Li, The split and merge protocol for intera
	K. A. Hua, Y. Cai, and S. Sheu, Patching: A multicast technique
	S. Viswanathan and T. Imielinski, Pyramid broadcasting for video
	C. C. Aggarwal, J. L. Wolf, and P. S. Yu, A permutation-based py
	K. A. Hua and S. Sheu, Skyscraper broadcasting: A new broadcasti
	L. Juhn and L. Tseng, Harmonic broadcasting for video-on-demand
	L. S. Juhn and L. M. Tseng, Enhanced harmonic data broadcasting
	C. C. Aggarwal, J. L. Wolf, and P. S. Yu, Design and analysis of
	Z. Y. Yang, L. S. Juhn, and L. M. Tseng, On optimal broadcasting
	R. Szeliski, Video mosaics for virtual environments, IEEE Comput
	C. Geyer and K. Daniilidis, Omnidirectional video, Vis. Comput.,
	N. Greene, Environment mapping and other applications of world p
	S. B. Kang, Catadioptric self-calibration, in Conf. Computer Vis
	S. Nayar, Catadioptric omnidirectional camera, in Conf. Computer

	Generic Coding of Moving Pictures and Associated Audio Informati
	Microsoft document, Creating compressed textures, in DirectX SDK
	[Online] . Available: http://www.moonlight.co.il
	K. K. Chu and H. C. Lau, The transmission of multimedia object o
	C. Granheit, A. Smolic, and T. Wiegand, Efficient representation

