
Efficient Algorithms for Optimizing Whole
Genome Alignment with Noise

T.W. Lam�, N. Lu, H.F. Ting, Prudence W.H. Wong, and S.M. Yiu

Department of Computer Science,
University of Hong Kong, Hong Kong

{twlam,nlu,hfting,whwong,smyiu}@cs.hku.hk

Abstract. Given the genomes (DNA) of two related species, the whole
genome alignment problem is to locate regions on the genomes that pos-
sibly contain genes conserved over the two species. Motivated by exist-
ing heuristic-based software tools, we initiate the study of optimization
problems that attempt to uncover conserved genes with a global concern.
Another interesting feature in our formulation is the tolerance of noise.
Yet this makes the optimization problems more complicated; a brute-
force approach takes time exponential in the noise level. In this paper
we show how an insight into the problem structure can lead to a drastic
improvement in the time and space requirement (precisely, to O(k2n2)
and O(k2n), respectively, where n is the size of the input and k is the
noise level). The reduced space requirement allows us to implement the
new algorithms on a PC. It is exciting to see that when compared with
the most popular whole genome alignment software (MUMMER) on real
data sets, the new algorithms consistently uncover more conserved genes
(that have been published by GenBank), while preserving the preciseness
of the output.

1 Introduction

Given the genomes (DNA) of two related species, the whole genome alignment
problem[2,6,9] is to identify potential regions that contain genes conserved over
the two species. This problem has attracted a lot of attention in the past few
years and a number of software tools have been developed [1,3,4,5,7,8,10,11].

Related species (such as mouse and human) often have a lot of genes con-
served, i.e., having the same functionality. Though a pair of conserved genes
rarely contain the same entire sequence (probably due to mutations), they share
a lot of short common substrings and some of these substrings are indeed unique
to this pair of genes. Thus, the first step to align two genomes would be to iden-
tify pairs of maximal substrings that appear uniquely in both genomes. This can
be done in linear time using suffix trees. Of course, not every pair of matched sub-
strings correspond to a pair of conserved genes; in fact, most matched substrings
in the input are “noise” and many of them actually originate from intergenic re-
gions. Extracting the right pairs is not a trivial problem. See Figure 1 for an
example.
� This research was supported in part by Hong Kong RGC Grant HKU-7042/02E.

T. Ibaraki, N. Katoh, and H. Ono (Eds.): ISAAC 2003, LNCS 2906, pp. 364–374, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Efficient Algorithms for Optimizing Whole Genome Alignment with Noise 365

Gene Y

Genome A

Gene X

Gene X

Gene Y

(c) (b)

(c)

Genome B
(a)

(b)(a)

Fig. 1. Among all pairs of matched substrings, a number of them do not originate from
conserved gene pairs. See (a), (b), (c) for examples.

Matched substrings that are noise are usually short and isolated. In other
words, a pair of conserved genes are likely corresponding to a sequence of
matched substrings that are consecutive and close in both genomes and have
sufficient length. We call such a sequence a cluster and a maximal collection of
clusters an alignment. At first glance, the problem of finding conserved genes is a
simple clustering problem. Such a clustering approach has been used in practice
[5], yet the success is limited. There are two major concerns.

– Some conserved genes do not induce clusters of sufficient size; the primary
reason is the presence of noise (which separates the actual matched sub-
strings). To uncover such genes, we have to relax the definition of a cluster
to allow the presence of noise.

– To report an alignment, one can simply use some ad hoc or greedy approach
to cluster the pairs, but does not have much control over the quality of
the alignment. It is more desirable to find an alignment that satisfies some
instinctive criterion, say, maximizing the size of the smallest cluster. Such a
criterion could possibly improve the overall quality of the alignment as we
avoid reporting relatively small clusters, which are less likely to be conserved
genes. But imposing such a criterion increases drastically the time and space
requirement for finding an alignment.

In this paper we introduce the notion of k-noisy clusters, which allows us
to ignore up to k pairs of matched substrings in considering a cluster (see the
formal definition below). We expect that k is a small integer; otherwise, some
clusters reported may be of very poor quality. Based on k-noisy clusters, we first
investigate the optimization problem of finding an alignment that maximizes
the size of the smallest cluster. Another optimization problem we have studied
is finding an alignment that minimizes the number of clusters. Intuitively, both
criteria do not favor small clusters, which are less likely to be conserved genes.
We believe that the tolerance of noise would enable more conserved genes to
be uncovered and the global selection criterion would trim away those small
clusters, retaining the preciseness of the output.

The bottleneck in solving these optimization problems is on checking whether
two regions on the two genomes contain a k-noisy cluster. A brute-force approach
is to examine all possible combinations of at most k substrings within the regions,
then check whether throwing these substrings away would leave two sequences

366 T.W. Lam et al.

of matched substrings that are consecutive on each genome and satisfy the size
requirement. This requires O(nk+1) time. In this paper we show how to exploit
the structure of the problems to devise a more efficient algorithm; it requires
only O(k2) time for checking a pair of regions on average, and O(k2n2) time
for checking all pairs. This improvement allows us to solve either optimization
problem in O(k2n2) time using dynamic programming.

A straightforward implementation of the dynamic programming would re-
quire O(kn2) space. This is actually too demanding. For example, in a pair of
human and mouse chromosomes, there can be up to a hundred thousand pairs of
matched substrings. Assuming k = 3, we already need more than ten Gigabytes
of memory to implement these algorithms, which far exceeds the capacity of
ordinary workstations. Fortunately, we are able to reduce the space requirement
of the algorithm to O(k2n), while maintaining the same time complexity.

We have implemented the new algorithms on a PC and compared them with
a heuristic-based software called MUMMER (which is the most popular whole
genome alignment software) on seven different sets of human and mouse chro-
mosomes. It is encouraging to see that the new algorithms consistently achieve
better coverage while preserving preciseness. They are able to uncover 10% to
25% more conserved genes (that are currently known to the biological commu-
nity) in each case. See Table 2 in Section 4 for details. It is worth-mentioning
that both selection criteria show improvement even if the noisy level is kept to
zero.

1.1 Problem Definition

The input is a sequence M = (m1, m2, . . . , mn), where each mi denotes a pair
of uniquely matched substrings on two given genomes A and B. More precisely,
each mi is represented as a 4-tuple (ai, bi, �i, σi) where ai and bi are respectively
the starting positions on A and B, �i the length of the substrings, and σi the
orientation of the substrings. A pair of matched substrings on two genomes can
originate from two strands of the same orientation or opposite orientations. If mi

is of same orientation, we set σi = 1; if mi is of opposite orientations, we set
σi = −1. Intuitively, same orientation means that the ai-th character of the sense
strand of A matches the bi-th character of the sense strand of B, the (ai +1)-th
matches the (bi + 1)-th and so on; while opposite orientations mean that the
ai-th character of the sense strand of A matches the (bi + �i − 1)-th character of
the antisense strand of B, the (ai +1)-th matches the (bi + �i − 2)-th and so on.
We assume that a1 < a2 < · · · < an. Let Gap and MinSize be two predefined
positive constants.

Noisy clusters: A segment C of M is a subsequence in the form (mi, mi+1,
. . . , mi+t). Let k be a positive integer. We say that a segment C of M is a
k-noisy cluster if we can remove at most k elements from C, denoted by X, such
that the resulting subsequence S satisfies the following conditions:

1. The σi’s of all mi’s in S are the same.
2. If σi = 1, both the ai’s and bi’s of S are increasing; otherwise, the ai’s are

increasing while the bi’s are decreasing.

Efficient Algorithms for Optimizing Whole Genome Alignment with Noise 367

3. For any two consecutive elements mp and mq in S, we have |ap − aq| ≤ Gap
and |bp − bq| ≤ Gap. This is called the distance requirement.

4. Size(S), defined to be
∑

mi∈S �i, is at least MinSize. This is called the size
requirement.

Intuitively, X corresponds to the noise.
Alignment: An alignment of M , denoted A below, is a maximal collection

of disjoint k-noisy clusters, i.e.,

– clusters in A are mutually disjoint;
– there does not exist another k-noisy cluster which is disjoint with all clusters

in A (i.e., we cannot add more clusters to A);
– there does not exist another k-noisy cluster which includes some cluster(s)

in A and is disjoint with all other clusters in A (i.e., we cannot replace some
cluster(s) in A with a bigger cluster).

Max-min alignment problem: We define the weight of a k-noisy cluster C
as follows. Note that there may be more than one subset X that makes C
qualified as a k-noisy cluster. Among all such X’s, let Xo be the one with the
smallest size. Define w(C), the weight of C, to be Size(C − Xo).

The max-min alignment problem is defined as follows. Given a set M of
pairs of matched substrings, we want to find an alignment A∗ of M such that
minC∈A∗ w(C) = maxA∈Σ minC∈A w(C), where Σ denotes the set of all pos-
sible alignments of M . We call A∗ a max-min optimal alignment of M and
minC∈A∗ w(C) the weight of A∗.

Min-cardinality alignment problem: Given a set M of pairs of matched
substrings, we want to find an alignment A∗ of M such that |A∗| = minA∈Σ |A|,
where |A| denotes the number of clusters in the alignment A and Σ denotes the
set of all alignments of M . We call A∗ a min-cardinality optimal alignment of M .

2 The Max-Min Alignment Problem

2.1 The Dynamic Programming Algorithm

In this section, we describe a dynamic programming algorithm for the max-min
alignment problem. Recall that the input is a sequence M = (m1, m2, . . . , mn)
and Σ denotes the set of all alignments of M . We want to find a max-min opti-
mal alignment A∗ of M , i.e., minC∈A∗ w(C) = maxA∈Σ minC∈A w(C). The dy-
namic programming algorithm computes A∗ incrementally, by considering the
sequences (m1), (m1, m2), . . . , (m1, m2, . . . , mj) and so on. For 1 ≤ j ≤ n,
let Φj be the set of all possible k-noisy clusters of M whose elements are
in (m1, m2, . . . , mj). Let Σj be set of all maximal collections of disjoint k-
noisy clusters in Φj . Define W(j) = maxA∈Σj

minC∈A w(C). Note that Φn = Φ
and Σn = Σ. Thus, W(n) is the weight of the max-min optimal alignment
of M . To find W(j), we consider two cases according to whether mj is in-
cluded in some cluster in the alignment. Let Γj ⊆ Σj be the set of those max-
imal collections each of which has a k-noisy cluster containing mj . We define

368 T.W. Lam et al.

WI(j) = maxA∈Γj (minC∈A w(C)), and WE(j) = maxA∈Σj−Γj (minC∈A w(C)) .
Obviously, W(j) = max{WI(j), WE(j)}.

The computation of WI(j) and WE(j) requires us to determine whether a
segment of M in the form (mi, mi+1, . . . , mj) is a k-noisy cluster, for all 1 ≤
i ≤ j. To ease our discussion, we denote the segment (mi, mi+1, . . . , mj) as
Mij . Let Sj be the set of the starting positions of all segments which end at
position j and which form a k-noisy cluster. Let i∗ be the largest position in Sj .
The following lemma gives a recurrence formula for WI(j) and WE(j) in terms
of W(j′) and WI(j′) with j′ < j.

Lemma 1. Assume W(0) = WI(0) = WE(0) = 0. For any j ≥ 1,

1. WI(j) = max
{

maxi∈Sj ,W(i−1) �=0(min(W(i − 1), w(Mij)),
maxi∈Sj ,W(i−1)=0 w(Mij)

}
.

2. WE(j) =

{
maxh∈[i∗, j−1] WI(h) if Sj 	= ∅,
W(j − 1) otherwise.

Proof. (1) For every i ∈ Sj , we want to determine the best alignment A∗ ∈ Σj

that contains Mij , i.e., the minimum weight of the clusters in A∗ is the maximum
among all such alignments. This alignment is the union of {Mij} and the best
alignment in Σi−1. If W(i − 1) 	= 0, minC∈A∗ w(C) = min(W(i − 1), w(Mij)).
If W(i − 1) = 0, minC∈A∗ w(C) = w(Mij). Therefore, Statement (1) follows.

(2) Suppose Sj 	= ∅. Let A be any alignment in Σj −Γj , and h be the largest
index of the matched substring pair that is contained in the clusters of A. Notice
that we must have i∗ ≤ h ≤ j − 1, otherwise, A ∪ {Mi∗j} is an alignment which
contradicts that A is maximal. Therefore, we have WE(j) = maxi∗≤h≤j−1 WI(h).
Suppose Sj = ∅. Then Γj = ∅. Therefore, WE(j) = W(j − 1).

Based on Lemma 1, we can solve the max-min alignment problem using dynamic
programming (see Algorithm 1).

Time complexity: Suppose that we have a preprocessing to find all k-noisy
clusters and their weights (i.e., Step 1 of Algorithm 1) in f(n) time so that
we can answer in O(1) time whether a particular segment is a k-noisy cluster.
Consider each iteration of Step 3 of Algorithm 1. Computing WI(j) and WE(j)
takes O(j) time. Then W(j) can be computed in O(1) time. Therefore, Step 3 of
Algorithm 1 takes O(n2) time and the whole algorithm takes O(n2+f(n)) time.

The preprocessing, i.e., finding all k-noisy clusters, is non-trivial and indeed
the bottleneck. In the next section, we give an algorithm to find all k-noisy
clusters with time f(n) = O(k2n2). In other words, the whole algorithm runs
in O(k2n2) time.

2.2 Finding the k-Noisy Clusters

In this section, we show how to find all k-noisy clusters and determine their
weights in O(k2n2) time. A brute-force approach is to determine whether a par-
ticular segment Mij is a k-noisy cluster by examining all possible combinations

Efficient Algorithms for Optimizing Whole Genome Alignment with Noise 369

Algorithm 1 The dynamic programming algorithm for the max-min alignment
problem.
1. For each subsequence Mij of M with 1 ≤ i ≤ j ≤ n, determine whether it is a

k-noisy clusters and compute its weight if so. For any 1 ≤ j ≤ n, let Sj be the set
of all i values such that Mij is a k-noisy cluster, and i∗ be the largest such value.

2. Set W(0) = WI(0) = WE(0) = 0.
3. For j = 1 to n

a) For each Mij ∈ Sj , compute the value according to Lemma 1 part (1) in terms
of W(i − 1) and w(Mij), and set WI(j) to be the maximum of these values.

b) Compute WE(j) according to Lemma 1 part (2) in terms of W(j − 1) and WI(h)
for i∗ ≤ h ≤ j − 1.

c) Set W(j) = max{WI(j), WE(j)}.

of up to k elements in the segment, and checking whether throwing these ele-
ments away would leave a sequence satisfying the k-noisy cluster requirement.
This requires O(nk+1) time. Hence, computing all k-noisy clusters and their
weights takes O(nk+3) time. Below we show how to improve the time complex-
ity to O(k2n2). The main observation is that we are able to determine whether
a segment Mij is a k-noisy cluster by examining a small number of Mij′ for
some j′ < j that have already been considered. Details are given below.

Consider any 1 ≤ i ≤ j ≤ n. To determine whether a segment Mij is a k-noisy
cluster, we try every Mij′ with j′ < j to check whether it is possible to obtain
a k-noisy cluster by extending Mij′ to include mj while satisfying the three
requirements of a k-noisy cluster. We observe that the first two requirements of
a k-noisy cluster are local concerns while the third requirement (i.e., the size
requirement) is a global concern in the following sense. If the segment Mij′ does
not satisfy the first two requirements, it is impossible to extend it such that Mij

satisfies these requirements. On the other hand, even if Mij′ does not satisfy the
size requirement, it is still possible to extend Mij′ such that Mij is a k-noisy
cluster because adding more matched substring pairs may make the extended
segment to be of sufficient size. Based on this observation, we exclude the size
requirement when we describe the sub-problem.

Now we describe how to find k-noisy clusters. Recall that Gap and MinSize
are two predefined positive constants. A set H ⊂ {mi, mi+1, . . . , mj} is said to
be a set of noise in Mij if Mij − H satisfies the first two requirements of a noisy
cluster (i.e., the size requirement is excluded) and the elements in Mij − H are
either all of the same orientation or all of the opposite orientations (i.e., the
value of σ’s are all the same). Notice that ∅ is also a candidate for H. Let N+

ij

(N−
ij , resp.) be the set of noise H in Mij such that all elements in Mij − H have

σ = 1 (σ = −1, resp.).

Lemma 2. Mij is a k-noisy cluster if and only if the expression

max

{
maxH∈N+

ij ,|H|≤k{Size(Mij − H)},

maxH∈N−
ij ,|H|≤k{Size(Mij − H)}

}

is at least MinSize.

370 T.W. Lam et al.

Proof. The lemma follows from definition.

Thus, to find all k-noisy clusters, it suffices to compute the expression in
Lemma 2 for all 1 ≤ i ≤ j ≤ n. In the rest of this section, we show how to
compute the expression

max
H∈N+

ij ,|H|≤k
{Size(Mij − H)} (1)

for all 1 ≤ i ≤ j ≤ n. The counterpart can be computed similarly. Define, for all
1 ≤ i ≤ j ≤ n and 0 ≤ x ≤ k,

V(i, j, x) = max
H∈N+

ij ,|H|≤x
{Size(Mij − H)}.

Thus, Expression (1) equals V(i, j, k). Let
V(i, j, x) = max

H∈N+
ij ,|H|≤x,mj �∈H

{Size(Mij − H)}.

To take care of the boundary conditions, for any i, j < 1 and x < 0, we set
V(i, j, x) = V(i, j, x) = 0. Then, V(i, j, x) = max{V(i, j, x), V(i, j − 1, x − 1)}.

Now we show how to compute V(i, j, x). If mj is of opposite orientations,
V(i, j, x) = 0. Suppose mj is of the same orientation. Let P be the set of matched
substring pairs mp = (ap, bp, �p) such that the following properties are satisfied:
(i) mp is of same orientation, (ii) max(i, j − x − 1) ≤ p ≤ j − 1, (iii) bp < bj ,
(iv) mp and mj satisfy the distance requirement, and (v) mp and mj satisfy the
consecutive requirement. Then we have the following lemma.

Lemma 3. V(i, j, x) can be computed recursively as follows in terms of V(i, j′, x′)
for some j′ < j and x′ ≤ x.

V(i, j, x) =

{
maxmp∈P V(i, p, x − j + p + 1) + Size((mj)) if P 	= ∅,

0 otherwise.

Proof. For any mp ∈ P , the number of matched substring pairs in between mp

and mj is j − p − 1. If there is a set X such that |X| ≤ x − (j − p − 1)
and Mip − X satisfies the first two requirements of noisy cluster, then we can
throw away a set X ′ with at most x matched substring pairs from Mij , where
X ′ = (mp+1, mp+2, . . . , mj−1) ∪ X so that Mij − X ′ also satisfies the first two
requirements of noisy cluster. Therefore, V(i, j, x) = maxmp∈P V(i, p, x − j + p +
1) + Size((mj)). On the other hand, if P = ∅, V(i, j, x) = 0.

Time and space complexity: Both the V and V tables have kn2 entries.
Each V entry is the maximum of at most k precomputed values. Therefore,
computing the V table takes O(k2n2) time. Each V entry is the maximum of two
precomputed values. Therefore, computing the V table takes O(kn2) time. With
the computed V values, we can determine whether a given subsequence of M is
a k-noisy cluster in constant time. Together with the discussion in Section 2.1,
we have a dynamic programming algorithm for the max-min alignment problem
which takes O(k2n2) time.

Efficient Algorithms for Optimizing Whole Genome Alignment with Noise 371

For the space requirement, a straightforward implementation of the dynamic
programming requires O(kn2) space. We can reduce the requirement to O(k2n)
space. Consider the computation of WI(j) for some 1 ≤ j ≤ n. We need to
examine the values V(i, j, k) with 1 ≤ i ≤ j. Computing V(i, j, k) requires the
computation of V(i, p, x) for some 0 ≤ x ≤ k and some p with max(i, j −x−1) ≤
p < j. There are at most (k+1) such x values and at most (k+1) such p values.
In other words, the computation of WI(j) requires O(k2n) precomputed values,
so only O(k2n) space is needed to store these values.

3 The Min-Cardinality Alignment Problem

In this section, we describe a dynamic programming algorithm for the min-
cardinality alignment problem. This algorithm makes use of the algorithm
described in Section 2.2 to determine whether a subsequence of M is a k-
noisy cluster. Recall the definition Σj , Γj and Σj − Γj in the previous sec-
tion. For any alignment A, let |A| denote the number of clusters in A. For
1 ≤ j ≤ n, let U(j) = minA∈Σj |A|. To take care of the boundary conditions,
we set U(0) = UI(0) = UE(0) = ∞. Note that U(n) is the number of clusters
in the min-cardinality optimal alignment of M . To find U(j), we consider two
cases according to whether mj is included in some clusters in the alignment.
We define UI(j) = minA∈Γj |A|, and UE(j) = minA∈Σj−Γj

|A|. Then, we have
U(j) = min{UI(j), UE(j)}. The following lemma gives a recursive formula for
UI(j) and UE(j).

Lemma 4. Let i′ be the smallest value such that Mi′j is a k-noisy cluster, and
let i∗ be the largest such value.

1. UI(j) =




∞ if there is no such i′,
U(i′ − 1) + 1 if U(i′ − 1) 	= ∞,
1 if U(i′ − 1) = ∞.

2. UE(j) =

{
UE(j) = minh∈[i∗, j−1] UI(h) if i∗ exists,
U(j − 1) otherwise.

Proof. The proof is similar to Lemma 1 and will be given in the full paper.

Similar to the Max-min algorithm, we can show that the Min-cardinality algo-
rithm takes O(k2n2) time and O(k2n) space.

4 Experiments

We have implemented the Max-min and the Min-cardinality algorithms in a
PC with 512M memory and a 2.4GHz CPU. The actual running time of the
programs depend on the noise level k and the number of input pairs n. We have
tested the programs on some real data sets with n ranging from 30,000 to 70,000
and with k = 0 and k = 3. The running times are reasonable and range from
one hour to several hours.

372 T.W. Lam et al.

We compare the quality of the output of our algorithms with that of
MUMMER[5], the most popular whole genome alignment software. We have
chosen 7 pairs of mouse and human chromosomes as our testing data. For each
pair of chromosomes, the biological community has already identified a number
of conserved genes; details are published in GenBank1. The chromosomes we
used in the experiments are of length about 30 million. For each pair of chro-
mosomes, we identify the set of uniquely matched substring pairs with length at
least 20 as input to the algorithms. Substring pairs with length less than 20 are
likely to be noise [4]. The details of the data sets are given in Table 1.

Table 1. Details of Data Sets

Experiment Mouse Chr Human Chr # of Input # of Published
No. No. No. Pairs Conserved Gene Pairs
1 7 19 52,394 192
2 15 22 71,613 72
3 16 16 66,536 31
4 16 22 61,200 30
5 17 16 29,001 46
6 17 19 56,236 30
7 19 11 29,814 93

Table 2. Coverage of Output of Different Algorithms (In the experiments, we set
Gap = 2000, MinSize = 65 for all programs including MUMMER. We have tried the
default parameters of MUMMER, but the coverage of the output is much poorer.)

Experiment Max-min Max-min Min-cardinality Min-cardinality
No. MUMMER (k = 0) (k = 3) (k = 0) (k = 3)
1 137 148 157 148 157
2 52 59 62 59 62
3 21 22 24 22 24
4 24 25 28 25 28
5 30 38 38 38 38
6 18 18 21 18 21
7 73 79 79 79 79

We measure the quality of output from two perspectives: the coverage and
the preciseness. For coverage, we count the number of published gene pairs that
are covered by the clusters reported by the algorithms. However, high coverage
alone may not imply a high quality in the output as one can simply output every
matched substring pair as a single cluster, thus achieving the highest possible
coverage. Therefore, we also consider the percentage of output clusters that
1 GenBank is the largest public database of DNA sequences and is maintained by the

National Center for Biotechnology Information (NCBI),
http://www.ncbi.nlm.nih.gov/Homology.

Efficient Algorithms for Optimizing Whole Genome Alignment with Noise 373

Table 3. The Preciseness of Output of Different Algorithms

Experiment Max-min Max-min Min-cardinality Min-cardinality
No. MUMMER (k = 0) (k = 3) (k = 0) (k = 3)
1 25.7% 24.3% 25.8% 24.3% 26.8%
2 23.3% 24.8% 24.4% 24.8% 24.5%
3 10.1% 12.2% 12.5% 12.2% 12.7%
4 22.9% 25.3% 25.4% 25.3% 22.8%
5 20.4% 24.1% 25.0% 24.1% 23.6%
6 12.5% 13.2% 14.9% 13.2% 14.3%
7 27.5% 27.9% 27.4% 27.9% 28.5%

actually cover the conserved gene pairs. This percentage is referred to as the
preciseness of the output. In other words, a good algorithm should produce a
set of output clusters with high coverage and high preciseness.

Table 2 shows the coverage of the output from different algorithms in dif-
ferent test cases. In general, both the Max-min and Min-cardinality algorithms
have a higher coverage than MUMMER even for k = 0. It implies that the global
selection criteria are effective. If the noise level increases to 3, the coverage of
the output from our algorithms has visible improvement. It shows that the noise
tolerance feature does enable more conserved gene pairs to be uncovered. Com-
bining the global selection criteria and the noise tolerance feature can increase
the coverage of the output by 10% to 25% compared with that for MUMMER.
Also, the set of gene pairs uncovered by the Max-min and the Min-cardinality
algorithms (for both k = 0 and k = 3) is the superset of that uncovered by
MUMMER. On the other hand, the output produced by the Max-min and the
Min-cardinality algorithms have exactly the same coverage in all cases.

Table 3 shows the preciseness of the output from different algorithms in the
test cases. In most cases, the output from the Max-min and Min-cardinality
algorithms show a slightly higher preciseness than that of MUMMER. Again,
the output from the Max-min and Min-cardinality algorithms show very similar
preciseness.

To conclude, based on the global selection criteria and the noise tolerance
feature, both of our algorithms are able to produce a set of higher quality output
clusters (ie, with higher coverage and similar preciseness) than MUMMER.

References

1. David L. Baillie and Ann M. Rose. Waba success: A tool for sequence comparison
between large genomes. Genome Research, 10(8):1071–1073, 2000.

2. S. Batzoglou, L. Pachter, J.P. Mesirov, B. Berger, and E.S. Lander. Human and
mouse gene structure: Comparative analysis and application to exon prediction.
Genome Research, 10:950–958, 2000.

3. Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive hash-
ing. Bioinformatics, 17(5):419–428, 2001.

374 T.W. Lam et al.

4. Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen
White, and Steven L. Salzberg. Alignment of whole genomes. Nucleic Acids Re-
search, 27(11):2369–2376, 1999.

5. Arthur L. Delcher, Adam Phillippy, Jane Carlton, and Steven L. Salzberg. Fast
algorithms for large-scale genome alignment and comparison. Nucleic Acids Re-
search, 30(11):2478–2483, 2002.

6. Kelly A. Frazer, Laura Elnitski, Deanna M. Church, Inna Dubchak, and Ross C.
Hardison. Cross-species sequence comparisons: A review of methods and available
resources. Genome Research, 13:1–12, 2003.

7. B. Morgenstern. Dialign 2: Improvement of the segment-to-segment approach to
multiple sequence alignment. Bioinformatics, 15:211–218, 1999.

8. B. Morgenstern, K. Frech, D. Dress, and T. Werner. Dialign: Finding local simi-
larities by multiple sequence alignment. Bioinformatics, 14:290–294, 1998.

9. Conrad A Nieduszynski, James Murray, and Mark Carrington. Whole-genome
analysis of animal a- and b-type cyclins. Genome Biology, 3(12), 2002.

10. Scott Schwartz, Zheng Zhang, Kelly A. Frazer, Arian Smit, Cathy Riemer, John
Bouck, Richard Gibbs, Ross Hardison, and Webb Miller. Pipmaker - a web server
for aligning two genomic dna sequences. Genome Research, 10(4):577–586, 2000.

11. P. Vincens, L. Buffat, C. Andre, J.P. Chevrolat, J.F. Boisvieux, and S. Hazout. A
strategy for finding regions of similarity in complete genome sequences. Bioinfor-
matics, 14:715–725, 1998.

	Introduction
	Problem Definition

	The Max-Min Alignment Problem
	The Dynamic Programming Algorithm
	Finding the k-Noisy Clusters

	The Min-Cardinality Alignment Problem
	Experiments

