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PREFACE

This book is #h outgrowth of lectures on the theory of probability
which the author has given at Stanford University for a number of
years. At first a short mimeographed text covering only the elementary
parts of the subject was used for the guidance of students. As time
went on and the scope of the course was gradually enlarged, the necessity
arose of putting into the hands of students a more elaborate exposition
of the most important parts of the theory of probability. Accordingly
a rather large manuscript was prepared for this purpose. The author
did not plan at first to publish it, but students and other persons who had
opportunity to peruse the manuscript were so persuasive that publication
was finally arranged.

The book is arranged in such a way that the first part of it, consisting
of Chapters I to XII inclusive, is accessible to a person without advanced
mathematical knowledge. Chapters VII and VIII are, perhaps, excep-
tions. The analysis in Chapter VII is rather involved and a better way
to arrive at the same results would be very desirable. At any rate, a
reader who does not have time or inclination to go through all the
intricacies of this analysis may skip it and retain only the final results,
found in Section 11. Chapter VIII, though dealing with interesting
and historically important problems, is not important in itself and may
without loss be omitted by readers. Chapters XIII to XVTI incorporate
the results of modern investigations. Naturally they are more complex
and require more mature mathematical preparation.

Three appendices are added to the book. Of these the second is by
far the most important. It gives an outline of the famous Tshebysheff-
Markoff method of moments applied to the proof of the fundamental
theorem previously established by another method in Chapter XIV.

No one will dispute Newton’s assertion: “In scientiis addiscendis
exempla magis prosunt quam praecepta.” But especially is it so in the
theory of probability. Accordingly, not only are a large number of
illustrative problems discussed in the text, but at the end of each chapter
a selection of problems is added for the benefit of students. Some of
them are mere examples. Others are more difficult problems, or even
important theorems which did not find a place in the main text. In all
such cases sufficiently explicit indications of solution (or proofs) are given.
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vi . PREFACE

The book does not go into applications of probability to other sciences.
To present these applications adequately another volume of perhaps
larger size would be required.

No one is more aware than the author of the many imperfections in
the plan of this book and its execution. To present an entirely satis-
factory book on probability is, indeed, a difficult task. But even with
all these imperfections we hope that the book will prove useful, especially
since it contains much material not to be found in ®@ther books on the
same subject in the English language. ‘

J. V. UspreENsky.

StanFORD UNIVERSITY,
September, 1937.
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INTRODUCTION TO
MATHEMATICAL PROBABILITY

INTRODUCTION

Quanto enim minus rationts terminis comprehendi posse
videbatur, quae fortuita sunt atque incerta, tanto admira-
bilior ars censebitur, cut ista quoque subjacent.—

Cer. HUYGENS,

De ratiociniis in ludo aleae.

1. It is always difficult to describe with adequate conciseness and
clarity the object of any particular science; its methods, problems, and
results are revealed only gradually. But if one must define the scope
of the theory of probability the answer may be this: The theory of
probability is a branch of applied mathematics dealing with the effects of
chance. Here we encounter the word ‘“chance,” which is often used in
everyday language but with rather indefinite meaning. To make clearer
the idea conveyed by this word, we shall try first to clarify the opposite
idea expressed in the word “necessity.” Necessity may be logical or
physical. The statement ““The sum of the angles in a triangle is equal
to two right angles’” is a logical necessity, provided we assume the
axioms of Euclidean geometry; for in denying the conclusion of the
admitted premises, we violate the logical law of contradiction.

The following statements serve to illustrate the idea of physical
necessity:

A piece of iron falls down if not supported.

Water boils if heated to a sufficiently high temperature.

A die thrown on a board never stands on its edge.

The logical structure of all these statements is the same: When certain
conditions which may be termed ‘“causes” are fulfilled, a definite effect
occurs of necessity. But the nature of this kind of necessity is different
from that of logical necessity. The latter, with our organization of
mind, appears absolute, while physical necessity is only a result of
extensive induction. We have never known an instance in which water,
heated to a high temperature, did not boil; or a piece of iron did not fall
down; or a die stood on its edge. For that reason we are led to believe
that in the preceding examples (and in innumerable similar instances)

the effect follows from its ‘“cause’” of necessity.
' 1




2 INTRODUCTION TO MATHEMATICAL PROBABILITY

Instead of the term ‘“physical necessity’’ we may introduce the
abstract idea of “natural law.” Thus, it is a “‘natural law’” that the
piece of iron left without support will fall down. Natural laws derived
from extensive experiments or observations may be called ‘“empirical
laws” to distinguish them from theoretical laws. In all exact sciences
which have reached a high degree of development, such as astronomy,
physics, and chemistry, scientists endeavor to build up an abstract and
simplified image of the infinitely complex physical world—an image
which can be described in mathematical terms. With the help of
hypotheses and some artificial concepts, it becomes possible to derive
mathematically certain laws which, when applied to the world of reality,
represent many natural phenomena with an amazing degree of accuracy.
It is true that in the development of the sciences it sometimes becomes
necessary to recast the previously accepted image of the physical world,
but it is remarkable that the fundamental theoretical laws even then
undergo but slight modification in substance or interpretation.

The chief endeavor of the exact sciences is the discovery of natural
laws, and their formulation is of the greatest importance to the promotion
of human knowledge in general and to the extension of our powers over
natural phenomena.

Are the events caused by natural laws absolutely certain? No,
but for all practical purposes they may be considered as certain. It is
possible that one or another of the natural laws may fail, but such
failure would constitute a real ‘“miracle.”” However, granted that the
possibility of miracles is consistent with the nature of scientific knowledge,
actually this possibility may be disregarded.

2. If the preceding explanations throw a faint light upon the concept
of necessity, it now remains to illuminate by comparison some charac-
teristic features inherent in the concept of “‘chance.” To say that chance
is a denial of necessity is too vague a statement, but examples may help
us to understand it better.

If a die is thrown upon a board we are certasn that one of the six faces
will turn up. But whether a particular face will show depends on what
we call chance and cannot be predicted. Now, in the act of tossing a
die there are some conditions known to us: first, that it is nearly cubic
in shape; further, if it is a good die, its material is as nearly as possible
homogeneous. Besides these known conditions, there are other factors
influencing the motion of the die which are completely inaccessible to our
knowledge. First among them are the initial position and the impulse
imparted by the player’s hand. These depend on an “act of will”’—an
agent which may act without any recognizable motivation—and therefore
they are outside the domain of rational knowledge. Second, supposing
the initial conditions known, the complexity of the resulting motion
defies any possibility of foreseeing the final result.
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Another example: If equal numbers of white and black balls, which do
not differ in any respect except in color, are concealed in an urn, and we
draw one of them blindly, it is certain that its color will be either white
or black, but whether it will be black or white we cannot predict: that
depends on chance. In this example we again have a set of known
conditions: namely, that balls in equal numbers are white and black, and
that they are not distinguishable except in color. But the final result
depends on other conditions completely outside our knowledge. First,
we know nothing about the respective positions of the white and black
balls; second, the choice of one or the other depends on an act of will.

It is an observed fact that the numbers of marriages, divorces, births,
deaths, suicides, etc., per 1,000 of population, in a country with nearly
settled living conditions and during not too long a period of time, do not
remain constant, but oscillate within comparatively narrow limits. For
a given year it is impossible to predict what will be their numbers: that
depends on chance. For, besides some known conditions, such as the
level of prosperity, sanitation, and many other things, there are unnum-
bered factors completely outside our knowledge.

Many other examples of a similar kind can be cited to illustrate the
notion of chance. They all possess a common logical structure which
can be described as follows*8h event A may materialize under certain
known or ““fixed”” conditions, but not necessarily; for under the same fixed
conditions other events B, C, D, . . . are also possible. The mate-
rialization of A depends also upon other factors completely outside our
control and knowledge. Consequently, whether A will materialize or
not under such circumstances cannot be foreseen; the materialization of

A is due to chance, or, to express it concisely, 4 is a contingent event. ‘——

3. The idea of necessity is closely related to that of certainty. Thus
it is “certain’ that everybody will die in the due course of time. In
the same way the idea of chance is related to that of probability or likeli-
hood. In everyday language, the words ‘‘probability” and ‘‘probable”
are used with different shades of meaning. By saying, “Probably it will
rain tomorrow,” we mean that there are more signs indicating rainy
weather than fair for tomorrow. On the other hand, in the statement,
“There is little probability in the story he told us,” the word “proba-
bility” is used in the sense of credibility. But henceforth we shall use
the word as equivalent to the degree of credence which we may place
in the possibility that some contingent event may materialize. The
“degree of credence” implies an almost instinetive desire to compare
probabilities of different events or facts. That such comparison is
possible one can gather from the followilig examples:

I live on the second floor and can reach the ground either by using
the stairway or by jumping from the window. Either way I might be
injured, though not necessarily. How do the probabilities of being

e i SEE
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4 INTRODUCTION TO MATHEMATICAL PROBABILITY

injured compare in the two cases? Everyone, no doubt, will say that
the probability of being injured by jumping from the window is “greater”
than the probability of being injured while walking down the stairway.
Such universal agreement might be due either to personal experience or
merely to hearsay about similar experiences of other persons.

An urn contains an equal number of white and black balls that are
similar in all respects except color. One ball is drawn. It may be either
black or white. How do the probabilities of these two cases compare?
One almost instinctively answers: “They are equal.”

Now, if there are 10 white balls and 1 black ball in the urn, what
about the probabilities of drawing a white or a black ball? Again one
would say without hesitation that the probability of drawing a white ball
is greater than that of drawing a black ball.

&Thus, probability appears to be something which admits of compari-
sons in magnitude, but so far only in the same way as in the intensity o
pain produced by piercing the skin with needles. .

But it is a noteworthy observation that men instinctively try to
characterize probabilities numerically in a naive and unscientific manner.
We read regularly in the sporting sections of newspapers, predictions
that in a coming race a certain horse has two chances against one to
win over another horse, or that the chances of two football teams are as
10 to 7, ete. No doubt experts do know much about the respective
horses and their riders, or the comparative strengths of two competing
football teams, but their numerical estimates of chances have no other
merit than to show the human tendency to assign numerical values to
probabilities which most likely cannot be expressed in numbers.

It is possible that a man endowed with good common sense and ripe
judgment can weigh all available evidence in order to compare the
probabilities of the various possible outcomes and to direct his actions
accordingly so as to secure profit for himself or for society. But precise
conclusions can never be attained unless we find a satisfactory way to
represent or to measure probabilities by numbers, at least in some cases.

4. As in other fields of knowledge, in attempting to measure proba-
bilities by numbers, we encounter difficulties that cannot be avoided
except by making certain ideal assumptions and agreements. In
geometry (we speak of applied and not of abstract geometry), before
explaining how lengths of rectilinear segments can be measured, we must
first agree on criteria of equality of two segments. Similarly, in dealing
with probability, the first step is to answer the question: When may two
contingent events be considered as equally probable or, to use a more
common expression, equally Iikely? From the statements of Jacob
Bernoull.i, one of the founders of the mathematical theory of probability,
one can infer the following criterion of equal probability:
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Two contingent events are considered as equally probable if, after taking
_into consideration all relevant evidence, one of them cannot be expected in
preference to the other. v

Certainly there is some obscurity in this criterion, but it is hardly
possible to substitute any better one. To be perfectly honest, we must
admit that there is an unavoidable obscurity in the principles of all the
sciences in which mathematical analysis is applied to reality.

The application of Bernoulli’s criterion to particular cases is beset
with difficulties and requires good common sense and keen judgment.
There is much truth in Laplace’s statement: “La théorie des probabilités
n’est au fond que le bon sens réduit au calcul.”

To elucidate the nature of these difficulties, let us consider an urn
filled with white and black balls, but in unknown proportion. The only
evidence we have, namely, that there are both white and black balls in
the urn, in this case appears insufficient for any conclusion about the
respective probabilities of drawing a white or a black ball. We instine-
tively think of the numbers of the two kinds of balls, and, being in
ignorance on this point, we are inclined to suspend judgment. But if we
know that white and black balls are equal in number and distributed
without any sort of regularity, this knowledge appears sufficient to
assume the equality of the probabilities of drawing a white or a black
ball. It is possible that, perhaps unconsciously, we are influenced by the
commonly known fact that if we repeatedly draw a ball out of the urn
many times, returning the ball each time before drawing again, the white
and the black balls appear in nearly equal numbers.

If an urn contains a certain number of identical balls distinguished
from one another by some characteristic signs, for example, by the
numbers 1, 2, 3, . . ., the knowledge that the balls are identical and
are distributed without regularity suffices in this case to cause us to
conclude that the probabilities for drawing any of the balls should be
- considered as equal. Again, in so readily assuming this conclusion we
may be influenced by the fact empirically observed (by ourselves or by
others) that in a long series of drawings, with balls being restored to
the urn after each withdrawal, the balls appear with nearly the same
frequency.

An ordinary die is tossed. Should we consider the possible numbers
of points 1, 2, 3, 4, 5, 6 as equally probable? To pronounce any judg-
ment, we must know something about the die. If it is known that the
die has a regular cubic shape and that its material is homogeneous, we
readily agree on the equal probabilities of all the numbers of points
1,2, 3,4, 5 6. And this a priori conclusion, based on Bernoulli’s eri-
terion, agrees with the observed fact that each number of points does
appear nearly an equal number of times in a long series of throws, if the
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die is a good one. However, if we only know that the die has a regular
shape, but not whether or not it is loaded, it is only sensible to suspend
judgment. :

These examples show that before trying to apply Bernoulli’s criterion,
we must have at our disposal some evidence the amount of which cannot
be determined by any general rules. It may be also that the reason a
priori must be supplemented by some empirical evidence. In some
cases, lacking sufficient grounds to assert equal probabilities for two
events, we may assume them as a hypothesis, to be kept until for some
reason we are forced to abandon it.

5. Besides the ticklish question: When are we entitled to consider
events as equally probable? there is another fundamental assumption
required to make possible the measurement of probabilities by numbers.

Events ai, a2, . . . a, form an exhaustive set of possibilities under
certain fixed conditions S, if at least one of them must necessarily mate-
rialize. They are mutually exclusive if any two of them cannot material-
ize simultaneously. The fundamental assumption referred to consists in
the possibility of subdividing results consistent with the conditions S
into a number of exhaustive, mutually exclusive, and equally likely

~events, or cases (as they are commonly called):

ay, Az, - . . Q.

This being granted, the probability of any one of these cases is assumed
to be 1/n.

An event A may materialize in several mutually exclusive particular
forms: o, B, . . . \; that is, if A occurs, then one and only one of the
events «, B, . . . A occurs also, and conversely the occurrence of one of
these events necessitates the occurrence of A. Thus, if 4 consists in
drawing an ace from a deck of cards, 4 may materialize in four mutually
exclusive forms: as an ace of hearts, diamonds, elubs, or spades.

Let an event A be represented by its particular forms ai, s, . . . Gm,
which together with other events @myi, @mes, - . . @. constitute an
exhaustive set of mutually exclusive and equally likely cases consistent with
the conditions 8.  Eventsai,as, . . . anarecalled “‘casesfavorableto 4.”

Definition of Mathematical Probability. If, consistent with conditions
S, there are n exhaustive, mutually exclusive, and equally likely cases, and
m of them are favorable to an event A, then the mathemaiical probability of
A s defined as the ratio m/n.

In drawing a card from a full detk there are 52 and no more mutually
exclusive and equally likely cases; 4 of them are favorable for drawing an
ace; hence the probability of drawing an ace'is 445 = 1{3.

From an urn containing 10 white, 20 black, and 5 red balls, one ball is
drawn. Here, distinguishing individual balls, we have 35 equally likely
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cases. Among them there are 10, 20, and 5 cases, favorable respectively
to a white, a black, or a red ball. Hence the probabilities of drawing a
white, a black, or a red ball are, respectively, 24, 44, and 14. '

In the first example, instead of 52 cases, we may consider only 13
cases according to the denominations of the cards. These cases being
regarded as equally likely, there is only one of them favorable to an
ace. The probability of drawing an ace is 1{3. This observation makes
it clear that the subdivision of all possible results into equally likely
cases can be done in various ways. To avoid contradictory estimations
of the same probability we must always observe the following rules:

Two events are equally likely if each of them can be represented by
equal numbers of equally likely forms.

Two events are not equally likely if they are represented by unequal
numbers of equally likely forms.

Thus, if two equally likely events are each represented by different
numbers of their respective forms, then the latter cannot be considered as
equally likely.

Each card is characterized by its denomination and the suit to which
it belongs. Noting denominations, we distinguish 13 cases, but each
of these is represented by 4 new cases according to the suit to which the
card belongs. Altogether we have, then, 52 cases recognized as equally
likely; hence, the above-mentioned 13 cases should be considered as
equally likely.

In connection with the definition of mathematical probability,
mention should be made of an important principle not always explicitly
stated. If

Qi) G2y o+ o Um} by by, .. . by

are all mutually exclusive and equally likely cases consistent with
certain conditions, and the indication of the occurrence of an event B

makes cases by, by, . . . b, impossible, cases @i, @, . . . @ still should be
considered as equally likely. To illustrate this principle, consider an
urn with six tickets bearing numbers 1, 2, . . . 6. Two tickets are

drawn in succession. If nothing is known about the number of the first
ticket, we still have six possibilities for the number of the second ticket,
which we agree to consider as equally likely. But as soon as the number
of the first ticket becomes known, then there are only five cases left
concerning the number of the second ticket. According to the above
principle we must consider these five cases as equally likely.

. Probability as defined above is represented by a number contained
between 0 and 1. In the extreme case in which the probability is 0, it
indicates the impossibility of an event. On the contrary, in the other
extreme case in which the probability is 1, the event is certain. When

-
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the probability is expressed by a number very near to 1, it means that
the overwhelming majority of cases are favorable to the event. On the
contrary, a probability near to 0 shows that the proportion of favorable
cases is small.

From our experience we know that events with a small probabil-
ity seldom happen. For instance, if the probability of an event is
1/1,000,000, the situation may be likened to the drawing of a white ball
from an urn containing 999,999 black balls and a single white one.
This white ball is practically lost among the majority of black balls, and
for all practical purposes we may consider its extraction impossible.
Similarly, the probability 999,999/1,000,000 may be considered, from a
practical standpoint, as an indication of certainty. What limit for
smallness of probability is to be set as an indication of practical impos-
sibility? Evidently there is no general answer to this question. Every-
thing depends on the risk we can face if, contrary to expectation, an
event with a small probability should occur. Hence, the main problem
of the theory of probability consists in finding cases in which the proba-
bility is very small or very near to 1. Instead of saying, ‘“The proba-
bility is very near to 1,” we shall say, ‘““great probability,” although,
of course, the probability can never exceed 1.

7. The definition of mathematical probability in Sec. 5 is essentially
the classical definition proposed by Jacob Bernoulli and adopted by
Laplace and almost all the important contributors to the theory of
probability. But, since the middle of the nineteenth century (Cournot,
John Stuart Mill, Venn), and especially in our days, the classical definition
has been severely criticized. Several attempts have been made to rear
up the edifice of the mathematical theory of probability on quite a
different definition of mathematical probability. It does not enter into
our plan to criticize these new definitions, but, in the opinion of the
author, many of them are self-contradictory. Modern attempts to build
up the theory of probability as an axiomatic science may be interesting
in themselves as mental exercises; but from the standpoint of applica-
tions the purely axiomatic science of probability would have no more
value than, for example, would the axiomatic theory of elasticity.

The most serious objection to the classical definition is that it can
be used only in very simple and comparatively unimportant cases like
games of chance. This objection, stressed by von Mises, is in reality
not a new one. It is one of the objections Leibnitz made against Jacob
Bernoulli’s views concerning the possibility of applications of the theory
of probability to various important fields of human endeavor and not
merely to games of chance.

-It is certainly true that the classical definition cannot be divectly
applied in many important cases. But is it the fault of the definition

]
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or is it rather due to our ignorance of the innermost mechanisms which,
apart from chance, contribute to the materialization or nonmaterializa-
tion of contingent events? It seems that this is what Jacob Bernoulli
meant in his reply to Leibnitz:

Objiciunt primo, aliam esse rationem calculorum, aliam morborum aut muta-
tionum aeris; illorum numerum determinatum esse, horum indeterminatum et
vagum. Ad quod respondeo, utrumque respectu cognitionis nostrae aequi poni
incertum et indeterminatum; sed quicquam in se et sua natura tale esse, non
.magis a nobis posse concipi, quam concipi potest, idem simul ab Auctore naturae
creatum esse et non creatum: quaecumque enim Deus fecit, eo ipso dum fecit,
etiam determinavit.!

8. A brilliant example of how the profound study of a subject finally
makes it possible to apply the classical definition of mathematical
probability is afforded in the fundamental laws of genetics (a science of
comparatively recent origin, whose importance no one can deny), dis-
covered by the Augustinian monk, Gregor Mendel (1822-1884). During
eight years Mendel? conducted experimental work in crossing different
varieties of the common pea plant with the purpose of investigating how
pairs of contrasting characters were inherited. For the pea plant there
are several pairs of such contrasting characters: round or wrinkled seeds,
tallness or dwarfness, yellow or green pod color, ete. Let us concentrate
our attention on a definite pair of contrasting characters, yellow or green
pod color. Peas with green pod color always breed true. Also some
peas with yellow color always breed true, while still others produce both
varieties. True breeding pea plants constitute two pure races: 4 with
vellow pod color and B with green pod color, while plants with yellow
pods not breeding true constitute a hybrid race, . Crossing plants of
the race A with those of the race B and planting the seeds, Mendel
obtained a first generation F; of hybrids. Letting plants of the first
generation self-fertilize and again planting their seeds to produce the
second generation F,, Mendel found that in this generation there were
428 yellow pod plants and 152 green pod plants in the ratio 2.82:1.
In regard to other contrasting characters the ratio of approximately 3:1
was observed in all cases. Later experimental work only confirmed
Mendel’s results. Thus, combined experiments of Correns, Tschermak,
and others gave among 195,477 individuals of F,, 146,802 yellow pod
plants and 48,675 green pod plants, in the ratio 3.016:1.

1To understand the beginning of this statement see the translation from ¢Ars
conjectandi’”” in Chap. VI, p. 105.

2 Mendel’s results were published in 1865, but passed completely unnoticed until
in about 1900 the same facts were rediscovered by DeVries, Correns, and Tschermak.
Modern genetics dates from about this time.
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Mendel not only discovered such remarkable regularities, but also
suggested a rational explanation of the observed ratio 3:1, which with
some modifications is accepted even today. Bodies of plants and
animals are built up of enormous numbers of cells, among which the
reproductive cells, or gametes, differ from the remaining ‘“‘somatic”
cells in some important qualities. Cells are not homogeneous, but
possess a definite structure. In somatic cells there are found bodies,
called chromosomes, whose number is even and the same for the same
species. Exactly half of this number of chromosomes is found in repro-
ductive cells. Chromosomes are supposed to be seats of hypothetical
“genes,” which are considered as bearers of various heritable characters.
A chromosome of one pure race A bearing a character a differs from the
homologous chromosome of another pure race B bearing a contrasting
character b in that they contain genes of different kinds. Since characters
a and b are borne by definite chromosomes, the situation in regard to the
two characters a and b is exactly the same as if gametes of both races
contained just one chromosome. Let us represent them symbolically by
© and ®. In the act of fertilization a pair of paternal and maternal
gametes conjugate and form a zygote, which by division and growth
produces all cells of the filial generation. Certain of these cells become
the germ cells and are set apart for the formation, by a complicated
process, of gametes, one half of which contain the chromosome of the
paternal type and the other half that of the maternal type.

According to this theory, in crossing two individuals belonging to
races A and B, zygotes of the first generation F; will be of the type
O—®, and will produce gametes, in equal numbers, of the types ©, ®.
Now if two individuals of F; (hybrids) are crossed (or one individual
self-fertilized as in the cases of some plants), one paternal gamete con-
jugates with one maternal, and for the resulting zygote there are four
possibilities:

A 0—0 O—® ®—0 ®—Q

These possibilities may be considered as equally probable, whence
the probabilities for an individual of the generation F'; to belong respec-
tively to the races A, B, C are 14, 14, 14. Similarly, one easily finds that
in crossing an individual of the race A with one of the hybrid race C,
the probabilities of the offspring belonging to A or C are both equal to 14.

It is easy now to offer a rational explanation of the Mendelian ratio
3:1. In the case of pea plants, individuals of the race A4 and hybrids
are not distinguishable in regard to the color of their pods. Hence the
probability of the offspring of a hybrid plant having yellow pods is
34, while for the offspring to have green pods the probability is 4.
When the generation F, consists of a great many individuals, the theory
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of probability shows that the ratio of the number of yellow pod plants to
the number of green pod plants is not likely to differ much from the ratio
3:1. In crossing plants of the race A with hybrids, the offspring, if
numerous, will contain plants of race 4 or C, respectively, in a proportion
which is not likely to differ much from 1:1. And this conclusion was
experimentally verified by Mendel himself.

9. If in the case of the Mendelian laws the profound study of the
mechanism of heredity together with hypothetical assumptions of the
kind used in physics, chemistry, etc., paved the way for a rational
explanation of observed phenomena on the basis of the theory of proba-
bility, in many other important instances we are still unable to reach the
same degree of scientific understanding. Stability of statistical ratios
observed in many cases suggests the idea that they should be explained
on the basis of probability. For instance, it has been observed that
the ratio of human male and female births is nearly 51:50 for large
samples, and this is largely independent of climatic conditions, racial
differences, living conditions in different countries, ete. Although the
factors determining sex are known, yet some complications not suffi-
ciently cleared up prevent estimation of probabilities of male and female
births.

In all instances of the pronounced stability of statistical ratios we
may believe that some day a way will be found to estimate probabilities
in such cases. Therefore many applications of the theory of probability
to important problems of other sciences are based on belief in the existence
of the probabilities with which we are concerned. In other cases in
which the theory of probability is used, we may have grave doubts
as to whether this science is applied legitimately. The fact that many
applications of probability are based on belief or faith should not dis-
courage us; for it is better to do something, though it may be not quite
reliable, than nothing. Only we must not be overconfident about the
conclusions reached under such circumstances. -

After all, is not faith at the bottom of all scientific knowledge?
Physicists speak of electrons, which never have been seen and are known
only through their visible manifestations. Electrons are postulated
just to coordinate into a coherent whole a large variety of observed
phenomena. Is not this faith? It must be, for according to Paul
(Hebrews; 11:1), “Faith is the substance of things hoped for, the evidence
of things not seen.”

10. In concluding this introduction it remains to give a short account
of the history of the theory of probability. Although ancient philoso-
phers discussed at length the necessity and contingency of things, it
seems that mathematical treatment of probability was not known to the
ancients. Apart from casual remarks of Galileo concerning the correct
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evaluation of chances in a game of dice, we find the true origin of the
science of probability in the correspondence between two great men of
the seventeenth century, Pascal (1623-1662) and Fermat (1601-1665).
A Trench nobleman, Chevalier de Méré, a man of ability and great
experience in gambling, asked Pascal to explain some seeming contradic-
tions between his theoretical reasoning and the observations gathered
from gambling. Pascal solved this difficulty and attacked another
problem proposed to him by de Méré. On hearing from Pascal about
these problems, Fermat became interested in them, and in their private
correspondence these two great men laid the first foundations of the
science of probability. Bertrand’s statement, ‘“Les grands noms de
Pascal et de Fermat décorent le berceau de cette science’ cannot be
disputed.

Huygens (1629-1695), a great Dutch scientist, became acquainted
with the contents of this correspondence and, spurred on by the new
ideas, published in 1654 & first book on probability, “De ratiociniis in
ludo aleae,” in which many interesting and rather difficult problems on
probabilities in games of chance were solved. To him we owe the
concept of ‘“mathematical expectation” so important in the modern
theory of probability.

Jacob Bernoulli (1654-1705) meditated on the subject of probability
for about twenty years and prepared his great book, ‘“Ars conjectandi,”
which, however, was not published until eight years after his death in
1713, by his nephew, Nicholas Bernoulli. Bernoulli envisaged the
subject from the most general point of view, and clearly foresaw a whole
field of applications of the theory of probability outside of the narrow
circle of problems relating to games of chance. To him is due the
discovery of one of the most important theorems known as “Bernoulli’s
theorem.”

The next great successor to Bernoulli is Abraham de Moivre (1667—
1754), whose most important work on probability, “The Doctrine of
Chances,” was first published in 1718 and twice reprinted in 1738 and
in 1756.  De Moivre does not contribute much to the principles, but this
work is justly renowned for new and powerful methods for the solution
>f more difficult problems. Many important results, ordinarily attrib-
uted to Laplace and Poisson, can be found in de Moivre’s book.

Laplace (1749-1827), whose contributions to celestial mechanics
assured him everlasting fame in the history of astronomy, was very
much interested in the theory of probability from the very beginning of
his scientific career. After writing several important memoirs on the
subject, he finally published, in 1812, his great work “Théorie analytique
des probabilités,” accompanied by a no less known popular exposition,
“Essai philosophique sur les probabilités,” destined for the general
educated public. Laplace’s work, on account of the multitude of new
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ideas, new analytic methods, and new results, in all fairness should be
regarded as one of the most outstanding contributions to mathematical
literature. It exercised a great influence on later writers on probability
in Europe, whose work chiefly consisted in elucidation and development
of topics contained in Laplace’s book.

Thus in European countries further development of the theory of
probability was somewhat retarded. But the subject took on important
developments in the works of Russian mathematicians: Tshebysheff
(1821-1894) and his former students, A. Markoff (1856—1922) and A.
Liapounoff (1858-1918). Castelnuovo in his fine book “Calcolo delle
probabilitd”’ rightly regards the contributions to the theory of probability
due to Russian mathematicians as the most important since the time of
Laplace.

At the present time interest in the theory of probability is revived
everywhere, but again the most outstanding recent contributions have
been made in Russia, chiefly by three prominent mathematicians: S.
Bernstein, A. Khintchine, and A. Kolmogoroff.

In closing this introduction it seems proper to quote the closing
words of the ‘“Essai philosophique sur les probabilités”:

On voit par cet Essai, que la théorie des probabilités n’ est au fond, que le bon
sens réduit au caleul: elle fait apprécier avec exactitude, ce que les ésprits justes
sentent par une sorte d’instinct, sans qu’ils puissent souvent s’en rendre compte.
Elle ne laisse rien d’arbitraire dans le choix des opinions et des partis & prendre,
toutes les fois que I'on peut, & son moyen, déterminer le choix le plus avantageux.
Par la, elle devient le supplément le plus heureux, & lignorance et & la faiblesse
de 'ésprit humain. Si l'on considére les méthodes analytiques auxquelles cette
théorie a donné naissance, la vérité des principes qui lui servent de base, la
logique fine et délicate qu’ exige leur emploi dans la solution des problémes, les
établissements d’utilité publique qui s’appuient sur elle, et Pextension qu’elle a
recue et qu’elle peut regevoir encore, par son application aux questions les plus
importantes de la Philosophie naturelle et des sciences morales; si I’on observe
ensuite, que dans les choses mémes qui ne peuvent étre soumise au calcul, elle
donne les apergus les plus sfirs qui puissent nous guider dans nos jugements,
et qu’elle apprend & se garantir des illusions qui souvent nous égarent; on verra
qu’il n’est point de science plus digne de nos méditations.
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CHAPTER 1

COMPUTATION OF PROBABILITIES BY DIRECT
ENUMERATION OF CASES

1. The probability of an event can be found by direct application
of the definition when it is possible to make a complete enumeration of
all equally likely cases, as well as of those favorable to that event. Here
we shall consider a few problems, beginning with the simplest, to illustrate
this direct method of evaluating probabilities.

Problem 1. Two dice are thrown. What is the probability of
obtaining a total of 7 or 8 points? :

Solution. Suppose we distinguish the dice by the numbers 1 and 2.
There are 6 possible cases as to the number of points on the first.die;
and each of these cases can be accompanied by any of the 6 possible
numbers of points on the second die. Hence, we can distinguish alto-
gether 6 X 6 = 36 different cases. Provided the dice are ideally regular
in shape and perfectly homogeneous, we have good reason to consider
these 36 cases as equally likely, and we shall so consider them.

Next, let us find out how many cases are favorable to the total of
7 points. This may happen only in the following ways:

First Die Second Die
1 6
2 5
3 4
4 3
5 2
6 1
Likewise, for 8 points:
First Die Second Die
2 6
3 : 5
4 4
5 3
6 2

That is, out of the total number of 36 cases there are 6 cases favorable
to 7 points and 5 cases favorable to 8 points; hence, the probability of
obtaining 7 points is 846 and the probability of obtaining 8 points is 34¢.

2. Problem 2. A coin is tossed three times in succession. What
is the probability of obtaining 2 heads? What is the probability of

obtaining tails at least once?
14
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Solution. In the first throw there are two possible cases: heads or
tails. And if the coin is unbiased (which we assume is true) these two
cases may be considered as equally likely. In two throws there are
2 X 2 = 4 cases; namely, both of the two possible cases in the first toss
can combine with both of the possible cases in the second. Similarly,
in three throws the number of cases will be 2 X 2 X 2 = 8. To find
the number of cases favorable to obtaining 2 heads, we must consider
that this can happen only in three ways:

Heads' Heads Tails
Heads Tails Heads
Tails Heads Heads

The number of favorable cases being 3, the probability of obtaining
two heads is 34.
v To answer the second part of the question, we observe that there is
“only one case when tails does not turn up. Therefore, the number of
cases favorable to obtaining tails at least once is 8 — 1 = 7, so that
the required probability is 74.
3. Problem 3. Two cards are drawn from a deck of well-shuffled
. cards. What is the probability that both the extracted cards are
aces?

Solution. Since there are 52 cards in the deck, there are 52 ways
of extracting the first card. After the first card has been withdrawn,
the second extracted card may be one of the remaining 51 cards. There-
fore, the total number of ways to draw two cards is 52 X 51. All these
cases may be considered as equally likely.

To find the number of cases favorable to drawing aces, we observe
that there are 4 aces; therefore, there are 4 ways to get the first ace.
After it has been extracted, there are 3 ways to get a second ace. Hence,
the total number of ways to draw 2 aces, is 4 X 3, and the required
probability is:

4 X3 _ 1 _ 1
52 X 51 13 X 17 221

Problem 4. Two cards are drawn from a full pack, the first card
being returned to the pack before the second is taken. What is the
probability that both the extracted cards belong to a specified suit?

Solution. There are 52 ways of getting the first card. For the
second drawing, there are also 52 ways, because by returning the first .
extracted card to the pack, the original number was restored. Under
such circumstances, the total number of ways to extract two cards is
52 X 52. Now, because there are 13 cards in a suit, the number of
‘cases favorable to obtaining two cards of a specified suit is 13 X 13.
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Therefore, the required probability is given by:

13X13_1X1_1
BBx52 4x4 16

4. Problem 5. An urn contains 3 white and 5 black balls. One
ball is drawn. What is the probability that it is black?

Solution. The total number of balls is 8. To distinguish them, we
may imagine that they are numbered. As to the number on the ball
drawn, there are 8 possible cases that may reasonably be considered as
equally likely. Obviously, there are 5 cases favorable to the black color
- of the ball drawn. Therefore, the required probability is 3¢. ~~

By a slight modification of the last problem, we come to the following
interesting situation:

Problem 6. The contents of the urn are the same as in the foregoing
problem. But this time we suppose that one ball is drawn, and, s color
unnoted, laid aside. Then another ball is drawn, and we are required to
find the probability that it is black or white.

Solution. Suppose again that the balls are numbered, so that the
white balls bear numbers 1, 2, and 3; and the black balls bear numbers
4,5,6,7,8. Obviously, there are 8 ways to get the first ball, and what-
ever it is, there remain only 7 ways to get the second ball. The total
number of equally likely cases is 8 X 7 = 56. .

It is a little more difficult to find the number of cases favorable to
extracting a white or black ball in the second drawing. Suppose we are
interested in the white color of the second ball. If the first ball drawn is
a white one, it may bear one of the numbers 1 to 3. Whatever this
number is, the second ball, if it is white, can bear only the two remaining
numbers. Therefore, under the assumption that the first ball is a white
one, the number of favorable cases is 3 X 2 = 6. Again, supposing that

“the first ball drawn is black, we have 5 possibilities as to its number, and,
corresponding to any one of these possibilities, there are 3 possibilities
as to the number of the white ball to be taken in the second drawing,
so that the number of favorable cases now is 5 X 3 = 15. The number
of all favorable cases is 6 4+ 15 = 21. The required probability for
the white ball is 21§ = 34. In the same way, we should find
that the probability for the black ball is 34. It is remarkable that
these two probabilities are the same as if only a single ball had been
drawn.

The situation is quite different if we know the color of the first ball.
Suppose, for instance, that it is white. The total number of equally
likely cases will then be 3 X 7 = 21; and the number of cases favorable
to getting -apother white ball is 3 X 2 = 6, so that the probability in

this casi’ii?/_,—- >
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This last example shows clearly how much probability depends upon
a given or known set of conditions.

5. Problem 7. Three boxes, identical in appearance, each have two
drawers. The first box contains a gold coin in each drawer; the second
contains a silver coin in each drawer; but the third contains a gold coin
in one drawer and a silver coin in the other. (a) A box is chosen at ran-
dom. What is the probability that it contains coins of different metals?
(b) A box is chosen, one of its drawers opened, and a gold coin found.
What is the probability that the other drawer contains a silver coin?

Solution. (a) Since nothing outwardly distinguishes one box from
the other, we may recognize three equally likely cases, and among them
is only one case of a box with coins of different metals. Therefore, we
estimate the required probability as }

« (b) As to the second question, one is tempted to reason as follows: .
The fact that a gold coin was found in one drawer leaves only two
possibilities as to the content of the other drawer; namely, that the coin
in it is either gold or silver. Hence, the probability of a silver coin in
the second drawer seems to be 14. But this reasoning is fallacious.
It is true that, when the gold coin is found in one drawer, there are only
two possibilities left as to the content of the other drawer; but these
possibilities cannot be considered as equally likely. To see this point
clearly, let us distinguish the drawers of the first box by the numbers 1
and 2; those of the second box by the numbers 3 and 4; finally, in the
third box, 5 will distinguish the drawer containing the silver coin, while
6 will represent the drawer with the gold coin.

Instead of three equally likely cases:

box 1, box 2, box3
we now have six cases:
drawers 1, 2; drawers 3, 4; drawers 5, 6,

which, with reference to the fundamental assumptions, must be con-
sidered as equally likely. If nothing were known about the contents
of the drawer which has been opened, the number of this drawer might be
either 1, 2, 3, 4, 5, or 6. But as soon as the gold coin is discovered in it,
cases 3, 4, and 5 become impossible, and there remain three equally likely
assumptions as to the number of the opened drawer: it may be either 1 or
2 or 6. That leaves three cases, and in only one of them, namely, in
case 6, will the other drawer contain a silver coin. Thus the answer
to the second question (b) is 14. ‘

6. In the preceding problems the enumeration of cases did not
present any difficulty. We are now going to discuss a.few problems in
which this enumeration is not so obvious but can be greatly simplified
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by the use of well-known formulas for the number of permutations,
arrangements, and combinations.

Let m distinct objects be represented by the letters a, b, ¢, . . . I
Using all these objects, we can place them in different orders and form
‘“permutations.” Forinstance, if there are only three letters, a, b, and ¢,
all the possible permutations are: abe, ach, bac, bea, cab, cba,—6 different
permutations out of 3 letters. In general, the number of permutations
P, of m objects is expressed by

P,=1:2:3- - m=ml

If n objects are taken out of the total number of m objects to form
groups, attention being paid to the order of objects in each group, then
these groups are called ‘‘arrangements.” For instance, by taking two
letters out of the four letters a, b, ¢, d, we can form the following 12
arrangements:

ab ba ca da
ac be cb db
ad bd cd dec

Denoting by the symbol A2 the number of arrangements of m
objects taken n at a time, the following formula holds:

A =mm — )(m —2) - -+~ (m — n + 1).

Again, if we form groups of n objects taken out of the total number of
m objects, this time paying no attention to the order of objects in the
group, we form ‘“combinations.”” For instance,. following are the
different combinations out of 5 objects taken 3 at a time:

abc abd abe acd ace
ade bed bee bde cde

In general, the number of combinations out of m objects taken »
at a time, which is usually denoted by the symbol C%, is given by

mm—1(m—2) - (m—n-+1)
- 1-2-3 - - -7n *

Cr.
It is useful to recall that the same expression may also be exhibited

as follows:

N m!
G = alm =
whence, by substituting m — n instead of n, the useful formula
Cn = Cp

can be dérived.
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7. After these preliminary remarks, we can turn to the problems in
which the foregoing formulas will often be used.

Problem 8. An urn contains a white balls and b black balls. If
a + B balls are drawn from this urn, find the probability that among
them there will be exactly « white and 8 black balls.

Solution. If we do not distinguish the order in which the balls come
out of the urn, the total number of ways to get « + B balls out of the
total number a + b balls is obviously expressed by C2}f and this is
the number of all possible and equally likely cases in this problem. The
number of ways to draw « white balls out of the total number a of white
balls in the urn is C%; and similarly C§ represents the number of ways
of drawing g8 black balls out of the total number b of black balls. Now
every group of a white balls combines with every possible group of B
black balls to form the total of « white balls and 8 black balls, so that
the number of ways to form all the groups containing « white balls and
B black balls is C2- C8. This is also the number of favorable cases;
hence, the required probability is

_ G-

Cef
or, in a more explicit form,

12 @t
L p—1'2"'a'1'2'-'6
_a(a—l) e la—a+1)bb—-1) - - - (b—6+1)_
a+ba+b—-—1)---(a+b—a—B+1)

Problem 9. An urn contains n tickets bearing numbers from 1 to n,
and m tickets are drawn at a time. What is the probability that ¢ of
the tickets removed have numbers previously specified?

Solution. This problem does not essentially differ from the preceding
one. In fact, ¢ tickets with preassigned numbers can be likened to ¢
white balls, while the remaining tickets correspond to the black balls.
The required probability, therefore, can be obtained from the expression
(1) by takinga = %, b = n — 4, @ = ¢, 8 = m — < and, all simplifications
performed, will be given by

_mm=1) - m—i+1)
2 p—n(n—l)"'(n—’i+1).

The conditions of this problem were realized in the French lottery,
which was operated by the French royal government for a long time but
discontinued soon after the Revolution of 1789. Similar lotteries
continued to exist in other European countries throughout the nineteenth
century. In the French lottery, tickets bearing numbers from 1 to 90
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were sold to the people, and at regular intervals drawings for winning
‘numbers were held in different French cities. At each drawing, 5
numbers were drawn. If a holder of tickets won on a single number,
he received 15 times its cost to him. If he won on two, three, four, or
five tickets, he could claim respectively 270, 5,500, 75,000, and, finally,
1,000,000 times their cost to him.

The numerical values of the probabilities corresponding to these
different cases are worked out as follows: we must take n = 90, m = 5,
and ¢ = 1, 2, 3, 4, or 5 in the expression (2). The results are

Single ticket §56 = Ilé

Two tickets §g_g§ = §%

Three tickets 905.‘8%; '.?;33 = 11;48

Four tickets QOET 849: gg 2 g7 = 51 11038' :
5-4-3-2-1 1

Five tickets 555588 87 - 86 ~ 43049268

8. Problem 10. From an urn containing a white balls and b black
ones, a certain number of balls, %, is drawn, and they are laid aside, their
color unnoted. Then one more ball is drawn; and it is required to find
the probability that it is a white or a black ball.

Solution. Suppose the %k balls removed at first and the last ball
drawn are laid on k + 1 different places, so that the last ball occupies
the position at the extreme right. The number of ways to form groups
of & + 1 balls out of the total number of a + b balls, attention being
paid to the order, is

a+b@+b—1) - (@+bd—k).

Such is the total number of cases in this problem, and they may all be
considered as equally likely. To find the number of cases favorable to
a white ball, we observe that the last place should be occupied by one of
the @ white balls. Whatever this white ball is, the preceding % balls
form one of the possible arrangements out of @ + b — 1 remaining balls
taken kat a time. Hence, it is obvious that the number of cases favorable
to a white ball is

a@a+b-1) - (a+b—k),
and therefore the required probability is given by

a
a+b
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"for a white ball. In a similar way we find the probability b/(a + b) of
~ drawing a black ball. These results show that the probability of getting
~ white or black balls in this problem is the same as if no balls at all were

_removed at first. Here we have proof that the peculiar circumstances
observed in Prob. 6 are general. :

9. Problem 11. Two dice are thrown n times in succession. = What is
the probability of obtaining double six at least once?

Solution. As there are 36 cases in every throw and each case of the
first. throw can combine with each case of the second throw, and so on,
- the total number of cases in n throws will be 367 Instead of trying to
find the number of favorable cases directly, it is easier to find the number
of unfavorable cases; that is, the number of cases in which double sixes’
would be excluded. In one throw there are 35 such cases, and in n throws
there will be 35". Now, excluding these cases, we obtain 36 — 35"
favorable cases; hence, the required probability is

-1 -G~

If one die were thrown n times in succession, the probability to obtain
6 points at least once would be

p=1—=@)"
' Now, suppose we want to find the number of throws sufficient to

assure a probability > 14 of obtaining double six at least once. To this
end we must solve the inequality

G~ <3
for'n; whence we find
% N .
g log 2 _ BT
1/‘, n > m =246 . . \3‘_;‘

7

% It means that in 25 throws there is more likelihood to obtain double
six at least once than not to obtain it at all. On the other hand, in
24 throws, we have less chance to succeed than to-fail.

Now, if we dealt with a single die, we should find that in 4 throws
there are more chances to obtain 6 points at least once than there are
chances to fail.

This problem is interesting in a historical respect, for it was the first
problem on probability solved by Pascal, who, together with his great
~ contemporary Fermat, had laid the first foundations of the theory of
probability. This problem was suggested to Pascal by a certain French
nohleman, Chevalier de Méré, a man of great experience in gambling.
- He had observed.the advantage of betting for double six in 25 throws
~ and for one six (with a single die) in 4 throws. He found it difficult to
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understand because, he said, there were 36 cases for two dice and 6 cases
for one die in each throw, and yet it is not, true that 25:4 = 36:6. Of
course, there is no reason for such an arbltrary conclusion, and the cor-
rect solution as given by Pascal not only removed any apparent parado‘xes
in this case, but it led to the same number, 25, observed by gamblers '
their daily experience.

10. Problem 12. A certain number n of identical balls is distributed
among N compartments. What is the probablhty that a certain speci-
fied compartment will contain A balls? . -

Solution. To find the number of all possible cases in thls problem,
suppose that we distinguish the balls by numbering them from 1 to ».
The ball with the number 1 may fall into any of the N compartments,

‘which gives NV cases. The ball with the number 2 may also fall into any

one of the N compartments; so that the number of cases for 2 balls will
be N+ N = N2 Likewise, for 3 balls the number of cases will be

NN = N,

and for any number n of balls the number of cases will be N». To find
the number of favorable cases, first suppose that a group of 2 specified
balls fallsinto a designated compartment. The remainingn — Aballsmay
be distributed in any way among N — 1 remaining compartments. But
the number of ways to distribute n — h balls among N — 1 compart-
ments is (N — 1) and this becomes the number of all favorable cases

- in which a specified group of & balls occupies the designated compartment.

Now, it is possible to form CZ% such groups; therefore, the total number of
fav cases is given by

a7 - 1),
and the required probability will be

_ G (N -1
i

In case n, N and h are large numbers, the direct application of this
formula becomes -difficult, and it is advisable to seek an approximate
expression for ps. To this end we write the preceding expression thus:

()
N 1\"™*
Pr= i‘Tg——‘“h(l —) P,

N,

¥ .

P=(1-3( -2 (-2

where

.
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Now, supposing 1 < & < & — 1, we have
_k _h—k\ _ h | k(h — k) h

On the other hand,

and so

S O CRET P

The inequalities (a) and (b) give simple lower and upper limits for P.
For we can write P? thus:

h—1 :
k g
2= — — —
P H<1 n)(1 4 )

k=1

and then apply \a) or (b), which leads to these inequalities

h—1 h—1
p<(1_£) : P>(1_E)T.
2n n

Correspondingly, we have

&)
W) 1 n—h h h—-1
p"<1-2~3---h<1"'z\7> (1‘%)

h

n )
N 1\ h\iE
p">1-2-3---h(1“ﬁ) (1“ﬁ> '

Problem 13. What is the probability of obtaining a given sum s of
points with n dice?

Solution. The number of all cases for n dice is evidently 67. The
number of favorable cases is the same as the total number of solutions of
the equation

o)) art o+ - fa, =35
where ai, @z, * - * @, are integers from 1 to 6. This number can be
determined by means of the following device: Multiplying the polynomial
(2) z -+ 22 4+ 23 + z* + 25 + 28

by itself, the product will consist of terms

etz
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where a; and a» independently assume all integral values from 1 to 6.
Collecting terms with the same exponent s, the coefficient of z* will give
the number of solutions of the equation

ay + ag = 8,

L3 °
a1, @y being subject to the above mentioned limitations.

Similarly, multiplying the same polynomial (2) three times in itself
and collecting terms with the same exponent s, the coefficient of z* will
give the number of solutions of equation (1) for » = 3. In general, the
number of solutions of equation (1) for any 7 is the coefficient of z* in
the expanded polynomial

(x + 2% + 2® + 2* 4 25 + 25)~,

Now we have identically

z(l — x‘*),

x+x2+$3—?—x4+x5+x“= T

and by the binomial theorem
2l — 29" = 3 (—1)IClarto
=0
(1 =2y =3 Crzia.
E=0

tiplying these series we find the following expression as the

co

8

n

(=1D)ICLC=

M|

~
I

0

‘ . . . §—mn
where summation extends over integers not exceeding 5 The same

sum represents the number of favorable cases. Dividing it by 67, we
get the following expression for the probability of s points on n dice:

S

'gn
1
= & D (- )CC,
0

1=

The preceding problems suffice to illustrate how probability can be
determined by direct enumeration of cases. For the benefit of students,
a few simple problems without elaborate solutions are added here.
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Problems for Solution

1. What is the probability of obtaining 9, 10, 11 points with 3 dice?
Ans. 25416, 27416, 2/16
2. What is the probability of obtaining 2 heads and 2 tails when 4 coins are

thrown? Ans. 34.
‘3. Two urns contain respectively 3 white, 7 red, 15 black balls, and 10 white,

6 red, 9 black balls. One ball is taken from each urn. What is the probability that

they both will be of the same color? Ans. 207455,
4. What is the probability that of 6 cards taken from a full pack, 8 will be black
and 3 red. Ans. 1800044, 57 = 0.332 approximately.

6. Ten cards are taken from a full pack. What is the probability of finding
among them (a) at least one ace; (b) at least two aces? Ans. 34%g5; 12574, 45,
6. The face cards are removed from a full pack. Out of the 40 remaining cards,
4 are drawn. What is the probability that they belong to different suits?
Ans. 10094, 34,
7. Under the same conditions, what is the prpba,blhty that the 4 cards belong to
different suits and different denominations? Ans. 30447 39.
8. Five cards are taken from a full pack. Fmd"thg probabilities (a) that they are
. of different denominations; (b) that 2 are of the same denomination and 3 scattered;
(c) that one pair is of one denomination and another pair of a different denomination,
and one odd; (d) that 3 are of the same denomination and 2 scattered; (¢) that 2 are
of one denomination and 3 of another; (f) that 4 are of one denomination and 1 of
another.
Ans. (a) 21124165; (B) 17694 165; (¢) 1934165; (d) 8341655 (€) $4165; (f) Mies-
9. What is the probability that 5 tickets taken in succession in the French lottery
will present an increasing or decreasing sequence of numbers? Ans. X,
10. What is the probability that among 5 tickets drawn in the French lottery there
is at least one with a one-digit number? Ans. 48282{ 4,953 = 0.417.
11. Twelve balls are distributed at random among three boxes. What 1s the
55.211
To812
12. In Prob. 12 (page 22) what is the most probable number of balls in
box? Ans. The probability

‘probability that the first box will contain 3 balls? Ans

_CAN — 1y
-5
is the greatest if the integer h is determined by the conditions

n+1 n+1
—_— < < -
N ClshE—mw—

13. Apply these considerations to the case of n = 200, N = 20. Ans. Since
h = 10 the inequalities on page 23 give

1010 1 190 1 9

— (1 —- = 1 — —
Po < 3or\* " 20 0

1010 1 190 1 2
P > — 101 1 - *2—6 1 - -2—6

To find an approximate value of

Dr

(1 —_ ﬁ)mﬂ
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note that

1 1 1 .

To 3 decimals
P10 = 0.128.

14. Four different objects, 1, 2, 3, 4, are distributed at random on four places
marked 1, 2, 3, 4. What is the probability that none of the objects occupies the place
corresponding to its number? Ans. 3%.

5. Two urns contain, respectively, 1 black and 2 white balls, and 2 black and
1 white ball. One ball is transferred from the first urn into the second, after which a
ball is drawn from the second urn. What is the probability that it is white?

Ans. % 2.
16. What is the probability of getting 20 points w1th 6 dice?
Ans. 46941 g4 = 0.09047.
17. An urn contains ¢ white and b black balls. Balls are drawn one by one until
only those of the same color are left. What is the probability that they are white?

a
Amns. P b
18. In an urn there are n groups of p objects each. Objects in different groups are
distinguished by some characteristic property. What is the probability that among
ar +as+ -+ - + anobjects (0 S o Sp;¢=1,2, ... n)taken, there are «; of
one group, a» of another, etc.? Ans. Let N\ among the numbers a1, @3, . . . o be
equal to @, u be equal to b, . . . o be equal to I. The required probability is

nt  Cmge ... oo
Nl - - - ol Cggtar - Fean
Problem 8 i§ a particular case of this.
19. There are N tickets numbered 1, 2, . N of which 7 are taken at random and
arra; increasing order of their numbers T <a2< ¢+ <Zp Whatis the

m~—1 Nn—m
fthat om = M? Ans, SEm O
Cm
' N

K




CHAPTER II
THEOREMS OF TOTAL AND COMPOUND PROBABILITY

1. As the problems become more complex the difficulties in enumerat-
ing cases grow and often the computation of probabilities by direct
application of definition becomes very involved. In many cases the

* complications can be avoided by use of two theorems which are funda- ‘

mental in the theory of probability.

Before we can give a clear and exact statement of the first fundamental
theorem, we must define what is meant by “mutually exclusive” or
“incompatible’”’ events. Events are called mutually exclusive or
incompatible if the occurrence of one of them precludes the occurrence
of all the others. For instance, the four events concerning the number
of points on two dice

First Die Second Die
1 4
2 ’ . 3
3 2
4 1

are mutually exclusive because it is evident that as soon as one of them
occurs, none of the others can materialize.

On the contrary, events are compatible if it is possible for them to
materialize simultaneously. For instance, the events of 5 points on one
die and 5 points on the other, are compatible, since in tossing two dice
it is possible to get 5 points on each.

To denote the probability of an event A, we shall use the symbol (4).
To denote the probability of A or B (or both) we shall use the symbol
(4 + B). Dealing with several events 4, B, . . . L, the symbol

A+B+ - +1)

will denove the probability of the occurrence of at least one of them.
If A, B;". . . L are mutually exclusive events, this symbol represents
the probability of the occurrence of one of them without specification as
to which one.

2. Now we shall state the first fundamental theorem, called the
““theorem of total probability’ or ““theorem of addition of probabilities,”
in the following way:

Theorem of Total Probability. The probability for one of the mutually

exclusive events A1, Az, . . . A, to materialize, is the sum of the probabilities
27
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of these events. In symbolical noﬁations, it is expressed thus:
A+ st -+ A = (A) + @A) + -+ - + (4.

Proof. Let N be the number of all possible and equally likely cases
out of which m; cases are favorable to the event A, m; cases are favorable
to the event 45, . . . , and finally, m. cases are favorable to the event A4,.
These cases are all different, since events A, 4y, . . . 4, are incompati-
ble. The number of cases favorable to either A; or A, . . . or 4, is
therefore

my+ me+ 0 A+ M
Hence, by definition

| +ma M _ma m
(At Aot - 4, =TT =FtF+

Again, by definition of probability,

M2

my . — (A) - . . =
= (Ax), v (As); N - (4x),

and so finally

I

_as stated.

3. It is important to know that the same theorem, stated in a slightly
different form, is especially useful in applications. An event A can
oceur in several mutually exclusive forms, Ay, As, . . . An, which may
be considered as that many mutually exclusive events. Whenever 4
occurs, one of these events must occur, and conversely. Consequently,
the probability of A is the same as the probability of one (unspecified)
of its mutually exclusive forms. If, for instance, occurrence of 5 points
on two dice is 4, then this event occurs in 4 mutually exclusive forms, as
tabulated above.

From the new point of view, the theorem of total probability can be
stated thus:

Second Form of Theorem of Total Probability. The probability of
an event A 1s the sum of the probabilities of its mutually exclusive forms
Ay, Aoy . . . A oor, using symbols,

(4) = (A1) + (42) + - - - + (42).

Probabilities (41), (42), . . . (4.) are partial probabilities of incom-
patible forms of 4. Since the probability A is their sum, it may be called
a total probability of A. Hence the name of the theorem.
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In the preceding example we saw that 5 points on two dice could be
obtained in 4 mutually exclusive ways. Now the probability of any one
of these ways is 144; hence, by the preceding theorem, the probability
of obtaining 5 points with two dice is

Fv Tt =% =4

. as it should be.

If events Ay Ao ... A, are not only mutually exclusive, but
““exhaustive,” which means that one of them must necessarily take place,
the probability that one of them will happen is a certainty = 1, so that
we must have

(A4) + (A + - - - +(4n) = L

An event which is not certain, may or may not happen; this constitutes
two mutually exclusive cases. It is customary to call nonoccurrence of a
certain event A as the ““event opposite’” to A, and we shall denote it
by the symbol A. Now A and 4 constitute two exhaustive and mutually
exclusive cases. Hence, by the preceding remark

(4) + (4) = 1.
That is, if p is the probability of 4
¢=1-7p

represents the probability that A will not occur.

4. If an event A is considered in connection witn another event B,
“the compound event AB consists in simultaneous occurrence of A and B.
For three events A4, B, C, the compound event ABC consists in simul-
taneous occurrence of A and B and C, and so on for any number of
component events. We shall denote the probability of a compound
event AB . . . L by the symbol

(A4B ... L.

An event A can materialize in two mutually exclusive forms, namely,
as A and B or A and B. Hence, by the theorem of total probability

(4) = (AB) + (4B).
Similarly
(B) = (B4) + (B4),

or, since the symbol (BA) does not depend upon the order of letters,
(B) = (4B) + (4B).
The sum (4) + (B) can be expressed as
(4) + (B) = (AB) + [(4B) + (4B) + (4AB)].
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Again, by the theorem of total probabilities, the sum

(AB) + (4B) + (4B)
represents the probability (4 + B) of the occurrence of at least one of
the events 4 or B. The preceding equation leads to the useful formula
@ (44 B)=(4) + (B) — (4B)

which obviously is a generalization of the theorem of total probability;
for (AB) = 0if A and B are incompatible. Equation (1) can be used to
derive an important inequality. Since (4 + B) = 1, it follows from (1)
that

(4B) z (4) + (B) — L

If B itself is a compound event 4145, this inequality leads to

(44.4,) =z (4) + (4:14,) — 1.
But .
(4149 =z (A1) + (49 — 1,
and so
(AA14,) = (A) + (A1) + (4y) — 2

for three component events. Proceeding in the same manner, we can
establish the following general inequality:

(AAlAz cot An—-l) Z (A) + (Al) -+ (A2) + -+ (An—-l) - (’n e 1)-

Applying this inequality to events A, Ay, ... A, respectively
opposite to 4, 4y, . . . A,—1, we get

(A4 - - - 4‘17»—1) (@A) +UA)+ -+ Aan) — (n— 1),
or, since (4;) = 1 — (4a),
D+ @A)+ -+ A 21— (A4 - - - 4.

Now the compound event AA; ... A, means that neither 4 nor
Ay, . .. nor A, occurs. The event opposite to this is that at least
one of the events 4, Ay, . . . A, occurs. Hence, S

1—(A~-A—l e A-n~1) = (A+A1+ R +An-1),
and we reach the following important inequality:

A+4:14+ - F+4, D= AF+UA)+ - - - "I"(An—-l)'

b. Equation (1) can be extended to the case of more than two events.
Let B mean the occurrence of at least one of the events A; or A,. Then

by (1)' ‘
(A + A+ 45) = (A) + (41 + 45) — (4B)."

N, o
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As to (4; + A,), its expression is given by (1). The compound event
AB means the occurrence of one at least of the events A4; or AA..
Hence, applying equation (1) once more, we find

(AB) = (AA: + A4,) = (A4,) + (44,) — (44.:4,)
and after due substitutions.

(A + 4;+ A9 = (A) + (42) + (4s) — (44)) — (445) — (4:45) +
+ (AA14,).

Proceeding in the same way and using mathematical induction, the
following general formula can be established:

(4+4:+ - +AH>—2<A>—2<AA,>+2<AA Ag) =

%5k

where summations refer to all combinations of subscripts taken from
numbers 0, 1, 2, . . . n — 1, one, two, three, ... . , and n at a time.

6. Let A and B be two events whose probabilities are (4) and (B).
It is understood that the probability (A) is determined: without any
regard to B when nothing is known sboutf the ogcurrence or nonoccur-
rence of B. When it ¢s known that B occurred, A may have a different
probability, which we shall denote by the symbol (4, B) and call ““con-
ditional probability of A, given that B has actually happened.” }

Now we can state the second fundamental theorem, called the
“theorem of compound probability” or “theorem of multiplication of
probabilities,” as follows:

Theorem of Compound Probablhty The probability of szmultaneous
occurrence of A and B is given by the product of the unconditional probability
of the event A by the conditional probability of B, supposing that A actually
occurred. In other words,

| (AB) = (4) - (B, 4).
Proof. Let N denote the total number of equally likely cases among
which m cases are favorable to the event A. The cases favorable to 4

and B are to be found among the m cases favorable to A. Let their
number be mi. Then, by the definition of probability,

-

(AB = W—J

which also can be written thus:

m m1
UB) =5
Now the ratio m/N represents the probability of A. To find the meaning

of the second factor, we observe that, assuming the occurrence of A,
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there are only m equally likely cases left (the remaining N — m cases
becoming impossible) out of which m, are favorable to B. Hence the
ratio my/m represents the conditional probability (B, A) of B supposing
that A has actually happened.

Now since

m m
Kf = (A): ——’I’I_?,} = (Bf A)}

the probability of the compound event AB is expressed by the product
(AB) = (4) - (B, 4).

Since the compound:event AB involves 4 and B symmetrically,
we shall have also

(4B) = (B) - (4, B).

The theorem of compound probability can easily be extended to several
events. For example, let us consider three events, 4, B, C. The occur-
rence of A and B and C is evidently equivalent to the occurrence of the
compound event AB and C. We have, therefore,

(4BC) = (4B) - (C, AB)
by the theorem of compound probability. By the same theorem

(4B) = (4) - (B, 4),
8o that
(ABC) = (4) - (B, 4) - (C, AB).

Obviously this formula can be extended to compound events con-
sisting of more than three components..

In one particular but very important case, the expression for the
compound probability can be simplified; namely, in the case of so-called
‘“independent events.”’” Several events are “independent” by definition
if the probability of any one of them is not affected by supplementary
knowledge concerning the materialization of any number of the remaining
events. For instance, if 4 and B represent white balls drawn from
two different urns, the probability of A is the same whether the color
of the ball drawn from the other urn is known or not. Similarly, granted
that a coin is unbiased, heads at the first throw and heads at the second
throw are independent events. In such theoretical cases the inde-
pendence of events can be reasonably assumed or agreed upon. In other
cases, and especially in practical applications, it is not easy to decide
whether events should be considered as independent or not.

If A and B are independent, the conditional probability (B, 4) is
the same as the probability (B) found without any reference to A ; this
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follows from the definition of independence. Hence, the expression of
compound probability (4B) for two independent events becomes

(4B) = (4) - (B)

so that the probability of a compound event with independent com-
ponents is simply equal to the product of the probabilities of component
events. This rule extends to any number of component events if they
are independent. Let us consider three independent events, 4, B, and C.
The independence of these events implies

(B, 4) = (B); (C, 4B) = (0)
and hence
(ABC) = (4) - (B) - (C)

in accordance with the rule.

To illustrate the theorem of compound probability, let us consider
two simple examples. An urn contains 2 white balls and 3 black ones.
Two balls are drawn, and it is required to find the probability that they

" are both white. Let A be the event consisting in the white color of the
first ball, and B the event consisting in the ‘white color of the second ball.
The probability (4) of extracting a white ball in the first place is

@ =+

To find the conditional probability (B, A) we observe, after drawing one
white ball, that 1 white and 3 black balls remain in the urn. The
probability of drawing a white ball under such circumstances is

(B, 4) =i
Now, by the theorem of compound probability, we shall have
(4B) =31 = 4.
Evidently, in this example we dealt with dependent events.
As an example of independent events, let a coin be tossed any given
number of times; say, n times. What is the probability of having only
heads? The compound event in this example consists of n independent

components; namely, heads at every trial, Now the probability of
heads in any trial is 14, and so the required probability will be 1/2~.

Note: Two events A and B are independent by definition, if
; (4, B) = (4) and (B, 4) = (B).
However, one of these conditions follows from the other. Suppose the condition
(4, B) = (4) .
is fulfilled, so that 4 is independent of B. We have then
' (4B) = (B) - (4).
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On the other hand,
(AB) = (-A) ° (Br A):

whence
(B, 4) = (B),

so that B is independent of 4.
Three events A, B, C are independent if the following four conditions are fulfilled:

(4,B) =(4); @, 0 =(4); (B C)=(B); (C, 4B) = (C).
From the first three conditions it follows that
(B, 4) =(B); (G, 4) =(C); (C, B) =(0).
To show that the other requirements
(B, AC) = (B); (4, BC) = (4)
are also fulfilled, we notice that
(ABC) = (4) - (B, 4) - (C, AB) = (4) - (B) - (O)
zecaause (C, AB) = (C) by hypothesis and (B, 4) = (B) as proved. On the other
o (ABC) = (4) - (C, 4) - (B, AC)
and (C, 4) = (G). Hence, comparing with the preceding expression,
(B, AC) = (B).
Similarly, it can be shown that
(4, BC) = (4).

The independence of four events 4, B, C, D is assured if the following 11 conditions
are fulfilled:

(4, B) = (4, C) = (4, D) = (4); (B, C) =(B, D) =(B); (C, D)= (C);
(C, 4B) = (C); (D, 4B) = (D, AC) = (D, BC) = (D); (D, ABC) = (D).

And in general, independence of n events is assured if 2» — n — 1 conditions of
similar type are fulfilled.

 If several events are independent, every two of them are independent; but this
does not suffice for the independence of all events, as can be shown by a simple exam-
ple. An urn contains four tickets with numbers 112, 121, 211, 222, and one ticket is
drawn. What are the probabilities that the first, second, or third digits in its number
are 1?  Let a unit such as the first, second, or third digit, be represented, respectively
by 4, B,or C. Then

4) =(B) =) =%=1
Compound probabilities (4.B), (AC), (BC) are
(4B) = (AC) = (BC) =},

since among four tickets there is only one whose number has first and second, or
first and third, or second and third digits of 1.  Now, for instance,

(4B) =t =13%: 1 =(4)-(B),
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whence 4 and B are independent. Similarly, 4 and C; C and B are independent.
Thus, any two of the events A, B, C are independent, but not all three events are.
For, if they were, we should have

(ABC) = &.
But (ABC) = 0 since in no ticket are all three digits equal to 1.

7. The theorems of total and compound probability form the founda-
tion of the theory of probability as it represents a separate branch of
mathematical science. They serve the purpose of finding probabilities
in more complicated cases, either by being directly applied or by enabling
us to form equations from which the required probabilities can be found.
A few selected problems will illustrate the various ways of using these
theorems. \

__#Problem 14. An urn contains a white balls and b black balls; another

“eontains ¢ white and d black balls. One ball is transferred from the first
urn into the second, and then a ball is drawn from the latter. What is
the probability that it will be a white ball?

Solution. The event consisting in the white color of the ball drawn
from the second urn, can materialize under two mutually exclusive forms:
when the transferred ball is a white one, and when it is black. By the
theorem of total probability, we must find the probabilities corresponding
to these two forms. To find the probability of the first form, we observe
that it represents a compound event consisting in the white color of the
transferred ball, combined with the white color of the extracted ball.
The probability that the transferred ball is white is given by the fraction

L
a+b
and the probability that the ball removed from the second urn is white, is
c+1
c+d+1 ‘
because before the drawing there were ¢ + 1 white balls and d black
balls in the second urn. Hence, by the theorem of compound probability,
the probability of the first form is '
alc + 1) )
(@a+dlc+d+1)
In the same way, we find that the probability of the second form is
be ;
(@+blc+d+1) J
and the sum of these two numbers g

ac + bec + a
(a+b)lc+d+1)
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gives the probability of extracting a white ball from the second urn, after
one ball of unknown color has been transferred from the first urn.

8. Problem 15. Two players agree to play under the following
conditions: Taking turns, they draw the balls out of an urn containing
a white balls and b black balls, one ball at a time. He who extracts the
first white one wins the game. What is the probability that the player
who starts will win the game?

oSolution. Let A be the player who draws the first ball, and let B
be the other player. The game can be won by A, first, if he extracts a
white ball at the start; second, if A and B alternately extract 2 black
balls and then A draws a white one; third, if A and B alternately extract
4 black balls and the fifth ball drawn by A is white; and so on. By the
theorem of total probability, the probability for A to win the game,
is the sum of the probabilities of the mutually exclusive ways (described
above) in which he can win the game. The probability of extracting a
white ball at first is

a .
a-+b
The probability of extracting 2 black balls and then 1 white ball is found
by direct application of the theorem of compound probabilities. Its
expression is
b(b — 1a ]
(@+bla+b—1@+b—-2)
The probability of extracting 4 black balls and then 1 white ball is given
by

b — 1)(b — 2)(b — 3)a
@FDe+b—Da+b—2@a+b-8)@+b—4

using the same theorem of compound probability. _

In the same way we deal with all the possible and mutually exclusive
ways which would allow 4 to win the game. Then, by adding the above
given expressions of partial probabilities, we obtain the expression for the
required probability in the form of the sum

, b(b — 1)
F= a+b[]+(a+b—1)<a+b-—'2)+
n b — 1)(d =2)(b — 3) __]
w+b~Dw+b—%w+b—$w+b~® '

The law of formation of different terms in this sum is obvious; and
the sum automatically ends as soon as we arrive at a term which is equal
to zero.
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In the same way, we can find that the probability for the player B
to win is expressed by an analogous sum: -

e[ b b — DG — 2) L
Q“a+ia+b—1+m+b~nm+b—mm+b—$ }

But one of the players, A or B, must win the game, and the winning of
the game by A and B are opposite events. Hence,

P+Q=

or, after substituting the above expressions for P and @ and after obvious
simplifications,

b’ - b - 1) . _a+4b
a-+b— (a+b-—1)(a—|—b-2) T a

This is a noteworthy identity, obtained, as we see, by the principles
of the theory of probability. Of course, it can be proved in a direct
way, and it would be a good problem for students to attempt a direct
. proof. There are many cases in which, by means of considerations
belonging to the theory of probability, several identities or inequalities
can be established whose direct proof sometimes involves considerable
difficulty.

9. Problem 16. Each of % urns contains n identical balls numbered
from 1 ton. One ball is drawn from every urn. What is the probability
that m is the greatest number drawn?

Solution. Let us denote by P, the required probability. It is not
apparent how we can find the explicit expression for this probability, but
using the theorems of total and compound probability, we can form
equations which yield the desired expression for P,, without any difficulty,
To this end, let us first find the probability P that the greatest number
drawn does not exceed m. It is obvious that this may happen in m
mutually exclusive ways; namely, when the greatest number drawn is
1,2, 3,and so on up to m. The probabilities of these different hypotheses

1+

being Py, P;, . . . P, their sum gives the following first expression for
P:
¢)) - P=Pi+Pys -+ + P,

~We can find the second expressfbn for P using the theorem of com-
pound probability; namely, the greatest number drawn does not exceed
m if balls drawn from all urns have numbers from 1 to m. The proba-~
bility of drawing a ball with the number 1, 2,3, . . . m from any urn is
m/n. And the probability that this will happen for every urn is a
compound event consisting of % mde&dent events with the same




38 INTRODUCTION TO MATHEMATICAL PROBABILITY [Caar. Il

probability m/n. Therefore, by the theorem of compound probability

And this compared with (1) gives the equation

mF
nk

@ P4 Pt - +Pn=

Substituting m — 1 for m in this equation, we get

— k
Pit Pt oo 4 Py = 22

and it suffices to subtract this from (2) to have the required expression for
P,
I ESUES S
n

10. Problem 17. Two persons, A and B, have respectively n + 1
and n coins, which they toss simultaneously. What is the probability
that A will have more heads than B?

Solution. ILet p, u’ and », »' be numbers of heads and tails thrown
by A and B, respectively, so that u + v =n -+ 1, ' + » = n. The
required probability P is the probability of the inequality u > p’. The
probability 1 — P of the opposite event p = u’ is at the same time
the probability of the inequality » > »; that is, 1 — P is the probability
that A will throw more tails than B. By reason of symmetry 1 — P = P,
P =14
& 11. Problem 18. Three players 4, B, and C agree to play a series of
games observing the following rules: two players participate in each game,

while the third is idle, and the game is to be won by one of them. The

loser in each game quits, and his place in the next game is taken by the
rlayer who was idle. The player who succeeds in winning over both
of his opponents without interruption, wins the whole series of games.
Supposing that the probability for each player to win a single game is
14 and that the first game is played by A and B, find the probability for
A, B, and C, respectively, to win the whole series, if (a) the number of
games to be played is limited and msy not exceed a given number »;
if (b) the number of games is unlimited.

Solution. Let P,, Q., R, be the probabilities for 4, B, and C, respec-
tively, to win a series of games when their number cannot exceed n. By
reason of symmetry, P, = @, so that it remains to find P, and R,.
The player A can win the whole series of games in two mutually exclusive

R
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ways: if he wins the first game, or if he loses the first game. Let the
probability of the first case be p, and that of the second r,. Then

P'n=pn+rn-

A can win the whole series after winning the first game, in two mutually
exclusive ways: (a) if he wins over B and C in succession; (b) if he wins
the first game from B and loses the second game to C; then, if in the third
game C loses to B, and in the fourth game A wins over B and later wins
the whole series of not more than n — 3 games. Now, the probability
of case (a) is 14 -14 = 14 by the theorem of compound probability;
that of case (b) by the same theorem is 1¢p,_s; and the total probability is

M Pn =1+ §Pus

If A loses the first game to B, but wins the whole series, then in the
second game C wins over B while the third game is won by 4, and not
more than n — 2 games are left to play. Hence,

(2) Tn = i‘pn——ﬂ-

Since evidently ps = ps = ps = 14, equation (1) by successive
substitutions yields :

1 1,1 1
P3k=z<1+§+82+ +8’°_'1>
*
1 1,1 1
D3kt Z(l +-8~+8Z+ . +8’““>
1 1,1 1
p3k+2=1(1+§+§+ T +§>

or, in condensed form for an arbitrary n
ot
pi =31 -8 LT,

denoting by [«] the greatest integer contained in z. Hence, by virtue of
(2) the general expression of 7, will be

n—1
7o = 14(1 — 8—[—3—])
and that of P,, Qn,
et et
P.= . =7 — 8 [ 3 ]“114“8 [ 8 ]
Finally, to find the probability for C' to win, we observe that this can

. happen only if € wins the second game; hence,

Ry = Pn1 = % — 748~[%]-
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Since P, + Q. + R. < 1, the difference

n+1 n n—1
1-P,—Q.—R.= —14.;8”[’3“] + 14;8’[53 + %;8"[7]
represents the probability of a tie in » games. This probability decreases
rapidly when n increases, so that in a long series of games a tie is prac-
tically impossible. If the number of games is not limited, the proba-
bilities P, @, R for A, B, C, respectively, to win are obtained as limits of

P., Q., R,, when n increases indefinitely. Thus

P=Q =+, R = 4

Problems for Solution

1. Three urns contain respectively 1 white and 2 black balls; 3 white and 1 black
ball; 2 white and 3 black balls. One ball is taken from each urn. What is the proba-

bility that among the balls drawn there are 2 white and 1 black? Ans. 234,.
2. Cards are drawn one by one from a full deck. What is the probability that
10 cards will precede the first ace? Ans. 1644, 65 = 0.03938.

8. Urn 1 contains 10 white and 3 black balls; urn 2 contains 3 white and 5 black
balls. Two balls are transferred from No. 1 and placed in No. 2 and then one ball is
taken from the latter. What is the probability that it is a white ball? Ans. 5% 3.

4. Two urns identical in appearance contain respectively 3 white and 2 black balls;
2 white and 5 black balls. One urn is selected and a ball taken from it. What is the
probability that this ball is white? Ans. 334,.

b. What is the probability that 5 tickets drawn in the French lottery all have one-
dlgit numbers? Amns. %441626 = 29.1077.

6. What is the probability that each of the four players in a bridge game will get a

. ... 4
complete suit of cards? Ans. 24(—IIH— = 4.474.10%8,

7. What is the probability that at least one of the players in a bridge game will
get a complete suit of cards?

Ans 16 -13!-39! — 72 - (131)2-26! + 72 - (181)*

521 = 2.52 1071,

See Sec. 5, page 31.
8. From an urn with a white and b black balls # balls are taken. Find the prob-
ability of drawing at least one white ball. Ans. The required probability can be

expressed in two ways. First expression:
1— bo—1) - - (b —n-+1) .
@+d@+bdb—-1)---@+b—n+1)
Second expression:

a L Bb—1) - -- (b—n+2) .
a+il+a+b—1+ '*w+b—nm+b—mo~-w+b—n+n]

Equating them, we have an identity

b .. B —1) - - - (b—n+2) _
R T et -Detb-2 - @ib-ntD
‘ _a+df B —1) - b —n+1) ]
a | @+bd@+b-1---@t+b-n+1)
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9. Three players A, B, C in turn draw balls from an urn with 10 white and 10 black
balls, taking one ball at a time. He who extracts the first white ball wins the game.
Supposing that they start in the order A, B, C, find the probabilities for each of them
to win the game. Ans. For A, 0.56584; for B, 0.29144; for C, 0.14271.

10. If n dice are thrown at a time, what is the probability of having each of the
points 1, 2, . . . 6, appear at least once? Find the numerical value of this prob-
ability for n = 10. Ans.

pr =1 = 6" + 151" — 20(D)* + 153)" — 6 (D)
P10 = 0.2718.

Hint: Use the formula in Sec. 5, page 31.

11. In alottery m tickets are drawn at a time out of the total number of = tickets,
and returned before the next drawing is made. What is the probability that in &
drawings each of the numbers 1, 2, . . . n will appear at least once? Ans.

" '_r_zn—m"_{_n(n—-l)n—-mkn—m—lk .

B = 1 n 1-2 n n —1
12. We have & varieties of objects, each variety consisting of the same number of
objects. These objects are drawn one at a time and replaced before the next drawing.

Find the probability that » and no less drawings will be required to produce objects of
all varieties. Amns.

kE—1 (k =1k —2)

krlp, = (b — 1)1 — -_ 2)n—1 —_ 31 = . ..
Pn = ( ) b —2rm + 1.3 (k—3)

13. Three urns contain respectively 1 white, 2 black balls; 2 white, 1 black balls;
2 white, 2 black balls. One ball is transferred from the first urn into the second; then
one from the latter is transferred into the third; finally, one ball is drawn from the
third urn. What is the probability of its being white? Ans. 3%q.

14, Each of » urns contains a white and b black balls. One ball is transferred
from the first urn into the second, then one ball from the latter into the third, and so
on. Finally, one ball is taken from the last urn. What is the probability of its being
white? Ans. Denote by p; the probability of drawing a white ball from the kth urn.

Then

a+1 a
P = i o TP
fork=1,2,...n —1 Hence,
—_— a .
2:’"_a—}-b

16. Two players A and B toss two dice, A starting the game. The game is won
by A if he casts 6 points before B casts 7 points; and it is won by B if he casts 7 points
before A casts 6 points. What are the probabilities for A and B to win the game if
" they agree to cast dice not more than n times? What is the probability of a tie?
Ans. Probability for A:

Pn o= 391 — 3™ f  n=2m
Pe=301 —HH™ H  n=2m+ 1L

Probability for B:

gn = §i1 —

5™ if n=2m
gn = 1 — G

¢
(3% it n=2m+1L
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Probability of a tie:
ran=(3§5)m i n=2m; e = 3@ i n=2m+1L
If n increases indefinitely, r. converges to 0 and pa, ¢ converge to the limits
p={y  a=1ih ‘
which may be considered as the probabilities for 4 and B to win if the number of
throws is unlimited.

16. The game known as “craps’ is played with two dice, and the caster wins
unconditionally if he produces 7 or 11 points (which are called ‘‘naturals”); he loses
the game in case of 2, 3, or 12 points (called “craps’). But if he produces 4, 5, 6, 8, 9,
or 10 points, he has the right to cast the dice steadily until he throws the same num-
ber of points he had before or until he throws a 7. If he rolls 7 before obtaining his
point, he loses the game; otherwise, he wins. What is the probability to win?

Ans. 245295 = 0.493.

17. Prove directly the identity in Prob. 15, page 37.

Solution 1. Let

b b —1) b —1)(b—2)
<p<c’b)—c+c(c—l) c(c—l)(c—2)+...
where b is a positive integer and ¢ > b. Then
oo, ) = 1+ ple =15 = 1]
whence
1 3
q’(cr 1) = 27 (0(0) 2) = Z—:__'ir ‘P(C, 3) = ;’::—2
and in general
b
=y
Takingc =a + b — 1, we have
1+el@+b—1,0) =“1'b-
Solution 2. The polynomial
S) =1 _l_?x_;_Mﬁz_l_ e
c clc — 1)

can be presented in the form of a definite integral

8@ = @ +1) [0~ &t — 2P - gdg
whence

c+1 __a-l—b
c—-b+1 a

. 1
S =+ 1>ﬁ (1 —pebdg =

ife=a-+b—1.
18. Find the approximate expressions for the probabilities P and @ in Prob. 15,
page 36, when b is a large number. Take for numerical application a = b = 50,
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Solution. Since P 4 @ = 1, it suffices to seek the approximate expression for
P - Q. Now

P-Q=af’a—20 - yeae

1 a—1
P-Q= gj; - u)”(l - ;-‘) du + 2(:0?-
atb

To find the approximate expression of this integral, we set

a-— u)b(l - §)~ = e,

whence u can be expressed as a power series in »:

_ 2 _fte-1 14 @ta-12
24+a—1  (2+a—1)° 3(26 +a — 1)8

whence

u

Substituting the resulting expression of du/dv and integrating.with respect to v
between limits 0 and «, we obtain for P — @ an asymptotic expansion whose first
terms are

P [ 4 +a—1 ] al125® + (2 +a = DY | (=1

P — = —
: =3 +a~—1 (26 +a — 1)° @b +a — 1)8 2002,

A more detailed discussion reveals that the error of this approximate formula is less

than a(24)*1(34)*! and greater than _a[40(a — 1) — 6b(a — 1) + 3207

T provided

b =12, Fora = b = 50 the formula yields
P — Q@ = 0.3318; P = 0.6659; Q = 0.3341.
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CHAPTER III

REPEATED TRIALS

1. In the theory of probability the word ‘‘trial”’ means an attempt to
produce, in a manner precisely described, an event E which is not certain.
The outcome of a trial is called a “success” if E occurs, and a “failure’ if
E fails to occur. For instance, if E represents the drawing of two cards
of the same denomination from a full pack of cards, the ‘“trial” consists
in taking any two cards from the full pack, and we have a success or
failure in this trial according to whether both cards are of the same
denomination or not. .

If trials can be repeated, they form a ‘“‘series’” of trials. Regarding
series of trials, the following two problems naturally arise:

a. What is the probability of a given number of successes in a given
series of trials? And as a generalization of this problem:

b. What is the probability that the number of successes will be
contained between two given limits in a given series of trials?

Problems of this kind are among the most important in the theory of
probability.

2. Trials are said to be “independent” in regard to an event E if
the probability of this event in any trial remains the same, whether
the results of any number of other trials are known or not. On the other
hand, trials are ‘“dependent’ if the probability of E in a certain trial
varies according to the information we have about the outcome of one or
more of the other trials. .

As an example of independent trials, imagine that several times in
succession we draw one ball from an urn containing white and black balls
in given proportion, after each trial returning the ball that has been
drawn, and thoroughly mixing the balls before proceeding to the next
trial. With respect to the color of the balls taken, we may reasonably
assume that these trials are independent. On the other hand, if the
balls already extracted are not returned to the urn, the above described
trials are no longer independent. To illustrate, suppose that the urn
from which the balls are drawn, originally contained 2 white and 3 black
balls, and that 4 balls are drawn. What is the probability that the
third ball is white? If nothing is known about the color of the three
other balls, the probability is 24. If we know that the first ball is white,

but the colors of the second and fourth balls are unknown, this proba-

bility is 24. In general, the probability for any ball to be white (or black)
a4 ‘

Ly
Ak
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depends essentially on the amount of information we possess about the
color of the other balls. Since the urn contains a limited number of
balls, series of trials of this kind cannot be continued indefinitely.

As an example of an indefinite series of dependent trials, suppose that
we have two urns, the first containing 1 white and 2 black balls, and the
second, 1 black and 2 white balls, and the trials consist in taking one
ball at a time from either urn, observing the following rules: (a) the
first ball is taken from the first urn; (b) after a white ball, the next is
taken from the first urn; after a black one, the next is taken from the
second urn; (c) balls are returned to the same urns from which they were
taken.

Following these rules, we evidently have a definite series of trials,
which can be extended indefinitely, and these trials are dependent.
For if we know that a certain ball was white or black, the probability
of the next ball being white is 14 or 24, respectively.

Assuming the independence of trials, the probability of an event E
may remain constant or may vary from one trial to another. If an
unbiased coin is tossed several times, we have a series of independent
trials each with the same probability, 14, for heads. It is easy to give
an example of a series of independent trials with variable probability for
the same event. Imagine, for instance, that we have an unlimited
number of urns with white and black balls, but that the proportion of
white and black balls varies from urn to urn. One ball is drawn suc-
cessively from each of these urns. Evidently, here we have a series of
trials independent in regard to the white color of the ball drawn, but
with the probability of drawing a ball of this color varying from trial to
trial. _

In this chapter we shall discuss the simplest case of series of inde-
pendent trials with constant probability. They are often called ““Ber-
noullian series of trials” in honor of Jacob Bernoulli who, in his classical
book, “Ars conjectandi” (1713) made a profound study of such series
and was led to the discovery of one of the most important theorems in

the theory of probability.
) 3. Considering a series of # independent trials in which the probability
of an event E is p in every trial (that of the opposite event F being
g = 1 — p), the first problem which presents itself is to find the proba-
bility that E will occur exactly m times, where m is one of the numbers
0,1,2, ... n Inwhat follows, we shall denote this probability by 7.
In the extreme cases m = n and m = 0 it is easy to find T, and T,.
When m = n, the event E must occur n times in succession, so that 7',
represents the probability of the compound event EEE . . . E with n
identical components. These components are independent events, since
the trials are independent, and the probability of each of them is p.
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Hence, the compound probability is

Tw=p-p-p- - - p(ntimes)
or
T, = p™

The symbol T, denotes the probability that E will never occur in »
trials, which is the same as to say that F will occur n times in succession.
Hence, for the same reasons as before,

To=q¢ =1 — :z;}/
When m is neither 0 nor n, the event ednsisting in m occurrences of E
can materialize in several mutually exclusive forms, each of which may
be represented by a definite succgsémn of m letters £ and n — mletters F.
For example, if n = 4 and m 1~ 2 we can distinguish the following mutu-
ally exclusive forms cor}spondmg to two occurrences of E:

EEFF, EFEF, EFFE, FEEF, FEFE, FFEE.

To find the number of all the different successions consisting of m
letters nd n — m letters F, we observe that any such succession is
M as soon as we know the places occupied by the letter E.
ow the number of ways to select m places out of the total number of

n places is evidently the number of combinations out of n objects taken

m at a time. Hence, the number of mutually exclusive ways to have
m successes in n trials is

nn—1) - (n—m+1)

= 1-2-3..-m

The probability of each succession of m letters E and n — m letters F,
by reason of independence of trials, is represented by the product of
m factors p and n — m factors ¢, and since the product does not depend
upon the order of factors, this probability will be

Z‘)mqn—-m
for each succession. Hence, the total probability of 7 successes in n
trials is given by this simple formula:

nin — 1) - -(n—m—l—l)
1-2:3 «+«-m

which can also be presented thus:

(€)) Tw=

Mqﬂ—m

n!

)] Tw = mp

an-—m.
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This second form can be used even for m = 0 or m = n if, as usual,
we assume 0! = 1. Either of the expressions-(1). or (2) shows that T
may be considered as the coefficient of ¢ in the expansion of

(g + pt)"

according to ascending powers of an arbitrary variable {. In other
words, we have identically

(q + pt)" = To + T]_t + T2t2 + et + Tnt”.
For thi_s reason the function
(¢ + pt)

is called the ‘“generating function’ of probabilities T, T, T, . . . Ta.
By setting { = 1 we naturally obtain

To+Ti+Te4 - +Th=1
@ The probability P(k, [) that the number of successes m will satisfy
the inequalities (or, simply, the probability of these inequalities)
k=mz=1l

where k and [ are two given integers, can easily be found by distinguishing
the following mutually exclusive events:

o

m =k or m=k+1, ... or m =1
Accordingly, by the theorem of total probability,
Ph,) =Tp+ Tora+ - - - + T
or, using expression (2),
.

n! o
PO D = X =y

m=k

In particular, the probability that the number of successes will not,
be greater than [ is represented by the sum
(n

PO, 1) =q¢ + @ipgn—l + Lf;il—)p?qn~2 oo+

-1 - (n—1+1
+n(n 1,2 ; (nl a )P’q"“‘.

Similarly, the probability that the number of successes in n trials will

not be less than [ can be presented thus:
]
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P(l,n)=n(n )1_2 (nl_l+1)pq""l[1+l+lq+

(n—-l)(n—l——l)(__>2 ]
T aFoeFy \o T
where the series in the brackets ends by itself. '

5. The application of the above established formulas to numerical

examples does not present any difficulty so long as the numbers with
which we have to deal are not large.

Example 1. In tossing 10 coins, what is the probability of having exactly 5 heads?
Tossing 10 different coins at once is the same thing as tossing one coin 10 times, if all
the coins are unbiased, which is assumed. Hence, the required probability is given
by formula (1), where we must take n = 10, m =5, p = ¢ = 14 and it is

10-9-8-7-6 1 252
— = 22 0.246
1.2.3.4.5 20 lozs _ O-2400%

vExample 2. If a person playing a certain game can win $1 with the probability
14, and lose twenty-five cents with the probability 24, what is the probability of win-
ning at least $3 in 20 games? Let m be the number of times the game is won. The
total gain (considering a loss as a negative gain) will be

m — (20 — m) = §m — 5 dollars
and the condition of the problem requires that it should not be less than $3. Hence
fm —5 23,

whence m = 624 or, since m is an integer, m = 7. That is, in 20 trials an event with
the probablhty 14 must happen at least 7 times and the probability for that is:

20

20! 1 m g 20—-m
Em!(ZO — m)I\3 3
m=T

This sum contains 14 terms; but it can be expressed through another sum containing -
only 7 terms, because ’

20 6
E 20! 2\ _, 2 20! L\"(2\*™
ml(20 — m)I\3/ \3 T adm!(20 —m)I\3/ \3
m=T m=0
Using the last expression, one easily gets 0.5207 for the required probability.
6. In the series of probabilities
Tﬁ, Tl, Tz, PN T,,,

for 0, 1, 2, . . . n successes in n trials, the terms generally increase till
the greatest term 7, is reached, and then they steadily decrease. For
instance, if n = 10, p = ¢ = 14 the values of the expression

210Tm N
form =0,1,2, ... 10 are
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1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
so that Tsis the greatest term. For obvious reasons the number u (to
which the greatest term T, in the series of probabilities To, T4, . . . Ta
corresponds) is called the ‘““most probable’” number of successes.

To prove this observation in general, and to find the rule for obtaining
u, we observe first that the quotient

Tm+1 n —m
Tw \m+1
decreases with increasing m, so that

Tl T2 T3 .. Tn
(a) 7,;‘>-T—l>ﬁ> >Tn--1

The two extreme terms in (a) are

T, _np T. _p

= =

. aiewd

T, q Th ngq

and if n is large enough, the first of them is > 1 and the last < 1. To
find exactly how large n must be, we notice that

T,
—170 >1
if .
np>qg=1-=p
whence
1
n+1> ?
Similarly,
T,
Ta <1
if
p < ng or 1—-g<ng
whence

1
1>-=
n -+ p

Consequently, if n + 1 is greater than both 1/p and 1/g, the first term
in (a) is >1 and the last term is <1. As the terms of (a) form a decreas-
ing sequence, there must be a last term which is =1. Let it be

T,
Tua

Then
T, _ T,
T, T,

>...>



‘
]

50 INTRODUCTION 70 MATHEMATICAL PROBABILITY ([Cmar. III

and
T;H-l Tn+2 N Tn
1> T,. > _—Tu-f-l > > T,
or, which is the same,
T0<T1<T2<"'<T,,._1_S__Ty
T,,, > T“+1 > T“+2 > o >Tn‘

In other words, the sequence of probabilities increases till the greatest
term T, is reached and steadily decreases from then on. Besides T,
there may be another greatest term T,_i; namely, when T,_; = T,;
but all the other terms are certainly less than T,. The number u is
perfectly determined by the conditions

T, =n—/.¢+1£>1 Tit1

> 1, <1
Ty——-l 123 Q - TM

T
+i
RS
Q3

which are equivalent to the two inequalities

(m+DVpzulp+q9, np—qg<up+9.
These in turn can be presented thus:
pEr+Dp<p+1
and show that u is uniquely determined as the greatest integer contained in
(n+ p. If (n 4+ Dpisaninteger, then p = (n + V)p and Ty = Tps.
That is, there are two greatest terms if, and only if, (n + 1)p is an

integer.
Let us consider now what happens if

n—l—lé% or n+1=

Q|

In the first case, all the terms in (o) are less than 1 with the single excep-
tion of the first term T/T, which may be equal to 1; namely, when

n+1= % Consequently,

TozT:>Te> - >T,

so that T, is the greatest term. If (n 4+ 1)p < 1 the greatest integer
contained in (n + 1)p is 0, and there is only one greatest term T, If,
however, (n + 1)p =1, there are two terms To = T greater than
others.

If (n + D¢ = 1, all the terms in series (a) are >1 with the exception
of the last term, whlch may be equal to 1; namely, when (n + 1)¢ = 1.
Hence,

To<Ti < -+ - <Tp 1 &Ts

e o o TR
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so that T’ is the greatest term, and the preceding term T',_; can be equal
toit only if (n + 1)g¢ = 1. Now the condition

n+g=1
is equivalent to
(n+1p = n

On the other hand, because p < 1,
(n+ Dp <n-+ 1.

Therefore 7 is the greatest integer contained in (n + 1)p.

Comparing the results obtained in the last two cases (excluded at
first) with the general rule, we see that in all cases the greatest term
T, corresponds to

= [(n + Dpl.

If (n + 1)p is an integer, then there are two greatest terms 7', and T,_;.
This rule for determining the most probable number of successes is very
simple and easy of application to numerical examples.

Example 1. Letn = 20,p = 24,¢ = 34. Then (n 4+ 1)p = 8.4, and the greatest
integer contained in this number is » = 8. Hence, there is only one most probable
number of successes p = 8 with the corresponding probability

20! (2\°(3\"
=—(Z)(2) =o.u797.
Ts 8!12!<5> (5) 0.1797

Example 2. Let n =110, p = ¥, ¢ = 24, and (n + 1)p = 87, an integer.
Consequently, 36 and 37 are the most probable numbers of successes with the corre-
sponding probability

110! [1)*7/2\"
Tes = Ty = m(g) (§> = (,0801.

7. When n, m, and n — m are large numbers, the evaluation of
probability T by the exact formula
n!

T = ml(n — m) P

mqn—m

becomes impracticable and it is necessary to resort to approximations.
For approximate evaluation of Iarge factorials we possess precious means
in the famous “Stirling formula.” Referring the reader to Appendix I
where this formula is estabhshed we shall use it here in the following

form:
log x' = log\/2xz + x log  — z + w(x)
where
1

1
< w(x) < m‘
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In the same appendix the following double inequality is proved:

1 1 1 1 1
n " Tom 13 < e —elm) —ol) <o~ e e T
1

T 12T F6

Now from Stirling’s formula

n! = /2rn nre—nte®

and two similar expressions for m! and (n — m)! follow. Substituting
them into 7., we get two limits

® Io> W=l 2) (72)

where
1 1 1
k = ¢l2nt6 12mT6 12(n—m)+6

1 1 1

Z= 61211, 12m 12(n—m).

When n, m, n — m are even moderately large k and [ differ little from
each other.

Inequalities (3) and (4) then give very close upper and lower limits
for Tn. To evaluate powers

'7[,_-p m nq n—m
\m/) '\n—m

with large exponents, sufficiently extensive logarithmic tables must be
available. If such tables are lacking, then in cases which ordinarily
occur when ratios mp/m and ng/(n — m) are close to 1, we can use
special short tables to evaluate logarithms of these ratios or else resort to
series.

8. Another problem requiring the probability that the number of
successes will be contained between two given limits is much more
complex in case the number of trials as well as the difference between
given limits is a large number. Ordinarily for approximate evaluation
of probability under such circumstances simple and convenient formulas
are used. These formulas are derived in Chap. VII. Less known is
the ingenious use by Markoff of continued fractions for that purpose.

It suffices to devise a method for approximate evaluation of the
probability that the number of successes will be greater than a given
integer ! which can be supposed >np. We shall denote this probability by
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P(l). A similar notation Q(I) will be used to denote the probability
that the number of failures is >! where again [ > ng. The probability
P(k, 1) of the inequalities k¥ = m =< I can be expressed as follows:

Pk, 1) =1—P1) —Qn — k)
if I > np and k < np;
P, ) =Pk —1) — PQ)
if both &k and I are > np; and finally ,
Pl,)) =Q(n—1—1) —Q(n — k)

if both &k and [ are < np.
For P(I) we have the expression

n!

PO = 5o -

e l—1p
LJWHQ'D+"ﬂ3fg+

(n—1—1Dn—-1-2(p R
R (R TRy w>+ }

The first factor
. !
T D =T ¢

can be approximately evaluated by the method of the preceding section
The whole difﬁculty resides in the evaluation of the sum

1p+(n—1~1)(n—-l—2>/£)2+ .
l+2 C+2)(0+3 \¢
which is a particular case of the hypergeometric series

da+DB@+D) ,
O

n—i—1

F(O‘:@:'Y;x)_l"l' z +
In fact

FC%+%+LLZ+Z—§>=&

Now, owing to this connection between § and hypergeometric series, S
can be represented in the form of a continued fraction. First, it is
easy to establish the following relations:

Flo, B+ 1, v+ 1,2) =F(a, B8, v,2) +

+x§7+%ma+1ﬁ+Ly+zﬂ
F(°‘+17677+17x)=F(arﬁy77$)+
4o = p 1 b1,y + 2 0

vy + 1)
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Substituting « +n, 8 +n, y + 2nanda+n, 8+ n+ 1, v+ 2n+ 1,
respectively, for «, 8, v in these relations and setting

Xg,,=F(a—l—n,6+n,'y+2n,z);
Xoppr =Fla+n,8+n+1,v+2n+1,2)
_ Bty —etn . (e+n)y—=8+n)
Tl FmGFa -1 T GF2m)@ +2n+ 1)

for brevity, we have

a

Xo = .X1 - CL1$X2
Xl = Xz - ang;;

Xm—-l = Xm - amme-}-l

whence
X, _ 1
X 1 211-_96 _a
1 - A m—10
i
Xm -
Xm+1

In our particular case
Xi=F(—n+1+1,1,1+2 2), Xo=1

and Aon—2]—1 = 0.
P

Hence, taking z = 4 and introducing new notations, we have a
finite continued fraction
@) §=—pt
1-2 4
14 &
1 + ' L Cr—i—1
dn—l—l

14 —q
where
® q=n—k=-UC+kp g k(n + k)p

“U+2k— 10+ 2k)g TUF A+ 2k F Dg
Every one of the numbers ¢; will be positive and <1 if this is true for
¢ Now

(n—=1-Dp
T R

if 1 > np, and that is exactly what we suppose. The above continued

C1 =
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fraction can be used to obtain approximate values of S in excess or in
defect, as we please. Let us denote the continued fraction

T+%_f’fﬂ
1+ -
by wr. Then
0 < ar < o,

which can be easily verified. Furthermore,

S = — ; Wy = — dy Wy = o ds
1—w 1—}—1__0)2 1+1__w3
_ and in general \
W = Ef + dk .
1 - Wr41

Having selected k, depending on the degree of approximation we
desire in the final result (but never too large; k¥ = 5 or less generally
suffices). we use the inequality

0 < wpp1 < Cpp1

to obtain two limits in defect and in excess for wz.  Using these limits, we
obtain similar limits for wi_1, wi_s, wi—s, . . . and, finally, for w; and S.

The series of operations will be better illustrated by an example.

9. Let us find approximately the probability that in 9,000 trials an
event with the probability p = 14 will occur not more than 3,090 times
and not less than 2,910 times. To this end we must first seek the
probability of more than 3,090 occurrences, which involves, in the first
place, the evaluation of

9000! 1 3091 2 5909
T = 5551150091 <§> <§) '

By using inequalities (3) and (4) of Sec. 7, we find
0.011286 < Tae1 < 0.011287.

Next we turn to the continued fraction to evaluate the sum S. The
following table gives approximate valuesof ¢i, ¢, . . . coanddy, ds . . . ds
to 5 decimals and less than the exact numbers
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Cn dn

3

0.95553 0.00047
0.95444 0.00094
0.95335 0.00140
0.95227 0.00187
0.95119 0.00234
0.95010

O O W N

We start with the inequalities
0 < ws < 0.95011

and then proceed as follows:

1.0023¢ < 1+ 5 g 5 < LO4711;  0.90839 < ws < 0.94808

102041 < 14 5 4 - < 1.03685; “ 0.91842 < w < 0.93324

101716 < 1+ 5 ds — < 102113;  0.93362 < s < 0.93728

101416 < 1+ 7 & = < LOL5I4;  0.94020 < w, < 0.94113

100785 <1+ g flwz < 1.00816;  0.94779 < w; < 0.94810
oosmm <5 < G50

0.02161 < ST < 0.02175.
Hence, we know for certain that '
0.02161 < P(3,090) < 0.02175.
By a similar calculation it was found that
0.02129 < Q(6,090) < 0.02142,
so that
0.04290 < P(3,090) + Q(6,090) < 0.04317.

The required probability P that the number of successes will be contained -
between 2,910 and 3,090 (limits included) lies between 0.95683 and
0.95710 so that, taking P = 0.9570, the error in absolute value will be
less than 1.7 X 10~

Problems for Solution

1. What is the probability of having 12 three times in 100 tosses of 2 dice?
Ans. O3, (5)3(35)% = 0.2257.
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2. What is the probability for an event E to occur at least once, or twice, or three
times, in a series of n independent trials with the probability p? Ans.
@ 1-0-p% @O1—-00-=p) L + @ — L)pl;
© 1-a- pw[l + -2+ @__112@_&,,]

3. What is the probability of having 12 points with 2 dice at least three times in
100 throws? Ans. 0.528.

4. In a series of 100 independent trials with the probability 14, what is the most
probable number of successes and its probability ? Ans. p = 33; T3 = 0.0844.

Nore: Log 100! = 157.97000; Log 67! = 94.56195; Log 33! = 36.93869.

5. A player wins $1 if he throws heads two times in succession; otherwise he loses
25 cents. If this game is repeated 100 times, what is the probability that neither his
gain nor loss will exceed $1? Or $5? Ans.

100! [1\*°(3\*
(a) 20'—'86"<2> <Z) = 0.0493,

100! [1)*(3\* 8 80-79 80-79-78 80-79-78-77
®) 20!80!(4) (&) 1+ 53153766 T63-66-60 63.66-60-72

+§2 +60-57 60-57-54 60-57-54-51
81 81-82 81-82-83  81-82-83-84
Nore: Log 20! = 18.38612; Log 80! = 118.85473.
. Show that in a series of 2s trials with the probability 4 the most probable num-
ber of successes is s and the corresponding probability

] = 0.4506.

p o185 2s — 1)
T 2.4-6-. .2
Show also that
1
Ty < ——xe.
V32 +1
HinT:
2-4:-6 -2
S (2s + 1)

7. Prove the following theorem: If P and P’ are probabilities of the most probable
number of successes, respectively, in n and n + 1 trials, then P’ = P, the equality
sign being excluded unless (n + 1)p is an integer.

8. Show that the probability T'u corresponding to the most probable number of
successes in # trials, is asymptotic to (2rnpg)~%, that is,

lim Tun/2mnpg =1 as n— «.
9. When p = ¥4, the following inequality holds for every ms:

' 2 et
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10. What is the probability of 215 successes in 1,000 trials if p = 14?

Ans. 0.0154.
11 What is the probability that in 2,000 trials the number of successes will be
contgined between 460 and 540 (limits included) if p = 14. Ans. 0.964.

2 Two players A and B agree to play until one of them wins a certain number of
games, the probabilities for 4 and B to win a single game being » and ¢ =1 — p.
However, they are forced to quit when 4 has a games still to win, and B has b games.
How should they divide their total stake to be fair?

This problem is known as ‘“probléme de parties,” one of the first problems on
probability discussed and solved by Fermat and Pascal in their correspondence.

Solution 1. Let P denote the probability that A will win a remaining games before
B can win b games, and let @ = 1 — P denote the probability for B to win b games
before 4 wins a games. To be fair, the players must divide their common stake M in
the ratio P:Q and leave the sum MP to A and the sum MQ to B.

To find P, notice that 4 wins in the following mutually exclusive ways:

a. If he wins in exactly a games; probability pe.

b. If he wins in exactly @ + 1 games; probability g10‘”(].

(+1)
1-

n. If he wins in exactly @ + b — 1 games; probability
al@a+1) - --(a+d—2)

c. If he wins in exactly ¢ + 2 games; probability —————p2g?2.

123 -06-1 P&
Consequently
- a a.(a,-l—l)2 al@+1) - - - (a+b-2)
P’p[1+1q+ 12 ©F T e-n ¢ l]

and similarly

b(b+1) bo+1) - - (b+a—2)
Q= qb[l"' terg Pt 1-2---(@-1) © ]

Show directly that P 4+ Q =

HiNT: — + EQ =0.

Solutwn 2 The same problem can be solved in a different way. Whether 4 or B
wins will be decided in not more than a 4 b — 1 games. Now if the players continue
to play until the number of games reaches the limit ¢ 4+ & — 1, the number of games
won by 4 must be not less than a. And conversely, if this number is not less than a, 4
will win ¢ games before B wins b games. Therefore, P is the probability that in
a + b — 1 games 4 wins not less than a times, or

_@+b =Dt b b -1 -2
P="aw -1 qu—l[1+a+1q+(a+1)(a+2)<> Tt

Gb—-1)0b—-2 ---2-1 (g)”—l].
(@a+1@+2)---(@a+b—1)\q

Show directly that both expressions for P are identical.




REPEATED TRIALS 59

HinT: Proceed as before.
13. Prove the identity

( it L nn—1) - - (n—Fk+1)
<2 PR 1-2.3..+k

j; p:c"""—l(l — z)*dz
j; lx"“"‘l(l — z)kdx

pn—qu ==

-+ p"‘1 +

iNT: Take derivatives with respect to .

14. A and B have, respectively, » + 1 and n coins. If they toss their coins
simultaneously, what is the probability that (¢) A will have more heads than B?
(b) A and B will have an equal number of heads? (¢) B will have more heads than A ?

Solution. a. Let P, be the probability for A to have more heads than B. This
probability can be expressed as the double sum

n+l =n

P = Qa1 2 E CutCh

z=1 a=0

Considering the coefficient of = in
1 n 1 t2n+1
-+ t)"*‘(l + ;) = (——“L-t—)—
we have
n
> CRECT = Cith
a=0

Hence
n+4+1

1
N+ _— —
P 22n+1202":1 = gma T 3

b. The probability @, for A and B to have an equal number of heads is

n
1 Chot 1
Q. = 27»!—12 ConCi = 2nt1 < ,\/;_;;
a=0
c. The probability R. for B to have more heads than 4 is

1 C;Ln+1
Bo=3 = ot
16. If each of n independent trials can result in one of the m incompatible events
Ey, By . . . E, with the respective probabilities )
Py P2y . - o Pm; @rF Pt Fpm=1),
show that the probability to have I; events E\, l: events E,, . . . . events E, where

L+k+:-- +1la=n,isgiven by

n!
Pri, . ..th= h!—lzl‘—‘-‘z—,pilp I
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CHAPTER IV
PROBABILITIES OF HYPOTHESES AND BAYES' THEOREM

1. The nature of the problems with which we deal in this chapter may
be illustrated by the following simple example: Urns 1 and 2 contain,
respectively, 2 white and 3 black balls, and 4 white and 1 black balls.
One of the urns is selected at random and one ball is drawn. It happens
to be white. What is the probability that it came from the first urn?
Before the ball was drawn and its color revealed, the probability that the
first urn would be chosen had been 1/2; but the indication of the color
of the ball that was drawn altered this probability. To find this new
probability, the following artifice can be used:

Imagine that balls from both urns are put together in a third urn.
To distinguish their origin, balls from the first urn are marked with 1
and those from the second urn are marked with 2. Since there are 5
balls marked with 1 and the same number marked with 2, in taking one
ball from the third urn we have equal chances to take one coming from
either the first or the second urn, and the situation is exactly the same
as if we chose one of the urns at random and drew one ball from it.
If the ball drawn from the third urn happens to be white, this can happen
in 244 = 6 equally likely cases. Only in 2 of these cases will the
extracted ball have the mark 1. Hence, the probability that the white
ball came from the first urn is 24 = 14.

The success of this artifice depends on the equality of the number of
balls in both urns. It can be applied to the case of an unequal number
of balls in the urns, but with some modifications; however, it seems
preferable to follow a regular method for solving problems like the
preceding one.

2. The problem just solved is a particular case of the following funda-
mental:

Problem 1. An event 4 can occur only if one of the set of exhaustive
and incompatible events

Bl, Bg, .« e . Bn
occurs. The probabilities of these events
(B, (Ba), . . . (Bx)

corresponding to the total absence of any knowledge as to the occurrence
N 60 -
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or nonoceurrence of A4, are known. Known also, are the conditional
probabilities
(4, By); 1=1,2 ...n

for A to occur, assuming the occurrence of B;. How does the proba-
bility of B; change with the additional information that A has actually
happened?

Solution. The question amounts to finding the conditional proba-
bility (Bi, A). The probability of the compound event AB; can be
presented in two forms

(4B:) = (B:)(4, B))
or .
(AB;) = (A)(By, 4).
Equating the right-hand members, we derive the following expression
for the unknown probability (B, 4):

(B4, By),

B,;, A = T

B 4) =)

Since the event 4 can materialize in the mutually exclusive forms
ABy, AB,, . .. AB,,

by applying the theorem of total probability, we get
(4) = (BY(4, By + (B2)(4, By) + - - - + (Bu)(4, Bu).
It suffices now to introduce this expression into the preceding formula for
(Bi, A) to get the final expression
(B)(4, B) _

(B))(4, By) + (B:)(4, By) + - -+ + (Ba)(4, B.)

\A‘his formula, when described in words, constitutes the so-called
“Bayes’ theorem.” However, it is hardly necessary to describe its
content in words; symbols speak better for themselves. For that
reason, we prefer to speak of Bayes’ formula rather than of Bayes’
theorem. Bayes’ formula is also known as the “formula for probabilities
of hypotheses.” (The reason for that name is that the events By, By, . . .
B, may be considered as hypotheses to account for the occurrence of A.)

It is customary to speak of probabilities

(Bl)y (Bz), D (Bn)
a4s a g@ probabilities of hypotheses
Bl, Bk’__. . Bn,

(D (B 4) =

while probabilities

I

(B,;, A); ) 1, 2, [P (4
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are called a posteriori probabilities of the same hypotheses.
3. A few examples will help us to understand the meaning and ths

use of Bayes’ formula.
Example 1. The contents of urns 1, 2, 8, are as follows:

_ 1 white, 2 black, 3 red balls
2 white, 1 black, 1 red balls
4 white, 5 black, 3 red balls

One urn is chosen at random and two balls drawn. They happen to be white and red.
What is the probability that they came from urn 2 or 37

Solution. The event A represents the fact that two balls taken from the selected
urn were of white and red color, respectively. To account for this fact, we have three
hypotheses: The selected urn was 1 or 2 or 3. We shall represent these hypotheses in
the order indicated by Bi, Bs, Bs. Since nothing distinguishes the urns, the probabili-
ties of these hypotheses before anything was known about A are X

(B1) = (Bs) = (By) = %
The probabilities of 4, assuming these hypotheses, are
(4, B:) =4, (4, B)) =%, (4, By) = 4.

It remains now to introduce these values into formula (1) to have a posteriori prob-
abilities

1.1 55

By, A) = 1 =118
G =ryFiasr e T o
T _30
God) =i a 0

and also, naturally,
(B, 4) =1 — (B3, 4) — (By, 4) = &%

% Example 2. It is known that an urn containing altogether 10 balls was filled in

the following manner: A coin was tossed 10 times, and according as it showed heads
or tails, one white or one black ball was put into the urn. Balls are drawn from this
urn one at a time, 10 times in succession (always being returned before the next draw-
ing) and every one turns out to be white. What is the probability that the urn con-
tains nothing but white balls?

Solution. The event A consists in the fact that in 10 independent trials with a
definite but unknown prebability, only white balls appear. To account for this fact,
we have 10 hypotheses regarding the number of white balls in the urn; namely, that
this number is either 1, or 2, or 8, . . . or 10. The a priori grobability of the hypo-
thesis B; that there are exactly ¢ white balls in the urn, acdording to the manner in.’
which the urn was filled, is the same as the probability of having ¢ heads in 10 throws;
that is,

1001
Bi) = o s
B = o — 1z

Granted the hypothesis B;, the probability of A is

i\ 10
(A, B) = (Tf)) ‘

i=1,2, ... 10
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The problem requires us to find (B, 4). The expression of this probability immedi-
ately results from Bayes’ formula:

1
(Bu, 4) = —7———

3 10
S
10
i=1
The denominator of this fraction is

©14.247.

Hence -
(B, 4) = 0.0702.

This probability, although still small, is much greater than 1{s4, the a priori prob-
ability of having only white balls in the urn.

If, instead of 10 drawings, m drawings have been made and at each drawing white
balls appeared, thé probability (Bi, 4) would be given by

1
(B, 4) = —5
. ’i m
E%G(s)
i=1
The denominator of this formula can be presented thus:
10
. i \"
> Cif’(l - m)
i=0
Now
i\ -5
. 10
(1 I 0) <e
and so
10 10 .
1: m ) ___’Iﬁ _ln_ 10
E%(l - IB) < 0 0= (+e7B)"
i=0 i=0
Hence

(Bu, 4) > (1 + e‘%)_m.

This shows that with increasing m the probability (Bi, A) rapidly approaches 1.
For instance, if m = 100

(Bi, A) > (1 + ¢719)~10 > (1.0000454)~1 > 0.99954.

Thus, after 100 drawings producing only white balls, it is almost certain that the
urn contains nothing but white balls—a conclusion which mere common sense would
dictate.

Example 8. Two urns, 1 and 2, contain respectively 2 white and 1 black ball,
and 1 white and 5 black balls. One ball is transferred from urn 1 to urn 2 and then-
one ball is drawn from the latter. It happens to be white. What is the probability
that the transferred ball was black?
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Solution. Here we have two hypotheses: By, that the transferred ball was black,

. and B,, that it was white. The a priori probabilities of these hypotheses are

The probabilities of drawing a white ball from urn 2, granted that B: or B; is true,
are:
(4, By) =4, (4, By) = %

The probability of B, after a white ball has been drawn from the second urn,
results from Bayes’ formula:

By A) = 3t =1
God =r337375

" 4. Problem 2. Retaining the notations, conditions, and data of
Prob. 1, find the probability of materialization of another event C
granted that 4 has actually occurred. Conditional probabilities

(C,AB); i=12 ...n

are supposed to be known.
Solution. Since the fact of the occurrence of A involves that of one,
and only one, of the events

By B, . . . By,

the event C (granted the occurrence of 4) can materialize in the following
mutually exclusive forms

CBy, CBsy, . . . CB,.
Consequently, the probability (C, A) which we are seeking is given by
(C, A) = (CBy, A) + (CBy, A) + - -+ + (CB,, 4).
Applying the theorem of compound probability, we have
(CB;, A) = (B, A)(C, B:A)
and
(C, 4) = (By, A)(C, AB:1) + (By, 4)(C, ABy) + - - - +

(Ba, A)(C, AB,).
It suffices now to substitute for

(Bi, A)

its expression given by Bayes’ formula, to find the final expression

3, (B)(4, B, 4B)
@) (€, 4) ==t

3! (B)(4, B
1=1



Suc. 41 PROBABILITIES OF HYPOTHESES AND BAYES' THEOREM 65

It may happen that the materialization of hypothesis B; makes C
independent of 4; then we have simply '

(C, AB)) = (C, B)
and instead of formula (2), we have a simplified formula

2, (B4, B)(C, B)
®) (C, 4) = o :

n

> (B)(4, B)
i=1

The event C can be considered in regard to A as a future event. For
that reason formulas (2) and (3) express probabilities of future events.
For better understanding of these commonly used technical terms, we
shall consider a simple example.

®

aExample 4. From an urn containing 3 white and 5 black balls, 4 balls are trans-

ferred into an empty urn. From this urn 2 balls are taken and they both happen to

be white. What is the probability that the third ball taken from the same urn, will
"be white?

Solution. (a)Let us suppose that the two balls drawn in the first place are returned
to the second urn. Analyzing this problem, we distinguish first the following hypoth-
eses concerning colors of the 4 balls transferred from the first urn. Among them, there
are necessarily 2 white balls. Hence, there are only two possible hypotheses:

Bi: 2 white and 2 black balls;
B,: 3 white and 1 black ball.

A priori probabilities of these hypotheses are

* c2-c: 3
B) = =228 - 2.

(B1) o =

¢.cro1

B, = -2 75 _ —.

(B2) Ct 14

The event A consists in the white color of both balls drawn from the second urn
The conditional probabilities (4, B:) and (4, B.) are

(4,B) =% (4, By) =4

The future event C consists in the white color of the third ball. Since the 2 balls
drawn at first are returned, C becomes independent of A as soon as it is known which
one of the hypotheses has materialized. Hence

(C; ABI) = (C: Bl)
(C’ ABZ) = (Cy B2)

[

Bl g

Substituting these various numbers in formula (3), we find that

3 1 1 1 3 3
D A B Sk v 2k At S
CHO=" e e
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(b) If the two balls drawn in the first place are not returned, we have

(C,4B) =0, (G, 4B) = 5
Then, making use of formula (2),
__Te3-% _1
GO = T5 1756

5. The following problem can easily be solved by direct application
of Bayes’ formula.

Problem 3. A series of trials is performed, which, with certain
additional data, would appear as independent trials in regard to an event
E with a constant probability p.

Lacking these data, all we know is that the unknown probability p

must be one of the numbers

p1, P2 - - - Dr
and we can assume these values with the respective probabilities
oy, 02y, o . . O

In n trials the event E actually occurred m times. What is the proba-
bility that p lies between the two given limits e and 8 (0 £ a < 8 = 1),
or else, what is the probability of the following inequalities:

a<p=p?

A particular case may illustrate the meaning of this problem. In a
set of N urns, Ne; urns have white balls in proportion p; to the total
number of balls; Na, urns have white balls in. proportion p2; . . . Nog
urns have white balls in proportion pz. An urn is chosen at randonf and
n drawings of one ball at a time are performed, the ball being returned
each time before the next drawing so as to keep a constant proportion
of white balls. It is found that altogether m white balls have appeared.
What is the probability that one of the Na; urns with the proportion
p; of white balls was chosen? Evidently this is a particular case of the
general problem, and here we possess knowledge of the necessary data,
provided that the probability of selecting any one of the urns is the same.

Solution. We distinguish % exhaustive and mutually exclusive
hypotheses that the unknown probability is pi, or pa, . . . or p. The
a priori probabilities of these hypotheses are, respectively, ai, as, . . . o
Assuming the hypothesis p = p;, the probability of the event E occurring
m times in 7 trials is

Crpr(l — p)r—.
Now, after E has actually happened m times in n trials, the a pos-

teriori probability of the hypothesis p = p;, by virtue of Bayes’ formula,
will be
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Crop?(l — p)»
7
> Cpapi(l — py»m
i=1

or, canceling C7,

aip?(l — p)r—™
%
20!@10’?(1 — p)~
i1

Now, applying the theorem of total probability, the probability P of the
inequalities

IIA
IIA

B8

a=sp
will be given by

Zopp(l — p)
%
> apt(d — p)v

i=1

@ P=

where the summation in the numerator refers to all values of p; lying
between « and B, limits included.

An important particular case arises when the set of hypothetical
probabilities is

1 2
p1=E: p2=-]§:“‘pk=1
and the a priori probabilities of these hypotheses are equal:
= - —a =L
ay = Qg = = 0 = ]\’2

Then the fraction 1/k can be canceled in both numerator and denomina-
tor. The final formula for the probability of the inequalities
a=p=p
will be
Zp2(l — pym—m
(5) P = - p7( P:)

> pr — p)r
=1

summation in numerator being extended over all positive integers
satisfying the inequalities

' ka = ¢ 2 kB
In the limit, when % tends to infinity, the a priori probability of the
inequalities
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is given simply by the length 8 — « of the interval («, 8). The a pos-
teriori probability of the same inequalities is obtained as the limit of
expression (5). Now, as £ — <, the sums

1=kB k

Z‘ m ’i n—ml i m 'L. ﬂ—ml
E(z) (1 - z) 7 ond E(z) (1 - ?) %
i2ka 1=

tend to the definite integrals
f ﬁxm(l — z)vrdy and j; 1ac'"(l — z)r .
Therefore, in the limit, the a posteriori probability of the inequalities

a=p=§B

is expressed by the ratio of two definite integrals

fﬂx"‘(l — )y
P == .
J; z7(1 — )" "dx

This formula leads to the following conclusion: When the unknown
probability p of an event E may have any value between 0 and 1 and the a
priors probability of its being contained between limits o and B is B — «,
then after n trials in which E occurred m times, the a posteriori probability
of p being contarned between a and B is given by formula (6).

6. Problem 4. Assumptions and data being the same as in Prob. 3,
find the probability that in n, trials, following » trials, which produced
E m times, the same event will occur m; times.

Solution. It suffices to take in formula (3)

(B:) = ai; (4, B;) = Cppr(l — pa)m™

(6)

and
(C, Bz) = Crllp:m(l — pi>"1_m1

to find for the required probability this expression:
k

Zaipim-i-m;(l — pi)n-l-n:—m—-ml

my =1
) Q=Cy &
S, cipp(l — p)rm
C =1
Supposing again
1 2
p=7 Pr=7 o =1
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and letting ¥ — « formula (7) in the limit becomes
1:c”“fv"“(l — g)rtm—memdy

j;lxm(l — x)"mdx .

This formula leads to the following conclusion: When the unknoun
probability p of an event E may have any value between lLimits 0 and 1
and the a priori probability of its being contained between o« and B s
B — « (so that equal probabilities correspond to intervals of equal length),
the probability that the event E will happen my ttmes in ni trials following
n trials which produced E m times ts given by formula (8).

In particular, for n; = m; = 1 (evaluating integrals by the known
formula), we have

(8) Q= C;:;l‘l;

m 4+ 1
C=rvz
This is the much disputed “law of succession” established by Laplace.

7. Bayes’ formula, and other conclusions derived from it, are neces-
sary consequences of fundamental concepts and theorems of the theory of
probability. Once we admit these fundamentals, we must admit Bayes’
formula and all that follows from it.

But the question arises: When may the various results established
in this chapter be legitimately applied? In general, they may be applied
whenever all the conditions of their validity are fulfilled; and in some
artificial theoretical problems like those considered in this chapter, they
unquestionably are legitimately applied. But in the case of practical
applications it is not easy to make sure that all the conditions of validity
are fulfilled, though there are some practical problems in which the use
of Bayes’ formula is perfectly legitimate.! In the history of probability
it has happened that even the most illustrious men, like Laplace and
Poisson, went farther than they were entitled to go and made free use
principally of formulas (6) and (8) in various important practical prob-
lems. Against the indiscriminate use of these formulas sharp objections
have been raised by a number of authors, especially in modern times.

The first objection is of a general nature and hits the very existence
of a priori probabilities. If an urn is given to us and we know only that
it contains white and black balls, it is evident that no means are available
to estimate a priori probabilities of various hypotheses as to the propor-
tion of white balls. Hence, critics say, a priori probabilities do not exist
at all, and it is futile to attempt to apply Bayes’ formula to an urn with
an unknown proportion of balls. At first this objection may appear

! One such problem can be found in an excellent book by Thornton C. Fry, “Prob-
ability and Its Engineering Uses,” New York, 1928.
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very convincing, but its force is somewhat lessened by considering the
peculiar mode of existence of mathematical objects.

Some property of integers, unknown to me, is not present in my
mind, but it is hardly permissible to say that it does not exist; for it does
exist in the minds of those who discover this property and know how to
prove it.

Similarly, our urn might have been filled by some person, or selected
from among urns with known contents. To this person the a priori
probabilities of various proportions of white and black balls might
have been known. To us they are unknown, but this should not prevent
us from attributing to them some potential mode of existence at least as
a sort of belief.

To admit a belief in the existence of certain unknown numbers is
common to all sciences where mathematical analysis is applied to the
world of reality. If we are allowed to introduce the element of belief
into such ““exact’’ sciences as astronomy and physics, it would be only
fair to admit it in practical applications of probability.

The second and very serious objection is directed against the use of
formula (6), and for similar reasons against formula (8). Imagine,
again, that we are provided with an urn containing an enormous number
of white and black balls in completely unknown proportion. Qur aim
is to find the probability that the proportion of white balls to the total
number of balls is contained between two given limits. To that end, we
make a long series of trials as described in Prob. 5 and find that actually
in n trials, white balls appeared m times. The probability we seek would
result from Bayes’ formula, provided numerical values of a priori proba-
bilities, agssumed on belief to be existent, were known. Lacking such
knowledge, an arbitrary assumption is made, namely, that all the a

enormous number of balls in our urn, formula (6) can be used as an
approximate expression of P. It can be shown that, given an arbitrary
positive number ¢, however small, the probability of the inequalities

m m
—n—*"é<p<‘ﬁ'+6

can be made as near to 1 as we please by taking the number of trials
greater than a certain number N(e) depending upon e alone. In other
words, with practical certainty we can expect the proportion of white
balls to the total number of balls in our urn to be contained Wlthln
arbitrarily narrow limits

m
—_ €.
peali

priori probabilities have the same value. Then, on account of the— -
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A conclusion like this would certainly be of the greatest importance.
But it is vitiated by the arbiirary assumption made at the beginning.
The same is true of formula (8) and of Laplace’s “law of succession.”
The objection against using formulas (6) and (8) in circumstances where
we are not entitled to use them appears to us as irrefutable, and the
numerical applications made by Laplace and others cannot inspire much
confidence.

As an example of the extremes to which the illegitimate use of formulas
(6) and (8) may lead, we quote from Laplace:

En faisant, par exemple, remonter la plus ancienne époque de I’histoire &
cing mille ans, ou & 1,826,213 jours, et le Soleil s’étant levé constamment, dans
cet intervalle, & chaque révolution de vingt-quatre heures, ily a 1,826,214 4 parier
contre un qu’il se levera encore demain.

It appears strange that as great a man as Laplace could make such a
statement in earnest. However, under proper conditions, it would
not be so objectionable. If, from the enormous number N 4+ 1 of
urns containing each N black and white balls in all possible proportions,
one urn is taken and 1,826,213 balls are drawn and returned, and they
all turn out to be white, then nobody can deny that there are very nearly
1,826,214 chances against one that the next ball will also be white.

Problems for Solution

1. Three urns of the same appearance have the following proportions of white and
black balls:
Urn 1: 1 white, 2 black balls
Urn 2: 2 white, 1 black ball
Urn 3: 2 white, 2 black balls

One of the urns is selected and one ball is drawn. It turns out to be white. What

is the probability that the third urn was chosen? Ans. 14.
2. Under the same conditions, what is the probability of drawing a white ball
again, the first one not having been returned? Ans. 4.

3. An urn containing 5 balls has been filled up by taking 5 balls from another urn,
which originally had 5 white and 5 black balls. A ball is taken from the first urn, and
it happens to be black. What is the probability of drawing a white ball from among
the remaining 47 Ans. 33.

4. From an urn containing 5 white and 5 black balls, 5 balls are transferred into an
empty second urn. From there, 3 balls are transferred into an empty third urn and,
finally, one ball is drawn from the latter. It turns out to be white. What is the
probability that all 5 balls transferred from the first urn are white? Ans. Y q6.

6. Conditions and notations being the same as in Prob. 3 (page 66), show that the
probability for an event to occur in the (n + 1)st trial, granted that it has occurred
in all the preceding = trials, is never less than the probability for the same event to
occur in the nth trial, granting that it has occurred in the preceding n — 1 trials.

Hint: it must be proved that

b k k 2
Eam?*l : Eam?‘l z <2°¢¢I)2‘) .
i=1 1

T= i=1
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For that purpose, use Cauchy’s inequality
k

k 2 k
(zﬁm) < DBt Ik
i=1

i=1 t=1

6. Assuming that the unknown probability p of an event E can have any value
between 0 and 1 and that the a priori probability of its being contained in the interval
(e, B) is equal to the length of this interval, prove the following theorem: The prob-
ability a posteriori of the inequality

p=o

after E has occurred m times in n trials is equal to the probability of at least m + 1
successes in n 4 1 independent trials with constant probability ¢. (See Prob. 13,
page 59.)

7. Assumptions being the same as in the preceding problem, find approximately
the probability a posteriori of the inequalities

e = P = 3,

it being known that in 200 trials an event with the probability p has occurred 105
times. Ans. Using the preceding problem and applying Markoff’s method, we find
P = 0.846.

8. An urn contains N white and black balls in unknown proportion. The number
of white balls hypothetically may be

0,1,2, ... N
and all these hypotheses are considered as equally likely. Altogether n balls are
taken from the urn, m of which turned out to be white. Without returning these
balls, a new group of n; balls is taken, and it is required to find the probability that
among them there are m; white balls. Naturally, the total number of balls is so
large as to have n + n1 < N. Ans. The required probability has the same expression

1
j; gmtma (] — g)ntnmemgy
c

™ lml n—m
j;:c( — z)*mdr

)

as in Prob. 4, page 69.

Polynomials ordinarily called ‘“Hermite’s polynomials,” although they were dis-
covered by Laplace, are defined by
y? -£
_—dn 2
Ha(y) = ¥
# dy
The first four of them are
Hi(y) = —y;  Hu(y) =y*—1;  Hi@y) = —y* +3y;  Hiy) = y* —6y> + 3.

They possess the remarkable property of orthogonality:

2

v .
f_ e 2Ha)Hu(y)dy =0  when m s %
while

v
f_ ¢ ZH,(y)dy = /Il
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Under very general conditions, a function f(y) defined in the interval (— =, 4 )
can be represented by a series
@) = a0 + a:H1(y) + a=Ho(y) + - - -

where in general

1 - L
a = e *f(y)Hi(y)dy.
* k'\/E;rJ:. w .
Let
m n
—_ 2 e
a = p and h a0 — o

provided 0 < a < 1.
9. Prove the validity of the following expansion indicated by Ch. Jordan:

_v -
(n + 1) h 2[1_1 20 0 ) +

i —myo LT AT = e n+2
2n — (11n + 6)a(l — )
2n(n 4+ 2)(n + 3)

for 0 £ z = 1 where y is a new variable connected to = by the equation

R Ho(y) 4+ - - - ]

r=a-+t

SIS

Hint: Consider the development in a series of Hermite’s polynomials of the
function

y? y m y n-m
f(y)=62<oz+z> 1—04—-;) for —ha £y £ (1 — @)
fly) =0 if either y < —ha or y > h(l — ).

10. Assuming that the conditions of validity of formula (6) are fulfilled, show that
the a posteriori probability of the inequalities

m 1 - 1 -
= —t\/a( 2 <p <zl+t\/a( “‘a); «="
n n n n n

can be expanded into a convergent series
_g
2 -5 te 22n — (1ln + 6)a(l — a)
= dy — e
VerJo V2r (0 +2)(n + 3)a(l — a)
When » is large and « is not near either to 0 nor to 1, two terms of this series suffice

to give a good approximation to P (Ch. Jordan). Apply this to Prob. 7.
Ans. 0.84585.
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CHAPTER V

USE OF DIFFERENCE EQUATIONS IN SOLVING PROBLEMS
OF PROBABILITY

1. The combined use of the theorems of total and compound proba-
bility very often leads to an equation in finite differences which, together
with the initial conditions supplied by a problem itself, serves to deter-
mine an unknown probability. This method of attack is very powerful,
and it is often resorted to, especially in the more difficult cases. In this
chapter the use of equations in finite differences, applied to a few selected
and comparatively easy examples, will be shown; but in Chap. VIII
we shall apply the method to a class of interesting and historically
important probleras.

Certain preliminary explanations are necessary at this point. Again
we consider a series of trials resulting in an event E or its opposite, F,
but this time we suppose that the trials are dependent, so that the
probability of E at a certain trial may vary according to the available
information concerning the results of some of the other trials.

A simple and interesting case of dependent trials arises if we suppose
that the probability of E in the (n + 1)st trial receives a definite value
« if E has happened in the preceding nth trial, and this value does not
change whatever further information we may possess concerning the
results of trials preceding the nth. Also, the probability of E in the
(n + 1)st trial receives another determined value B if E failed in
the nth trial, no matter what happened in the trials preceding the nth.

‘We have a simple illustration of this kind of dependence, if we suppose
that drawings are made from an urn containing black and white balls in
a known proportion, and that each ball drawn is returned to the urn, but
only after the next drawing has been made. It is obvious that the proba-
bility that the (n + 1)st ball drawn will be white, becomes perfectly
definite if we know what was the color of the ball immediately preceding,
and it remains the same no matter what we know about the colors of the
1,2, ... (n—~ 1)st balls.

If the trials depend on each other in the above-defined manner, we
say that they constitute a ‘“simple chain,” to use the terminology of the
late A. A. Markoff, who was the first to make a profound study of
dependent trials of this and similar, but more complicated, types. It is
implied in the definition of a simple chain that it breaks into two sepa-

rate parts as soon as the result of a certain trial becomes known. For

74
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instance, if the result of the fifth trial is known, trials 6, 7,8, . . . become
independent of trials 1, 2, 3, 4, and the chain breaks into two distinct
parts: the trials preceding the fifth, and those following it. If the
results of trials 1, 2, 3, . .. (n — 1) remain unknown, the event E
in the following nth trial has a certain probability which we shall denote
by p.. Also, if it becomes known that E happened at trial &k, where
k < n — 1, the probability of £ happening in the nth trial receives a
different value, p®. It is important to find means to determine the
probability p., the a priori probability of E in the nth trial when the
results of the preceding trials remain unknown; as well as to determine
the probability p® of E in the nth trial when we possess the positive
information that E has materialized in the kth(k < n — 1) trial.

2. Thus we are led to the following problem concerning simple chains
of dependent trials:

Problem 1. The initial probability p: of the event E in a simple
chain of trials being known, find the probability p, of E in the nth trial
when the results of the preceding trials remain completely unknown.
Also, find the probability p® of F in the nth trial when it is known that
E has happened in the kth trial where & < n — 1.

Solution. In the nth trial the event E can happen either preceded
by E in the (n — 1)st trial, the probability of which is p.—i, or preceded
by F in the (n — 1)st trial, the probability of which is 1 — p,—1.. By
the theorem of compound probability, the probability of the succession
EE is pn—ia, while the probability of the succession FE is (1 — pn-1)B.
Hence, the total probability p, is

(1) Pn = &Pn—1 -+ ﬁ(l b p"__1) = (a - B)pn—l 4 8.

This is an ordinary equation in finite differences. It has a particular
solution

Pn = ¢ = const.

where ¢ is determined by the equation

¢ = (a— B+ 8B

whence
c=_ 8
1+8—«

provided 148 — a5 0.! On the other hand, the corresponding

'f 14+8—a=0or a—pB =1, we necessarily have o = 1, 8 = 0, which
means that E must occur in all the trials if it actually occurs in the first trial, and
never occurs if it does not actually occur at the outset. This case, as well as the other
extreme case in which @« — 8 = —1 can therefore be excluded as not possessing real
interest.
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homogeneous equation

Yn = (@ = B)Yn
has a general solution

Yn = Cla = B~

involving an arbitrary constant C. Adding to it the previously found
particular solution, we obtain the general solution of (1) in the form

- B
—_ — n—1 - —
P = Cla — B) +1+B—a
The arbitrary constant C is determined by the initial condition
B -
C + TFg=a y4
so that finally
Y- R (S S VA
pn—l_l__ﬁ__a"l"(pl 1+B_a>(0‘ [e) L
If
_ B
PTTFF—=
we see that p, does not depend on n and is constantly equal to pi. Be-
cause we may exclude the cases « — =1 or @« — 8 = —1, so that

a. — Bis contained between —1 and 1, we may conclude from the above
expression that p,, if not a constant, at any rate tends to the limit

B
1+8—«

as n increases indefinitely.
As to p we find in a similar way that it satisfies the equation

®)] PP = ap®, + B(1 — pP,

of the same form as equation (1). But the initial condition in this
case is pf; = a because the probability of E happening in the (k¥ + 1)st
trial is « when it is known that E occurred in the preceding trial. The
solution of (2) satisfying this initial condition is

_ B8 l—«
Ly gl [y g

(@ — B "

As the second term in the right-hand member decreases with increas-
ing n and finally becomes less than any given number, we see that the
positive information concerning the result of the kth trial has less and less
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influence on the probability of E in the following trials, and in remote
trials this influence becomes quite insignificant.

Example. An urn contains a white and b black balls, and a series of drawings of
one ball at a time is made, the ball removed being returned to the urn immediately
after the taking of the next following ball. What is the probability that the nth ball
drawn is white when: (a) nothing is known about the preceding drawings; (b) the kth
ball drawn is white?

In this particular problem we havea=aj_;i1,ﬁ=a+:_l,p1——=aib
and .
B8 e
1+6—a a+b I*

Thus
. _ _a
pn—pl~a+b.

That is, the probability for any ball drawn to be white is the same as that for the

first ball, nothing being known about the results of the previous drawings. The

expression for pf]‘) is, in this example,

b
W = % o (_qynk .
e A Py s Y g P
So, for instance,if a = 1,b =2,n =5,k = 3,
1 2 1
(3 _ = - .
O RN TAEY

the information that the third ball was white raises to 14 the probability that the fifth
ball will be white; it would be 14 without such information.

3. The next problem chosen to illustrate the use of difference equa-
tions is interesting in several respects. It was first propounded and
solved by de Moivre.

Problem 2. In a series of independent trials, an event E has the
constant probability p. If, in this series, E occurs at least r times in
succession, we say that there is a run of r successes. What is the proba-
bility of having a run of r successes in n trials, where naturally n > r?

Solution. Let us denote by y, the unknown probability of a run of
rin n trials. In n 4 1 trials the probability of a run of r will then be
Ynt1. Now, a run of r in n + 1 trials can happen in two mutually
exclusive ways: first, if there is a run of 7 in the first n trials, and second,
if such a run can be obtained only in n + 1 trials. The probability of
the first hypothesis is .. To find the probability of the second hypothe-
sis, we observe that it requires the simultaneous realization of the follow-
ing conditions:

(a) There is no run of r in the first n — r trials, the probability of
which is 1 — y»_r. (b) In the (n — r 4 1)st trial, E does not occur,
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the probability of which is ¢ = 1 — p. (¢) Finally, E occurs in the
remaining r trials, the probability of which is p.

As (a), (b), (¢) are independent events, their simultaneous mate-
rialization has the probability

(1 = Ynr)ap".

At the same time, this is the probability of the second hypothesis.
Adding it to y,, we must obtain the total probability y,+1. Thus
@) Yntr = Yo + (L = ynr)p’q
and this is an ordinary linear difference equation of the order r - 1.
Together with the obvious initial conditions

Yo=y1=" """ =ya=0 y=p
it serves to determine y, completely forn =r+ 1, r+ 2, . . .. For
instance, taking n = r, we derive from (3)
Yre1 = P"+ PG
Again, taking n = r + 1, we obtain
Yriz = D"+ 2p7q
and so forth. Although, proceeding thus, step by step, we can find the
required probability ¥, for any given n, this method becomes very labori-
ous for large n and does not supply us with information as to the behavior
of y. for large n. It is preferable, therefore, to apply known methods of
solution to equation (3). First we can obtain a homogeneous equation
by introducing 2z, = 1 — y, instead of y,. The resulting equation in
2, 18
(4) Znyl T 2n + Q’Z)’Zn—r =0
and the corresponding initial conditions are:
=21= =23 =1; 2, =1— pn.
We could use the method of particular solutions as in the preceding

problem, but it is more convenient to use the method of generating
functions. The power series in £

ef) =z tauft+z+ - -

is the so-called generating function of the sequence 2y, 21, 25, . . . .
If we succeed in finding its sum as a definite function of £, the development
of this function into power series will have precisely z, as the coefficient
of &. To obtain ¢(£) let us multiply both members of the preceding
series by the polynomial

1~ g+ gpr
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The multiplication performed, we have

A=t+ee®) =20+ (1 — 20+ - * * + (Br1— 202) 81+
+ (& — #-))E + (a1 — & + @pr2)ET A -

In the right-hand member the terms involving £+, #+2 . .. have
vanishing coefficients by virtue of equation (4); also z; — #—1 = 0 for
E=1,28,...r—1, while

=1 and Zr — 2r1 = —P"
so that
(I =&+ qpeted) =1—p&
and
_1-prE
1 — E + Q']JTET'H
The generating function ¢(£) thus is a rational function and can be
developed into a power series of £ according to the known rules. The
coefficient of ¢ gives the general expression for z,. Without any dif-
ficulty, we find the following expression for z,:

(5) 2y = 6n,'r - prﬁn—r,r
where

o(f) =

2
Bar = 2 (—' 1)102_”@?’)1
1=0
and B,_,- 15 obtained by substituting n — r instead of n. If nis not very
large compared with r, formula (5) can be used to compute z, and

Yo = 1 — 2y
For instance, if n = 20, r = 5, and p = ¢ = 14, we easily find

15 45 10 1 10 10

w0 =1 62~ 640 32

and hence
2o = 0.75013

correct to five decimals; yy = 0.24987 is the probability of a run of 5
heads in 20 tossings of a coin.

4. But if » is large in comparison with r, formula (5) would require
so much labor that it is preferable to seek for an approximate expression
for 2, which will be useful for large values of n. It often happens, and
in many branches of mathematics, but especially so in the theory of
probability, that exact solutions of problems in certain cases are not of
any use. That raises the question of how to supplant them by con-
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venient approximate formulas that readily yield the required numbers.
Therefore, it is an important problem to find approximate formulas where
exact ones cease to work. Owing to the general importance of approxi-
mations, it will not be out of order to enter into a somewhat long and
complicated investigation to obtain a workable approximate solution
of our problem in the interesting case of a large n.

Since ¢(£) is a rational function, the natural way to get an appropriate
expression of z, would be to resolve ¢(£) into simple fractions, correspond-
ing to various roots of the denominator, and expand those fractions in
power series of £, However, to attain definite conclusions following this
method, we must first seek information concerning roots of the equation

1— ¢+ et =0,
5. Let
Jl&) =& —1— aftt
where
a=p(—p).
When p varies from 0 to 1, the maximum of pr(1 — p) is attained for

and is r/(r + 1) so that & < 77/(r + 1)+ in all cases.

o

P=rF1

To deal with the most interesting case, we shall assume
r

© P<iFI

which involves

7
NGEE A

and we leave it to the reader to discover how the following discussion
. . ~ r A
should be modified if p = pr |

When £ starts to increase from 0, the function f(£) steadily increases
and attains a positive maximum for £ = & where

r+ Dagy =1

after which f(£) decreases steadily to negative infinity. Hence, there
are two positive roots of the equation f(£) = 0: &, which is less than
r+1
T

condition (6) is fulfilled.

The remaining roots are all imaginary if r is odd and there is one
negative root among them if r is even.

Now we shall prove that the absolute value of every imaginary or
negative root is >1/p. Let o be the absolute value of any such root.

» and another root greater than this number. This root is 1/p if
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We have first
flo) =p—1— ap* <0

so that p belongs either to the interval (0, £1) or to the interval (1/p, + «),
and if we can show that p > & then p can be only >1/p. If the root we
consider is negative, p satisfies the equation

Flo) =1+p—apt =0

and since F(p) increases till a positive maximum for p = % is reached, and
then decreases, the root of F(p) = 0 is necessarily >%. If & = pe®is
an imaginary root of f(£) = 0 we have, equating imaginary parts,

Jsin (r + 1)6
@p sin 6 =L

(7

But, whatever 8§ may be

sin (r + 1)6

<
sin 4 sr+1

the equality sign being excluded if sin 6 ¢ 0.1 Hence,
(r+ Dap™ > 1

which implies p > &. The statement is thus completely proved.
' 6. The equation

E—1—attt =0

can be exhibited in the form
1
£

Substituting £ = pe® here, and again equating imaginary parts, we get

+ af" = 1.

ap™lgin 76 = sin
and, combining this with (7),
_sin (r + 1)6, _ (sin r6)" sin 6
sinrf ’ = [En r + D+

. sin mé
1The extreme values of the ratio 3
sin

roots of the equation 7 sin 8 cos m8 = sin mé cos 6, but for every root of this equation

(m integer > 1) correspond to certain

sin m@
sin 4

m

V1 + (m* — 1) sin% ¢
The equality sign is excluded if sin ¢ differs from 0.

IIA

m
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If the imaginary part of £ is positive, the argument 6 is contained

between 0 and 7. In this case, it cannot be less than ; _T_ 1 o greater
tha:n'ﬂ"“-r:—l FOI' o< < —— +1
sin 76 S sin (r + 1)6
r6 (r+1)6
or
sin ré > _T .
gin(r +1)6 7 r+1
At the same time
sin 6 > 1
sin (r+1)6 " r+4+1
and hence .
_ sin 4 T sinf S 7
T o FDYsnFD67 o F D
which is impossible. That 6 cannot be greater than = — + 1 follows

simply, because in this case, sin (r 4 1)6 and sin 76 would be of opposite
signs and p would be negative.

™

'Asr_!_l 0 _1r—~—-—:—}_-—1;wehave
psin 8 > psin +1
On the other hand, sin 2 > 22/7if 0 < z < /2 and p > 1/p. Hence,
. 2
p SN 0 > m .
Thus, imaginary parts of all complex roots have the same lower bound
2
(r+ Dp

of their absolute values.
7. Denoting the roots of the equation f(£) = 0 by
(k=12 ...r+1)
we have
r—+1

o 1 — pé (1_ £)"
o) = g(l — P)&(r +kl i ) ) )
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Hence, expanding each term into power series of £ and collecting
coefficients of &%, we find

r+1
_ 1 — p& &
o g(l — P& T+ 1—rh
For every imaginary root, we have

(1 — p&) &
I =&+ 1—r&)

r+1l e
r@ —p)’

since

- ) 1 ' i 1 (r+p

If r is odd, there are r — 1 imaginary roots and the part, in the expression
of z, due to them in absolute value is less than

r+1Dr—=1) .,
- P ST=p

The term corresponding to the root 1/p vanishes, so that finally

pn+2.

— l—pfl &g r n+2
O-pa rri—rm =77

where [6] < 1 and £, denotes the least positive root of the equation
1—-¢4gpe+t =0

If r is even, there is one negative root. The part of 2, corresponding
to this root is less than

Zn

2pn+2
1 —p)r

The whole contribution due to imaginary and negative roots is less than

n+2
—?

in absolute value. Thus, no matter whether r is odd or even, we have

1 —p& " 7

8) 2z = . : EEER .
® (1 —-pk 7“+1——T$1+01“’pp ’ 1_<0<1
This is the required expression for z,, excellently adapted to the case of a

Jarge value for n, since then the remainder term involving 6 is completely
negligible in comparison with the first principal term.
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The root £ can be found either by direct solution of the trinomial
equation following Gauss’ method, or by application of Lagrange’s series,
Applying Lagrange’s series, we have

S « . . l
gl=1+a+2(lr+2)(lr+:2 r + )al
1=2

log £1 = & + E(Zr + D(r +2) l-!- clr+1 - l)al
1=2

both series being convergent if || < 77/(r 4+ 1)™*! and this condition is
satisfied.

8. Let us apply the approximate formula (8) to the case p = ¢ = 14
and r = 10. Using Lagrange’s series, we find that

£ = 1.0004909
and

2, = 1.003947 - (1.0004909)—" + g_f

Hence, for » = 100, 1,000, 10,000, respectively,
2, = 0.9559; 0.6146; 0.0074

so that, for instance, the probabilities of a run of at least 10 heads in
100, 1,000, or 10,000 throws of a coin are, respectively,

0.0441; 0.3854; 0.9926.

Thus, in 10,000 throws, it is quite likely that heads would turn up 10 or
more times in succession.

In general, for a given r and increasing n, the probability y, tends to 1,
so that in a very long series of trials, runs of any length are extremely
likely to occur, a conclusion which at first sight seems paradoxical.

9. In the preceding examples, an unknown probability was deter-
mined by an ordinary equation in finite differences. Very often, how-
ever, probability as a function of two or more independent variables is
defined by a partial difference equation in two or more independent
variables, together with a set of initial conditions suggested by the
problem itself. A few examples will suffice to illustrate the use of
partial equations in finite differences and to give an idea of the two
principal methods for their solution; namely, Laplace’s method of
generating functions, and the less well known, but elegant, method
proposed by Lagrange.

We start with an analytical solution of the problem which was dis-*
cussed in detail in Chap. IIL
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Problem 3. Find the probability of exactly z successes in ¢ inde-
pendent trials with the constant probability p.

Solution by Laplace’s Method. Let us denote the required proba-
bility by ¥s: To obtain x successes in ¢ trials can be possible only in
two mutually exclusive ways: () by obtaining z successes in £ — 1 trials
and a failure at the last trial; (b) by obtaining success at the last trial
and z — 1 successes in the preceding ¢ — 1 trials. The probability of
case (@) is @Y1 and that of case (b) is pyz—1,:.—1. The total probability
Y, satisfies the equation '
) Yot = PYo—1,-1 T @Yze—1
for all positive z and ¢. This equation alone does not determine ¥,
completely, but it does so in connection with certain initial conditions.
These conditions are

Yz,0 = 0 if x > O,
(10)
Yot = qt if t Z 0

The first set of equations is obvious; the second set is the expression
of the fact that if there are no successes in ¢ trials, the failures occur ¢
times in succession, and the probability for that is ¢t

Following Laplace, we introduce for a given ¢ the generating function
of ¥o.¢; Y1,e; Y21, - - . , that is, the power series

e(§) = you + Yrb + Yot 4 - - = 2?/::.:5”-
. z=0

Taking ¢ — 1 instead of ¢, separating the first term and multiplying by
¢, we have

goi—1(8) = qYoe—1 + zqyz,b—lgx;
z=1

and similarly
@
pépi_i(E) = 2 PYz—1,0—1E%.
z=1

Adding and noting equation (9) we obtain
@& + Qera(®) = 0(§) + o1 — Yoo
but because of (10)
QWos-1 = Yor = ¢ — ¢ =0
and hence,

ei(§) = P& + Qee1(f)
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for every positive . Taking¢ = 1,2,3, . . . and performing successive
substitutions, we get

ei(§) = (P& + Q)'eo(£)

and it remains only to find
@(£) = Yoo + Yroé + Y208 + - .
But on account of (10), y,0 = 0 for z > 0, while yo0 = 1. Thus,
po(§) = 1
and

vl§) = (p§ + )"

To find ¥, it remains to develop the right-hand member in a power series
of ¢ and to find the coefficient of £2. The binomial theorem readily gives

=D G—z D)
Yor = T s PYT

10. Poisson’s Series of Trials. The analytical method thus enables
us to find the same expression for probabilities in a Bernoullian series
of trials as that obtained in Chap. III by elementary means. Considering
how simple it is to arrive at this expression, it may appear that a new
deduction of a known result is not a great gain. But one must bear in
mind that a little modification of the problem may bring new difficulties
which may be more easily overcome by the new method than by a general-
ization of the old one. Poisson substituted for the Bernoullian series
another series of independent trials with probability varying from

trial to trial, so that in trials 1, 2, 3,4, . . . the same event E has different
probabilities pi, ps, P3, P4, . . - and correspondingly, the opposite event
hag probabilities gy, gs, ¢3, ¢s, . . . where ¢z = 1 — Py, in general. Now,

for the Poisson series, the same question may be asked: what is the
probability y.,: of obtaining « successes in ¢ trials? The solution of this
generalized problem is easier and more elegant if we make use of differ-
ence equations.

First, in the same manner as before, we can establish the equation in
finite differences

(11) Yzt = PiYa—1,tm1 T Y z,e—1.
The corresponding set of initial conditions is

Yzo = 0 if x>0
(12) Yor=qugs * * - q; if £>0
Yoo = 1.

Giving ¢,(£) the same meaning as above, we have
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Gepr—1(§) = q:yo,z—l + ZQtyx,z——lf” 4
z=1

pikpi1(8) = Zptyz—l,t—-l«f”,
z=1

whence
(Dot + 9)0e-1(8) = ¢i(§) + QYo.1—1 — Yo,;

but because of (12)

QYo,t—1 — Yo = q1gs * * * Qe — Q192 ' * * ¢ = 0,
and thus

. (8) = (Pt + ¢)ee1(8)

whence again

(&) = (prf + q) (P2t + @2) - - - (P + ge)eo().
However, by virtue of (12), ¢o(#) = 1 so that finally

0e(8) = P+ )Pt +q2) - - - (pE+ q).

To find the probability of x successes in £ trials in Poisson’s case, one

needs only to develop the product
(p1£ + q) 2k + q2) - - - (pef + ¢0)
according to ascending powers of £ and to find the coefficient of £2.

11. Solution by Lagrange’s Method. We shall now apply to equa-
tion (9) the ingenious method devised by Lagrange, with a slight modifica-
tion intended to bring into full light the fundamental idea underlying this
method. Equation (9) possesses particular solutions of the form

a:th
if @ and B are connected by the equation
oy = p + qo.

Solving this equation for 8, we find infinitely many particular solutions

' a®(g + pa~)*
where a is absolutely arbitrary. Multiplying this expression by an
arbitrary function ¢(a) and integrating between arbitrary limits, we
obtain other solutions of equation (9). Now the question arises of how
to choose ¢(«) and the path of integration to satisfy not only equation (9)
but also initial conditions (10). We shall assume that ¢(e) is a regular
function of a complex variable « in a ring between two concentric circles,
with their center at the origin, and that it can therefore be represented in
this ring by Laurent’s series

ola) = i Cnct™

n=— o
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If ¢is a cirele concentric with the regularity ring of ¢(a) and situated
inside it, the integral

1
Yut = 5 ca’”“(q + pa~t)te(a)da

is perfectly determined and represents a solution of (9). To satisfy
the initial conditions, we have first the set of equations

g}ﬁ.f&x—%(a)da =0 for z=1213, ...

which show that all the coefficients ¢, with negative subscripts vanish,
and that ¢() is regular about the origin. The second set of equations
obtained by setting = 0

1 el , =
2ﬂ£(q+pa) ada—q for t=0,1,2 ...
serves to determine ¢(a). If eis a sufficiently small complex parameter,
this set of equations is entirely equivalent to a single equation:

1 o(a)da I
2rt ). —e(p +ga) 1 — ¢

Now the integrand within the circle ¢ has a single pole oy determined by
the equation

a = e(p + qe)
and the corresponding residue is
o(an) |
1 — ge
At the same time, this is the value of the left-hand member of the above
equation, so that

plag) _ 1
1 —ge 1 — ge

or
o(ar) = 1
for all sufficiently small € or op. That is, ¢(a) = 1 and

J— 1 z—1 2 ‘
Yzt = —27‘-;];6! (q + CK> do

is the required solution. It remains to find the residue of the integrand;
that is, the coefficient of 1/« in the development of

— P\’
«(1+2)
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in series of ascending powers of «. That can be easily done, using the
binomial development, and we obtain

v Y= = Cipg=®
as it should be.

12. Problem 4. Two players, A and B, agree to play a series of
games on the condition that A wins the series if he succeeds in winning «
games before B wins b games. The probability of winning a single game
ispfor A and ¢ = 1 — p for B, so that each game must be won by either
A or B. What is the probability that A will win the series?

Solution. This historically important problem was proposed as an
exercise (Prob. 12, page 58) with a brief indication of its solution based
on elementary principles. To solve it analytically, let us denote by
Yz,: the probability that A will win when 2 games remain for him to win,
while his adversary B has ¢ games left to win. Considering the result
of the game immediately following, we distinguish two alternatives:
(a) A wins the next game (probability p) and has to win £ — 1 games
before B wins ¢ games (probability ¥.-1,:); (b) A loses the next game
(probability ¢) and has to win 2 games before B can win { — 1 games
(probability ¥,:-1). The probabilities of these two alternatives being
PYs—1,: and @Y. 1 their sum is the total probability y,; Thus, ¥,
satisfies the equation

(13) Yo, = PYo1,t + QY11
Now, yz0 = 0 for z > 0, which means that A cannot win, B having
won all his games. Also, yo,: = 1 for { > 0, which means that 4 surely
wins when he has no more games to win. The initial conditions in our
problem are, therefore,
Yz = 0 if z > 0;
(14)
Yor = 1 if ¢t > 0.
The symbol yo,0 has no meaning as a probability, and remains undefined.
For the sake of simplicity we shall assume, however, that y0 = 0.
Application of Laplace’s Method. Again, let

‘Px(g) = Yaz,0 + y$,1£ + yz,ZEZ + -

be the generating function of the sequence ¥.0; ¥z1; Y232 . . . COI=
responding to an arbitrary x > 0. We have

9ées(8) = qun:,z—.lst

t=1
©

Poa—1(§) = PYe—1,0 + Epyz‘—l,tft
t=1
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and

0¢0:(8) + poo-i(§) = PYo—1,0 + 2 (PYo—1t + QYo-1)
t=1

or, because of (13),
7¢¢o(E) + pps1(§) = PYs10 — Yuo + ¢a(§).
Now, for every z > 0
Yz0 = Yom10 = 0

in conformity with the first set of initial conditions, which allows us to
present the preceding relation as follows:

‘PZ(E) ‘Pw—l(E);
whence
¢a(§) = qg)xﬁoo(‘f)'
But
o = o FYorkF v+ = EFPFEH =y

and finally

- ép® .
o0 = TP —gp-

It remains to develop the right-hand member in a power series of £ and
find the coefficient of &. As

e Rt

and

1 (o + 1)
Toggs = LTt

we readily get, multiplying these series accordmg to the ordinary rules,

:v(x—{— 1) C e+ 1) s (@ HE—2)
¢+ - + 1-2"-(t——1) ql]

222 +

yz,t = [1 + +

which coincides with the elementary solution indicated on page 58.
Application of Lagrange’s Method. Equation (13) has particular
solutions of the form
a:cﬁt
where
aff = pB + g
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Hence, we can either express a by 8 or 8 by a. Leaving it to the reader
to follow the second alternative, we shall express « as a function of B8
and seek the required solution in the form

_p" 8
Yzr = %L(l—_w)—ﬂ(ﬁ)dﬁ

where ¢(8) is again supposed to be developable in Laurent’s series in a
certain ring; ¢ is a circle described about the origin and entirely within
that ring. Setting z = 0, we must have

1
%J;Bt‘P(ﬁ)dB =1 for t=1,2,3,

and this set of equations is satisfied if we take

1.
e(B) = 53 + - =B =1y 8] > 1.

Now we have

f t—1d8
Yot = omi ). — D" — D)

and fort = 0
=0

2mf T =g ‘)"B(B =1)

as it should be, because for |3| > 1 the integrand can be developed into a
power series of 1/8, the term with 1/8 being absent. Thus, the required
solution is given by

_ ﬁ. f B-1dB
Yot = 2w ) T = ¢ D%B — 1)
where ¢ is a circle of radius >1 described about the origin. The final
expression for ., is obtained as the coefficient of 1/8 in the development
of
pxﬁt—l
(I —gs)*@B—-1).

into power series of 1/8. We obtain the same expression as before.

Problems for Solution
1. Each of n urns contains a white and b black balls. One ball is transferred from
the first urn into the second, another one from the second into the third, and so on.
Finally, a ball is drawn from the nth urn. What is the probability that it is white,
when it is known that the first ball transferred was white?
a

a+b

Ans. + ?(a +b 4 1),
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2. Two urns contain, respectively, a white and b black, and b white and a black
balls. A series of drawings is made, according to the following rules:

a. Each time only one ball is drawn and immediately returned to the same urn it
came from.

b. If the ball drawn is white, the next drawing is made from the first urn.

¢. If it is black, the next drawing is made from the second urn.

d. The first ball drawn comes from the first urn.

What is the probability that the nth ball drawn will be white?

1 1fa-b\"
Am"’““§+§<a+b)'

3. Find the probability of a run of 5 in a series of 15 trials with constant prob-

ability p = 4. Ans. Y15 = 23.37¢ — 70.3712 = 0.0314184.
4. How many throws of a coin suffice to give a probability of more than 0.999 for
a run of at least 100 heads? Ans. 1.76 - 103 throws suffice.
B. What is the least number of trials assuring a probability of =14 for a run of at
least 10 successes if p = ¢ = 14? Ans. 1,420.
6. Seven urns contain black and white balls in the following proportions:
Urns. oo 1 2 3 4 5 6 7
White.. ..ot 1 2 2 3 2 3 4
Black.....oooviiiiii i 2 1 2 1 5 2 5

One ball is drawn from each urn. What is the probability that there will be among
them exactly 3 white balls? Ans. Coefficient of £ in.

GEFDEELDNEET-DEEFDEE+HHEE+DBEE+D
or
237 = 0.28025.

7. Two players, each possessing $2, agree to play a series of games. The prob-
ability of winning a single game is 24 for both, and the loser pays $1 to his adversary
after each game. Find the probability for each one of them to be ruined at or before
the nth game?

Solution. Let yn be the probability that after playing 2m games, neither of the
players is ruined. We have

Ymy1 = %?jm
and hence

-
Ym = oQm

The probability for one of the players to be ruined at or before the nth game isé— - 2j+1

ifn =2morn =2m + 1.
8. Solve the same problem if each player enters the game with $3.
Ans. ¥4 — 3 (34)mtif n = 2m — lorn = 2m.
9. Players A1, Ao, . . . Augoplay a series of games in the following order: first A4
plays with A,; the loser is out and the winner plays with the following player, 4;; the
loseris out again and the next game is played with 44, and s0 on; the loser always being
out and his place taken by the next following player. The probability of winning a
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single game is 14 for each player and the series is won by the player who succeeds in
winning over all his adversaries in succession. What is the probability that the
series will stop exactly at the zth game? What is the probability that the series will
stop before or at the ath game?

Solution. Let y. be the probability that the series terminates exactly at the zth
game. That means that the player who won the game entered at the (x — n + 1)st
game and won successively the n following games. Now, there are n — 1 cases
to be distinguished according as the player beaten at the (z — n + 1)st game has
already won 1, 2,8, . . . n — 1 games. Let p;be the probability that the loser in the
(zx — n + 1)st game previously has won k games. The probability of ending the
series in this case is pr/2*. On the other hand,

y23

Qn—k = Y=k
so that
P _ Yok
27 2%
Hence, forz > n
1 1 1
Yz = éya:——l + Zyx—z + -+ é'n__'lyz-—n-}-l-
Initial conditions:
1
y1=y2=...=yn__,_=0; y"=2n—1'
The generating function of ys:
()
1 Fyftys2 4 =
2"~1<1 —+ j—")

and the generating function of the probability that the series will end before or at the

zth game is
§
-1 -2
),

2n-i(1 — s)(l — +-§—">

10. Three players, 4, B, C, play a series of games, each game being won by one of
them. If the probabilities for 4, B, C to win a single game are p, ¢, r, find the prob-
ability of A winning a games before B and C win b and ¢ games, respectively.

Solution. Let A, ,,. denote the probability for A to win the series when he has
still to win z games, while B and C have to win y and z games, respectively. First,
we can establish the equation

Azy: = PAzryz + qlaya: + 14z, 1

Next, Ao,y: = 1 for positive y, 2z, and A.,o,. = 0 for positive z, z; 4,5,0 = 0 for posi-
tive z, y. Besides, although this is only a formal simplification, we shall assume
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Az =0, Asy,o =0 when z or y or z vanishes. For the generating function of

Z,¥,2

#2 (5, 7) = 2 A:.u.sg”ﬂ'

v,z2=0
we find the equation
_ Y4
$a(8) m) = pr Tﬂqﬁz-:(é, )
whence
T
Galty m) = —2 &

A—gt=—rm)® U -5 —n
The final answer is

AMmépP+-@+)+ (+)@+)L+%?F%%i@

the dash indicating that powers of ¢ and » with the exponents = b and =c¢ are omitted.

Obviously, the same method can be extended to any number of players, and leads
to a perfectly analogous expression of probability.

11. An urn contains n balls altogether, and among them a white balls. In a series
of drawings, each time one ball is drawn, whatever its color may be, it is replaced by
a white ball. Find the probability y. ., that after » drawings there are 2 white balls
in the urn.

Solution. The required probability satisfies the equation

n—z+1

T
Yorpl = ———Yzo1,r + ~ Yz,
n n

@+ + - ]

Besides,
Yoo =1,  Yz0=0 H zx¥ae Yr.=0 i z<a
From the preceding equation, combined with the initial conditions, we find suc-

cessively
e
e (-]
- mt (] (e )]

and so on.

12. If, in the problem of runs, p is supposed to be > " -Ir— 7 prove that the probabil-

ity of a run of » in n trials is greater than

1 - ( p—m r(p +p1)\ P
r—(r 4+ p 2 Ji-m

T, .
where p; < i is a root of the equation

pi(L — p1) = p7(1 — p).
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13. To find an asymptotic expression of probability for a run of r in n independent
trials, if p = ;—:_——1, the following proposition is of importance: Imaginary and nega.

tive roots of the equation

l~8a—z+s=0; 0<s =
n—1

are, in absolute value, greater than the root B > 1 of the equation
27
(1 —-s)R*—R +scos; = 0.

Prove the truth of this statement.

14. Given s urns containing the same number 7 of black and white balls in known
proportions, drawings are made in the following manner: first, a single ball is drawn
out of every urn; second, the ball drawn from the first urn is placed into the second;
that drawn from the second is placed in the third, and so on; finally, the ball drawn
from the last urn is placed in the first, so that again every urn contains n balls. Sup-
posing that this operation is repeated ¢ times, find the probability of drawing a white
ball from the ath urn.

Solution. Let y.,; be the required probability. First, it can be shown that it
satisfies the equation

1 1
Yzp = (1 - —)yz,t_x + —Ya1,i-1.
n n

The initial probabilities y1,0, ¥2,0, . - - ¥s,0 are known; and, moreover, the function
" ys,; must satisfy & boundary condition of the periodic type, yo,: = ¥s,;. Hence,
applying Lagrange’s method, the following solution is found

3 1\’ t it — 1)
yz.e—(l—;)':f(x)+mf(x*1)+1_2(n“—ji—)zf($—2)+ s ]

where :
f@) = Yz, when z>0

and the definition is extended to z < 0 by setting
f(=2) = f(s — ).

If, to begin with, all urns contain the same number of white and black balls, so that
f(z) = const. = p, we shall have, no matter what ¢ is,

lﬁ 1 t
z,t = 1 -~ 1 = P.
- ”( n)< +n—1> ’
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CHAPTER VI
BERNOULLI’'S THEOREM

1. This chapter will be devoted to one of the most important and
beautiful theorems in the theory of probability, discovered by Jacob
Bernoulli and published with a proof remarkably rigorous.(save for some
irrelevant limitations assumed in the proof) in his admirable posthumous
book ““ Ars conjectandi’” (1713). This book is the first attempt at scien-
tific exposition of the theory of probability as a separate branch of
mathematical science.

If, in » trials, an event E occurs m times, the number m is called the
“frequency’”’ of E in n trials, and the ratio m/n receives the name of
“relative frequency.” Bernoulli’s theorem reveals an important proba-
bility relation between the relative frequency of E and its probability p.

Bernoulli’s Theorem. With the probability approaching 1 or certainty
as near as we please, we may expect that the relative frequency of an event E
in a sertes of tndependent trials with constant probability p will differ from
that probability by less than any giwen number € > 0, provided the number
of trials s taken sufficiently large.

In other words, given two positive numbers e and », the probability
P of the inequality
< e

;I'“P

will be greater than 1 — # if the number of trials is above a certain
limit depending upon e and 7.

Proof. Several proofs of this important theorem are known which
are shorter and simpler but less natural than Bernoulli’s original proof.
It is his remarkable proof that we shall reproduce here in modernized
form.

a. Denoting by T, as usual, the probability of m successes in n trials,
we shall show first that

Tb+k Ta+k
@ T, <.
if b >aand % > 0. Since the ratio
Torp _n—zp
T: z+1g¢g

X
96
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decreases as 2 increases we have for b > a

Tb+1 Ta+1 Tb+1 T,
| T, “T. % T T
Changing b, a, respectively, intob + 1,a + 1;0 + 2, + 2; - - + b + F,
a + k, it follows from the last inequality that
' Tore o Towr—1 . Ty _ T
Ta+1c < Ta+k—1 < < Ta+1 < Ta)
that is,
Torr o Toyn
T, <T.

b. Integers N and u being determined by the inequalities
AN—=1<mnp =\ p—1<np+nes=up
the probabilities A and C of the inequalities

0= —p<g :—zn-—p%e

are represented, respectively, by the sums

A=N+Du+ - + Tua
C=T#+TM+1+"'+T15

the first of which contains p — N\ = g terms. Combining terms of the
second sum into groups of g terms (the last group may consist of less than
g terms) and setting for brevity

4, = TF +'Tn+1 + -0+ Tu+g—1
Ay = Tprg + Toporr + =+ -+ Tuizg

As = Tuysg + Tugsgrr + -+ + Tuyspa

we shall have
C=4,+A,+ A5+ - - g
and at the same time
The ratio
A _ Dy + Drygrn + - 0 -+ Thaiog
A T+ Tagr+ - 0+ T
is less than the greatest of numbers

T>\+a’ _T7\+y+l’ .. TX+20—1.

T)\ T7\+1 T)\.} g—1
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But by inequality (1)

Trig o Dororr o . . . o Trazgos
TX > T)\+1 = > T)\+g—1
hence
A1 Tp
AT
Similarly,

A2 T#+y’ fl_} < Tu+20’ e
A, TP A, TF-+0

and again by inequality (1)

Turg < Trig Tutog < TI»‘-H)] P

Ty. T)\ ’ T,u_(_g T“
Consequently .
Ay _ T As T, .
1—4—1 < T)\’ Z—; < 7,—;:

and inequalities (2) are established.

¢. Forz =\
Tz+1
T, <1.
It suffices to show that
Thir _n—=\p
% T “hFig¢ <t

AshA = np
n—Np . _npg
= = <1
At+1g T npg+gq

Tay1

which shows that T <1
fi The inequality just established shows that in the following expression:
!é‘
f Ty - Tw Tuey  Tpapn Tia L. Trpa
TX Tp,—l Ty—z Tp,—a Tp—a.—l T)\

all the factors are <1. Consequently, if we retain « < g first factors
only, replacing the others by 1, we get

T_F < Tn . Tn—l . Tu-a+1_

T)\ = T,a...1 Tg..z Ty,..a
Moreover,

TM Tu—l e . Tu—a+1
{ Tua < Tu-s < < Tiw




Sec. 1] BERNOULLI’S THEOREM ‘ 99

whence the following important inequality results: #®

. ﬂ n— u +a p)a
@ T < (;“——arl 0
“Here « is an arbitrary positive integer <g.
Now, let e be an arbitrary positive number. Then we can show that
for
1+6¢ —q
4 > ol +¢ —gq
( ) n = €(p + e)
we have both
O P
pw—a+1g " p+te

Since p = np + ne, it suffices to show that (i) is satisfied for u = np 4+ ne.
If u = np + ne inequality (i) is equivalent to

and i) e =g.

ng — ne + « < _4q
np+ne—a+1~ p+e
or, after obvious simplifications,
ne(p + € = a(l +¢) — q. '

But this inequality follows from (4). To establish (ii), since « and ¢
are integers, it suffices to show that a < g+ 1. But pu = np + ne,
A <mnp+ 1 and consequently g + 1 > ne. Hence (ii) will be estab-
lished if we can show that ne = « which by virtue of (4) will be true if

alt+e—q.
pte T

that is, if
a(l+¢ —qg=ap + ae
or ag — ¢ = 0 which is obviously true, « being a positive integer.

d. The auxiliary integer « is still at our disposal. ~Given an arbitrary
positive number n < 1 we shall determine « as the least integer satisfying
the inequality

1

< p >a log;
—— 7 or oz
pte log (1 +%)

At the same time

A
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and since log (1 + %) > EET'G’ we shall have

a<1+PT !t
€ 7
and
all+¢e —q 1 + €
1 2.
ey < og -I—
Consequently, if
(5) ngljelog +—
then by virtue of (i) and (3)
Ty
'T; <1,

and by virtue of (2)
Ay < An A < Am < A%, A3 < A < And, - - -,
whence

An'
1—9

(6) C<Ap+ A+ App + - - - =

This inequality holds if n satisfies (5). No trace of the auxiliary

integer « is left.
e. Let us now consider the inequalities

m m
—_ —_ — —_ < —
e < p<0 and P =

and introduce their respective probabilities B and D. These inequalities
are equivalent to
n—m

n

0 and —g=e

It is apparent that we can interpret B or D as probabilities that the num-

ber of occurrences m” = n — m of the event F opposite to E in n trials will
!

!
satisfy either the inequality 0 < —7% —q <€ or % — ¢ = e Since
the right-hand side of (5) contains only given numbers ¢, 7 it is clear that

Bn
1—n

) D <

if (5) is satisfied.
Now A 4+ B = P is the probability of the inequality
m _
Py 14
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and €' + D = @ is the probability of the opposite inequality

%1' - p! Z e
Hence P + @ = 1. Moreover, by (6) and (7)

Q<o

-
Consequently,
N

or

P>1-—9
if only

1+e€ 1,1

n = o log p + p

This completes the proof of Bernoulli’s theorem.
For example, if p = ¢ = 14 and € = 0.01, n = 0.001 we get from (5)

n =z 69,869

which shows that in 69,869 trials or more there are at least 999 chances
against 1 that the relative frequency will differ from 14 by less than 14 ¢.
The number 69,869 found as a lower limit of the number of trials is
much, too large. A much smaller number of trials would suffice to fulfill
all the requirements. From a practical standpoint, it is important to
find as low a limit as possible for the necessary number of trials (given e
and ). With this problem we shall deal in the next chapter.

2. Bernoulli’s theorem states that for arbitrarily given e and 5 there
exists a number 7,(e, ) such that for any single value n > no(e, 7) the
probability of the inequality

m

%—p

will be greater than 1 — #. The question naturally arises, whether for
given ¢ and 5 a number N (e, 1) depending upon e and n can be found such
that the probability of simultaneous inequalities

< e »

m
%—p <e

for all n > N (e, ) will still be greater than 1 — n. The following theo-
rem due to Cantelli shows that this question can be answered positively.

Cantelli’s Theorem. For given e <1, n <1 let N be an infeger
satisfying the inequality

2 4
N>;§loge—27-1+2
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The probability that the relative frequencies of an event E will differ from
p by less than € in the Nth and all the following trials is greater than 1 — 7.

Proof. We shall prove first that the probability @, of the inequality
m

%—Plée

will always be less than 2e—%7¢, According to results 'Vproved in the
preceding section for any 5 > 0

Qn <1
if
14 1,1
n>—: log;—{—:

This inequality, if we take 5 = 2e~*"< becomes

14+ ¢ 14 €

1
n > 27&"{";— 2

log 2

and in this form it is evident, since for e < 1
1+

€

1

log2 <1—-2log2<0.
Hence, as stated,
8) Qn < 2¢ine,

The event A, in which we are interested, consists in simultaneous
fulfillment of all the inequalities

m

z - pl <e
forn =N, N+1, N4+ 2,. ... The opposite event B consists in
the fulfillment of at least one of the inequalities

m

LN

n b =c¢

where 7 can coincide either with N, or with N + 1,orwith N + 2, . . . -
The probability of B, which we shall denote by R, certainly does not
exceed the sum of the probabilities of all the inequalities

%n—“p}ée

vforn=N,N+1,N+2,....

Consequently, referring to (8),

2¢74Ne
—jne? —
R <2 Dein = i

_ e—v}ez.
n=N
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To satisfy the inequality

26“§Né’
T <1

it suffices to take
1

_§.z

N > 5 log + 5 log ———— =
Now

1 2 2
Iog pp=— e_Z log = + 2.

Consequently, if
N == log —I— 2

we shall have B < 7 and at the same time the probability of 4 will be
greater than 1 — 5, which proves Cantelli’s theorem.

SIGNIFICANCE OF BERNOULLI'S THEOREM

3. As was indicated in the Introduction, one of the most important
problems in the theory of probability consists in the discovery of cases
where the probability is very near to 0 or, on the contrary, very near to 1,
because cases with very small or very “great’ probability may have real
practical interest. In Bernoulli’s theorem we have a case of this kind;
the theorem shows that with the probability approaching as near to 1
or certainty as we please, we may expect that in a sufficiently long
series of independent trials with constant probability, the relative fre-
quency of an event will differ from that probability by less than any
specified number, no matter how small. But it lies in the nature of the
idea of mathematical probability, that when it is near 1, or, on the con-
trary, very small, we may consider an event with such probability as
practically certain in the first case, and almost impossible in the second.
The reason is purely empirical.

To illustrate what we mean, let us consider an indefinite series of
independent trials, in which the probability of a certain event remains
constantly equal to 24. It can be shown that if the number of trials
is, for instance, 40,000 or more, we may expect with a probability > 0.999
that the relative frequency of the event will differ from 14 by less than
0.01. In other words, we are entitled to bet at least 999 against 1 that
the actual number of occurrences will lie between the limits 0.49n and
0.51n if n = 40,000. If we could make a positive statement of this
kind without any mention of probability, we should be offering an ideal
scientific prediction. However, our knowledge in this case is incomplete




104 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cxar. VI

and all we are entitled to state is this: we are more sure to be right in
predicting the above limits for the number of occurrences than in expect-
ing to draw a white ball from an urn containing 999 white and only 1
black ball.

In practical matters, where our actions almost never can be directed
with perfect confidence, even incomplete knowledge may be taken as a
sure guide. Whoever has tried to win on a single ticket out of 10,000
knows from experience that it is virtually impossible. Now the convic-
tion of impossibility would be still greater if one tried to win on a single
ticket out of 1,000,000.

In the light of such examples, we understand what value may be
attached to statements derived from Bernoulli’s theorem: Although the
fact we expect is not bound to happen, the probability of its happening
is so great that it may really be considered as certain. Once in a great
while facts may happen contrary to our expectations, but such rare excep-
tions cannot outweigh the advantages in everyday life of following the
indications of Bernoulli’s theorem. And herein lies its immense practical
value and the justification of a science like the theory of probability.

It should, however, be borne in mind that little, if any, value can be
attached to practical applications of Bernoulli’s theorem, unless the
conditions presupposed in this theorem are at least approximately ful-
filled: independence of trials and constant probability of an event for
every trial. And in questions of application it is not easy to be sure
whether one is entitled to make use of Bernoulli’s theorem ; consequently,
it is too often used illegitimately.

It is easy to understand how essential it is to discover propositions
of the same character under more general conditions, paying especial
attention to the possible dependence of trials. There have been valuable
achievements in this direction. In the proper place, we shall discuss the
more important generalizations of Bernoulli’s theorem.

4. When the probability of an event in a single experiment is known,
Bernoulli’s theorem may serve as a guide to indicate approximately how
often this event can be expected to occur if the same experiments are
repeated a considerable number of times under nearly the same condi-
tions. When, on the contrary, the probability of an event is unknown
and the number of experiments is very large, the relative frequency of
that event may be taken as an approximate value of its probability.
Bernoulli himself, in establishing his theorem, had in mind the approxi-
mate evaluation of unknown probabilities from repeated experiments.
That is evident from his explanations preceding the statement of the
theorem itself and its proof. Inasmuch as these explanations are interest-
ing in themselves, and present the original thoughts of the great discov-
erer, we deem it advisable here to give a free translation from Bernoulli’s
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book. After calling attention to the fact that only in a few cases can
probabilities be found a priori, Bernoulli proceeds as follows:

So, for example, the number of cases for dice is known. Evidently there are
as many cases for each die as there are faces, and all these cases have an equal
chance to materialize. For, by virtue of the similitude of faces and the uniform
distribution of weight in a die, there is no reason why one face should show up
more readily than another, as there would be if the faces had a different shape
or if one part of a die were made of heavier material than another. So one knows
the number of cases when a white or a black ticket can be drawn from an urn,
and besides, it is known that all these cases are equally possible, because the num-
bers of tickets of both kinds are determined and known, and there is no apparent
reason why one of these tickets could be drawn more readily than any other.
But, I ask you, who among mortals will ever be able to define as so many cases,
the number, e.g., of the diseases which invade innumerable parts of the human
body at any age and can cause our death? And who can say how much more
easily one disease than another—plague than dropsy, dropsy than fever— can
kill & man, to enable us to make conjectures about the future state of life or
death? Who, again, can register the innumerable cases of changes to which the
air is subject daily, to derive therefrom conjectures as to what will be its state
after a month or even after a year? Again, who has sufficient knowledge of the
nature of the human mind or of the admirable structure of our body to be able,
in games depending on acuteness of mind or agility of body, to enumerate cases
in which one or another of the participants will win? Since such and similar
things depend upon completely hidden causes, which, besides, by reason of the
innumerable variety of combinations will forever escape our efforts to detect
them, it would plainly be an insane attempt to get any knowledge in this fashion.

However, there is another way to obtain what we want. And what is impossi-
ble to get a priori, at least can be found a posteriori; that is, by registering the
results of observations performed a great many times. Because it must be pre-
sumed that something may occur or not occur as many times as it had previously
heen observed to occur or not occur under similar conditions. For instance, if,
in the past, 300 men of the same age and physical build as Titus is now, were
investigated, and it were found that 200 of them had died within a decade, the
others continuing to enjoy life past this term, one could pretty safely conclude
that there are twice as many cases for Titus to pay his debt to nature within the
next decade than to survive beyond this term. So it is, if somebody for many
preceding years had observed the weather and noticed how many times it was
fair or rainy; or if somebody attended games played by two persons a great many
times and noticed how often one or the other won; by these very observations he
would be able to discover the ratio of cases which in the future might favor the
oceurrence or failure of the same event under similar circumstances.

And this empirical way of determining the number of cases by experiments is
neither new nor unusual. For the author of the book ““Ars cogitandi,” a man
of great acumen and ingenuity, in Chap. 12 recommends a similar procedure,
and everybody does the same in daily practice. Moreover, it cannot be con-
cealed that for reasoning in this fashion about some event, it is not sufficient to
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make a few experiments, but a great quantity of experiments is required ; because
even the most stupid ones by some natural instinct and without any previous
instruction (which is rather remarkable) know that the more experiments are
made, the less is the danger to miss the scope.

Although this is naturally known to anyone, the proof based on scientific
principles is by no means trivial, and it is our duty now to explain it. However,
I would consider it a small achievement if I could only prove what everybody
knows anyway. There remains something else to be considered, which perhaps
nobody has even thought of. Namely, it remains to inquire, whether by thus
augmenting the number of experiments the probability of getting a genuine ratio
between numbers of cases, in which some event may occur or fail, also augments
itself in such a manner as finally to surpass any given degree of certitude; or
whether the problem, so to speak, has its own asymptote; that is, there exists a
degree of certitude which never can be surpassed no matter how the observations
are multiplied; for instance, that it never is possible to have a probability greater
than 14, 24, or 34 that the real ratio has been attained. To illustrate this by an
example, suppose that, without your knowledge, 3,000 white stones and 2,000
black stones are concealed in a certain urn, and you try to discover their numbers
by drawing one stone after another (each time putting back the stone drawn
before taking the next one, in order not to change the number of stones in the
urn) and notice how often a white or a black stone appears. The question is,
can you make so many drawings as to make it 10, or 100, or 1,000, etc., times
more probable (that is, morally certain) that the ratio of frequencies of white and
black stones will be 3 to 2, as is the case with the number of stones in the urn,
than any other ratio different from that? If this were not true, I confess nothing
would be left of our attempt to explore the number of cases by experiments.
But if this can be attained and moral certitude can finally be acquired (how that
can be done I shall show in the next chapter), we shall have cases enumerated a
posteriori with almost the same confidence as if they were known a priori. And
that, for practical purposes, where ‘“morally certain’ is taken for ‘‘absolutely
certain”’ by Axiom 9, Chap. II, is abundantly sufficient to direct our conjectures
in any contingent matter not less scientifically than in games of chance.

For if instead of an urn we take the air or the human body, that contain in
themselves sources of various changes or diseases as the urn contains stones, we
shall be able in the same manner to determine by observations how much more
likely one event is to happen than another in these subjects.

To avoid misunderstanding, one must bear in mind that the ratio of cases
which we want to determine by experiments should not be taken in the sense of a
precise and indivisible ratio (for then just the contrary would happen, and the
probability of attaining a true ratio would diminish with the increasing number of
observations) but as an approximate one; that is, within two limits, which,
however, can be taken as near as we wish to each other. For instance, if, in the
case of the stones, we take pairs of ratios 303549 and 29949 or 3001440, and
2999490, ete., it can be shown that it will be more probable than any degree of
probability that the ratio found in experiments will fall within these limits than
outside of them. Such, therefore, is the problem which we have decided to
publish here, now that we have struggled with it for about twenty years. The
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novelty of this problem as well as its great utility, combined with equal difficulty,
may add to the weight and value of other parts of this doctrine.—“ Ars Conjec-
tandi,” pars quarta, Cap. IV, pp. 224-227.

AprricaTION TO GaMES oF CHANCE

5. One of the cases in which the conditions for application of Ber-
noulli’s theorem are fulfilled is that of games of chance. It is not out
of place to discuss the question of the commercial values of games from
the standpoint of Bernoulli’s theorem. “Game of chance” is the term
we apply to any enterprise which may give us profit or may cause us
loss, depending on chance, the probabilities of gain or loss being known.
The following considerations can be applied, therefore, to more serious
questions and not only to games played for pastime or for the sake of
gaining money, as in gambling.

Suppose that, by the conditions of the game, a player can win a
certain sum a of money, with the probability p; or can lose another
sum b with the probability ¢ = 1 — p.

If this game can be repeated any number of times under the same
conditions, the question arises as to the probability for a player to gain
or lose a sum of money not below a given limit. Let us denote by n
the total number of games, and by m the number of times the player
wins. Considering a loss as a negative gain, his total gain will be

K = ma — (n — m)b.
It is convenient to introduce instead of m another number « defined by
a=m—np

and called ““discrepancy.” Expressed in terms of « the preceding expres-
sion for the gain becomes

K = n(pa — ¢b) + (& + b)e.

The expression
E = pa — ¢b

entering as the coefficient of n has, as we shall see, an important bearing
on the conclusion as to the commercial value of the game. Itis called the
“mathematical expectation’ of the player. Suppose at first that this
expectation is positive. By Bernoulli’s theorem the probability for a
discrepancy less than —mne, e being an arbitrary positive number, is
smaller than any given number, provided, of course, the number of games
is sufficiently large. At the same time, with the probability approaching
1 as near as we please, we may expect the discrepancy to be = — ne.
However, if this is the case, the total gain will surpass the number

n[E — e(a + b)]
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which, for sufficiently large =, itself is greater than any specified positive
number. It is supposed, of course, that e is small enough to make the
difference

E — e(a +b)

positive. And that means that the player whose mathematical expecta-
tion is positive may expect with a probability approaching certainty as
near as we please to gain an arbitrarily large amount of money if nothing
prevents him from playing a sufficient number of games.

On the contrary, by a similar argument, we can see that in case of
a negative mathematical expectation, the player has an arbitrarily small
probability to escape a loss of an arbitrarily large amount of money,
again under the condition that he plays a sufficiently large number of
games.

Finally, if the mathematical expectation is 0, it is impossible to make
any definite statement concerning the gain or loss by the player, except
that it is very unlikely that the amount of gain or loss will be considerable
compared with the number of games.

It follows from this discussion that the game is certainly favorable
for the player if his mathematical expectation is positive, and unfavorable
if it is negative. In case the mathematical expectation is 0, neither
of the parties participating in the game has a decided advantage and then
the game is called equitable. Usually, games serving as amusements are
equitable. On the contrary, all of the games operated for commercial
purposes by individuals or corporations are expressly made to be profita-
ble for the administration; that is, the mathematical expectation of the
administration of a game operated for lucrative purposes is positive at
each single turn of the game and, correspondingly, the expectation of any
gambler is negative. This confirms the common observation that those
gamblers who extend their gambling over large numbers of games are
almost inevitably ruined. At the same time, the theory agrees with
the fact that great profits are derived by the administrations of gaming
places.

A good illustration is afforded by the French lottery mentioned on
page 19, which, as is well known, was a very profitable enterprise operated
by the French government. Now, if we consider the mathematical
expectation of ticket holders in that lottery, we find that it was negative
in all cases; namely, denoting by M the sum paid for tickets, we find the
following expectations:

On 1 ticket 13 —1)M = —3iM,

On 2 tickets (§42 — )M = —3 M,

On 3 tickets (3%%% — 1)M = —138: M,
and so forth.



SEc. 6] ‘ BERNOULLI’S THEOREM 109

. On the other hand, the expectation of the administration was always
positive, and because of the great number of persons taking part in this
lottery, the number of games played by the administration was enormous,
and it was assured of a steady and considerable income. This was an
enterprise avowedly operated for the purpose of gambling, but the same
principles underlie the operations of institutions having great public
value, such as insurance companies, which, to secure their income, always
reserve certain advantages for themselves.

EXPERIMENTAL VERIFICATION OF BERNOULLI’'S THEOREM

6. Bernoulli’s theorem, like any other mathematical proposition, is
a deduction from ideal premises. To what extent these premises may be
considered as a good approximation to reality can be decided only by
experiments. Several experiments established for the purpose of testing
various theoretical statements derived from general propositions of the
theory of probability, are reported by different authors. Here we shall
discuss those purporting to test Bernoulli’s theorem.

I. Buffon, the French naturalist of the eighteenth century, tossed a
coin 4,040 times and obtained 2,048 heads and 1,992 tails. Assuming
that his coin was ideal, we have a probability of 14 for either heads or
tails. Now, the relative frequencies obtained by his experiments are:

2848 = (.507 for heads
1333 = 0.493 for tails

and they differ very little from the corresponding probabilities, 0.500.
In this case, the conclusions one might derive from Bernoulli’s theorem
are verified in a very satisfactory manner.

II. De Morgan, in his book ‘“Budget of Paradoxes’” (1872), reports
the results of four similar experiments. In each of them a coin was
tossed 2,048 times and the observed frequencies of heads were, respec-
tively, 1,061, 1,048, 1,017, 1,039. The relative frequencies corresponding
to these numbers are

1981 = 0.518; 3948 = 0.512; 3347 = 0.497; 1938 = 0.507.

The agreement with the theory again is satisfactory.

III. Charlier, in his book “ Grundziige der mathematischen Statistik,”
reports the results of 10,000 drawings of one playing card out of a full
deck. Each card drawn was returned to the deck before the next draw-
ing. The actual result of these experiments was that black cards
appeared 4,933 times, and consequently the frequency of red cards was
5,067. The relative frequencies in this instance are:

s = 0.4933 for a black card
A = 0.5067 for a red card
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and they differ but slightly from the probability, 0.5000, that the card
drawn will be black or white. The agreement between theory and experi-
ment in this case, too, is satisfactory.

IV. The author of this book made the following experiment with
playing cards: After excluding the 12 face cards from the pack, 4 cards
were drawn at a time from the remaining 40, and the number of trials
was carried to 7,000. The number of times in each thousand that the
four cards belonged to different suits, was:

I II 1II 1v VvV VI VI
113 113 103 105 105 118 108

Altogether the frequency of such cases was 765 in 7,000 trials, whence -

we find for the relative frequency

iy = 0.1093
while the probability for taking 4 cards belonging to different suits is
+448 = 0.1094.

V. In J. L. Coolidge’s ““Introduction to Mathematical Probability,”
one finds a reference to an experiment made by Lieutenant R. S. Hoar,
U.S.A., but the reported results are incomplete. The author of this book
repeated the same experiment which consisted in 1,000 drawings of 5 cards
at a time, from a full pack of 52 cards. The results were: 503 times the
5 cards were each of diff erent denominations; 436 times 2 were of the same
denomination with 3 scattered; 45 times there were 2 pairs of 2 different
denominations and 1 odd card; 14 times 3 were of the same denomination
with 2 seattered; 2 times there were 2 of one denomination and 3 of
another. The remaining possible combination, 4 cards of the same
denomination with' 1 odd, never appeared. The probabilities of these
different cases are, respectively,

3143 = 0.507; 1180 = 0.423; 88 = 0.04S8;
s = 0.021; s = 0.001; o = 0.000.

The corresponding theoretical frequencies are 507, 423, 48, 21, 1, 0,
while the observed frequencies were 503, 436, 45, 14, 2, 0. The dis-
crepancies are generally small and the greatest of them, 13, is still within
reasonable limits. Deeper investigation shows that the probability that
a discrepancy will not exceed 13 is about 14; hence, the observed deviation
of 13 units cannot be considered abnormal.

_ VI. Bancroft H. Brown published, in the American Mathematical

Monthly, vol. 26, page 351, the results of a series of 9,900 games of craps.
This game is played with two dice, and the caster wins unconditionally
if he produces 7 or 11 points, which are called ‘“naturals’; he loses the
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game in case of 2, 3, or 12 points, called “craps.” But if he produces
4,5,6,8,9, or 10 “points,” he does not win, but has the right to cast the
dice an unlimited number of times until he throws the same number of
points that he had before, or until he throws a 7. If he throws 7 before
obtaining his point, he loses the game; otherwise he wins.

It is a good exercise to find the probability of winning this game.
It is

244 = 0.493

that is, a little less than 4. Multiplying the number of games, in our
case 9,900, by this probability, we find that the theoretical number of
successes is 4,880 and of failures, 5,020. Now, according to Bancroft H.
Brown, the actual numbers of successes and losses are, respectively,
4,871 and 5,029. The discrepancy

4871 — 4880 = —9

is extremely small, even smaller than could reasonably be expected.
The same article gives the number of times ‘““craps’” were produced;
namely, 2 appeared 259 times, 3 appeared 508 times, and 12 appeared
293 times, making the total number of craps 1,060. The probability
_ of obtaining craps is

Tttt =%

hence, the theoretical number of craps should be 1,100. The discrepancy,
1060 — 1100 = —40, is more considerable this time but still lies within
reasonable limits.

VII. E. Czuber made a complete investigation of lotteries operated
on the same plan as the French lottery, in Prague between 1754 and 1886,
and in Brinn between 1771 and 1886. The number of drawings was
2,854 in Prague and 2,703 in Briitnn. The probability that in each draw-
ing the sequence of numbers is either increasing or decreasing, is

v = 0.01667
while the observed relative frequency of such cases was
Prague: 0.01612; Briinn: 0.01739
and in both places combined

0.01674.

The probabilities that among five numbers in each drawing there is
none or only one of the numbers 1, 2, 3, . . . 9, are, respectively,

0.58298 and 0.34070.
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The corresponding relative frequencies were

Prague: 0.58655 and 0.32656
Briinn: 0.57899 and 0.34591

and in both places combined
0.58183 and 0.33587, respectively.

The probability of drawing a determined number is 2{s. Now, according

‘to Czuber, for the lottery in Prague the actual number of occurrences for
single tickets varied from 138 (for No. 6) to 189 (for No. 83), so that for
all tickets the discrepancy varied from —20 to 31. Besides, there were
only 16 numbers with a discrepancy greater than 15 in absolute value.
All these results stand in good accord with the theory.

VIII. One of the most striking experimental tests of Bernoulli’s
theorem was made in connection with a problem considered for the first
time by Buffon. A board is ruled with a series of equidistant parallel
lines, and a very fine needle, which is shorter than the distance between
lines, is thrown at random on the board. Denoting by [ the length of
the needle and by & the distance between lines, the probability that the
needle will intersect one of the lines (the other possibility is that the
needle will be completely contained within the strip between two lines) is
found to be

p:

e

The remarkable thing about this expression is that it contains the
number = = 3.14159 - - - expressing the ratio of the circumference of a
circle to its diameter. In the appendix we shall indicate how this expres-
sion can be obtained, because in this problem we deal with a different
concept of probability.

Suppose we throw the needle a great many times and count the
number of times it cuts the lines. By Bernoulli’s theorem we may expect
that the relative frequency of intersections will not differ greatly from
the theoretical probability, so that, equating them, we have the means of
finding an approximate value of =.

One series of experiments of this kind was performed by R. Wolf,
astronomer in Zurich, between 1849 and 1853. In his experiments the
width of the strips was 45 mm., and the length of the needle was 36 mm.
Thus the theoretical probability of intersections is

72
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The needle was thrown 5,000 times and it cut the lines 2,532 times;
whence, the relative frequency

2532 = (.5064.

The agreement between the two numbers is very satisfactory. If,
relying on Bernoulli’s theorem, we set the approximate equation

72

i
we should find the number 3.1596 for «, which differs from the known
value of = by less than 0.02.

In another experiment of the same kind reported by De Morgan in
the aforementioned book, Ambrose Smith in 1855 made 3,204 trials with
a needle the length of which was 34 of the distance between lines. There
were 1,213 clear intersections, and 11 contacts on which it was difficult
to decide. If on this ground, we should consider half of them as inter-
sections, we should obtain about 1,218 intersections in 3,204 trials, which
would give the number 3.155 forw. If all of the contacts had been treated
as intersections the result would have been 3.1412—very close to the
real value of .

In an excellent book “Calcolo delle Probabilita,” vol. 1, page 183,
1925, by G. Castelnuovo, reference is made to experiments performed by
Professor Reina under whose direction a needle of 3 cm. in length was
thrown 2,520 times, the distance between lines being 6 em. Taking into
account the thickness of the needle, the probability of intersection was
found to be 0.345, while actual experiments gave the relative frequency
of intersections as 0.341.

= 0.5064,

APPENDIX

Buffon’s Needle Problem. Let 2 be the width of the strip between
two lines and I < h the length of the needle. The position of the needle
can be determined by the distance z of its middle point from the nearest
line and the acute angle ¢ formed by the needle and a perpendicular
dropped from the middle point to the line. It is apparent that x may
vary from 0 to /2 and ¢ varies within the limits 0 and /2. We cannot
define in the usual way the probability of the needle cutting the line, for
there are infinitely many cases with respect to the position of the needle.
However, it is possible to treat this problem as the limiting case of
another problem with a finite number of possible cases, where the usual
definition of probability can be applied.

Suppose that h/2 is divided into an arbitrary number m of equal
parts 8§ = h/2m and the right angle /2 into n equal parts w = 7/2n.
Suppose, further, that the distance z may have only the values

0,6,26, . .. md
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and the angle ¢ the values
0, w, 20, . . . No.
This gives
N=(m+1)n+1)
cases as to the position of the needle, and it is reasonable to assume that
these cases are equally likely. To find the number of favorable cases, we
notice that the needle cuts one of the lines if x and ¢ satisfy the inequality

x<§lcos<p.

The number of favorable cases therefore, is equal to the number of
systems of integers ¢, 7 satisfying the inequality

(4) 18 < §Z cOs jw

supposing that 7 may assume only the values 0, 1,2, . . . m and j only
the values 0, 1, 2, . . . n. Because we suppose [ < h the greatest
value of 7 satisfying condition (A4) is less than m and we can disregard
the requirement that z should be =m. Now for given j there are & + 1
values of ¢ satisfying (4) if & denotes the greatest integer which is less
than

l .
2—5 COS Jw.

In other words, k is an integer determined by the conditions
l . !
— <
k<2acos1w_k+1.

The number of possible values for ¢ corresponding to a given j can
therefore be represented thus

! cos jo + 9

mj=§‘5

where ¢; may depend on j but for all jis 20 and <1. Taking the sum
of all the m; corresponding to j = 0, 1, 2, . . . n, we obtain the number
of favorable cases

M=—2Z—6(1—|—005w+cos2w—l— + -+ + cos nw) + nO

where © again is a number satisfying the inequalities

0=6e<L
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But, as is well known,

1+C°S“’+‘3052°’+ s +cosnw=%+§iﬂ.(lz_’f__%_)_“’

2 sin 2

2
or, because @ = ——
2n

1+COSO)+COS2¢;+- +cosnw——+‘1:00t§,

therefore
1 ® l
M"ECOtQ‘l'ZE-I-nG.

Dividing this by N = (m + 1)(» + 1) and substituting for § and w
their expressions

i
2n

0= 57— w =

2m

we obtain the probability in the problem with a finite number of cases
ot

M_1 m W1 w1 w0

= 2 m+1 n+1 " (n+1m+1)

N 2 m+4+1 n+1
The probability in Buffon’s problem will be obtained by making m
and 7 increase indefinitely in the above expression. Now, since

hm————— =1,

m—+ 1
. m .
i G DG+ D " R G FDmFD "0 )
and
™
i cot 4—]:—1_% é
1 n+ 1 =
we have
Lm M _ 2
N  hr
Thus we arrive at the expression of probability
_ 2
" hr

in Buffon’s needle problem.
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Problems for Solution

Another very simple proof of Bernoulli’s theorem, due to Tshebysheff (1821-
1894), is based upon the following considerations:
1. Prove the following identities:

n n
S, Tlm —np) =0, 3 Tulm —np)? = npq.
m=0 m=0
Indication of the Proof. Differentiate the identity
n
e—nzm(peu + q)" = 2 T mem—np)e
=0

twice with respect to » and set u = 0.
2. If @ is the probability of the inequality |m — np| = ne prove that

Q< PL.
ne?
Indication of the Proof. In the identity
n

Tw(m — np)? = npg

m=0

drop all the terms in which |m — np| < ne and in the remaining terms replace

(m — np)*
by n?2. The resulting inequality
ST,,. <2
ne?
|m—np|Zne
is equivalent to the statement.
3. Prove that
P>1—19

if n > pg/qne

Indication of the Proof. P =1 — Q, @ < pg/ne and pg/ne < nif n > pg/ne.

The following two problems show how probability considerations can be used in
proving purely analytical propositions.

4. S. Bernstein’s Proof of Weierstrass’ Theorem. The famous theorem due to Weier-
strass states that for any continuous function f(z) in a closed interval @ < z < b there
exists a polynomial P(z) such that

[f@@) — P(2)| <o

for a £ z £ b where ¢ is an arbitrary positive number. By a proper linear trans-
formation the interval (@, b) can be transformed into the interval (0, 1). According
to 8. Bernstein, the polynomial

P@) = D0pan( - w)"‘”‘f(%)
m=0
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for sufficiently large n satisfies the inequality

/@) —P@)| <o

uniformly in the interval 0 < 2 < 1.
Indication of the Proof. For z = 0 and 2 = 1 we have f(0) = P(0) and

1) = PQ).

It suffices to prove the statement for 0 < 2 < 1. Let z be a constant probability in
n independent trials. We have

@ 7@ — P@) = %of:xma - x)”m[f(x) _ f<:_:£>]

By the property of continuous functions, there is a number e corresponding to any
positive number ¢ such that

&) - i@l <3
whenever
e’ —z| < e O =z2s1).
Also, there exists a number M such that |f(z)] £ M for 0 £ z £ 1. From equation
(a) we get
/@) ~ P@)| S 2P +2MR

where P and R are, respectively, the probabilities of the inequalities

m m
— —z| <e and — -z e
n n

Now P < 1 and
R <<‘YI
if n > 1/4e¥. Take n = ¢/4M; then

lf@@) — P(x)| <o
if

e2o

b. Show that

m
— +e
fn zm(l — z)»mdx
M e 1
n
>1 - ——W—
j;lxm(l — z)rmdg 2(n + 1)52

provided 0 < m < n and % —e>0, nﬂ 4+ ¢ < 1 (Castelnuovo).
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Indication of the Proof. By Prob. 6, Chap. IV, page 72, the ratio

2 e
j;" (1 — z)* mdy
1
j; (1 — z)mde

represents the probability @ of at least m + 1 successes in a series of #» + 1 inde-
pendent trials with constant probability

=7 _
p=_ €.
Set
m+1=®m+Dp-+(n+ e
whence
n —m
RS
But
p(l — p) 1
e< (n + 1)e2  4(n + 1)e
Hence

; - m n—m,
j; (1l — z)vmdx . 1
[z = apmas A DS

and by a similar argument

1
j:n zm(1 — z)»mdy
nte 1

< .
j; bon(l — grmdg A+ 1
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CHAPTER VII

APPROXIMATE EVALUATION OF PROBABILITIES IN
BERNOULLIAN CASE

1. In connection with Bernoulli’s theorem, the following important
question arises: when the number of trials is large, how can one find, at
least approximately, the probability of the inequality

< e

n_
w P

where ¢ is a given number? Or, in a more general form: How can one
find, approximately, the probability of the inequalities

l=mZET

where [ and I’ are given integers, the number of trials n being large?
The exact formula for this probability is

s=

P = ETe

where T, as before, represents the probability of s successes in 7 trials.
While this formula cannot be of any practical use when n and I’ — I
are large numbers, yet it is precisely such cases that present the greatest
theoretical and practical interest. Hence, the problem naturally arises
of substituting for the exact expression of F an approximate formula
which will be easy to use in practice and which, for large n, will give a
sufficiently close approximation to P. De Moivre was the first suc-
cessfully to attack this difficult problem. After him, in essentially the
same way, but using more powerful analytical tools, Laplace succeeded
in establishing a simple approximate formula which is given in all books
on probability.

When we use an approximate formula instead of an exact one, there
is always this question to consider: How large is the committed error?
If, as is usually done, this question is left unanswered, the derivation of
Laplace’s formula becomes an easy matter. However, to estimate the
error comparatively long and detailed investigation is required. Except
for its length, this investigation is not very difficult.

2. First we shall present the probability 7T, in a convenient analytical
form. The identity

F(t) = (pt+q)” =To+ Tit + Tot2+ - - - 4+ Tyt
119



120 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cuar. VII

after substituting ¢ = e¢* becomes
F(ei#) = To + The'e + Toe%e + - -« 4 Trere.
Multiplying it by e—*¢ and integrating between —= and =, we get

f_" e (¢)dp = 2T,

because for an integral exponent %
o 0 if k=0
k1 -
f.f 40 =9r i k=0

T, = —f F(e*)esdy

Thus

and this is the expression for T, suitable for our purposes. To find the

sum
s=1l
= ET
s=1

we observe first that

or (U —-14+1
= o—ile — g—i+De _lizl’w sin ) @
E:e—ﬂ‘w _——— = ¢ . .
1—e sin
s=] 2

On the other hand, the complex number F(e*) can be presented in
trigonometrical form, thus:

F(ei*) = Re®
whence
£2 sin (Z, — i+ 1)ga
p=21 f g% 214,
sin %
or, because P is real,
’ —_—
EY sin (l_‘é_tl)“’
=z f R cos ( ) de.
sin g

Finally, because R is an even function of ¢ and © is an odd one, we can
extend the integration over the interval 0, =~ on the condition that we
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double the result. Thus we obtain

sin (——————~Zl — l+1>¢
P=7—1rj;Rcos(6—l+Z> 2 de.

P
2 sin —g

It is convenient to introduce instead of I and I’ two numbers {1 and ¢
defined by

l=np+3%+ VB, V=np—4%+ VB,
where B, = npg. Setting further

0 = npe + x,
P can be presented as
P = Pz - P1

where P; and P, are obtained by taking { = {1 and ¢ = ¢, in the integral
1) J= iﬂ R EVEw = )5

T 2r sin %¢

3. Our next aim is to establish upper and lower limits for R.
Evidently

B = (p* + ¢* + 2pg cos ¢)§=(1 — 4pq sin? §>§= o
Now
_1 _ 2Py .22_1 2 s @
log p = Elog (1 4pq sin §> = —2pq sin 5 4(4pq) sin' 5
| "_1 ‘ 3 si 6<p— . .
5(4p0)° sin® £

whence

log p < —2pg sin? -g-

Since Y4 < 7/2, we have

and consequently

or
2 p < e—'r—z"’
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for all values of ¢ in the interval of integration. On the other hand, we
have

sin%>—§—§%>0 for o < 24
and

sinzg > %2 - f—;
which gives another upper bound for p:
3) p < ¢ U

The corresponding upper bounds for R will be

2B,

(4) R<e ™

Bn Bn
G) R<¢ 27 m”

To find a lower bound for B we shall assume ¢ < 7/2. We can
present log p thus:

1 . ’ i

_1 Sein6 L — ...
6(4pq) sin® 5 .
On the other hand,
1 e
z(4pg)? sin® 5
%(4pq)3 sinsg + é(‘lpq}‘* sin® g + e L s 2 < —;;(4pq)3sinﬁg
1—4pq sinzg
and
2\’ e 1. .0
L) —sin2 € > Zgint 2
<2) sin? 5 > 5 sin 5
8o that
2
o) _ gl 1 3gintf — ... 2—&2‘4‘?._
2pq{<2> sin 2} 6(4pq) sin’ 3 > ~3 sin 5
1 s 2pg . .
- §(4pq)3 sin® 5 = _310_(1 sin* —g{l — 32p?%g? sin? g} >0

and consequently

1 . 272
log p > _,z%q¢2 — 14p9)? sm“g > _1722¢2 - ?f—so‘*
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IIA
NIE]

if ¢ Hence,

(6) R> e—%Bnqog_%PanP‘
and this is valid for ¢ < 7/2.
4. Let = be defined by
72 = 3B;4.
Assuming B, = 25 from now on, we shall have,
<3

and a fortiorir < w/2. Let us suppose now that ¢ varies in the interval
0 £ ¢ £ 7. By inequality (6) we shall have

1 Y 1 2 1 2
R — ¢ 87 5 2% (e bt _ 1) > — 46—§BW >
_._sz
- 16B
because ¢z — 1 > —z for z > 0 and pg < 4.
On the other hand, using inequality (5), we find that
1 1 B 1 - 1
—ZBnp? —-—Bmpﬂz et % Bﬂ —5Bne? 1 —5Bnop?
—_ 2 2 247 — 0 4 2~ 24 —_— 4, 2
R —e <e e 1{ < 34¢ -e 16Bntp e
since
Bart 3

et = 3e® < §

L

From the two inequalities just established it follows that

(7) ‘ R e—%sz

in the interval

1
—2Bno?
<'11an§04€ Pates

0

I\
lIA

@ T.

5. We turn now to the angle ©. Evidently

_ psing
e—narctg-———q+pcos¢
where
_ psing
&) arctg———————q_i_pcOS«J

By successive derivations with respect to ¢ we find
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do _ _p’+pgeose ., de_  pyp—gsine
do  p*+2pgcos ¢+ ¢¥  de® (p®+ 2pgcos ¢ + ¢2)?
o _ _ 4pg + (1 = 2pg) cos ¢ — 2pq cos®
dws - pQ(p Q) (pz _l_ 2pq COS © + q2)3
d'o _ (r— )sin ¢l —1 4+ 4pg+20p°¢*+8pg (1 —2pq) cos ¢ —4p** cos® ¢]
gt ~ PP (p*+2pq cos p+gH)*

and for ¢ = 0

de o) _ Po) _ _
(3;)0 = p, (3-;2)0 = 0, (d g(,3>0 = pg(p — Q).

Furthermore, one easily verifies that in the interval 0 £ ¢ < 7/2

%;—‘i; < 2vdlp ~ QI<1 — 4pg sin? g) 3
gii = 2pglp — ql(l — 4pg sin? %)_4 2
o

Hence, applying Taylor’s formula and supposing 0 < ¢ < 7, we get for x

®) X = #Ba(p — Q)¢* + M

where |

©) |M| < #5Balp — ¢|(1 — pgrd)~,

or

(10) x = L¢?

where

(11) IL| < f%Balp — ¢l(1 — pgrd)—*.

Using inequalities (9) and (11), we easily find
(12) sin ({V/Bag — x) = sin (V' Bap) — £Ba(d — )¢ cos (§/Bnp) + 1
where
(13) |r| < #5Balp — ql(1 — pgr¥)=4¢® + 543B2(p — @)2(1 — pgr?) =5,

provided 0 < ¢ < 7.
6. To find an appropriate expression of the integral J we split it into
two integrals, Ji and Js, taken respectively between limits 0, r and 7, .

We have
VEEAN b 1 (mpde
2r o 2 )
" osing T
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because sin < > % Letry =1 g; then by inequality (4)

2
2B,
f’r d<p<f°°e o, d<p_f°° e~“*dy,
™ (4 ™ [ . B, U

2

But for positive z the following inequality holds:

“e~vidy e
(14 [e
consequently
e 1Bar? e—’}'\/ﬁ;
f B.s® 3B

Noting that R(p) is a decreasing function of ¢ we haveforr < ¢ = 73

R(¢) £ R(7) < g1V,

Hence,
f R%Y log —3V/Bn,
and combining this inequa,hty with the one previously established, we
have finally
3 B _vE

7. More elaborate considerations are necessary to separate the
principal term and to estimate the error term in J;. Making use of the
inequality

x?
6 sin z

11
sinz =z

we can present J, thus:

J1 _%fr Sil'l(f\/ Bn‘P—X)d(p-l"A
)

|A] < ——T——erqadgo,
487 sin -2—; 0

&

where

and, because B < 34e—#Bw* in the interval 0 < ¢ <7

(Al < __T_le.
T

327 sin —2'
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Since r2 < 34 we find by direct numerical calculation
< 0.0205,
32r sin 7

and so, finally,
|A] < 0.0205B7%

8. Referring now to inequality (7), we can write

zﬂ_f sin (g“\/Bmp X)d ?ﬂrfe %Bq,zbln (i‘\/ n® — X)d<p+A1

where
B © B!
n ~3Bnp? 3 - Dn_ —1
(A, < o)y © e Sdep = < 0.04B;L

Combining this with the result of the preceding section, we can present
J1 thus

(16) Jl —_ %f e—-iBmpz sin (g‘ V B'n.ga _ X)dgﬁ + A2
0 ¢ :

and
|Aq] < 0.0605B;.

9. To simplify the integral in the right member of (16), we substitute
for sin (¢v/B.g — x) its expression (12). Taking into account inequal-
ity (13), we get (17):

227r f e S (s‘\/_ ¢ =2, -2 f e S0 (EV/Bo0) (ﬁ“\/— gy _

(p —9q) f ki #* cos (s‘\/ Bro)de + As

where
49| < 13- 1% Balp — gl - pqﬂ)“‘*ﬁ ioide +

9 . o
+ 5B — 4 —pary [T

o © 1
f eT¥%pdp = 8B;?, [ eiBgtdp = 3<I) Bt
0 Jo 2

But

v_.{~<~>... - B T
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and so
[4g] < 1 \/TB‘QIP — gl — pgrH)—* + 5o (p — )*1 — pgr?) By

Now pg = M4, r? £ 34, B, 2 25, consequently

(20) < 0.0385.

3 — 2\ —4
—B (1 — pgr?) Vi

4~/2r
On the other hand,

- q\ 17 , 3
1—pgr2z1-— 5{(”;‘*’) (p2 >}=-27)+%(p—q)2,

and for positive z the maximum of
25 + ha)

is attained for x2 = 1743, whence it follows that

9 s < 9 (17 8
6P — 9l — pgr’)~* = 6%(33> <~> < 0.051.
Taking into account all this, we have
|As] < 0.09]p — ¢|B;L.

10. As to integrals in the right-hand member of (17) we can write

(18) % Lre_;mzs_i&(i‘;_.__ VEBie)y, - % L _w‘aw do+ AL

20\/—

— Bn(%qr‘ Q)L €339 cos (N Bap)de + As

where
1A < _1.f e*&&.w@f < _l_B—ig—Z\/"BT»
) © 3
and
B, 2 J‘ Bt
Ag| < = e iydy < —2_e—1Vhs
l 5[ 61r BS i ,E ﬂ__\/g
2

because

-]
j; e uidy < ze=*
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for z > 1, as can easily be proved. Finally, taking into account (15),
(16), (17), (18), (19), we get

2 (" -sin (¢ Bro)
— — —‘%Bn(l’z__.__.____v
20 ] -3 fo ¢ e +

0.065 + 0.09|p — ¢
B +

k3

+ B“(%,r— Q)f ¢~ B2 cos (g"\/En-ga)dqa <

o83 - B, 3

since for B, = 25
3 T n B;“t‘ 1
1 log 5 + + S 4 2= - \/—

It now remains to evaluate definite integrals in (20). We have

(21) _2_ j; 1B & ;/ Bro) do 2 f e._%uzsnl ¢ Y

2 21 Jo U
(22) ‘_B.l'b—(%rr.__q_)j; 6—%Bn:p3¢2 COS (;\/Bnqa)dga =
) u?
= PZd | Ty d
o \/Bn R e “u?cos {udu.

Differentiating the well-known integral

- 1 fx-F
~a 2 = = |ep 4a
J; e~ cos brdx 2\/ = (@ >0)

twice with respect to b, and after that substituting a = 14, b = ¢, we
find for (22) this expression:

P—q _
£ 9 (1 — ek,
5 r——szn( $2e

On the other hand, an integral of the type

L(a) = f 2l Mg,
0 U

can be reduced to a so-called “probability integral.” In fact, the
derivation with respect to a gives

v L. _a
L'(a) = f; e 2 cos audu = 3/ 2me 2
and since L(0) = 0,

L(a) = }/2x j; Ce—turdy,

ST S N
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Consequently, integral (21) can be reduced to

1 [
—=| e ¥'du.
vEh

Having found an approximate expression of the integral J after sub-
stituting in it ¢» and {1 for ¢ and taking the difference of the results, we
find the desired expression of P.

11. The result of this long and detailed investigation can be sum-
marized as follows:

Theorem. Let m be the number of occurrences of an event in a series
of n independent trials with the constant probability p. The probability P
of the inequalities

np + 3 + fvnpg £ m = np — 3+ aVnpg

where extreme members are integers, can be represented in the form

g2 b
23 P———- 1—¢de 2 1—¢he 2 [+
(23) e +3 \/2 [( e 2 —(1—D ]

The error term w satisfies the 'mequahty

0.13 + 018lp — gl |, yvmm

lof <
npg

provided npg = 25.

By slightly increasing the limit of the error term, this theorem can
be put into more convenient form. Let ¢; and ¢, be two arbitrary real
numbers and let P denote the probability of the inequalities

np + b Vnpg = m = np + v npg.

If the greatest integers contained in
np + ta/ npg and ng — tiN/npq
are respectively, 4, and 4, the preceding inequalities are equivalent to
n — A1 é m é Ag.

To apply the theorem, we set

np — 5+ feVnpg = A, = np -+ feV'npg — 0

np + %+ Hrvnpg = n — Ay = np + tv'npg + 6,
62 and 6, being, respectively, the fractional parts of np + f:/npq and
ng — v/ npg. Hence,

1y,
Co= 1y + 2

V npq

1
Gi=1t — 2 b
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Applying Taylor’s formula, it is easy to verify that

112 ___'5_2_2

: Y 1 (= -%  (3—60¢ 2+ (3—6)e 2| _0.061

e 2du————1| e 2du-— <
‘ vV ZWf ¢ /2 ), / 2rnpq npgq

=P [T m -] - 2P [ e -
6\/2 TG 6/ 27rnpq
0.069|p — g
—1-28 ~=271P 9]
(- 7] < e

whence, finally, we can draw the following conclusion: For any two
real numbers ¢y, iz, the probability of the inequalities

vVnpg = m — np = v/ npg
can be expressed as follows:
§ — O)e i 4 (3 — fr)e7i
+
\/ 2rnpq

q —%i02 — 2
1 — e — (1 — e ] + Q
+ 2mp =[( Dot — ( Dei] +

where 6, and 6; are the respective fractional parts of

np + ta\V/ npg and ng — i/ npgq

020 +0.25lp —of .,
npq

P = e—%" du +

\/_n

and

. - 19 <
provided npg = 25.
In particular, if ¢, = —i&; = ¢, the probability of the inequality

lm — np| < tv/npq

is expressed by

6
e—ividy - ——~————e—*” + Q@
\/ f \V 2rnpg

with the same upper limit for ©. Laplace, supposing that np + t4/npgq
is an integer in which case 6, = 0 and 6, is a fraction less than (npg)—*,
gives for P the approximate expression

32
R f eividu + —
\/ 2rnpgq
without indicating the limit of the error. Evidently Laplace’s formula

coincides with the formula obtained here by a rigorous analysis, save for
terms of the same order as the error term Q.

S,

e
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To find an approximate expression for the probability P of the
inequality

m
s
it suffices to take
n
= e |,
pq
Then
Z ol 1= — 0,
P = e 2 du + _____1___'—__2 L + Q
f vV 2rnpg

and evidently P tends to 1 as n increases indefinitely. This is the second
proof of Bernoulli’s theorem. ’
Referring to the above expression for the probability of the inequalities

v/ npg = m — np £ L/ npg

and supposing that the number of trials # increases indefinitely while
t1 and ¢, remain fixed, we immediately perceive the truth of the following
limit theorem: The probability of the inequalziies

<P <y,
npq
tends to the limit
1 te
—— | e ¥y
\/ 27" &

as n tends to infinity.

This limit theorem is a very particular case of an extremely general
theorem which we shall consider in Chap. XIV.

12. To form an idea of the accuracy to be expected by using the
foregoing approximate formulas, it is worth while to take up a few
numerical examples. Let n = 200, p = ¢ = 14 and

95 = m = 105.

‘The exact expression of the probability that m will satisfy these ine-
qualities is

100 , 100-99 100 - 99 - 98
—200
2 [1+2 701 T 101102 T 101102103

+ 100 - 99 - 98 - 97 + 100 - 99 - 98 - 97 - 96 .
101-102-103 - 104 ~ 101 -102-103 - 104 - 105

200!
100!100!

P =
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The number in the brackets is found to be 9.995776 and its logarithm to
five decimals
0.99982.

The logarithm of the first factor, again to five decimals, is

2.75088,
whence
log P = 1.75070; P = 0.56325,

and this value may be regarded as correct to five decimals. Let us see
now what result is obtained by using approximate formulas. In our
example

= 0.707107

I/ npq = t\/5_0 = 5; t =

Sl

and

2 [t-¥
—— | e 2du = 0.52050.
V),

e—0.25

/1007

The additional term
= 0.04394

and by Laplace’s formula
P = 0.56444.

This is gf*eat‘er than the true value of P by 0.00119. Now, the theoretical
limit of the error is nearly

—g%"o‘ = 0.004:

so that, actually, Laplace’s formula gives an even closer approximation
than can be expected theoretically.
When npg is large, the second term in Laplace’s formula ordinarily
is omitted and the probability is computed by using a simpler expression:
A
P = 2 e 2du.

V21 Jo
In our case this expression would give
P = 0.52050

instead of 0.56325 with the error about 0.043, which amounts to about
8 per cent of the exact number. Such a comparatively large error is
explained by the fact that in our example npg = 50 is not large enough.
In practice, when npg attains a few hundreds, the simplified expression for
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P can be used when an accuracy of about two or three decimals is con-

sidered as satisfactory. In general, the larger ¢ is, the better approxima-
tion can be expected.

For the second example, let us evaluate the probability that in 6,520
trials the relative frequency of an event with the probability p = 34
will differ from that probability by less than e = 1§3. To find ¢, we
have the equation

i/ %& = en
where
n=6520, p=3%  ¢=%  e=4

which gives
130.4

1V/1564.8

= 3.2965,

and, correspondingly,

9 t %
2 f ¢ Zdu = 0.999021.
0

V/2r

Since m satisfies the inequalities
3912 — 130.4 = m =< 3912 4 1304

the fractions 6; and 6, are 8, = 0, = 0.4 and the additional term is

0.2 e—5-4334¢ = (.000009.

1/3129.6x
Hence, the approximate value of P is
P = 0.999030.

To judge what is the error, we can apply Markoff’s method of con-
tinued fractions to find the limits between which P lies. These limits are

0.999028 and 0.999044.

The result obtained by using an approximate formula is unusually good,
which can be explained by the fact that in our example £ is a rather large
number. Even the simplified formula gives 0.999021, very near the

true value.
Finally, let us apply our formulas to the solution of the inverse

problem: How large should the number of trials be to secure a probability
larger than a given fraction for the inequality

n

ﬁ—p‘ée?
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Let us take, for example, p = 14, ¢ = 0.01 and the lower limit of proba-~
bility 0.999. To find n approximately, we first determine ¢ by the
equation

f ¢ du = 0.999,

\V2r
which gives
t = 3.291.
Hence,
2
n = ——%t— = -22@—(-)(3 291)2 = 24,066, approximately.

‘We cannot be sure that this limit is precise, since an approximate formula
was used. But it can serve as an indication that for n exceeding this
limit by a comparatively small amount, the probability in question will
be >0.999. For instance, let us take n = 24,300. The limits for m

being
8,100 — 243 < m =< 8,100 4 243,

we find ¢ from the equation

f = e\~ = 3.3068
P9

e 2du 0.999057.
\/ﬁf
The additional term in Laplace’s formula being 0.000023, we find

P > 0.99908 — 0.00006 > 0.999.
Thus, 24,300 trials surely satisfy all the requirements.

and correspondingly

Problems for Solution

1. Find approximately the probability that the number of successes will be con-
tained between 2,910 and 3,090 in 9,000 independent trials with constant probability
1. Amns. 0.9570 with an error in absolute value <10~¢ [using (23)].

2. In Buffon’s experiment a coin was tossed 4,040 times, with the result that heads
turned up 2,048 times. What would be the probability of having more than 2,050
or less than 1,990 heads? Ans. 0.337.

3. R. Wolf threw a pair of dice 100,000 times and noted that 83,533 times the
numbers of points on the two dice were different. What is the probability of having
such an event oceur not less than 83,533 and not more than 83,133 times? Does the
result suggest a doubt that for each die the probability of any number of points was 14?
Ans. This probability is approximately 0.0898 and on account of its smallness some
doubt may exist.



APPROXIMATE EVALUATION OF PROBABILITIES 135

4. If the probability of an event E is 14, what number of trials guarantees a
probability of more than 0.999 that the difference between the relative frequency of

" E and ¥ will be in absolute value less than 0.01? Ans. 27,500.

5. If a man plays 10,000 equitable games, staking $1 in each game, what is the
probability that the mcrease or decrease in his fortune will not exceed $20 or $50?
) Ans. () 0.166; (b) 0.390.
6. If a man plays 100,000 games of craps and stakes 50 cents in each game, what
is the probability that he will lose less than $300? Ans. About 4 ¢0.
7. Following the method developed in this chapter, prove the following formula
for the probability of exactly m successes in n independent trials with constant

probability p:
& - 3
T =——1—6 2[1+_(2_M] + A

V 2xnpg 6/ npq

where ¢ is determined by the equation

m = np + t\/npg
and
lAl<015+025ip—q[+ 3v/7pa
(npg)?

provided npg = 25.
8. Developments of this chapter can be greatly simplified if p = ¢ = ¥4 (sym-
metrical case). In this case one can prove the following statement: The probability

of the inequalities
n 1 n n 1 n
- - - < - — — —
g g tf ‘\/; EmEg g Tl 2\/;

can be expressed as follows:

— 2 —_ 2
P S O il 1) ol Filend 1) Lot
o) 124/ 2zn

where [A| < 1/2n2 for n > 16.

9. In case of “rare” events, the probability » may be so small that even for a
large number of trials the quantity A = np may be small; for example, 10 or less.
In cases of this kind, approximation formulas of the type of Laplace’s cannot be used
with confidence. To meet such cases, Poisson proposed approximate formulas of a
different character. Let P, represent the probability that in = trials an event with
the probability » will occur not more than m times. Show that

A A2 ™
Pm=e'>‘l:1+i-+r§+ +m]+A =Qm + A
where
Al < (¢ —1)Qn if Qn = 3
Al < (@ — 1)1 - Qn) i Qu<3}
and

1 a8
N+ -+ —
4 " n

x= 2(n—)\)-



136 INTRODUCTION TO MATHEMATICAL PROBABILITY [Camar. VII
I'ndication of the Proof. We have

O (i ] G

Tag T 1.2:3---m g

A
Pm=qn 1+2+

. A
Now, since ¢ = 1 — —
n

n n

o)y D) (15,

and
o,
i1 &Y =y O+
—k —k —o" o
H<1+l X>§]I(1+>‘ x)“k O <Y
k=0 " k=0 "
Consequently
n (A1)
) RS A
5 SBR[ TCEED] [ S R S A —
P<(1 n>e [ titiet +1-2’3"'m]
But
n A2
_—_
n
whence .
A A2 A
X . = ¢~ - - T o o I
P-m<€me Qm € |:1+1+12+ +1.2.3.-.m]
On the other hand,
n
— e - 1
L—P, = E nn — 1) '(n »+ )!,L_,,p,,=
p=m-+1 "
1 —_—
i (1_..)(1_2 R 1
o 2 n n n AE
=q 7 1.2-3 ... 4
p=m-41
‘whence
1 ""Pm < Ex(l - Qm)
and

Py > eXQn + 1 — €X.
The final statement follows immediately from both inequalities obtained for Py,
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10. With the usual notation, show that

Am
S Shil
Tu = m!Q
where
mh (n—m)A2 m(m—1)
o) mmol) (n — m)\e m
Q =" 2n 2n [1 — 9< . .

3(n—>\)3+2n(n—m) i 0<e<d

Indication of the Proof. Referring to Chap. I, page 23, we have

A )\ n—m m=—1
m! n 2n

But
A\ __)‘+zl)‘_(n—-m))\2 m—1 __m(m—-l)
(1—- <e n m: 1——',i <e n
n 2n
whence
A mh_ (n—m)kz_m(m—-l)
Tm < __e—)\ .en 2n2 2n
m!

On the other hand,

n—m —(n—m) _ m—X\_ (n—m)A? (n—m)\
(1 - )'\> - (1 - ) > ¢ TR a0 3o

n n — X\
2 m m—1 m m—1 _m(m—1)
1——)2 ={1+ 2 >e 2m—m.
n n —m
Hence
A\ m—1 _ ln_}_('n—m))\‘l_m(m—l) _(n—m)X’_ m3
(1 - —> (1 _@> 5> M 2 I e 3m—N% Znn—m),
n n

and a fortiori

n—m m=—1 mh (n—m)A2 m(m—1) — 3
(1 _l> (1 - ’ﬁ) T > e‘“T——m‘“T[l (= m\
n

n - 3(n —\)3
_m
- 2n(n — m) '

If X and m are both small in comparison to n the above-introduced factor @ will be
near 1. Under such circumstances we may be entitled to use an approximate formula
due to Poisson

)\m

T = —e™,
ml
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The preceding elementary analysis gives means to estimate the error incurred by using
this formula.

11. Apply the preceding considerations to the case n = 1,000, p = g9, A = 10
and m = 10. Ans. 0.1256 < T, < 0.1258. Poisson’s formula gives 0.1251—a -
very good approximation. Alo, 0.5807 < P < 0.5863. Taking P, = 0.583, the
error in absolute value will be less than 3.3 - 1073, By a more elaborate method it is
found P, = 0.5830.
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CHAPTER VIII
FURTHER CONSIDERATIONS ON GAMES OF CHANCE

1. When a person undertakes to play a very large number of games
under theoretically identical conditions, the inference to be drawn from
Bernoulli’s theorem is that that person will almost certainly be ruined
if the mathematical expectation of his gain in a single game is negative.
In case of a positive expectation, on the other hand, he is very likely to
win as large a sum as he likes in a sufficiently long series of games.
Finally, in an equitable game when the mathematical expectation of a
gain is zero, the only inference to be drawn from Bernoulli’s theorem is .
that his gain or loss will likely be small in comparison with the number of
games played. '

These conclusions are appropriate however, only if it is possible to
continue the series of games indefinitely, with an agreement to postpone
the final settling of accounts until the end of the series. But if the
settlement, as in ordinary gambling, is made at the end of each game,
it may happen that even playing a profitable game one will lose all his
money and will have to discontinue playing long before the number of
games becomes large enough to enable him to realize the advantages
which continuation of the games would bring to him.

A whole series of new problems arises in this connection, known as
problems on the duration of play or ruin of gamblers. Since the science
of probability had its humble origin in computing chances of players in
different games, the important question of the ruin of gamblers was
discussed at a very early stage in the historical development of the
theory of probability. The simplest problem of this kind was solved by
Huygens, who in this field had such great successors as de Moivre,
Lagrange, and Laplace.

2. It is natural to attack the problem first in its simplest aspect, and
then to proceed to more involved and difficult questions.

Problem 1. Two players A and B play a series of games, the proba-
bility of winning a single game being p for A and ¢ for B, and each game
ends with a loss for one of them. If the loser after each game gives his
adversary an amount representing a unit of money and the fortunes of
A and B are measured by the whole numbers a and b, what is the proba-
bility that A (or B) will be ruined if no limit is set for the number of
games?

139
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Solution. It is necessary first to show how we can attach a definite
numerical value to the probability of the ruin of A if no limit is set for
the number of games. As in many similar cases (see, for instance, Prob.
15, page 41) we start by supposing that a limit 7s set. Let n be this
limit. There is only a finite number of mutually exclusive ways in which
A can be ruined in n games; either he can be ruined just after the first
game, or just after the second, and so on. Denoting by p1, ps, - - . Pa
the probabilities for A to be ruined just after the first, second, . . . nth
game, the probability of his ruin before or at the nth game is

p1+102+ o D

Now, this sum being a probability, must remain <1 whatever n is.
On the other hand, each term of this sum is =0 for the same reason.
Both remarks combined, show that the series

L+ P2t ps+ - -

is convergent. We take its sum as the probability for A to be ruined
when nothing limits the number of games played. So it is clear that
this probability, although unknown, possesses a perfectly determined
numerical value. Let us denote by y. the probability for A to be ruined
when his fortune is . The probability we seek is y,. Obviously,

(1> Yo = 1,
for A is certainly ruined if he has no money left. Similarly
2) Yarp =

because if the fortune of 4 is a + b, it means that B has no money where-
with to play, and certainly the ruin of 4 is then impossible. Further,
considering the result of the game immediately following the situation
in which the fortune of A amounted to z it is possible to establish an
equation in finite differences which y, satisfies. For, if A wing this game
(the probability of which case is p), his fortune becomes z 4+ 1 and the
probability of being ruined later is y.41. By the theorem of compound
probability, the probability of this case is py,+i. But if A loses (the
probability of which is ¢), his fortune becomes z — 1 and the probability
that the one possessing this fortune will be ruined is y,-1. The proba-
bility of this case is ¢gy.-1. Now, applying the theorem of total proba~
bility, we arrive at the equation

@ Yz = DYori + @Yor.
This equation has a particular solution of the form a* where a is a
root of the equation

a = pa® + q.
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If p 5 q there are two roots
1,4
p

and, correspondingly, there are two distinct particular solutions of

equation (3):
1 and (_'Z) .
4

el
y + s

is also a solution of (3) for arbitrary €' and D. Now, we can dispose of
C and D so as to satisfy conditions (1) and (2). To this end we have the
equations

Obviously,

C+D=1
pa+b0 + qa+bD — 0’
whence
- N
qFs — pot¥ et — pa+b’
and
yz _ qa+bpz —_ pa+qu

It remains to take x = a to obtain the required probability

Yo = 9%(¢®* — P _ ¢(® —¢%)
qa+b — pa+b pa-i-b — qa-i-b

that the player A possessing the fortune a will be ruined. Similarly,
the probability of the ruin of B is

. = PPt — )
4 pots — guth
It turns out that
ya + Zp = 1,

so that the probability that the series of games will continue indefinitely
without A or B being ruined, is 0. The probability 0 does not show the
impossibility of an eternal game, because this number was obtained,
not by direct enumeration of cases, but by passage to the limit. Theo-
retically, an eternal game is not excluded. Actually, of course, this
possibility can be disregarded.
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If p =gq = 14, so that each single game is equitable, the preceding
“solution must be modified. In this case, the above quadratic equation
in o has two coincident roots = 1, and we have only one particular
solution of (8), ¥y, = 1. But another particular solution in this case is
z, 80 that we can assume

Yy, = C + Dz
and determine C and D from the equations
C=1;, C+Dl@+b) =0.
Thus, we find that °

. 1 _— z
Y= = a+b
and for z = a

- _b

Y« =3 F0b

Similarly, giving 2z, the same meaning as above,

A . J

*Ta+b

If, therefore, each single game is equitable, the probabilities of ruin are
inversely proportional to the fortunes of the players. The practical
conclusion to be derived from this theoretical result is sheer common
sense: It is unwise to play indefinitely with an adversary whose fortune
is very large without submitting oneself to the great risk of losing all
one’s money in the course of the games, even if each single game is
equitable. Gamblers who gamble at an even game with any willing
individual are in the same condition as if they were gambling with an
infinitely rich adversary. Their ruin in the long run is practically
certain.

If single games of the series are not equitable, that is, p ¢ ¢ the
conclusion may be different. Supposing p > ¢, we have a case when
the expectation of 4 is positive;in each single game, A has an advantage
over his adversary. The above expression for y, may be written in the
form

ana, hecause ¢/p < 1, it is easy to see that y, remains always less than

G
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and converges to this number when b becomes infinite. Thus, playing a
series of advantageous games even against an infinitely rich adversary,
the probability of escaping ruin is

-

If a is large enough, this can be made as near 1 as we please, so that a
player with a large fortune has good reason to believe that in the course
of the games he will never be ruined, but that actually he is very likely
to win a large sum of money.

This conclusion again is confirmed by experience. Big gambling
institutions, like the Casino at Monte Carlo, always reserve certain
advantages to themselves, and, although they are willing to play with
practically everybody (as if they played against an infinitely rich adver-
sary) the chance of their being ruined is slight because of the,large
capital in their possession.

3. In the problem solved above the stakes of both players were
supposed to be equal, and we took them as units to measure the fortunes
of both players. Next it would be interesting to investigate the case in
which the stakes of A and B are unequal. An exact solution of this
modified problem, since it depends on a difference equation of higher
order, would be too complicated to be of practical use. It is therefore
extremely interesting that, following an ingenious method developed by
A. A. Markoff, one can establish simple inequalities for the required
probabilities which give a good approximation if the fortunes of the
players are large in comparison with their stakes.

Problem 2. If the conditions presupposed in Prob. 1 are modified,
in that the stakes of A and B measured in a convenient unit are « and 38
and their respective fortunes are ¢ and b, find the probabilities for A or
B to be ruined in the sense that at a certain stage the capital of A will
become less than « or that of B less than 8.

Solution. ILet y. be the probability for A to be forced out of the
game by the lack of sufficient money to set a full stake o when his
fortune amounts to z and consequently that of his adversaryis ¢ +b — z.
In the same way as before, we find that y. is a solution of the equation
in finite differences:

4) Yo = DYois + Qo

To determine y. completely, in addition to (4), we have two sets of
supplementary conditions:

(5) yu=y1=-"=ya_1=1
(6) Yot = Yaqp=1 = * * ° = Yapp—g—p = 0.



144 INTRODUCTION TO MATHEMATICAL PROBABILITY [Crap. VIII

Equation (5) expresses the fact that if the fortune of A becomes less
than his stake, it is certain that A must quit. On the contrary, equation
(6) indicates the impossibility for A to be ruined if the other player B
does not have enough money to continue gaming. Equation (4) is an
ordinary equation in finite differences of the order o + 8. It has par-
ticular solutions of the form 64 where @ is a root of the equation

@) posts — <+ g = 0.

The left-hand member for 8 = 0 is positive and with increasing 8 de-
creases and attains a minimum when

(63

8 =

po p

and then steadily increases and assumes positive values for large 6.

This minimum must be negative or zero because § = 1 is a root of (7).

Now, if it is negative, there are two positive roots of (7). One of them
is § = 1 and another > or <1 according as

[24

o
p < m or P> m
or else
P8 —qa <0 or >0.

That is, the positive root of (7) different from 1is >1 when single games
are favorable to B and <1 if they are favorable to A. In case of equita-
ble games, both positive roots coincide and 6 = 1 is a double root of (7).
All the other roots of (7) are negative or imaginary.

The regular way to solve the problem would be to write down the
general solution of (4) involving & + g8 arbitrary constants to be deter-
mined by conditions (5) and (6). As this method would lead to a com-
plicated expression for y,, we shall refrain from seeking the exact solution
of our problem, and instead, following A. A. Markoff’s ingenious remark,
we shall establish simple lower and upper limits for y, which are close
enough if the fortunes of the players are large in comparison with their
stakes.

Lemma. If y. is a solution of equation (4) and none of the numbers

Yo Y1, « - - Yau1
Yatdy Yatb—1, « « - Yarb—pi1
18 negative, then y, = 0 forx = 0,1,2, . . . a + b.
Proof. TLet u (k =0,1,2, ... a— 1) represent the probability

that the player A whose actual fortune is # (and that of his adversary
a + b — =) will be forced to quit when his fortune becomes exactly = %.
Evidently u® is a solution of equation (4) satisfying the conditions
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u® =0 for x=0,1,...k—1,k+1,...>a—-1;a+b,
a+b—1,...a4+b—-8+1; uP = 1. '

" Similarly, if ¥2(1 =0, 1, 2, . . . 8 — 1) represents the probability that
the player B will be forced to quit when the fortune of A becomes exactly
=a + b — 1, ¥ will be a solution of (4) satisfying the conditions
v =0 for 2=0,1,2...a—-1;a+b,...a+b—-1+1,
a+b—1—1, ... a+b—-8+1; v, = L

Thus we get a -+ B particular solutions of (4), and it is almost evident
that these solutions are independent. Moreover, since they represent

probabilities, 4 = 0, v Z 0 forz =0,1, 2, ... a +b. Now, any
solution ¥, of (4) with given values of

Yo, Y1, - -« Yauu
Yatby Yatrb—1, + - + Yaib—p+1

can be represented thus

©oa—1 8—1
Yz = Eyku;’" + Eya+b_zv;”.
k=0 1=0

Hence, y, = 0forz =0,1,2, . . . a + b if none of the numbers
Yo, Y1, - - + Y1
Yatbdy Yotb—1) - - - Yatbpt1

is negative. This interesting property of the solutions of equation (4)
derived almost intuitively from the consideration of probabilities can be
established directly. (See Prob. 9, page 160.)

The lemma just proved yields almost immediately the following
proposition: If for any two solutions y, and y. of equation (4) the
inequality

yll 2 y/
holds for
=012 ...a—1;a4+ba+b—-1,...a+b—-8+1,
the same inequality will be true for all z =0, 1,2, . .. a4+ b It
suffices to notice that y. = y.' — ¥, is a solution of the linear equation
(4) and, by hypothesis, y. =2 0 for =0, 1, 2, . . . «—1; a + b,

a+b—-1,...a+b—-8+1
Now we can come back to our problem. First, if the mathematical
expectation of A

P8 — qa
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is different from 0, equation (7) has two positive roots: 1 and 6. With
arbitrary constants C and D

ys = C 4 D6

is a solution of (4). Whatever C and D may be, y, as a function of z
varies monotonically. Therefore, if ¢ and D are determined by the
conditions

yo = 1, Z’J;+b—ﬁ+1 =0
we shall have
y, £ 1 if 2=012...a—-1
y'<0 if az=a+b—8+1...a+b

and by the above established lemma, taking into account conditions (5)
and (6), we shall have for the required probability the following inequality
Ya Z Y

or, substituting the explicit expression for y.,
9a+b-—ﬁ+1 — g=
Ys Z mmr o
If, on the contrary, C and D are determined by
yc,'—l = 17 yé+5 =0
we shall have
ylz1 if z2=012 ...a—1
Y,z 0 if z=a4+b—-p4+1...a+b

and
0a+b—~a+1 — fprotl

Y = got—ati — ]

Finally, taking # = a, we obtain the following limits for the initial
probability y.:
et —1 0 —1
s Yo = @Ta-n—_bizl‘f‘_‘_’—l

They give a sufficient approximation to y. if @ and b are large com-
pared with « and 8.
If each single game is equitable, equation (4) has a solution with two
arbitrary constants:
yy = C + Dxz.
Proceeding in the same way as before, we obtain the inequalities

b—p8+1 b
PRy g L Ry ———

IIA
fiA
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4. To simplify the analysis, it was supposed that nothing limited the
number of games played by 4 and B so that an eternal game, although
extremely improbable, was theoretically possible. We now turn to
problems in which the number of games is limited.

Problem 3. Players A and B agree to play not more than n games.
The probabilities of winning a single game are p and ¢, respectively, and
the stakes are equal. Taking these stakes as monetary units, the fortune
of A is measured by the whole number ¢ and that of B is infinite or at
least so large that he cannot be ruined in n games. What is the proba-
bility for A to be ruined in the course of » games?

Solution. Let y.,. represent the probability for A to be ruined when
his fortune is measured by the number z and he cannot play more than
t games. The reasoning we have used several times shows that y..
satisfies a partial equation in finite differences:

(8) Yar = PYzt1,t—1 + QYz—1,e-1-

Moreover, if A has no money left, his ruin is certain, which gives the
condition

9) yor=1 if ¢£=0.

On the other hand, if A still possesses money and cannot play any more,
his ruin is impossible, so that

10) Yzo =0 if z > 0.

Conditions (9) and (10) together with equation (8) determine ¥
completely for all positive values of z and z. To find an explicit expres-
sion for y,,: we shall use Lagrange’s method. Equation (8) has particular
solutions of the form

azﬁt
where « and § satisfy the relation
aB = pa® + q.

We can solve this equation either for 8 or for « which leads to two different
expressions of ¥, Solving for 8 we have infinitely many particular
solutions

a®(pa + ga™?)!

with an arbitrary « and we can seek to obtain the required solution in the
form

os = gz | 2 e+ g @)
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where f() is supposed to be developable in Laurent’s series on a certain
circle ¢. To satisfy (10) we must have

o | @ fl@)da =0 for  s=1,2,3, ...

which shows that f(«) is regular within the circle c. To determine f(«)
completely, we must have, according to (9)

1 el ' _
%ﬁ(pa-[—qa )‘Tda—l for t=20,1,2, ...
All these equations are equivalent to a single equation
1 fla)de _ 1
2mt Jox — pea® —ge 1 — e

holding good for all sufficiently small . The integrand has a single pole
ap within ¢ defined by .

ay — peag — ge = 0,

and the corresponding residue is

g + pog f(ao).

2

q — pay
But this must be equal to
1
1 —e
or, substituting for e its expression in aq
g + pag

ped — a0+ ¢
and hence for all sufficiently small e,

' - _ 9~ pag .
flao) = pai — a0 + ¢’

that is, if
__9—p
flo) = 4B

all the requirements are satisfied. Taking into account that p + ¢ = 1,
we have

1 pa
f(a)_l_a+q_pa7

@ =1+ S[1+ (e

and also
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The expression for y,; is therefore

1 z— — n
Yar = 5 ca Ypa + qo 1)‘2%0& do

n=0

where ¢ = 1land ¢, =1+ (p/g)”if n = 1.
It remains to find the coefficient of 1/« in the development of the
integrand in a series of descending powers of a. Since

¢
Y (pa + qa—t)t = ZC%pzqz—zazzﬂ—t—l
1=0

this coefficient is given by the sum

it—zx

2

ZC%p’q“’cz_z_zz

1=0
extended over all integers [ from 0 up to the greatest integer not exceeding
I —z

—5— Hence, the final expression for the probability ya,. is

n—a

2
(11) Yan = qaz C’i(pq)l[pn—a—ﬂ + qn'—a—-%]
=0

with the agreement, in case of an even n — @, to replace the sum i
p() + qO \
n—a |
2
member of the preceding expression should be replaced by 0 if n < a,
which is in perfect agreement with the fact that A cannot be ruined in less
than a games.

The second form of solution is obtained if we express « as a function of
B. The equation

corresponding to I = by 1. It is natural that the right-hand

pel —af +q=0
having two roots, we shall take for « the root
_B— VB — 4pqg
2p
determined by the condition that it vanishes for infinitely large positive
B and can be developed in power series of 1/8 when |8| > 24/pg. Using

[24
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« in this perfectly determined sense, it is easy to verify that
_ L ((8= B = 4pa) £ 4
Yot = 355, %p F—1
where ¢ is a circle of radius >1 described from 0 as its center, satisfies all

the requirements. For it is & solution of equation (8). Next, forz = 0
and t = 0,

B S 5 ST ST -
Yo = —2_1;'_516 (E + 5 + >d,8 =1
and, finally, for{ = 0 and z > 0
_ 1 </3—\/62-—4m "8 _,
Y=o =35 ), 2p F—1

because the development of the integrand into power series of 1/8
starts at least with the second power of 1/8.

To find y,,; in explicit form, it remains to find the coefficient of 1/8
in the development of

(B—x/62—4pq * B |
2p F—1 |
in a series of descending powers of 8. Let

(B—VB2~4pq>"=§+lz+1 4.
2p Bz ‘BZ-H
multiplying this series by
[§__‘E?t_]-_=l3t—1+ﬁt—2+...+% E]LQ ‘
we find that the coefficient of 1/8 in the produect is i
Lot lopi+ - - - + 1, ’

o

and hence
' yz,t=laz+lz+1+'.'+lt

provided ¢ = z, for otherwise y.: = 0. The quadratic equation in «
can be written in the form

a = %(q + po?)

and the development of any power of its root vanishing for § = « into
power series of 1/8 can be obtained by application of Lagrange’s series.

We have
M NE i e Cl Y0
® = 2 n! [ gt ]e=0’

n=z
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but

1[4 + pzz)"f’_l} @tz
nl dé’n—-l £=0 - 7:!(1; + i)! ey

ifn=2+2,and =0if n = 2 4+ 24 4+ 1. Hence,

2@+ 20— 1)! .
lz+2i = Wq + 14
lz+2i+1 = 0,
and finally

(12)  Yam = q“[l + +pq + a(a + 3)( ) + ala 41—.4%(73'!— 5)(pq)3 +

ala + & +11_> - -(O;a + 2% — 1>(pq)k]

+ -+

n ; or k= n_—zl_—_g according as n and a are of the
same parity or not.

5. The difference Yo,» — Yan—1 gives the probability for the player A
to be ruined at exactly the nth game and not before. Now, this differ-
ence is 0 if n differs from a by an odd number, so that the probability of
ruin at the (a + 2¢ — 1)st game is 0. That is almost evident because
after every game the fortune of A is increased or diminished by 1 and
therefore can be reduced to 0 only if the number of games played is of

the same parity as a. If n = a + 2¢, the difference 9o,n — Yan—1 is

ala +1+1) - (a+27,—1)a+z%
1-2-3 -

where k =

Such, therefore, is the probability for A to be ruined at exactly the
(a + 27)th game. The remarkable simplicity of this expression obtained
by means which are not quite elementary leads to a suspicion that it
might also be obtained in a simple way. And, indeed, there is a simple
way to arrive at this expression and thus to have a third, elementary,
solution of Prob. 3.

Considering the possible results of a series of a + 2¢ games, let A
stand for a game won by A, and B for a game lost by A. The result of
every series will thus be represented by a succession of letters A and B,
We are interested in finding all the sequences which ruin 4 at exactly
the last game. Because the fortune of A sinks from a to 0 there must be
t letters A and 7 4 a letters B in every sequence we consider. Besides,
there is another important condition. Let us imagine that the sequence
is divided into two arbitrary parts, one containing the first letter and
another the last letter of the sequence. Let z be the number of letters B,
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and y that of letters 4 in the second or right part of the sequence. There
will be @ -+ ¢ — z letters B and ¢ — y letters 4 in the first or left part.
It means that the fortune of 4 after a game corresponding to the last
letter in the left part, becomes
a+i—y—(a+i1—2z)=x—y

and since A cannot be ruined before the (a + 2¢)th game,  must always
be >y. That is, counting letters A and B from the right end of the
sequence, the number of letters B must surpass the number of letters 4
at every stage. Conversely, if this condition is satisfied the succession
represents a series of games resulting in the ruin of A at the end of the
series and not before.

To find directly the number of sequences satisfying this requirement
is not so easy, and it is much easier, following an ingenious method
proposed by D. André, to find the number of all the remaining sequences
of 7 letters A and 7 + a letters B. These can be divided into two classes:
those ending with 4 and those ending with B. Now, it is easy to show
that there exists a one-to-one correspondence between successions of these
two classes, so that both classes contain the same number of sequences.
For, in a sequence of the second class (ending with B) starting from
the right end, we necessarily find a shortest group of letters containing
A and B in equal numbers. This group must end with A. Writing
letters of this group in reverse order without changing the preceding
letters, we obtain a sequence of the first class ending with 4. Con-
versely, in a sequence of the first class there is a shortest group at the
right end ending with B and containing an equal number of letters A and
B. Writing letters of this group in reverse order, we obtain a sequence
of the second class.

An example will illustrate the described manner of establishing the
one-to-one correspondence between sequences of the first and of the
second class. Consider a sequence of the first kind

B|BBABAA.

The vertical bar separates the shortest group from the right containing
letters A and B in equal numbers. Reversing the order of letters in this
group, we gbtain a sequence of the second class

B|AABABB

and this sequence, by application of the above rule, is transformed again

into the original sequence of the first class. The number of sequences

of the first class can now be easily found. It isthe same as the number of
all possible sequences of ¢ — 1 letters 4 and a + 7 letters B, that is,
(@+2Z—-1)! (@+i+D@+i4+2) - -(a+2%—1)
G—=1Dla+9)! 1-2- - @G-1 ’
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The total number of sequences in both classes is

oati+D@+i+2) - - (a+2—1)
° 1-2---@G—1)

Hence, the number of sequences leading to ruin of 4 in exactly a + 2¢
games is

(a+i+D@+i+2) - --(a+2)
_olati+DN@+i+2) - @+2—1) _
- 1-2---@G—1)
_ala+i14+1) - (a+2i—1)
- 1-2 - -1

As the probability of gains and losses indicated by every such sequence
is the same, namely, ¢**p’ the probability of the ruin of A in exactly
a + 2¢ games is

aa@a+i+1) - --(a+2-1) .. .
1.2.3...1' q p

and hence the second expression found for y,,, follows immediately.

The problem concerning the probability of ruin in the course of a
prescribed number of games for a player playing against an infinitely
rich adversary was first considered by de Moivre, who gave both the
preceding solutions without proof; it was later solved completely by
Lagrange and Laplace. The elementary treatment can be found in
Bertrand’s ““Calcul des probabilités.”

6. Formulas (11) and (12), though elegant and useful when # is not
large, become impracticable when 7 is somewhat large, and that is pre-
cisely the most interesting case. Since the question of the risk of ruin
incurred in playing equitable games possesses special interest, it would not
be out of place at least to indicate here, though without proof, a con-
venient approximate expression for the probability ¥,,. in case of a large
nand p = ¢ = 4. Let t be defined by

a
V2 +3%)’
then for n = 50 it is possible to establish the approximate formula
2 [t 9
an =1 ——= 1] ¢%dz + L
Y V7)o 6n

where —1 < § < 1. Suppose, for instance, that the fortune of a player
amounts to $100, each stake being $1, and he decides to play 1,000,
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5,000, 10,000, 100,000, 1,000,000 games. Corresponding to these cases,
we find

t = 2.2354, 0.9999, 0.7071, 0.2236, 0.0707

and hence

2 f ‘edz = 0.9984, 0.8427, 0.6827, 0.2482, 0.0796.
\/; 0

The corresponding approximate values of ¥100,» are
0.0016, 0.1573, 0.3173, 0.7518, 0.9204.

Thus, for a player possessing $100 there is very little risk of being ruined
in the course of 1,000 games even if he stakes $1 at each game. The risk
is considerably larger, but still fairly small, when 5,000 games are played.
In 10,000 games we can bet 2 to 1 that the player will still be able to
continue. But when the limit set for the number of games becomes
100,000, we can bet 3 to 1 that the player will be ruined somewhere in the
course of those 100,000 games. Finally, there is little chance to escape
ruin in a series of 1,000,000 games. The risk of ruin naturally increases
with the number of games, but not so fast as might appear at first sight.

7. We conclude this chapter by solving the following problem,
where the fortunes of both players are finite.

Problem 4. Players A and B agree to play not more than » games,
the probabilities of winning a single game being p and ¢, respectively.
Assuming that the fortunes of A and B amount to a and b single stakes
which are equal for both, find the probability for A to be ruined in the
course of n games.

Solution. Let z.;: be the probability for the player A to be ruined
when his fortune is  (and that of his adversary ¢ + b — x) and he can
play only ¢ games. Evidently z,,; satisfies the equation

(13) 22t = DZzile—1 T QRz—1,t—1

perfectly similar to equation (8), but the complementary conditions
serving to determine z,,; completely are different. First we have

(14) , 2o =1 for t=0.
Next,
(15) Zawpe =0 for t20,

because if A gets all the money from B, the games stop and 4 cannot be
ruined. Finally,

(16) 250 =0 for =123 ...a+b~—1,
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because A, having money left at the end of play, naturally cannot be
ruined.
Since (13) has two series of particular solutions
a®Bt and o' B¢
where « and o' are roots of the equation
pa? — Ba+ g =0

both developable into series of descending powers of 8 for |8| > 1, we
shall seek 2., in the form

2as = g | U0 + @)l

Here the integration is made along a circle of sufficiently large radius and
F(8) and ¢(B) are two unknown functions which can be developed into
series of descending powers of 8. Obviously z,,; satisfies (13) identically
inzand{ Forz = 0andi¢ = 0 we have the condition

Zln—.ﬁ[f(ﬁ) L @Bd8 =1; =012, ...

-

which is satisfied if
1

(17) F(B) + o(6) = =1
Condition (15) will be satisfied if
(18) a®tHf(B) + a’*tPe(B) = 0

and it remains to show that at the same time (16) is satisfied. Solving
(17) and (18), we have
o'etb 1
j@8) = e a—— B—1
— ottt 1
(8) = PRz — B—1

and
- re _ a/a+bax —_— aa+ba/:c _
(19) f(B)e= + pB)a’s = (B — (o>t — aotY) - v
q z ootz — qotb—z
- 5 B — 1)(a’a+b — aa+b>'
Now let a be the root vanishing for 8 = « and o« the other root whose

development in series of descending powers of 8 starts with the term
containing 8. Evidently the development of (19) for

r=1,23,...a+b—1
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does not contain terms involving the first power of 1/8, and hence
200 =0if 2=1,2,8,... ¢+ b—1 as it should be. The solution
of (13) satisfying (14), (15), (16) being unique, its analytical expression is
therefore

q z
(5) fa’a+b—z — otttz B3

T J
2 a'oth — gttt B3 — ]

Ret =

whence forzx = aand t = n

&)
_\» f alt — b 6ndﬁ

2 = <
an ot Qe T gett g — 1

To find an explicit expression for 2,,, it remains to find the coefficient of
1/8 in the development of

P _ q a OLI b . ab ‘Bn
- 2_0 /ot — gt g ]
in series of descending powers of 8. This can be done in two different
ways. First we can substitute for o’ its expression in «:

a =

and present P in the form

or developing into series

b a+b a+2b
— a 2 a+2b (2) 3a+2b . <£) 3a+4b o o :l Bﬂ .
d [a <Q> ) @ g T F—1

But the coefficient of 1/8 in

amBn
B—1
by the second solution of Prob. 3 is the probability ¥m,. for a player with

a fortune m to be ruined by an infinitely rich player in the course of n
games. Hence, the final expression for z,,, is

b a+b a+2b
Ran = Yan — (g) Yot2b,n T <§> Ysat2b,n — (g) Yaartbn + ¢ 0,
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the terms of this series being alternately of the form

(p>ka+kb
5 Y (2k+1) a+-2kb,n
and

ka+(k+1)b

-(2)
Y (2h+Da+(2k+2)b,n
q

for k=0,1,2 .... The series stops by itself as soon as the first

subscript of y,,. becomes greater than n.
To obtain a second expression of z,,, we notice that

/b /b b alotd — otb

= = =Q+R

alotd — poth o — a o — «

— ab o

-

is a rational function of 8 whose denominator

aletb — potd

a — «

is a polynomial in 8 of the degreea + b — 1. To find the roots of B = 0,
we set B8 = 24/pq cos . Since, then,

o’ = \/%ew, o = \/Z%e—"?,

R = (_q_ a+g_lsin (@ + b)e.
P sin ¢

we have

The equation

sin (a + b)<p
sin @
having roots
hmr
(ph—-m, h—1,2,...a+b-1,

the ¢ + b — 1 roots of R are
Br = 24/ pg cos ¢n.

Now we can resolve the rational function P into a sum of simple elements

as follows:
a+b-1

P =E@) + 525 +Eﬁ_ﬁh

where

_ et =Y
A—Wb
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and for h > 0

‘= _ a1 \2 sin ©hn . n
An CAVE)) 2) @ T B — 257 cos on) sin agn(cos ¢n)

while E(B) is the integral part of P. The coefficient of 1/8 in the develop-
ment of P being

we have a new explicit expression for z,,,:

a( b b)
o0 o SED -
ga+b—-1 . ‘lrh
_ eVt ) ﬁnrw(mswh>{
¢+d. f:1—2\/z->?zéosa————~—7fb @b e+b

This expression shows clearly that z.., with increasing n, approaches
the limit
b = T =)

a0 Pt — goth
representing the probability of ruin when the number of games is unlim-
ited, in complete accord with the solution of Prob. 1.

The first term in (20) naturally must be replaced by E—-I-i)—_l; in case

p =g = 14. This form of solution was given first by Lagrange.

Problems for Solution

1. Players A and B with fortunes of $50 and $100, respectively, agree to play until
one of them is ruined. The probabilities of winning a single game are 24 and 13,
respectively, for A and B, and they stake $1 at each game. What is the probability
of ruin for the player A? Ans. Very nearly 2750 = 8.88-10716,

2. If 4 and B at each single game stake $3 and $2, respectively, and have fortunes
of $30 and $20 at the beginning, what is the approximate value of the probability
that A will be ruined if the probability of his winning a single game is (a) p = 3¢;

(b)) p = 35?2
Ans. (@) 0.40 + A; [A] < 1.7 X 107%; (b) 0.96 + 4; [A] < 4.6 X 1073

3. A player A with the fortune $a plays an unlimited number of games against an
infinitely rich adversary with the probability p of winning a single game. He stakes
$1 at each game, while his rich adversary risks staking such a sum 8 as to make the
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game favorable to A. What is the probability that A will be ruined in the course
of the games? Give numerical results if (a) a =10, p = ¥4, B = 3; (b) ¢ = 100,
p =13%,8=3. Ans.Let 8 < 1bea positive root of the equation pss+* — § + ¢ = 0.
The required probability P is: P = g2,

In case (@) P = 0.002257; in case (b) P = 3.43 - 10~2",

4. A player A whose fortune is $10 agrees to play not more than 20 games against
an infinitely rich adversary, both staking $1 with an equal probability of winning a
single game. What is the probability that A will not be ruined in the course of
20 games? Ans. 0.9734.

5. Players 4 and B with $1 and $2, respectively, agree to play not more than n
equitable games, staking $1 at each game. What are the probabilities of their ruin?

2 3+ (=D 18— (=D
AnS.FOrA.g—m,fOrB.g—W'

6. Players 4 and B with $2 and $3, respectively, play a series of equitable games,
both staking $1 at each game. What are the probabilities of their ruin in n games?
Give the numerical result if n = 20. Ans.

4 1 nte _ nte
ForA:§-——{(\/g+) +({i 1) }; e=1if nis odd, e=2if niseven.

5 5 4
2 4 \*" —1\*"” :
For B:E_E{<\/i+ ) —(Vi > }; n=1if nis even, n=2if nis odd.

7. Find the expression of ya,», the probability of the ruin of 4 when his adversary
B is infinitely rich, corresponding to formula (20). Ans. From the definition of a
definite integral it follows that

. :
V(1) ., ,
14 f sin ¢ sin ae

k3

Yon = Ya,0 — (cos @)"de

01 — 2V pgcos ¢
where
Yoo =1 I p =g

7\* .
Yoo = | = if P >q.

If the games are equitable and » differs from a by an even number, then

e

2 (3 fin ag

Yo =1 — 'f - (cos ¢) *ide.
0 SN @

This formula was given by Laplace.
8. Referring to the last formula in the preceding problem, show that

¥ 1 2 ’t‘zd +A
an =1 — —=] e*du
Va0

where
wn

1 2 -
Al < == += 32.
2tn  n

a

t =
V2@ + 3
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Indication of the Proof. It is important to prove the following inequalities first

n+3 ,
@ (COS ¢)n+1 < e_ 3 2 p2

sin ¢

for 0<o=~=

n+i , (mtDet
¢(cos g)~*? N R

. for 0<e¢ =
sin ¢

iy

whence

32
¢ (cos @)+ .."'5%2 1 0n +1
Ll SR —
sin ¢

ga“]; 0<6<1

provided 0 < ¢ < m/4. The rest of the proof is easy.

9. Attempt a direct proof of the important lemma (page 144) used in the discus-
sion of Prob. 2.

Hint: The proof can be based upon the following proposition! generalizing an

important theorem on determinants due to Minkowski: Let

fi = auzs + Qe + ¢ ¢ ¢ Cuia; 1=123,...n

be a system of linear forms whose coefficients satisfy the following conditions:

1) asi >0; a1 S 04f k= 45au +aus+ -+ - +au 20.

(2) One of these sums is positive.

If these forms assume nonnegative values, then every z; = 0@ = 1, 2,,. . . n).
Proof by induction: Express z, through zi, 25, . . . a3, thus:

2, = Jo = GiaZ%1 — G2 — ¢+ © = Guo1,nTn
. " Qnn

and substitute into the remaining forms. Show that the resulting forms in zi, 2,
.+« .« Zn_1 satisfy the same conditions (1) and (2). Hence, it remains to prove the
proposition for two forms, which can easily be done.
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CHAPTER IX
MATHEMATICAL EXPECTATION

1. Bernoulli’s theorem, important though it is, is but the first link
in a chain of theorems of the same character, all contained in an extremely
general proposition with which we shall deal in the next chapter. But
before proceeding to this task, it is necessary to extend the definition of
“mathematical expectation”—an important concept originating in
connection with games of chance.

If, according to the conditions of the game, the player can win a
sum @ with probability p, and lose a sum b with probability ¢ = 1 — p,
the mathematical expectation of his gain is by definition

pa — qb.

Considering the loss as a negative gain, we may say that the gain of the
player may have only two values, ¢ and —b, with the corresponding
probabilities p and ¢, so that the expectation of his gain is the sum of the
products of two possible values of the gain by their probabilities. In this
case, the gain appears as a variable quantity possessing two values.

Variable quantities with a definite range of values each one of which,
depending on chance, can be attained with a definite probability, are
called “chance variables,”” or, using a Greek term, ‘“stochastic’’ variables.
They play an important part in the theory of probability. A stochastic
variable is defined (a) if the set of its possible values is given, and (b) if
the probability to attain each particular value is also given.

It is easy to give examples of stochastic variables. The gain in a
game of chance is a stochastic variable with two values. The number of
points on a die that is tossed, is a stochastic variable with six values,
1,2, ... 6, each of which has the same probability 4. A number on
a ticket drawn from an urn containing 20 tickets numbered from 1 to 20,
is a stochastic variable with 20 values, and the probability to attain
any one of them is 14o9. Each of two urns contains 2 white and 2 black
balls. Simultaneously, one ball is transferred from the first urn into the
second, while one ball from the latter is transferred into the first. After
this exchange, the number of white balls in one of the urnsmay beregarded
as a stochastic variable with three values, 1, 2, 3, whose corresponding
probabilities are, respectively, 14, 14, 14. It is natural to extend the

concept of mathematical expectation to stochastic variables in general.
161
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Suppose that a stochastic variable x possesses n values:

21, Toy « « + Tny
and
P1, P2, - - - Pn

denote the respective probabilities for x to assume values x1, 2, . . . Ta.
By definition the mathematical expectation of z is

E(x) = p1x1 + pata + * * * + DPaln

It is understood in this definition that the possible values of the
variable z are numerically different. For instance, if the variable is a
number of points on a die, its numerically different values are 1, 2, 3, 4, 5,
6, each having the same probability, 14. By definition, the mathematical
expectation of the number of points on a die is

. Y1 +24+3+4+5+6) =35

J/ If the variable is the number on a ticket drawn from an urn containing
20 tickets numbered from 1 to 20, its numerically different values are
represented by numbers from 1 to 20, and the probability of each of
these values is 149, so that the mathematical expectation of the number
on a ticket is

Fo(l+2 4 - -+ 4+ 20) = 10.5.

2. It is obvious that the computation of mathematical expectation
requires only the knowledge of the numerically different values of the
variables with their respective probabilities. But in some cases this
computation is greatly simplified by extending the definition of mathe-
matical expectation. Suppose that, corresponding to mutually exclusive
and exhaustive cases 41, Ay, . . . An, the variable z assumes the values
Ty, T, . .. Tn, with the corresponding probabilities p1, P2, . . . Dm;
we can define the mathematical expectation of z by

E(x) = pizi + D22 + -+ + P

What distinguishes this extended definition from the original one is that
in the second definition the values 1, 25, . . . z, need not be numerically
different; the only condition is that they are determined by mutually
exclusive and exhaustive cases.

v To make this distinction clear, suppose that the variable z is the
number of points on two dice. Numerically different values of this
variable are

2,3,4,5,6,7,8,09,10, 11, 12
and their respective probabilities

'31K7 ‘326“’ '386’ '34"6" '356': '350‘7 '556‘: ’3'46‘7 >'3§B') '326’: '315'



Smc. 2 MATHEMATICAL EXPECTATION 163
Therefore, by original definition, the expectation of z is
R R R Uk LR T A LR T L R L

But we can distinguish 36 exhaustive and mutually exclusive cases accord-
ing to the number of points on each die and, correspondingly, 36 values
of the variable z, as shown in the following table:

First die Second die z First die Second die z
1 1 2 4 1 5
1 2 3 4 2 6
1 3 4 4 3 7
1 4 5 4 4 8
1 5 6 4 5 9
1 6 7 4 6 10
2 1 3 5 1 6
2 2 4 5 2 7
2 3 5 5 3 8.
2 4 6 5 4 9
2 5 7 5 5 10
2 . 6 8 5 6 11
3 1 4 6 1 7
3 2 5 6 C 2 8
3 3 6 6 3 9
3 4 7 6 4 10
3 5 8 6 5 11
3 6 9 6 6 12

The probability of each of these 36 cases being 144, by the extended
definition the mathematical expectation of z is

24+2-34+4-34+5-4+6-5+7-6+8-5+9-4+10-3411-2412
36

=7

as it should be.
It is important to show that both definitions always give the same
value for the mathematical expectation.

Let zy, %3, . . . Zm be the values of the variable z corresponding
to mutually exclusive and exhaustive cases A, A, ... 4. ‘and,
D1, P2, - - - Pm, their respective probabilities. By the extended defini-

tion of mathematical expectation, we have

(1) E(xz) = g1 + po%2 + - ° ° + Dnlm.
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The values 21, 23, . . . T» are not necessarily numerically different,
the numerically different values being
En, 80 - - - A ‘
We can suppose that the notation is chosen in such a way that
Zi, Ty, . . . & are equal to £;

Tart, Loty - - - Xp aTre equal to n;
Zps1, Toya, - - - L are equal to §;

@

, ZTi1, Tira, .‘ . x,,. a;re. equal to \.
Hence, the right-hand member of (1) can be represented thus:
(pr+p2+ + - FP)E+ Dot + a2+ - Fpn+ -+
+ D1+ P + ¢ 0 - A+ pa)h
But by the theorem of total probabilities, the sum
Prtpet 0+ P

represents the probability P for the variable z to assume a determined
value £, because this can happen in ¢ mutually exclusive ways; namely,
when z = 21, 0r 2 = 25, . . . Or £ = z,. By a similar argument we see
that the sums ’ -

Dot + Dotz + = ° ° + 1

Pot1 + Doy2 + © 0+ e

pl+1+pl+2+ v +pm
represent the probabilities @, R, . . . T for the variable z to assume
values 5, ¢, . . . \. Therefore, the right-hand member of (1) reduces

to the sum.
Pt+Qn+ Re+ - - - + 1T\

which, by the original definition, is the mathematical expectation of z.

If, corresponding to mutually exclusive and exhaustive cases, a
variable z assumes the same value a—in other words, remains constant—
it is almost evident that its mathematical expectation is a, because the
sum of the probabilities of mutually exclusive and exhaustive cases is 1.
It is also evident that the expectation of axr where a is a constant, is
equal to a times the expectation of z. '

Nors: Very often the mathematical expectation of a stochastic variable is called
its “mean value.”

MATHEMATICAL ExprcTaTION OF A SUM

3. In many cases the computation of mathematical expectation is
greatly facilitated by means of the following very general theorem:
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Theorem. The mathematical expectation of the sum of several variables
is equal to the sum of their expectations; or, in symbols,

E@x+y+z+ - +w) =E@x)+Ey) +E@z+ -+ Ew).

Proof. We shall prove this theorem first in the case of a sum of two
variables. Let z assume numerically different values zi, 2s, . . Zm,
while numerically different values of y are y1, ¥5, . . . ¥.. Inregard to
the sum z + y we can distinguish mn mutually exclusive cases; namely,
when z assumes a definite value z; and y another definite value y;, while 2
and j range respectively over numbers 1,2,3, . . . mand1,2,8, . .. n.
If p; denotes the probability of coexistence of the equalities

T= Ty Y=

we have by the extendad definition of mathematical expectation

E@+y) = Y, Dpula + v

1=1j7=1
or
@) B@+y) = zzpz,xz + 22%
i=1j= i=1j=

As the variable z assumes a definite value z; in n mutually exclusive
ways (namely, when the value z; of 2 is accompanied by the values
Y1, Y2, - - - Ya Of ) it is obvious that the sum

Zpﬁ
i=1

represents the probability p; of the equality 2 = z;. In a similar manner
we see that the sum

Epi:i
=1
represents the probability gq; of the equality y = y;. Therefore
m
2 Epvxz = 2371 Epu = zpixi = E(x),
i=1j= i=1 j= 2=1

and similarly

n

S Sy = 2, 27717?/: Saw: = By);
J=1

t=17=1 j=li=
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that is, by (2)
E@x+y) = E@) + E()

which proves the theorem for the sum of two variables.

If we deal with the sum of three variables z + y + 2, we may consider
it at first as the sum of z + ¥ and 2z and, applying the foregoing result,
we get

E@x+y+2) =E@=x+y + E@;
and again, by substituting E(z) + E(y) for E(z + y),
E@+y+2) = E@@ + E@y) + EQ@.

In a similar way we may proceed farther and prove the theorem for the
sum of any number of variables.

4. The theorem concerning mathematical expectation of sums,
simple though it is, is of fundamental importance on account of its very
general nature and will be used frequently. At present, we shall use it
in the solution of a few selected problems.

Problem 1. What is the mathematical expectation of the sum of
points on n dice?

Solution. Denoting by x; the number of points on the zth die, the
sum of the points on 7 dice will be

Ss=x1+ 22+ 0+ Ty,
and by the preceding theorem
E(s) = E(zy) + E(zy) + - -+ + E(x,).
But for every single die
E(xz;) = %; 1=1,2...mn;
therefore ‘
B(s) = 7?”

Problem 2. What is the mathematical expectation of the number of
successes in n trials with constant probability p?

Solution. Suppose that we attach to every trial a variable which
has the value 1 in case of a success and the value 0 in case of failure. If
the variables attached to trials 1,2, 3, . . . nare denoted by z;, z,, . . .
Zn, their sum

m=T+ T+ T,

obviously gives the number of successes in n trials. Therefore, the
required expectation is

E(m) = E(z:) + E(zs) + - - - + E(z,).



Skc. 4] MATHEMATICAL EXPECTATION 167

But foreveryz = 1,23, ... n
E(z) =p-14+ (1 ~p)-0=np,

because z; may have values 1 and 0 with the probabilities p and 1 — p
which are the same as the probabilities of a success or a failure in the 7th
trial. Hence,
E(m) = np
or
E(m — np) = 0,

which may also be written in the form

é Tm(m — np) = 0.
m=0

This result was obtained on page 116 in a totally different and more
complicated way. The new deduction is preferable in that it is more
elementary and can easily be extended to more complicated cases, as
we shall see in the next problem.

Problem 3. Suppose that we have a series of » trials independent or
not, the probability of an event being p; in the 7th trial when nothing is
known about the results of other trials. What is the mathematical
expectation of the number of successes m in n trials?

Solution. Again let us introduce the variable x; connected with
the 7th trial in such a way that z; = 1 when the trial results in a success
and z; = 0 when it results in failure. Obviously,

m=x1+ 2+ + 4+
and
E(m) = E(z1) + E(zs) + * -+ + E(@.).
But
E@)=1p;4+0-(1 —p) =pu
and, therefore
Em) =p1+ps+ -+ + Da

For instance, if we have 5 urns containing 1 white, 9 black; 2 white,
8 black; 3 white, 7 black; 4 white, 6 black; 5 white, 5 black balls, and we
draw one ball out of every urn, the mathematical expectation of the
number of white balls taken will be:

E<m) = 5 + % + 4% + 4% -+ 5 = 1.5.

Problem 4. An urn contains a white and b black balls, and ¢ balls are
drawn. What is the mathematical expectation of the number of the
white balls drawn?
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Solution. To every ball taken we attach a variable which has the
value 1 if the extracted ball is white, and the value 0 otherwise. The
number of white balls drawn will then be

s=z+ 2+ -+ 2
But the probability that the sth ball removed will be white when nothing

is known of the other balls is therefore

+b’
a
+b 1_}_a—l—b 0-a+b

for every ¢, and the required expectation is

E (.’,C,)

EGs) = a—l—b'

Problem 5. An urn contains n tickets numbered from 1 to n, and
m tickets are drawn at a time. What is the mathematical expectation
of the sum of numbers on the tickets drawn?

Solution. Suppose that m tickets drawn from the urn are disposed
in a certain order, and a variable is attached to every ticket expressing
its number. Denoting the variable attached to the ¢th ticket by z,
the sum of the numbers on all m tickets apparently is

s=21+x+ -+ T

But when taken singly, the variable z; may represent any of the numbers
1, 2, 8, . . . n, the probability of its being equal to any one of these
numbers being 1/n. By the definition of mathematical expectation, we
have

and therefore

E(s) =

For example, taking the French lottery where n = 90 and m = 5, we
find for the mathematical expectation of the sum of numbers on all 5
tickets

B(s) = .5«-231 — 2275
Problem 6. An urn contains 7 tickets numbered from 1 to n. These
tickets are drawn one by one, so that a certain number appears in the
first place, another number in the second place, and so on. We shall say
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that there is a “coincidence” when the number on a ticket corresponds
to the place it occupies. For instance, there is a coincidence when the
first ticket has number 1 or the second ticket has number 2, etc. Find
the mathematical expectation of the number of coincidences. Also, find
the probability that there will be none, or one, or two, etc., coincidences.

Solution. Let x; denote a variable which has the value 1 if there is
coincidence in the ¢th place, otherwise z; = 0. The sum

§=Tit 2+ -+ 2
gives the total number of coincidences and

E(s) = E(xy) + E(@e) + - - - + E(a).
But :

1 1
E(x.)=7—zl=;-z

because the probability of drawing a ticket with the number ¢ in the 4th
place without any regard to other tickets obviously is 1/7n; therefore,

1
E(s) mn-a—l.

On the other hand, denoting the probability of exactly ¢ coincidences by
pi, we have by definition

E(s) = pr+2ps+ - - - + nps,
and, comparing with the preceding result, we obtain
® pr+2p+ - - +ap. =1

Let us denote by ¢(n) the probability that in drawing n tickets, we shall
have no coincidences. It is easy to express p; by means of ¢(n — 7).
In fact, we have exactly ¢ coincidences in

na—=1)---(n—14+1)
- 1-2:3- - -2

Ci

mutually exclusive cases; namely, when the tickets of one of the

i
specified groups of 7 tickets have numbers corresponding to their places
while the remaining n — ¢ tickets do not present coincidences at all.

By the theorem of compound probability, the probability of ¢ coincidences
in 7 specified places is

1 . . . 1
n—1 n—1+4+1

1.
n
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and the probability of the absence of coincidences in the remaining n — ¢
placesis o(n — ). The probability of exactly ¢ coincidences in % specified
places is therefore

o(n — 1) ,
nn—1) - m—1+1)

and the total probability p; of exactly 7 coincidences without specification
of places is

=1 (=it 1) o(n — 1)
P = 1-2°3---4 Am=1) - m—i+1)
or
__eln—1)
@ T S

The symbol ¢(0) has no meaning, but the preceding formula holds
good even for ¢ = n if we assume ¢(0) = 1.
Substituting expression (4) for p; into (3), we reach the relation

(,a(n _ 1) + @(an 2) + ¢(7L2—' 3) + o+ (nqa_(_())]_)! — 1;

or changing n into n + 1

on—1)  on—2 - o0 _
o) + =+ T3 * T b
which gives successively ¢(1), ¢(2), ¢(3), . . . by taking
n=123, ....

The general result, which can easily be verified, is
-1 k
k=0
or, in an explicit form,

gt 1 1 (=1~
o) =1-3+75-793 7+ LT
Even for moderate n this is very near to
1 _ 1 1 1 . L.

MaTHEMATICAL EXPECTATION OF A PRODUCT

5. For the product of two or more stochastic variables we do not
possess anything so general as the foregoing theorem concerning the
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mathematical expectation of sums. An analogous theorem with respect
to the product of stochastic variables can be established only under
certain restrictive conditions.

Several stochastic variables are called ‘“‘independent’ if the proba-
bility for any one of them to assume a determined value does not depend
on the values assumed by the remaining variables. For instance, if the
variables are the numbers of points on dice, they may be considered as
independent.

On the other hand, we have a case of dependent variables in numbers
on tickets drawn in a lottery. For, in this case the fact that certain
tickets have determined numbers precludes the possibility of any one of
these numbers appearing on other tickets drawn at the same time.

If more than two variables are independent according to the above
definition, it is clear that any two of them are independent. But the
converse is not true: It is easy to imagine cases when any two of the
variables are independent and yet they are not independent when taken
in their totality. Therefore, when speaking of independence of variables,
we must always specify whether they are independent in their totality
or only in pairs. '

For two independent variables we have the following simple theorem:

Theorem. The mathematical capectation of the product xzy of two
independent variables x and y is equal to the product of their expectations;
or, in symbols

E(zy) = E(@)E(y).

Proof. Let zi, 22, . - . Zn be the complete set of values for z, and
Y1, Y2, . . . Yo the analogous set for y. Denoting the probability of
z being equal to z; by p;, and similarly, the probability of y being equal
to y; by ¢;, the events

T = and Y = Yi

are independent by definition of independence—because the probability
of z being equal to z; is not affected by the fact that y has assumed any
one of its possible values, and it remains p..

By the theorem of compound probability the simultaneous occurrence
of the events '

z = ; and Y=Y

has the probability p.g;. Again, by the extended definition of mathe-
matical expectation

B(zy) =3, Dpamy;

i=1j=1
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because the values of the product zy are determined by mn exhaustive
and mutually exclusive cases
T = s Y=Y
1=1,2 ... m; ji=12 ...n
Now, performing the summation with respect to j first, while ¢ remains
constant, we have

n n
zpi%'xiyi = Dili 24:‘?/:‘ = pu:E(y),

i=1 j=1
and again

E(zy) = SpaB@y) = B@)3,pas
=1 i=1

or
E(zy) = E@)E(y).
This theorem can be extended to the case of several factors inde-
pendent in their totality. For instance, if z, y, 2 are independent, it is
obvious that zy and z are also independent. Hence

E(zy2) = E@y)E(),
and again
E(zyz) = E(@)E@W)E(2).

In a similar way we can extend this theorem to any number of inde-

pendent factors. .

As an important application, let us consider two independent variables
z and y with the respective expectations a and . The variables 2 — a
and y — b being independent also, we have

E@z—a)y —b) = E(z — o)E(y — b);

but

Ex—a)=E@x —a=a—a=0;
therefore
5) Ex—a)(y—0b =0.

DispErsioN AND STANDARD DEVIATION
6. Let = be a variable and o its mathematical expectation. The
expectation of
(x — a)?
is called ““dispersion” of the variable, and the square root of dispersion
is usually called ““standard deviation.” As

(z — a)? = 22 — 2ax + a®
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we can apply the theorem on the expectation of sums to the right-hand
member of this identity and find

E(x — a)? = E(z?) — 2aE(z) + a®> = E(2?) — a?
or, denoting by b the expectation of z?
(6) E(x —a)? =b — a2

Thus, the computation of dispersion can be reduced to the computa-
tion of the expectation of the variable itself and its square. Also, denot-
ing by ¢ the standard deviation of =, we have the formula

¢2 =05 — al
For instance, if the variable is the number of points on a die, we have

b—12+22+...+62_91
N 6 T 6

2}

o = 5L — 48 = 2017; o = 1.708.

DisPERSION OF SuMS
Ve 7. It is important to have a convenient formula to find the dispersion
of a sum

s=z+x2+ 0+ 2a
of several stochastic variables. The expectation of s is given by
E(s) = E(@) + E(x2) + -+ -+ + E(za)

or

Ei)=a14+as+ - - + an,

denoting by a; the expectation of ;. The deviation of s from its expecta-
tion is, therefore,

Tit ot o o — (Gt at o),
and we have to find the expectation of
@it+z+ - FTa—a—a— = al)d

Now we have identically

@+z+ -t 2@ —a— - "‘an)2=2($i—ai)2+
i=1

+ 22(5&' - a)(z; — ay),
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the last sum being extended over all the different combinations of sub-
seripts 4 and j for which ¢ % j and consisting of n(n — 1)/2 terms.
The mathematical expectation of a sum being equal to the sum of the
expectations of its terms, we must find the expectations of the terms

(z: — a)? and (z; — a))(z; — aj).
The first is the dispersion of z; and can be found from (6); namely,
E’(x,- - a,-)z = b,: - CL,;2 = U‘?

if b; is the expectation of z2
As to
E(z; — a:)(z; — a;),
instead of it we introduce the so-called ‘‘correlation coefficient’”” of z;
and z;

_E@i—a)(@; — ay)

040;

R ;

Denoting the required dispersion by D, we obtain

() D=oci+oi+ - 402+ 2R19005 + 2R130005 + * + - +
+ 2Rn—l,n0'n—-10'n

so that the dispersion of a sum can be obtained as soon as we know the
dispersion of its terms and their correlation coefficients.

In an important case, expression (7) for dispersion can be greatly
simplified. If the variables z1, %2, . . . Z, are independent in pairs, we
see from (5) that all the correlation coefficients are = 0, so that in this
case simply

® D=cltoj+ - - +ot=bi—al+b—af+ - +b—ai

In other words, the dispersion of a sum of variables, any two of which
are independent, is equal to the sum of dispersions of its terms.

8. A few examples will serve to illustrate the use of these formulas.

Problem 7. Find the dispersion of the number of successes in series
of n independent trials with probabilities p1, ps, . . . p» corresponding to
first, second, . . . nth trial

Solution. Asin Prob. 2 we associate with every trial a variable which
assumes the value 1 or 0, according as the trial resulted in success or

failure. These variables z1, %, . . . z, are independent because the
trials are supposed to be independent. The number of successes
m=2x+ T+ -+ T,

is thus the sum of the independent variables. To find the dispersion of
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any one of these variables z; we notice that

E(xi)=1'pi+0'Q£=pi
E@) =1:pi+0-¢: = ps

therefore the dispersion of z; is

o} = p; — p} = P

and by (8) _
D=Em—p1—p2— - —p)?=piqa+Dags+ * * * =+ Dula
In the Bernoullian case of independent trials with the same probability
p, we have py = py = - - - = p, = p and

E(m — np)? = npq.
This formula is equivalent to the relation
>, T(m — np)? = npg
m=0

established on page 116.

¥Problem 8. In a lottery m tickets are drawn at a time out of n
tickets numbered from 1 to n. Find the dispersion of the sum s of the
numbers on the tickets drawn.

Solution. Let zi, %3, . . . z» be the variables representing the
numbers on the first, second, . . . mthtickets. By Prob. 5 we know that
B = 13,

and in a similar way we find

P24 - 40t (4 D@+ 1)
n o 6 ’

B} =

whence the dispersion of z; is

n+ 1\ n2—1
E’(xi - 5 > = 12
Since we deal in the present case with dependent variables, we must
find the correlation coefficients, or, which is the same,

1 1
o=~

for every pair of subscripts ¢ and j. The variable z; may have any of
‘the values 1, 2, 3, . . . n, with the same probability 1/n; and z; may
have any of the same values with the exception of that assumed by z;
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s so that the preceding expression consists of

with the probability

n—1
terms
1 {“_n+lX%'n+ﬁ
n(n — L)\ 2 2
where z; for given x; =1, 2, . . . n, ranges over all numbers 1, 2,
3, . . . n with the exception of z;. As
n+ 1)
:SG‘_z )‘0
£=1

it is obvious that

S(e-2) - -23),
and
n 41 n+1 1 . n+ 1\ _
- -2 - e -

zi=1
n + 1.
12

Everything now is ready for the application of (7). All simplifications
performed, we get the following expression of the required dispersion

D =m(n2"'1)<1 _m - 1>‘

12 n—1
If the variables were independent, the dispersion would be
m(n® — 1)
12

The dependence diminishes it, but the influence of dependence is not great
if the ratio m/n is small.

Problems for Solution
1. Find the mathematical expectation M of the absolute value of the discrepancy

m — np in a series of n independent trials with constant probability p. Ans. By
definition

n
M= 2 Twlm — np|
m=0
where, as usual,

n!
= pmqn—m.

"o ml(n — m)!
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But since
: n
>, Tuim — np) =0,
m=0

we have also
M=23 Tu(m—np),
m>np

the sum being extended over all integers m which are >np. Denoting by F(z, y) the
sum
F(z,y) = 2 Crarmymm
m>np
we have

6F , Q)
2 Tw(m — np) = (p L — npF(p, g).
m>np
On the other hand, by Euler’s theorem on homogeneous functions

oF
nF(p, q) = :o—— + q~

oF .
E Tn(m — np) = p4<~ - —) = npgCllip*~l" .

m >np

whence

Here u represents an integer determined by
p=np+1<p+1l
The answer is therefore given by the simple formula
M = 2npgCh_ipt~ign*,
2. By applying Stirling’s formula (Appendix 1, page 347) prove the following

result:
2 1
M= \/-—’—’?-‘:(1 + —6c>; lo] <1
T 2

max ! -
\np — 1 ng — 1

and 7 is so large as to make ¢ £ .
Hinr:

2npq & b 1 1 1
M: —— . ,
log ( ) < 2(np — &) + 2(ng —9') 24 max <np — ¢ ng — 1.‘3’)

] M'\/anq S 1 1 §2 §/2
g N 12(np — &) 12(ng — &) 4(np — ¢)*  4(ng — &)
0=a9=1,; 3+ =1

where

c
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/3. What is the expectation of the number of failures preceding the first success in
an indefinite series of independent trials with the probability p?

Ans. qp + 2¢%* +3¢%p + - - - =T -9 »p

\/4 Balls are taken one by one out of an urn containing a white and b black balls
until the first white ball is drawn. What is the expectation of the number of black
balls preceding the first white ball?

Ans. 1. By direct application of definition the following first expression for the
required expectation M is obtained:

_a b R b(d — 1)

”a+b[a+b-1+‘(a+b-—1)(a+b—2)
b — 1)(b — 2)

(a+b—1)(a+b—2)(a+b—3)+"' ]

Pg_ _g.

M +

+3

Ans. 2. However, it is possible to find a simpler expression for M. Denote by z: the
number of black balls preceding the first white ball, by z, the number of black balls
between the first and second white ball, and so on; finally, by #.+: the number of black
balls following the last white ball. We have

Tr+Tot+ - dTapr =b
and
E(z:) + E(x:) + - - - 4+ E(@eq1) = b.

But as the probability of every sequence of balls (that is, of every system of numbers
21, T3, . . . Zas1) IS the same, namely,

alb!

(a + d)!

it is easy to see that
E(z:)) = E(@) = + - - = E@ay1) = M.
That is,
@+ 1M =0

or

= b .

T a +1

Equating this to the preceding expression for M, an interesting identity can be
obtained, whose direct proof is left to the student.
6. In Prob. 6, page 168, to determine the probability ¢(n), we had an equation
(m—1) ol —2 o(0) _
1 P

TR

on) + £ 1; 0 =1

Find the general expression for ¢(n) using the method of generating functions. Ans.
Let

Fz) = ¢0) + e(V)z + o2)2® + - - -
be the generating function of ¢(n). Multiplying this series by

z z? 3
e =1+ﬂ+§—!+5+".’
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we find
eF(z) =14+2z4+224 ... = 1
1—z
or
Flz) =
@ 1—-x’
whence
11 (=1)n
¢(n)=1—ﬁ+§"!—--"+ Y

w6. The total number of balls in an urn is known, but the number of white balls
depends on chance and only its mathematical expectation is known. Find the prob-
ability of drawing a white ball. Ans. Let N be the total number of balls and M the
expectation of the number of white balls. The required probability is M/N.

I. Two urns contain, respectively, ¢ white and b black and « white and B black
balls. A certain number ¢ (naturally not exceeding o + b) of balls is transferred
from the first urn into the second. What is the probability of drawing a white ball
from the second urn after the transfers? Amns. The required probability is

n ca
@ a-+b
a+ B +ec

8. An urn contains ¢ white and b black balls. After a ball is drawn, it is to be
returned to the urn if it is white; but if it is black, it is to be replaced by a white ball
“from another urn. What is the probability of drawing a white ball after the foregoing
operation has been repeated z times? Ans. Denote by M. the expectation cf the
number of white balls after z operations. From the equation

1
My = (1 - m)Mz +1

the following expression for M can be derived:

M b—-1b Ly
==et ‘(1‘;‘1*3

It follows that the required probability is

b 1 \*
=1 — 1] —— .
P a+ b( o+ b)

9. Urns 1 and 2 contain, respectively, a white and b black and ¢ white and d klack
balls. One ball is taken from the first urn and transferred into the second, while
simultaneously one ball taken from the second urn is transferred into the first. What
is the probability of drawing a white ball from the first urn after such an exchange

has been repeated x times? Ans. Let M, and P. represent the mathematical expecta-
tions of the number of white balls in the first and second urn after x exchanges. Then

_fi.__:n{{_.
c+d a-+b

Mz+1=Mz+ Mz+Pz=a'+c
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whence

Mz_(a+c)(a+b) ad — be /1 1 1 )’

Ta+btcot+d a+bto+d a+b c+d)

10. An urn contains pN white and gN black balls, the total number of balls being
N. Balls are drawn one by one (without being returned to the urn) until a certain
number n of balls is reached. What is the dispersion of the number m of white balls
drawn? Amns. Let z; = 1 if the ¢th ball drawn is white and z; = 0 if it is black.
‘We have
E@) =p, E(m)=mnp, E@})=p
and

E(@: — p)(@i — p) = E(wizy) — p* = "sz T

The required dispersion is

N—-1

D = E(m — np)* = npg

11. In a lottery containing n numbers (1, 2, 3, . . . n) m numbers are drawn at a
time. Let z; represent the frequency of a specified number ¢ in N drawings. Prove
that

E(z;) = Np,  E(x: — Np)* = Npg
E(z: — Np)(w; — Np) = Np(p' —p); (i)

where
_m -1 ,_m—1
p=2 g=1-p p=——
12. Let
zi = (i — Np)? — Npq.
Show that the dispersion of the sum
N A R
is
2N(N — 1)
D = ——— (npg)*.
n—1
Indication of the Proof. Let N variables f1, &, . . . £n be defined as follows:
£ = —op if in the kth drawing the number ¢ fails to appear
& = ¢ if in the kth drawing the number ¢ appears.
In a similar way, we can define N variables #i, 72, . . . 7~ associated with the

. number j # 7. Since

z—Np=ti+E+ - +in
i —Np=mn+n+- -+
we have
eW(2;=NDp) . gv(zj=Np) = gufytoiy . gufstomy . . . pufytony,

The variables
eu§1+v'n1’ e"Ez+”’72, . . 6“EN+"7’N
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being independent, we have

E(ewsNe) +ola=Nm)) = F(gubrtm,) . E(guatvns) « - - E(gwbntomy),

Buu

E(g“fl"'”"l) = E(e”iz""”lz) = . ¢ . = E(eugN-th) _
= pp'erte® + p(l — per 7 + p(l —perv % + (¢ — p +pp’leTruPe =
= F(u, v).

Hence

E(exlai-N¥p) +o(z;=ND)) = F(u, v)¥.

It suffices to expand both members into power series in » and v and compare terms
involving u%? to find

E(ziz2;); DR

The rest does not present serious difficulties except for somewhat complicated caleula-

tions.
13. A box contains 2" tickets among which C% tickets bear the number 7 (¢ =

01,2 . n). A group of m tickets is drawn; denoting by s the sum of their
numbers, 1t is required to find the expectation F and the dispersion D of s.
1 m(m — l)n
Ans. I = é"m D=im = e =)
14. A box contains k varieties of objects, the number of objects of each variety
being the same. These objects are drawn one at a time and put back before the
next drawing. Denoting by n the smallest number of drawings which produce
objects of all varieties, find E(n) and E(n2). Ans.

k

1 1 1 1
E(nz)—E(n)2=k2(1+§§+ < +ﬁ)_k(1+§+ S +E)'

Use the result of Prob. 12, p. 41.

1,1 1
E(n):k(1+§+é+...+_>
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CHAPTER X
THE LAW OF LARGE NUMBERS

1. The developments of the preceding chapter, combined with a
simple lemma due to Tshebysheff, lead in a natural and easy way to a
far reaching generalization of Bernoulli’s theorem, known under the
name of the “law of large numbers.”

Tshebysheff’s Lemma. Let « be a variable which does not assume
negative values, and a its mathematical expectation. The probability of the
tnequality

u £ at?
s always greater than
1
-5
whatever t may be.
Proof. Let ®
UL, Uz, - . . Un )

be all the possible values of the variable v and

Py, P2 -« - Pa

their respective probabilities. By the definition of mathematical expec-
tation, we have

(1) prty + pows + - ¢ ¢+ paln = a.
We may suppose the notations so chosen that

Uy, Uy - v« U

are all the values of v which are <af? the rémaining values
Uet1; Uatdy - « « Un

being >at®. If all the terms in (1) with subscripts 1, 2, . . . « are
dropped, the left-hand members can only be diminished, since these
terms are positive or at least nonnegative by hypothesis. We have,
therefore,
Poattlhat1 + * * * + Dalln S @
But as
u; > at?
182
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fori =a-+1,a+ 2, ... nastill stronger inequality,
W (Payr + - +pa) <a
or
1
Dat1+ * * - +;Dn<i§
will hold.

Here the left-hand member represents the probability @ of the
inequality
u > at?
because this inequality can materialize only in the following mutually

exclusive forms: either w = % ay1, OF % = Uays, , . . OF 4 = u, Whose
probabilities are, respectively, a1, Pats, . . . Pu. Thus

1
Q< 7
But if P is the probability of the opposite event
u £ at?,
we must have
" P+Q=1,

whence

1
P>1—§

which proves the lemma.
2. Let 21, Z3, . . . . beaset of stochastic variables and ay, a2, . . . an
their respective expectations. The dispersion of the sum

Tr+ 2+ 0 2

_which we shall denote by B, is, by definition, the mathematical expecta~-
tion of the variable

=@+t F G —as—  — a)

Tshebysheff’s lemma, applied to this variable u, shows that the proba-
bility of the inequality

@dze+ - F i —@r— G — - — ) = B2

is greater than
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But the preceding inequality is equivalent to two inequalities

—iVBiSoit e+ - FTa—ar—a— - —a, S VB,
or, dividing through by n,

_ B;:Sx1+x2+---+xn_a1+aa+---'+a,.St\/E_
\

- n n = n2

Hence, the probability of these inequalities for an arbitrary bositive t

is greater than
1

-

1

Let e be an arbitrary positive number. Defining ¢ by the equation

t %=e,

whence
n2e?
t2 = b
n

we arrive at the following conclusion: The probability P of the inequalities

_E_<_$1+xz+ AT aitat - +,ans

n n

€

equivalent to a single inequality

Tt @+ -+ o ta+ - +an

n n

fIA
m

is greater than
B, .

n2e?

1—

Thus far nothing has been supposed about the behavior of B, for
indefinitely increasing n. We shall now suppose that the quotient
B,/n?* tends to 0 as n.increases-indefinitely. Then, having chosen two
arbitrarily small positive numbers ¢ and 5, a number 7, can be found so
that the inequality

B,

e <7
will hold for n > n,. Consequently, we shall have
P>1~—q

for alln > mo. This cc;nclusion leads to the following important theorem
due, in the main, to Tshebysheff:
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The Law of Large Numbers. With the probability approaching 1 or
certainty as nmear as we please, we may expect that the arithmetic mean of
values actually assumed by n stochastic variables will differ from the arithmetic
mean of theiwr expectations by less than any given number, however small,
provided the number of variables can be taken sufficiently large and provided
the condition

B,

— —0 as n— o
n

18 fulfilled.

If, instead of variables @;, we consider new variables z; = z; — a;
with their means = 0, the same theorem can be stated as follows:

For a fixed ¢ > 0, however small, the probability of the inequality

21+ 2+ 0+ 2. < e

n

tends to 1 as a limit when # increases indefinitely, provided
B

ﬁ_; — 0.
This theorem is very general. It holds for independent or dependent
variables indifferently if the sufficient condition for its validity, namely,

 that

B

#——)0 as n—> ©

is fulfilled.
3. This condition, which is recognized as sufficient, is at the same

time necessary, if the variables 2, 22, . . . 2, are uniformly bounded;
that is, if a constant number (one independent of n), C, can be found
so that all particular values of z;(¢ = 1, 2, . . . n) are numerically less

than C. Let P, as before, denote the probability of the inequality
ler F 2o+ « - - + 2] < ne.

Then the probability of the opposite inequality
ler + 22+ - - - 2. > ne

will be 1 — P.
Now, by definition,

B7L=E(zl+z2+ e +zn)2
whence one can easily derive the inequality

B, < n*C*1 — P) + n2:?P
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from which it follows that

B <ot~ P +eP <4021 - P

If the law of large numbers holds, 1 — P converges to 0 when n
increases indefinitely, so that the right-hand member for sufficiently
large n becomes less than any given number, and that implies

_'B_n_—)O’

n2
which proves the statement.

4, There is an important case in which the law of large numbers
certainly holds; namely, when variables i, 25, . . . , are independent
and the expectations of their squares are bounded. Then a constant
number C exists such that

b; = E(2?) < C for =123, ....
On the other hand, for independent variables

B,,, = 2(1)1 - (l%) = Eb. < nC
=1 i=1
and
B, _C

— < =—0 as n—> ©,
n n

The expectations of squares are bounded, for instance, when all the
variables are uniformly bounded, which is true, for instance, for ““iden-
tical” or “equal” variables. Variables are said to be identical if they
possess the same set of values with the same corresponding probabilities.

5. E. Czuber made a complete investigation of the results of 2,854
drawings in a lottery operated in Prague between 1754 and 1886. It
consisted of 90 numbers, of which 5 were taken in each drawing. From
Czuber’s book ‘Wahrscheinlichkeitsrechnung,” vol. 1, p. 141 (2d ed.,
1908), we reprint the table shown on page 187.

With the 2,854 drawings, we associate 2,854 variables, 21, 3, . . . Tasss
representing the sum of five numbers appearing in each of the 2,854
drawings. These variables are identical and independent with the
common mathematical expectation 227.5. Hence, by the law of large
numbers, we can expect that the arithmetic mean of actually observed
values of these variables will not notably differ from 227.5. To form
the sum

2854

S = 227,;
i=1
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Numbers Their frequency Difference
m m — 158

6 138 —20
39, 65 139 e
16, 41, 76, 87 149 —16

2, 14, 56, 79, 86 143 —15
18, 44, 47 144 14
72, 80 145 13
12 146 —12
21, 53 147 _11
70 149 _ 9
24, 82, 55, 69 150 _3
27, 64, 75 151 —7
81 152 -6
23, 29, 85 153 -5
19, 35, 42, 74 154 — 4

7, 20, 59 155 _3
13, 34, 40, 67, 88 156 -9
11, 52, 68 157 -1
17, 82 158 0
15, 90 159 .
58 160 2

8, 25, 36 161 3
22 162 4
33, 57 163 5
51 164 6

3, 43, 45, 48 165 v
10, 26, 66 166 8

1, 5 60,84 - 167 9
50, 62 168 10

9, 61, 63 170 12
54, 73 171 13
49, 71, 78 172 14
28 173 15
37 176 18
30, 46 177 19
89 178 20
31 179 21
38 184 2%
4 185 27
77 186 28
83 189 31

we must multiply the frequencies given in the preceding table by the
sum of corresponding numbers. To simplify the task we notice that all
numbers from 1 to 90, actually appeared. Hence, we multiply the
sum of these numbers, 4,095, by 158, which gives:

4095 - 158 = 647,010,
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and then add to this number the sum of the differences m — 158 multi-
plied by the sum of the numbers in the same line. The results are:

Sum of positive produects Sum of negative products
22,336 —19,587.
Hence
S = 647,010 + 22,336 — 19,587 = 649,759
and
S
9%51 = 227.67,

which differs very little from the expected value 227.5. An even larger
difference would be in perfect agreement with the law of large numbers
since 2,854, the number of variables, is not very great.

6. The two experiments reported in this section were made by the
author in spare moments. In the first experiment 64 tickets bearing
numbers 0, 1, 2, 8, 4, 5, 6 and occurring in the following proportions:

Number............ ..o, 0 1 2 3 4 5 6

Frequency...................... 1 6 15 20 15 6 1

were vigorously agitated in a tin can and then 10 tickets were drawn at a
time and their numbers added. Altogether 2,500 such drawings were
made and their results carefully recorded. From these records we
derive Tables I and II.

Tasre 1
Number Frequency observed | Expected frequency Diserepancy

0 404 390.625 +13.375

1 2,321 2,343.75 —22.75

2 5,850 5,859.375 — 9.375
3 7,863 7,812.5 +50.5

4 5,821 5,859.375 —38.375
5 2,344 2,343.75 + 0.25

6 397 390.625 + 6.375

The next table gives the absolute values of differences s — 30 where s
is the sum of the numbers on 10 tickets drawn at one time, and their
respective frequencies.

From Table I it is easy to find that the arithmetic mean of all 2,500
sums observed is:

74996

500 29.9984
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TasLe II
|s — 30| Frequency observed |s — 30] Frequency observed

0 246 7 71
1 549 8 44
2 479 9 25
3 379 10 8
4 324 11 4
5 241 12 1
6 129

whereas the expectation of each of the 2,500 identical variables under
consideration by Prob. 13, page 181, is 30. By the same problem the
dispersion. of s, that is, E(s — 30)2 is 12.857. On the other hand, from
Table II we find that

(s — 30)2 = 31477
and

(s — 30)2

5500 = 12.5908

fairly close to 12.857.

In the second experiment we tried to produce cards of every suit in »
drawings (n being the smallest number required) of one card at a time,
each card taken being returned before the next drawing. By Prob. 14,
page 181, we find that the expectation and the dispersion of this number
n are, respectively, 814 and 14.44. Altogether 3,000 values of n were
recorded, of which 33 was the largest. Values of the difference n — 8 are
given in Table III.

TasLe III
n—38 Frequency n—28 Frequency n—38 Frequency
—4 282 6 77 16 3
-3 420 7 50 17 5
-2 426 8 40 18 2
-1 407 9 31 19 1
0 348 10 17 20 3
1 247 11 15 21 1
2 228 12 13 22 1
3 156 13 6 23 1
4 116 14 9 24 0
5 88 15 6 . 25 1
R

From this table we find
Z(n — 8) = 965, Z(n — 8)? = 43,395,
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whence
3(n — 8%)2 = ZI(n — 8)2 — 33(n — 8) + 3420 = 43 085
3n = 24,965.
By the law of large numbers we may expect that the quotients
zZn 2(n — 8%1)2
000  °nd 3000

will not considerably differ from 814 and 14.44, respectively. As a
matter of fact,

2n == M = 14 2
3000 — 8.322, 3000~ — 14.362.
There is a very satisfactory agreement between the theory and this
experiment in another respect. Of 24,965 cards drawn there were

6,304 hearts
6,236 diamonds
6,131 clubs
6,294 spades
whereas the expected number for each suit is 6241.25.

7. So far, we have dealt with stochastic variables having only a finite
number of values. However, the notion of mathematical expectation,
and the propositions essentially based on this notion, can be extended to
variables with infinitely many values. Here we shall consider the
simplest case of variables with a countable set of values, that can be
arranged in a sequence

e <y <o <a< -
in the order of their magnitude.
With this sequence is associated the sequence of probabilities
-y D—2, P-1, Po, P1y P, -
so that in general p; is the probability for x to assume the value a;.
These probabilities are subject to the condition that the series
Zpi= ‘" + P2t Patpo+pitpt -

must be convergent with the sum 1.

The definition of mathematical expectation is essentially the same
as that for variables with a finite number of values, but instead of a
finite sum, we have an infinite series

E(z) = 2pa;

provided this series is convergent (it is absolutely convergent, if con-
vergent at all). If this series is divergent, it is meaningless to speak of



Suc. §] THE LAW OF LARGE NUMBERS 191

the mathematical expectation of #. Likewise, the mathematical expec-
tation of any function ¢(z) is defined as being the sum of the series

E{o(@)} = Zpip(as),

provided the latter is convergent.

It can easily be seen that various theorems established in Chap. IX
as well as Tshebysheff’s lemma, continue to hold when the various mathe-
matical expectations involved exist.

The law of large numbers follows, as a simple corollary, from Tsheby-
sheff’s lemma if the following requirements are fulfilled:

a. Mathematical expectations of all variables z1, z;, 73, . . . exist.

b. The dispersion B, of the sum z; + 2, + - + + 4 z, exists.

¢. The quotient B,/n® tends to 0 as n tends to infinity.

The first requirement is absolutely indispensable. Without it the
theorem itself cannot be stated. The second requirement (not to speak
of the third) need not be fulfilled; and still the law of large numbers may
hold, as Markoff pointed out.

8. Let z1, xs, %3 . .. be independent variables. If for every 7
the mathematical expectation

E(«})

exists, the quantity B, exists also. But if at least one of these expecta-~
tions does not exist, the quantity B, has no meaning. However, the
following theorem, due to Markoff, holds:

Theorem. The law of large numbers holds, provided that for some
& > 0 all the mathematical expectations

E(lz:|**%); ¢=1,2,8,...

exist and are bounded.
Proof. For the sake of simplicity we may assume that

E@)=0; 1=1,23, ..
For, supposing

E(z;) = a;; i=123,...
instead of z;, we may consider new variables

2= % — Qs
Then
Eiz)=0

and it remains to prove the existence and boundedness of

E(|z:|**%); 1=1,2,3,...
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The proof follows immediately from the inequalities

Ixi —_ ai[1+5 < 28{|xil1+6 + [a«;[H"B}
laill-l—& § E(lxill—I—B)
the first of which is well known; the second is a particular case of Lia-

pounoff’s inequality, established in Chap. XIII, page 265.
Thus, from the outset we are entitled to assume that

E(xz) = 0.

The proof of the theorem is based on a very ingenious and useful
device due to Markoff. Let N be a positive number which later we shall
increase indefinitely. Together with z; we shall consider two new varia-
bles, u; and v;, defined as follows: & being a particular value of z,, the
corresponding values of w; and »; are

Ui = a, ;=0
if || £ N and

ui=0, Vi = o

if |a| > N. Thus, stochastic variables u; and v; are completely defined.
Evidently

z; = u; + v;

whence

0= E(’Mz) + E(?)i)
and

B: = E(u;) = —E(v,).
Now

E(jo™) £ E(lod) < o
by hypothesis. Since v; is either 0 or its absolute value is >N, we have

NE(lvi]) £ E(jo:]**?) < ¢,
whence

@ 1B = 1E@)] < 75

Likewise, the probability ¢; for v; % 0 satisfies the inequality
Ni+ég; < E(jvi'+) < ¢,

whence

® ¢ < g
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Now, let us consider two inequalities

(4) u1+u2+n"'+un<o_

(5) fx1+x2+"'+xw\

n |

<o

where ¢ is an arbitrary positive number and let Py and P be their respec-
tive probabilities. The inequalities (4) and (5) coincide when

Vg =0y = - - =19, = 0.
With this supplementary condition they have the same probability @.
But they can hold also when at least one of the numbers
V1, V2y « . . Un

is different from 0. Let the probabilities of (4) and (5) under such
circumstances be R, and R. Then

P0=Q+Ro, P=Q+R

But evidently neither Ry nor R can exceed the probability that in the
series
V1 V2, . . . Vn

at least one number is different from 0; this probability in turn does not
exceed (see Chap. II, page 30)

ne
atet ot e<yw
Hence
ne ne
Ry < iR R < s

and
©) P — Po| < w5

On the other hand, since none of the values of w;(z = 1,2, . . . n)

exceeds N, we have
E(u2) £ NYE(|u|t*) £ NY&E(|z 1) < eN-8,
Accordingly, the dispersion of the sum wu; 4+ us + -+ - 4+ w, will be
less than
cnN1—3,

Hence, by what has been proved in Sec. 2, the probability of the ine-
quality
(7) »lu1+u2+"'+un_ﬂl+ﬁ2+"'+ﬁn]

l n n |

IIA
[\C1 Y
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is greater than
_ 4cN'7?
en

But whenever (7) is satisfied, the inequality

st us+ - - - Fu) e Bt Bt - -+ B
8 | p §.§+ ”

is also satisfied. Hence, the probability of this inequality is a fortiori
greater than
4cN1—*
- =

Owing to inequalities (2), the following inequality follows from (8):

Ur+ U+ U € €

po < 5 + A

Hence
1-8
Py>1-— 46]:7 7
£n
and on account of (6)
4cN1-8 ne
P>1-———§w

Now we can dispose of the arbitrary number N by taking

ne
N=%

2 1+3
P>1-— 2C(;> n-o,

Now N tends to infinity with » and as soon as n surpasses a certain
limit n,, the fraction

Then

¢
N?
will become and remain less than ¢/2. The probability of the inequality
itz + - -+,

n

<€

for n > nq will be greater than P and consequently greater than

148
1- 20(—2—> n-s.
e .

[ S L T .
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It tends, therefore, to 1 as n tends to infinity, and that proves Markoff’s
theorem.
Example. Let the possible values of the variable z,(p = 1,2,3, . . . ) be
e + 14 27 + D3, p7ip + )8, L L.

with the corresponding probabilities

4 , i , P .
pHL G+ G +DF

Since the series
1 1 1
— + — + - + e e
p p» »p
is divergent, the mathematical expectation
E(22)

does not exist. Yet the law of large numbers holds. For

o

1

n
5(1—19)
n=1 (P + 1)2

is a convergent series for any 0 < § < 1. Moreover,

Blay|+) = p=?

©

y

- 1 < 1
n=1( + 1) 2 -1

and consequently the conditions of Markoff’s theorem are satisfied for any 0 < & < 1.
Hence, the law of large numbers holds in this example.

9. If variables 1, 2,5, 23, . . . are identical, the law of large numbers
holds without any other restrictions, except that for these variables mathe-
matical expectations exist. In fact, Khintchine proved the following
theorem:

Theorem. If, as we may naturally suppose, E(z;) = 0, the probability
of the inequality

e s e ol .2 IO

n =

tends to 1 as n increases indefinttely.
Proof. The proof is quite similar tc that of Markoff’s theorem and
is based on the same ingenious artifice. Let

* <a_2<a_1<oto<a1<a2< .
be different values of any one of the identical variables z1, 24, 3, . . . and

- 3 P—2, P—1, Do, P1, P2, - -
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their probabilities. By hypothesis
Zpio;

is a convergent series with the sum 0. The series
Zpilai

is also convergent; let ¢ > 0 be its sum.
Keeping the same notations as before, we have

8] = BQvd) = 3, piad = ¢(V)
lesl >N
where ¢(N) is a decreasing function tending to 0 as N — «. Also
E(}) £ NE|zi| = cN
so that the dispersion of the sum
e e

is less than
cNn.

Consequently the probability of the inequality

) u1+u2+"'+un__,31+132+"'+!3n§_§
n n 2
is greater than
_deN
en

On the other hand, the probability ¢, of the inequality v, 2 0 is less
than

Y(N)
N
because
N3 pe <¥l)
lail >N
and
qs = 2 Pi.
fas] >N

Hence, the difference between the probability of the inequality

lul—i-uz-l— c Fu,
n

<vo
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and that of the iﬁequa,lity

[Brt+ @+ - - - + )
| " | <

is numerically less than

ny(N).
N

As in the preceding section we conclude that the probability of the
inequality

e e .|
I

n |

€
< £y

is greater than
_ 4N

en

Finally, the probability of the inequality

1+ e x| e
10) LA Y
is greater than
_ 4N _ ).
en N
To dispose of N we observe that the ratio

VY)
N

is a decreasing function of N and tends to 0 as N — «. Hence, at least
for large n, there exists an integer N such that

\/%N \/— \/¢(N -1

A -1
Then

w0 < YEvgay; s YE AvimeD

en €

whence it follows that the probability of inequality (10) is greater than

1- \/—[W(N) + N - 1)]

Now N increases indefinitely together with 7n; therefore, for all n
above a certain limit n,,

y(N) <3
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50 that for n > m, the probability of the inequality

H e R I 2
n

<e

will be greater than

1- —‘/GE[\/»#(N) + VI = 1)]

and with indefinitely increasing n will approach the limit 1. Thus
Khintchine’s theorem is completely proved.

Example. Let

21—-2]031’ 22-—21032’ 28—210:-’1, e 2n—2logn’ e
be all possible values of identical variables z1, zs, 23, . . . and
111 1
Fawa

their corresponding probabilities. Since the series

1 1 1 1 1
4o =14+

SHoss T omosz T e ot T3 T
is convergent, mathematical expectations of the variables i, %, s . . . exist.
Hence, the law of large numbers holds in this case.
Markoff’s theorem cannot be applied here, because for any positve & the series
~ ond
E :n(1+5)lou
' 1
is divergent.

Problems for Solution

1. Let z be a stochastic variable with the mean = 0 and the standard deviation o.
Denoting by P(t) the probability of the inequality

z =t
show that
0-2
P §;———~2+t2 for t<0
1-~P o f
- < .
(t)“o-2+t2 or  t>0,

Show also that the right-hand members cannot be replaced by smaller numbers.
Indication of the Proof. Since

Zpiw: = 0, Zpia? = o?,
we have also
Zpi(zs —t) = —1, Zpilzs — t)? = o + 12
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whence, supposing that z; > tfor< = 1,2, . . . s and first taking ¢ negative,
H 2 H ]
# g > piCai — t)% S Dp Dopiles — 02 S (1~ P@)(e* +87)
i=1 i=1 i=1
i 12 o?
1 -P@E) = ; i) = .
Oz POS 5o

For positive £ the proof is quite similar. Considering a stochastic variable with
two values:
2

nEL RTLTS
o t2
m=—p m=no

one can easily prove the last part of our statement. ‘
2. T'shebysheff’s Problem.* If z is a positive stochastic variable with given

E(z) = o2, E(2?) = 4
then the probability P of the inequality

z 20

has the following precise upper bounds:
Ps1 for v <g?

2

'a T

P =— for 2 2y <—
v o?

it — gt ot
£ —" >T.
™ 4 92 — 20% o

Indication of the Proof. Let

P

oy — 74

v — o?
=)
v—£
gince

» (=
vt

forz Z ». On the other hand,

E(x-—f)z,:r‘—%”f-]—g’_ i S

Then ¢ < vif v = 74/¢? and

v—% @—9* it — 2%
whence
4 — gt
< —
P‘#+ﬂ—%%

1 Sur les valeurs limites des integrales, Jour. Liouville, Ser. 2, T. XIX, 1874.
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The equality sign is reached for the stochastic variable with two values:
_ (v =an?
e

4 — ot

LT S g EA

If 62 £ » < r*/o? we have an obvious inequality

2
P= E(E) =7
v) v

To show that the right-hand member cannot be replaced by a smaller number, con-
sider the following stochastic variable with three values:

Q= — It

n=0m v
lo-z __.7-4
Zs =, P =y
™ — o
S T

where I > v is an arbitrary number. For this variable

o2 74 —o0o%

P = = —
P2 + D3 "

Iy

is arbitrarily near to ¢2/» for sufficiently large I.
3. If z is an arbitrary stochastic variable with given

E@z?) = o2 E@t) =
and P denotes the probability of the inequality

lz| = ko,
then

() TP
o

These inequalities cannot be improved. @
Hint: Follows from Tshebysheff’s problem.
4. Let z; assume two values, ¢ and —7 with equal probabilities. Show that the
law of large numbers cannot be applied to variables 1, 22, 73, . . . .
6. Variables 1, z2, 3, . . . each assume two values:
loga or —loga; log(a+1) or —log (a+1); log(a+2) or —log(a+2); - - -
with equal probabilities. Show that the law of large numbers holds for these vari-
ables.
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HiNT: E(x:) =0;2=1,2,3, . ..
Brn=E@ +2:+ -« +2.)? =

n—1

=2 flog (@ +9)}2 ~ (a +7 — 1){log (@ +n — 1)}?

=0
as can easily be established by using Euler’s summation formula (Appendix 1, page
347). Hence

— =0 as n-— o,

6. If z; can have only two values with equal probabilities, 42 and —3«, show that the

law of large numbers can be applied to z1, zo, 3, . . . if @ < 14.
HinT:
n2e+ B, 1
B, = 12¢ 4 2%« e 2a -n ; .
+ + 2 2a+1, n2—>0 if a<2

It can be shown that the law of large numbers does not hold if a = 14.

7. In an indefinite Bernoullian series of trials with the constant probability p,
let m; denote the number of successes in the first ¢ trials. Show that the law of large
numbers holds for variables

mi — P
Ti = — )
(pg)*’

i=1,23 ...

if @ > 4. )
Hint: Evidently E(z:) = 0, E(z}) = (ipg)*~2* and

B, = Y (ipg)** + 23 E(wiz).
i=1 i>t
Now

B(ma) = () ~(pa)*E(m: —ip)* + () ~=(pa)-*=E | (ms — ip)om, — ms— (—1)p)} =
= (pg)teit==j=

since m; — tp and m; — m; — (§ — ©)p are independent variables. Thus

B, = ()| zn)z'l—m + 22#*5‘4 ]

i=1 J>t

and it is easy to show that
Bn
— =0 as n — o
n2
provided « > 14. But the law of large numbers no longer holds if « < 4. The
proof of this is more difficult.
8. The following extension of Tshebysheff’s lemma was indicated by Kolmogoroff.
Let 21, 2 . . . zn be independent variables; E(z:) = 0, E(z}) = b,

By =bi+b+ -+ +bu
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and
sk =%y + 2+ ¢ ¢ -+ 2; k=12 ...mn
Denoting by P the probability of the inequality
4) | max. (3,82 . . . s2) > Bai?,
we shall have P < 1 /af2

Indication of the Proof. The inequality (4) can materialize if and only if one of
the following mutually exclusive events occurs:

event e:: s > Bt
event e;: s < B.t?; st > But;
event ¢;: s < Bat?; s < Bat?; st > Bit%;
event e,: s? < Bat?;  s3 < But?; - - - 2, < Bat%;  s? > Bt
If (e;) represents the probability of e;(¢ = 1,2, . . . n) then
= (e1) + (e2) + - - - + (en).

Now consider the conditional mathematical expectation E(s?|ex) of s2 given that
erhas occurred.  Since the indication of ex does not affect variables Ziq1, Zets, . . . Zn,
these variables and s, are independent. Hence

E(slex) = E(slex) + brsr + + - - + ba > Bat2
On the other hand

n
B = B = 3, (0E(siler) > Battl(er) + (e) + -+ -+ + (o)}
k=1
whence P < 1/t2
9. The Strong Law of Large N umbers (Kolmogoroff). Using the same notations
as in the preceding problem, show that the probability of the simultaneous inequalities

S, Snt1 Sat2
nEX: =& ——| S ¢
n + 1 n -+ 2

will be greater than 1 — 7, provided n exceeds a certain limit depending on the choice
of ¢ and 7, and granted the convergence of the series

by
—
1
Indication of the Proof. Consider variables

— Sy

r‘-maxl forvs =2""nSm<2n; i=1,23, ...

and denote by ¢; the proba.bility of the inequality r; > 14e, By Kolmogorofi’s
lemma

1=2n—1
43 n
l=2i~1p

%< Q2222
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and
1=2n—1 0 [=2ip— 1
Gt gtat - <de? 221‘_%2 2 b < 166“22 2
i=1 l=2i"1p i= Il==2"1'n
or

< b
Gtgtgt+ - < 166-222:-
k=n
Hence, the probability of fulfillment of all the inequalities = < Y4¢;¢ =1,2,83, . . .
is greater than

bla
1 — 1662
¥
k=n
The inequalities |sx/k| S sk =n,n -+ 1,2+ 2, . . . are satisfied when simul-
taneously
Si¢ 1=1,238 ...
and
E: =< le.
n| 2

. . . . 4B,
The probability of the last inequality being greater than 1 — 'nTB'z » the probability
€
of simultaneous inequalities

Sk

S ¢ E=nn4+1,n42 ...
a fortiori will be greater than

«

. bk 4Bn

P L T e
=n

This inequality suffices to complete the proof if we notice that B,/n? tends to 0 when
the series

o b
2
kslk

is convergent.
10. Let 21, Z2, . . . %. be identical stochastic variables and E(z;) = 0. Denoting

by 13,.(6) and P,(e), respectively, the probabilities of the inequalities

$1+$2+"'+-’En>€ and $1+$2+"'+$n<_e
n n
show that
+
liml—.)-z@=00r +
n=wPp(e)

.according as E(z}) > or <0.
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For the proof see Khintchine’s paper in Mathematische Annalen (vol. 101, pp. 381-
- 385).
11. The Law of the Repeated Logarithm (Khintchine, Kolmogoroff). Let zi, zs,
. Z, be bounded independent variables, E(z;) = 0,2 =1,2, ... nand B,—
as n— «, For an arbitrarily small § > 0 and ¢ > 0 and for an arbitrarily large N

one can choose o > N so that:
a. The probability of the fulfillment of the inequality

|sa] > (1 4 8)v/2B. log log B,

for at least one n = n, is less than e.
b. The probability of the fulfillment of the inequality

|sa| > (L — 8)+/2B, loglog B,

for at least one n = n is greater than 1 — e.
For the proof see Kolmogoroff’s paper in Mathematische Annalen (vol. 101, pp. 126—

135).

If 1, @5, . . . z,are variables independent in pairs and B, the dispersion of their
sum s =21 + 22 + ¢ - -+ -+ 2, then the probability P that
[s| < tv/Ba

satisfies the inequality
1 . .
P>1-— p (Tshebysheff’s inequality)

provided E(z:;) = 0,4 = 1,2, . . . n, which can be assumed without loss of generality.
In case variables are totally independent and are subject to certain limitations of com-
paratively mild character, 8. Bernstein has shown that Tshebysheff’s inequality can be

considerably improved.
12. Let 2y, w05, . . . % be totally independent variables. We suppose E(z;) = 0,

E(xf) = b; and
Blait) < Zhior=

fori =1,2, ... nandk > 2, ¢ being a certain constant. Show that

Bae?
A= E{ef(21+z2+ etz < e2(1—a)

where o is an arbitrary positive number <1 and e is a positive number so small that
€ = o.

Indication of the Proof, We have

e"lz,-l"
n!

o% Sl ten+
n=2
whence
bie?

Ble=) <1 + ?2.5622 () < e2(l—a)_

n=0
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13. If Q denotes the probability of the inequality

Be 2
Ttz etz > —m bl
' * # 21 — o) +e
show that Q < e~*%

Indication of the Proof. If § is the probability of the inequality
gflzytagt o +z,) > A612’

then, by Tshebysheff’s lemma, § < e¢~** and Q < @ by Prob. 12.
14. S. Bernstein’s Inequality. Denoting by P the probability of the inequality

[21+ 22 + - - - 34 S o

w being a given positive number, show that

w?

P >1 — 2 2Bn+2co,

B 2 20—

+— = F minimum take ¢ = ———;

2(1—0o) e ’\/E.

2B
then F = i\/ 1 __"U and ¢ is determined by equating F to . The resulting value of ¢,

Indication of the Proof. To make

e=§’;(1 — o)

cw

B, + co»

is admissible only if ¢ < ¢ or %(1 — ¢) £ 0. The best choice forcise =

By Prob. 13 the probability of the inequality

and correspondingly ¢ = S
A/ 2B, + 2cw

EARE o I SEREEREIE o A )
w?

is less than e 2BrF2  The same is true of the probability of the inequality
zrt 22+ - < —o or —Zy — Ty — o T > .
15. If variables zy, %3, . . . Z. are uniformly bounded and M is an upper bound
of their numerical values, then we may take ¢ = M/3.
Indication of the Proof. Note that
b, M\
E(lzift) < M™%,  bMPE S é‘h'<—3~> :

16. Consider a Poisson’s series of trials with probabilities p1, ps, . . . p» for an

event E to occur. Let m be the frequency of E in n trials, p = Pt pe +n‘ b 2
= l(pqu 4+ pags + - - - + pnga). Show that the probability P of the inequality
n .
m . - .
il < ¢ has the following lower limit:

ne

P>1—2 PFle
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In the Bernoullian case p; = p2 = + + + =pPa, A = pgq and consequently

ne?

P>1 -2 20T

17. An indefinite series of totally independent variables 21, z2, 23, . . . has the
property that the mathematical expectations of any odd power of these variables is
rigorously = 0 while

b\ (2k)!
2% — ) . . = 2
E@") = <2> o b= B
fori=1,28 .... Prove that the probability of either one of the inequalities
x1+x2+---+x,,>t\/2B,. or x1+x2+~'~+zn<—t\/2B,,
where B, = by + by + - - - + b, is less than ¢~** (8. Bernstein). Prove first that
€2bi
Eleexi) £ e?,

18. Positive and negative proper decimal fractions limited to, say, five decimals,
are obtained in the following manner: From an urn containing tickets with numbers
0,1, 2 ...9in equal proportion, five tickets are drawn in succession (the ticket
drawn in a previous trial being returned before the next) and their respective numbers
are written in succession as five decimals of a proper fraction. This fraction, if not
equal to 0, is preceded by the sign + or —, according as a coin tossed at the same time
shows heads or tails. Thus, repeating this process several times, we may obtain as
many positive or negative proper fractions with five decimals as we desire. What
can be said about the probability that the sum of n such fractions will be contained
between prescribed limits — « and »? Ans. These » fractions may be considered as
so many identical stochastic variables for each of which

. — —6 — —5
Bah) =0, § = B@t) = 10 )6(2 10 )<§.
Besides, .
105—1
3,
=1 1

E(x%) = 1010k+5 < 2k + 1.’

since in general

gk

2% 2% 4 ... —1)2% .
1% 22 + +(s—1) <2k+1

Again, the inequality

k
o <)

can easily be verified and we can apply the result of Prob. 17. For the required
probability P the following lower limit can be obtained:

e 3wt
P>1-2 251 -2 2;
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or, if w = ne

—3ne?
P>1-—2
For example, if e = Yo and n = 814,
P > 0.99999,

that is, almost certainly the sum of 814 fragtions formed in the above deseribed man-
ner will be contained between —82 and 82.
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| CHAPTER XI
APPLICATIONS OF THE LAW OF LARGE NUMBERS

1. A theorem of such wide generality as the law of large numbers is a
source of a great many important particular theorems. We shall begin
with a generalization of Bernoulli’s theorem due to Poisson.

Let us consider a series of independent trials with the respective
probabilities pi, ps, ps, . . - , varying from one trial to another. Con-
sidering n trials, we shall denote by m the number of successes. The
arithmetic mean of probabilities in n trials

_p1+p2+ 4 Da
p= 7

will be called the ““mean probability in » trials.” With such conditions
and notations adopted, we can state Poisson’s theorem as follows:
Poisson’s Theorem. The probability of the tnequality

< e
n =

:-

Sor fixed e > 0, no matter how small, can be made as near to 1 (certainty) as
we please, provided the number of trials n vs sufficiently large.

Proof. To show that this theorem is but a particular case of the law
of large numbers, we use an artifice often applied in similar circum-
stances, namely, we associate with trials 1, 2, 3, . . . » variables z,,
Ty, T3, . . . &, defined as follows:

z; = 1in case of success in the 7th trial,
z; = 0in case of failure in the 7th trial.

Since the trials are independent, these variables are also independent.
Moreover
E(z:) = E(a}) = p:
and the dispersion of z; is
Di — P} = D
The dispersion B, of the sum
Zitxy+ -+ 2,
is the sum of the dispersions of its terms, that is,

Bn=p1Q1+p2q2+--~+pnqn§g-

At the same time, the former sum represents the number of successes m.
208
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Now, applying the results established in Chap. X, Sec. 2, we arrive
at this conclusion: Denoting by P the probability of the inequality

7_7;7/__ - P = €

we shall have
B, 1
P>1—n262§1—--4—n—e—2-
It now suffices to take
1

n > ZZ‘[
to have

P>1-—19

where 7 is an arbitrary positive number no matter how small. That
completes the proof of Poisson’s theorem.

Evidently Bernoulli’s theorem is contained in Poisson’s theorem as a
particular case when

Pr=DP2= * " =Pu =D

Poisson himself attached great importance to his theorem and adopted
for it the name of the ““law of large numbers,” which is still used by many
authors. However, it appears more proper to reserve this name to the
theorem established in Chap. X, Sec. 2, which is due to Tshebysheff.

2. Let us consider n series each consisting of s independent trials with
the constant probability p. Also, let

mi, Mo, . . . My

represent the number of successes in each of these s series. Stochastic
variables

z1=(m1—sp)% @2 =(me—sp)? * " T = (M — sp)*

are independent and identical. Their common mathematical expecta~
tion is spg. The law of large numbers can be applied to these variables
and leads immediately to the conclusion: The probability of the inequality

n
(m; — sp)*
=1

— spg| < e

T
n

can be brought as near as we please to 1 (or certainty) if the number of
series n is sufficiently large.
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Substituting espq for e and dividing through by spg, we may state the
same proposition as follows: The probability of the inequalities

>, (mi — sp)?

1—E<EL—W<1+G’

where N = ns is the total number of trials in all n series, can be brought
as near to 1 as we please if the nurmber of series is sufficiently large.
The law of large numbers can be legitimately applied to the variables

z; = |m: — spl; 1=123,...
with the common mathematical expectation
M, = 2spgCi=ip*~'g*~*

where u = [sp + 1], and leads to the following proposition: The proba-
bility of the inequalities
> im: — sp|

1“‘€<1—=—17M—-—*—<1+6

can be brought as near to 1 as we please if the number of series is suf-
ficiently large.
For the sake of simplicity, let us use the notations

n
Z(mi — sp)*
i=1
n

> im: — spl

B=:=L___ .
n

Az =

The probabilities P and P’ of the inequalities

ey Vspg(l — o) < A < /spg(1 + o)
(2) Ms(l - 0') < B < Ma(l + (T)
which are equivalent to
2(’"%' — sp)?
(1—0-)2<L=—1—7E§é“ <(1+0‘)2
Elmi — sp
l-o<®=l __— <1494

nM,
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can both be made greater than 1 — », where n is an arbitrarily small
positive number. The probability of simultaneous materialization of
(1) and (2) is not less than

P+P —1>1-—29

But whenever (1) and (2) hold simultaneously, we have

Vepgl —o A _ /spqgl+o
®) M, ites "B "M, 1-%

Therefore the probability of these inequalities is again >1 — 27. Now
let us take

r
o

BCET
where 7 is another positive number arbitrarily chosen. Then
140 . 1—0¢ _
1__0_——1—{-1, 1+U>1 T.

Hence, the inequalities

V/spg A _ Vspg
M = <F <0+ )

follow from inequalities (3) and their probability is a fortiori > 1 — 21.
It suffices to take
M,
V/spq
to arrive at the following proposition:
The probability of the inequality

4 Vspg
B M,

T = €

< e

for a fixed e and sufficiently large number of series can be made as near to
1 as we please.
If spq is somewhat large, the quotient

V Sp
M,

differs but little from v/7/2 (see Chap. IX, Prob. 2, page 177). Hence,
when the number of series is large and the series themselves sufficiently
long, we may expect with great probability that the quotient

A

B

will not differ much from +/ T/2.
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Di1vERGENCE COEFFICIENT

3. The considerations of the preceding section can be generalized.
Let us consider again 7 series containing s trials each, and let

mi, Me, . . . My

represent the numbers of successes in each of these series. Without
specifying the nature of the trials (which can be independent or depend-
ent) we shall denote by p the mean probability in all N = ns trials and
by ¢ = 1 — pits complement. Again considering the quotient

n

>, (m: — sp)?

_ =1 s
¢= Npg

we seek its mathematical expectation
E(@) = D.

When all the N trials are of the Bernoullian type, D = 1. But it is also
possible to imagine cases when D > 1 or D < 1. Lexis calls /D the
“coefficient of dispersion.”” We shall call D itself the ‘‘theoretical
divergence coefficient.” If mi, ms, . . . m, are actually observed fre-
quencies in n series, the quotient

zm—mz

D =
Npq

may be called “empirical divergence coefficient.” Then, if the law of
large numbers can be applied to variables

m; — sp)? .
=L7ﬁﬁl; i=1,23 ...,

Z;
we can expect with probability, approaching certainty as near as we please,
that the inequality

ID' — D] <e

will be fulfilled for an adequately large number of series.

Thus far we have not specified the nature of the trials. Now we shall
suppose that all N = ns trials, distributed in n series, are independent
but with probabilities varying in general from trial to trial. Let

w P, P2y + « - Dsi =12 ...n)
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~ be the probabilities in successive trials of the 7th series. Their mean

Pt Pai+ 0+ Pa
s

b =

is the mean probability in the ith series. Finally

prtpet -+ pa

n

p..—_.

is the mean probability in all N = ns trials. As to the expectation of
(m; — sp)?, we find

B(m: — p)* = E(m: — spi + s(p: — p))* = E(m: — sp)? + s*(p; — p)?
since

E(m; - Sp,:) = 0.
On the other hand,

8 8 8
E(m; — sp:)? = Epﬂ - Z:P?i = spi — Ep?i

i=1 i=1 i=1

and

8 8

2 (ps — pi)* = —spi + zpﬁ-,

i=1 i=1
whence

8
E(m: — sp)* = spi — sp} — 3, (ps — p)*.
i=1
Now, letting 7 take values 1, 2, . . . n and taking the sum of the

results, we get

n n
> E(m; — sp)* = nsp — 53, p} — 2 Z(Zh — p)’
=1 1=1

i=1lj=

But
82 (p — p)? = —nsp® + 8210‘
7=1
whence finally
D= npq 2@ - P )2 NPQEE (Pt - Pn)z

1=1 j=1

Two particular cases deserve special attention.



214 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cuar. XI

Lexis’ Case. Probabilities remain the same within each series,
but vary from series to series. In this case p;; = p; and the expression of
D becomes:

s—1
D=1 — i)
+ pd E:(p D3)

The theoretical divergence coefficient in this case is always greater than
1 and may be arbitrarily large.
Poisson’s Case. The probabilities of the corresponding trials in all
series are the same, so that
Py =Tm;
and

_ C W s T e .2
p=p= s

In this case the divergence coefficient

8
2(1"—7&'2
_‘i=1

spq

D=1

is always less than 1.
Since the law of large numbers evidently is applicable to variables

(m; — sp)?

T g

we may expect that the empirical divergence coefficient D’ will not
differ much from D if the number of series is sufficiently large.

For numerical illustration let us consider 100 series each containing
100 trials, such that in 50 series the probability is 24 and in the remaining
50 series it is 34. Here we evidently have Lexis’ case. The mean
probability in all trials is

P=3
and
' 100
2(% — p)? =50 135 + 50 1§y = 1.
=1
Finally,

D=1+ 43 = 4.96.

Now, suppose that we combine in pairs series of 100 trials with
probability 24 and series of 100 trials with probability 34, to form 50
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series each of 200 trials. FEvidently we have here Poisson’s case. The
mean probability in each series again is p = 14 and

200
2 (G = m)? = 100" ri5 + 100 rfp = 2
i=1

Finally,
D = 1“‘ '52'6‘ = 096

The consideration of the divergence coefficient may be useful in
testing the assumed independence of trials and values of probabilities
attached to these trials. In the simplest case of Bernoullian trials with
a constant and known probability, the theoretical divergence coefficient
is 1. Now, if the number of series is sufficiently large and the empirical
divergence coefficient turns out to be considerably different from 1,
we must admit with great probability that the trials we deal with are not
of the supposed type. If, however, the empirical divergence coefficient
turns out to be near 1, that does not conclusively prove the hypothesis
concerning the independence of trials and the assumed wvalue of the
probability. It only makes this hypothesis plausible.

There are cases of dependent trials (complex chains considered by
Markoff) in which the theoretical divergence coefficient is exactly 1 and
the probability of an event has the same constant value in each trial,
insofar as the results of other trials remain unknown. Cases like that
may easily be mistaken for Bernoullian trials without further detailed
study of the entire course of trials.

4. When there is good reason to believe that the trials are independent
with a constant but unknown probability, we cannot in all rigor find the
value of the empirical divergence coefficient

>, (ms — sp)?
D/ = =1
Npg

to compare it with the theoretical divergence coefficient D = 1, since p
remains unknown.
But, relying on Bernoulli’s theorem, we can take the quotient

M

N
where

M=m 4+ ms4 - + m

as an approximate value of p. By taking p = M/N in the preceding
expression for D’ we get another number
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NE <m -

D[ =1
M(N — M)
which in general is close to D’. However, considering mi, ma, . . . M,

not as observed but as eventual numbers of successes in n series, the
mathematical expectation of D’/ is different from 1. To avoid this
difficulty, it is better to consider a slightly different quotient

n(N — 1)2(m, ) |

Q=—G =D =10

For this quotient there exists a theorem discovered and proved for the
first time by the eminent Russian statistician Tschuprow.

Theorem. The mathematical expectation of Q is rigorously equal to 1.1

Proof. Here we shall develop the proof given by Markoff. The
above given expression of @ presents itself in the form 2§ and therefore
has no meaning in two cases: M = 0or M = N. For these exceptional
cases we set @ = 1 by definition. If neither M = 0 nor M = N, we
can present Q in the form

_ V=1 2’” )

n—1 MN — M)

Considering mi, ms, . . . m, as stochastic variables assuming integral
values from 0 to s, the probability of a definite system of values

(4)

mi, Mo, . . . My
is
s! s! s!
P = . C MgN—M
mills — mp)! myl(s — ma)! My (s — my) Pre

To get the expectation of @ we must multiply it by P and take the
sum

E@Q) = zPQ

extended over all non-negative integers mi, ms, . . . M., each of them
not exceeding s. To perform this multiple summation we first collect

all terms with a given sum
mytmy+ o+ omy = M.

! The theorem itself and its proof given by Markoff can be extended to the case of
series of unequal length.
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Let the result of this summation be Sy. Then it remains to take the

- sum
N
>, Su
M=0

to have the desired expression E(Q). To this end we first separate two
terms corresponding to M = 0and M = N. In the former case

Mmy = Mg = *-+* =m, =0

and the probability of such an event is ¢~ while @ = 1. In the latter
case

ML =Mg= *+ "+ =M, =8§
the probability of which is p#, while again @ = 1. Thus
N-1

B@Q =p¥+¢"+ 3 Su.

M=1

To find Si we observe that the denominator of @ has a constant value
when summation is performed over variable integers mi, ms, . . . my,
connected by the relation

my4me+ -+ ma = M.
Hence, it suffices to find two sums

P and ZPm?

extended over integers mi, me, . . . m, varying within limits 0 and s
and having the sum M. To this end consider the function
V = (ptefr + g)*(plet* + q)° - - - (pter + ¢)*
involving n + 1 arbitrary variables ¢, £1, &, . . . &. When developed,
V consists of terms of the form
Pimitmet - - tmagmifrtmagat - - +makn

It
o

Evidently we obtain the sum =P by setting ¢, = g2 = - - - = &,
and taking the coeficient of {# in the expansion

Mimtem - - =0 = (Pt + Q7.

Thus

N! _
) P - 700 7o) Lt A
To find =ZPmi take the second derivative

il
o8
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and after setting & = & = - - - = £, = 0, expand

(3)
08 Jtimtom - - - mbam0

and take the coefficient of {#. Thus we find

. R N—=1! (N-2)! [
© XPm =["(M—l)!(N-—M)!+s(s—1)(M—-2)!(N—M)!]p g
Referring to (4), (5), and (6), we easily get

n(N —1) (N —2)INV
¥E = 1DME — M) n(M — 1IN — M)!{nN —n+
+ N —n)(M — 1) — M(N — 1)]prgn—x;

S

or, after obvious simplifications,

. N!
S = m_!pzqu—m_
Hence
N-1
S8u=@+F—pv—g"=1—p¥— g,
M=1
and finally

E@Q) = L

Markoff, using the same method, succeeded in finding the explicit
expression of the expectation

EQ — 1)

Since there is no difficulty in finding this expression except for some-
what tedious calculations, we give it here without entering into details
of the proof:

19ls —
VNquN M:

N~—1
. NN —n) M-1 N—M-1
EQ -1 "(n—1)(z\r—2)(zv—3)ME=1 M N=—M

whence the following inequality immediately follows:
2N(N — n)

—1)2 .
B -V < g —2m =3
In case n 2 5 a still simpler inequality holds:
2
Q) EQ - 1)< —/—=

n —1
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Let R be the probability of the inequality
Qz1+e¢

where e is a positive number. Applying the same reasoning to inequality
(7) as was used in establishing Tshebysheff’s lemma, we find that

2
R < (n = D)e
Likewise, denoting by R’ the probability of the inequality
Q =1- €
we have
R < ____2_.__ .
(n — 1)e®

Thus, in a large number of series it becomes very unlikely that the
value of @ found in actual experiment would lie outside of the interval
1 —¢ 1+ e For instance, the probability for @ = 2 in 100 series is
surely less than

2
99

or nearly 0.02. However, this limit is much too high. It would be
greatly desirable to have a good approximate expression for the proba-
bility of either one of the inequalities

Q=1-+e or Q=1-—e

But this important and difficult problem has not yet been solved.

5. In order to illustrate the foregoing theoretical considerations we
turn to experiments reported by Charlier in his book ‘“Vorlesungen
iiber die Grundziige der mathematischen Statistik” (Lund, 1920). He
made 10,000 drawings of single cards from a complete deck of 52 cards
(each card taken being returned before the next drawing), and noted
the frequency of black cards. The drawings were divided into 1,000
series of 10 cards, or into 200 series of 50 cards. The results are given
in the tables on page 220.

Assuming the independence of trials and the constant probability
p = 14, the theoretical divergence coefficient must be 1. Let us compare
it with the empirical divergence coefficient derived from Tables I and II.
To this end we multiply the squares of numbers in the second column
by the numbers given in the third column. The results are:

For 200 series of 50 cards For 1,000 series of 10 cards
Z(m; — ps)? = 2,487 =(m; — ps)? = 2,419
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TaBLE I.—NuMBER oF Brack Carps IN TasrLe II.—NumsBer oF Brack CARrpS IN
1,000 Groups or 10 Carps Eace

200 Groups oF 50 Carps Eacu

Number of Number of
o Difference | groups with Difference | groups with
TeQUEney |, — 25 these Frequency m — 5 these
frequencies frequencies
14 —11 1 0 -5 3
15 —10 0 1 —4 10
16 -9 2 2 -3 43
17 - 8 2 3 -2 116
18 -7 4 4 -1 221
19 - 6 8 5 0 247
20 -5 6 6 1 202
21 - 4 15 7 2 115
22 -3 13 8 3 34
23 -2 15 9 4 9
24 -1 34 10 5 0
25 0 14
26 1 21
27 2 26
28 3 14
29 4 10
30 5 5
31 6 5
32 7 3
33 8 2

Dividing these numbers by 10,000 - 14 = 2,500, we get the following
empirical divergence coefficients:

D’ = 0.9948; D" = 0.9676.

Both are close to 1, so that the hypotheses of independence of trials
and constant probability 14 for each of them, are in good agreement with
empirical results. The second divergence coefficient, corresponding to
more numerous groups, differs from 1 more than the first, corresponding
to only 200 groups. But such a difference can be accounted for by
fluctuations due to chance.

Series of 50 trials are long enough to test the theorem established in
Sec. 2 of this chapter. The quantities denoted there by A and B are
here correspondingly:

A? = 2587, A = 3.5263
B = §8%; B = 2.805
whence
4 = 1.2571

B
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™
\/; = 1.2533.

Again the difference, only about 4.1073, is rather small.

In this example, the probability of drawing a black card was assumed
to be 14. In case we do not know the probability, but suppose it to be
constant throughout 10,000 independent trials, we must consider the
coefficient

while

(N -1 - M\
=G ONE =) (mf - 8'7\7‘)‘
s=1

In our example

n = 1,000; N = 10,000; M = 4,933
s = 10; s% = 4.933.
To evaluate the sum
1,000
S = 2 (m; — 4.933)2
=1

we write it in the form

1,000 1,000

S = 2 (m; — 5)% + 0.134 2 (m: — 5) + 1,000 - (0.067)2.
=1 7=1
Now
1,000
2 (m; — 5)2 = 2,419
- .
1,000 - (0.067)% = 4.489
1,000
0.134 2 (m; — 5) = —8.978
1
S = 2,414.51

This is to be multiplied by the number

n(N — 1) 1
(n — )M(N — M) 2497.3

The result is
0.9668,

near enough to 1 for us to consider the hypothesis of independence of
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trials and the constant value of probability as in agreement with experi-
mental data.

ExamprreEs oF DEPENDENT TRIALS

6. So far we have dealt only with independent variables. But the
law of large numbers holds, under certain conditions, even in the case of
dependent variables. Leaving aside generalities, we shall show the appli-
cation of the law of large numbers to a few interesting problems involving
dependent variables.

Let us consider first a Bernoullian series consisting of n 4 1 inde-
pendent trials with the same probability p for an event E, the opposite
event being denoted by F.  We associate with trials 1,2, . . . n variables
Ty, X3, . . . T, defined as follows:

z; = 1if F occurs in trials ¢ and ¢ + 1,
z; = 01in all other cases.

The probability of z; = 1 evidently is p? when nothing is known about
the values of other variables. But if we know that z,.; = 1, which
implies the occurrence of E in the ¢th trial, then the probability of z; = 1
is p. Thus, consecutive variables are dependent. However, z; and z;
are independent if |k — 4] > 1, as we can easily see. Since

E(w) = B@) =p*- 1+ (1 —p?) -0 = p?
the expectation of the sum z; + 22 + - - - -+ z, will be
E@ 4+ 24 - - - + 2,) = npk

As to the dispersion of this sum, it can be expressed as follows:

B, = X Bz — p?)* + 23 Bz — p?)(z; — pd.

i=1 i>i
Now
® E(x; — p?)? = E(@)) — 2p*E(z:) + p* = p*(1 — p?)
and
9) E(@; — p*)(z; — p*) = E(w: — p?) - B(z; — p?) =0
for j > ¢ + 1 because then z; and z; are independent. But
(10) E@; — p) (@i — p?) = E@win) — p* = p* — p*

since the probability of simultaneous events

Ly = 1, Lig1 = 1
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is p%. Taking into account (8), (9), and (10), we find
B, = np*(3p + 1) — 2p%
and the condition

B
= =0 as n—> 0

n2
is satisfied. Hence, the law of large numbers holds for variables z,
Zs, . . . Zn. To express it in the simplest form, it suffices to notice that
the sum

i R e

represents the number of pairs EE occurring in consecutive trials of the
Bernoullian series of n + 1 trials. Let us denote the frequency of such
pairs by m. Then, referring to the law of large numbers, we get the
following proposition:
If in n consecutive pairs of Bernoullian trials the frequency of double
successes EE is m, then the probability of the inequality
m

o e
Py P

<€

will approach 1 as near as we please, when n becomes syfictently large.

7. Simple chains of trials, described in Chap. V, Sec. 1, offer a good
example of dependent trials to which the law of large numbers can be
applied. Let p; be the given probability of an event E in the first trial.
According to the definition of a simple chain, the probability of E in
any subsequent trial is « or 8 according as E occurred or failed to occur
in the preceding trial. By p, we denote the probability for E to occur
in the nth trial when the results of other trials are unknown. Let

6:0‘——67 p:-i——_f__a.

Then, according to the developments in Chap. V, Sec. 2,
Pn =P + (pr — p)o"Y,

whence
prtpit -+ _ P—pl—2o
n =p+ n 1-—20
barring the trivial cases 6 = 1 or § = —1. It follows that p represents

the limit of the mean probability in » trials when n increases indefinitely,
and for that reason p may be called the mean probability in an infinite
chain of trials. When it is known that E has occurred in the ¢th trial, its
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probability of occurring in some subsequent jth trial is given by
P =p+g¢fi, g¢=1-p
In the usual way we associate with trials 1, 2, 3, . . . variables
Z1, T, Ty, . . . 0 that in general

z; = 1 when F occurs in the 7th trial
z; = 0 when E fails to occur in the sth trial.

Evidently
E(z;) = E(a}) = ps

In order to prove that the law of large numbers can be applied to
variables x, 2, Z3, . . . , we must have an idea of the behavior of B,
for large n. By definition

B, =E@ —p1+as—pz+ - +:c,,—-pn)2=2E(xi—pi)2+
i=1

+ 23 Bl(v: — po)(z; — p))).

i>
The first sum can easily be found. We have
B(z: — p)? = pi — p} = pg + (¢ — p)(pr — P)&*F — (p1 — p)?8*~*
whence

A = > E(z: — pi)?~ npg

n
t=1
neglecting terms which remain bounded. As to the second sum, we
observe first that
E(@: — pi)(x; — pi) = E(x;) — pipi.

Again, since the probability of

zx; =1
is evidently p;p?® we have

E(zw;) = pp,

and
E(z: — p)(@i = pi) = pipf® — pi) = pg#~* +

+ (01 — p)(¢ — P)F' — (p1 — p)r+i—2.

Now, forafixed¢ = 1,2, . . . n — 1, we must take the sum of these

expressions letting j run over 2 4+ 1, 7 + 2, . . . n. The result of this
summation is

5 — Bn-i-’-l 613 — " isi—l — Bn—l
Pe—4—>— + (P — 2)(q — P)"l“:‘g — (pr — p)% =
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Taking 7 =1, 2, 3, . . . n — 1 and neglecting in the sum the terms
which remain bounded, we get
B = 3 E(x: — p)(e; — p)) ~ npg; b 5
i>i -
whence
B,=A4+ 2B~npqi i_ g

This asymptotic equality suffices to show that

Bn

——0 as n—> 0.
n

Therefore the law of large numbers can be applied to variables z,,
Zo, T3, . . . . Since the sum

Ttz Ta=m

represents the frequency of E in n trials, the law of large numbers in
this particular case can be stated as follows: For a fixed ¢ > 0, no matter
how small, the probability of the inequality

m_prEpt P
n n

tendsto 1 as n — .
The arithmetic mean

Pr+Dpat c 4 Da

n

itself approaches the limit p. It is easy then to express the preceding
theorem thus: The probability of the inequality
m

;—-pl<e

tendsto 1 as n— o,

This proposition is of exactly the same type as Bernoulli’s theorem,
but applies to series of dependent trials.

8. Let a simple chain of N = ns trials be divided into » consecutive
series each consisting of s trials; also, let mi, ms, . . . m, be the fre-
quencies of F in each of these series. When N is a large number, the
mean probability in N trials differs little from the quantity denoted by p.
It is natural to modify the definition of the divergence coefficient given
in Sec. 3 by taking p instead of the variable mean probability in N trials.
Thus we define
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2 (m; — sp)?

D = E=L
Npg

In our case, the variables

X, = (m1 — sp)? Xy = (mg — sp)% - - - Xo = (Mma — sp)*
are neither identical nor independent, although the degree of dependence
is evidently very slight. These variables can also be presented in the
form
(11) @ =D+ To1 =2+ - -+ + Tapsr — D)
taking successively a = 1, s + 1,25+ 1, . . . (n — 1)s + 1.

To find the mathematical expectation of (11) it suffices to notice that
E(z; — p)* = B(@; — p)*+ (pi — p)* = pg + (¢ — p)(p1 — p)o*?
Ez: — p)(@; — p) = Be: — pd(zi — pj) + (p: — p)(ps — p)

= pg&~t + (pr — p)(¢ — )&
and then proceed exactly as in the approximate evaluation of B, in Sec. 7.
The final result is

Exio—p+Ter1 — 02+ + + + + Zoguo1 — p)° =
_ 148 2pgd (g—p@ —pA+ 8,
=T T = T 1—20): ot
209 1 (g = D)1 — D) _ o
+ H“:Ts)—g!S +1 A= [2s(1 — &) + 1 + sJoote—L.

For somewhat large s the two last terms in the right member are com-
pletely negligible; so is the third term if ¢ 2 s + 1. Hence, with a good
approximation,

= ep T d _ _2pgd ¢ =P —p)1 +3)
B =spog—5—qg_a Tt (=D

146 2pg3 . .,
E(X;) = P97 :‘: 57 fqa)g if  i>1

and
p=Lts 2 , (@=pm=pQd+y?)
1—-6 s(1—29)? Npg(1l — §)2
Again, when N is large, the last term can be dropped and as a good
approximation to D we can take
_ 148 25
T1—=45 s(1—95)2

It can be shown that the law of large numbers holds for variables X,
X5, . . . X, and therefore when n (or the number of series) is large, the

(12) D
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empirical divergence coefficient is not likely to differ considerably from
D as given by the above approximate formula.

9. In order to see how far the theory of simple chains agrees with
actual experiments, the author of this book himself has done extensive
experimental work. To form a chain of trials, one can take two sets of
cards containing red and black cards in different proportions, and
proceed to draw one card at a time (returning it to the pack in which it
belongs after each drawing) according to the following rules: At the
outset one card is taken from a pack which we shall call the first set;
then, whenever a red card is drawn, the next card is taken from the first
set; but after a black card, the next one is taken from the second set.
Evidently, these rules completely determine a series of trials possessing
properties of a simple chain. In the first experiment the first pack
contained 10 red and 10 black cards, while the second pack contained 5
red and 15 black cards. Altogether, 10,000 drawings were made, and
following their natural order, they were divided into 400 series of 25
drawings each. The results are given in Table III.

TasLe III.—DistriBuTION OF RED CARDS IN 400 SErIES OF 25 CARDS

Frequency of | Difference, Number of series
red cards, m m — 8 with these frequencies
1 -7 2
2 —6 4
3 -5 8
4 —4 27
5 -3 29
6 -2 54
7 -1 37
8 0 52
9 1 47
10 2 44
11 3 41
12 4 20
13 5 20
14 6 7
15 7 4
16 8 3
17 9 1

The sum of the numbers in column 3 is 400, as it should be. Taking
the sum of the products of numbers in columns 1 and 3, we get 3,323, which
is the total number of red cards. The relative frequency of red cards in
10,000 trials is, therefore,

0.3323.
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« 2y ﬁ 4) ’ 6 4

and the mean probability p in an infinite series of trials

Thus, the relative frequency observed differs from p only by 10-2% and
in this respect the agreement between theory and experiment is very
satisfactory. Now let us consider the theoretical divergence coefficient
for which we have the approximate expression

1+6 2

1—6 s -—9)2

Here we must substitute § = 14 and s = 25. The result is

D = 1.631, approximately.

D=

To find the empirical divergence coefficient we must first evaluate the
sum

§ = B(m - 3
extended over all 400 series. For the sake of easier calculation, we
present S thus:

8 = 3(m — 8)* — 22(m — 8) + 440,
Now from Table III we get
Z(m — 8)? = 3,521; Z(m — 8) =123
whence
S = 3,483.4.
Dividing this number by 200004 = 2,222.2, we find the empirical

divergence coefficient
D’ = 1.568

which differs from D = 1.631 by only about 0.06, well within reasonable
limits.

10. In two other experiments two packs were used: one containing
13 red and 7 black cards, and another 7 red and 13 black cards. In
one experiment the pack with 13 red cards was considered as the first
deck, and in the other experiment it became the second deck. The
new experiments were conducted in the same way as that described in
Sec. 9, but they were both carried to 20,000 trials divided into 1,000
series of 20 trials each. In the first experiment, we have
1

a = 4§, B = % o = g, =3z
and
D = 1.796, approximately,
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while the same quantities for the second experiment are

a = 5, B =4% 0= —%, p=%
and
D = 0.556, approximately.
The results of these experiments are recorded in the following two
tables:
TapLe 1V.—CoNCERNING THE FirsT EXPERIMENT

Frequency of | Difference, Number of series
red cards, m m — 10 |with these frequencies
2 —8 3
3 -7 5
4 —6 18
5 -5 36
6 —4 59
7 —3 93
8 -2 103
9 -1 117
10 0 128
11 1 121
12 2 101
13 3 93
14 4 48
15 5 39
16 6 26
17 7 7
18 8 1
19 9 1
20 10 1

TasLe V.—CONCERNING THE SECOND EXPERIMENT

Frequency of | Difference, Number of series
red cards, m m — 10 with these frequencies
5 -5 2
6 —4 10
7 -3 48
8 -2 112
9 -1 193
10 0 251
11 1 201
12 2 113
13 3 56
14 4 9
15 5 5
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Taking the sum of the products of numbers in columns 1 and 3, we
find

10,036 and 10,045

as the total number of red cards in the first and second experiments.
Dividing these numbers by 20,000, we have the following relative
frequencies of red cards:

0.50018 and 0.500225
extremely near to p = 0.5. From the first table we find that
Z(m — 10)2 = 8,924

summation being extended over all 1,000 series. Dividing this number
by 20,000 - 14 = 5,000, we find the empirical divergence coefficient in
the first experiment

which comes close to
D = 1.796.

Likewise, from the second table we find
2(m — 10)2 = 2,709,
whence, dividing by 5,000, .
D" = 0.5418

again close to
D = 0.5562.

Thus, all the essential circumstances foreseen theoretically, for simple
chains of trials, are in excellent agreement with our experiments.

Problems for Solution

1. From an urn originally containing a white and b black balls, n balls are drawn
in succession, each ball drawn being replaced by 1 + c(¢c > 0) balls of the same color
before the next drawing. If m is the frequency of white balls, show that the prob-
ability of the inequality

n a+b

does not tend to 1 as n increases indefinitely (Markoff, G. Pélya).

Indication of the Proof. If z; = 1 or z; = 0, according as a white or a black ball -

appears in the ¢7th drawing, we have

a a a-+c

:) = 2.= el W Lj) = —— -
Bw) =B =g Be®) = oy e e

e i i
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Hence

na \? n2abe
B, =E .. Y — -
(z1+$2+ +z a+b> (a+b)2(a+b+c)+

nab
BCEDETET)

2. Marbe’s Problem. A group of exactly m uninterrupted successes Z or failures F
in a Bernoullian series of trials with the probability p for a success is called an “m
sequence.” If Vis the frequency of m sequences in # trials. shaw that the probakbility
of the inequality

N
P (p™g% + p2™)| < e

for a fixed e converges to 1 as » becomes infinite.

Indication of the Proof. Associate with each of the p = n — m 4- 1 first trials
variables zi, Zs, . . . Zu assuming only two values, 0 and 1. For 1 < ¢ < u we set
x; = 1 if, beginning with the 7th trial, a succession of m letters E or I is preceded and
followed by F or E. 1In all other cases 2; = 0. We set z; = 1 if, beginning with the
first trial, there is a succession of m letters E or F ended by F or E; otherwise z; = 0.
Finally, z, = 1 if, beginning with the uth trial there is a successior: of m letters E or F
preceded by F or E, otherwise z, = 0. Show that

Bl@i+z2+ - - - o) =0 —m — 1)(p"g* + p’g™) + 2(p™q + pg™)
B(@ + 22 + - - -+ 2)? = n¥(pmg? + pPg™)? + P
where P remains bounded. .

8. The following interesting series of dependent trials has been suggested by S.
Bernstein: Two urns contain white and black balls. The probabilities of drawing
white balls from the first and second urns are, respectively, p and p’. The probabilities
of drawing black balls from the same urns are ¢ =1 — pand ¢’ =1 — p’. Finally,
the probability of taking a ball from the first urn at the outset of the trials is . A
series of trials is uniquely defined by the following rule: Whenever a white ball is
drawn (and returned), the next ball is drawn from the same urn; but when a black
ball is drawn, the next ball is taken from the other urn. Let a, be the probability
that the nth ball will be drawn from the first urn when the results of other drawings
remain unknown. TUnder the same assumption, let p, be the probability of the nth
ball being white. Find general expressions of a, and pa.

Hint:
an+1=an(p+p’_1)+1—pl
whence
1-9 1-9 > , -
n = —_— — 1),
o 2—p-—p’+(a ppp—— @+ )
Also
P = anp + (1 — an)p’
whence
p +p —2pp’ 1—-p Nt _
Y L A s - — — 1)1,
= oy T\& T, o) TP R )

4. When it becomes known that in the sth trial a white ball was drawn, what are
the probabilities o{") and p$" of taking a ball from the first urn in the jth(j > 1) trial

and of drawing a white ball in the same trial?
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Hinr: The probability «f? that it was the first urn from which a white ball was
drawn in the ¢th trial is determined by Bayes’ formula:

i . a;p
o, = of) = 2L.

i
Fornzt+1
adi =l +p -1 +1 -7
whence
. 1 -2 (aeip 1 -9 ) .
() = - ok S S + ¢! = 1)i-i-1
- ——’ ps 2—p—p’(p z

forj > ¢+ 1. Furthermore
PP = ofp + (1 — &)p’
forj 2 ¢+ 1.
6. From now on we shall assume p + p’ = 1l or ' = ¢, ¢ = p. Show that the

law of large numbers can be applied to variables 1, s, @3, . . . which are defined in
the usual way:

z; = 1 if a white ball is drawn in the éth trial,
z; = 0 if a black ball is drawn in the sth trial.

Indication of the Proof. Evidently E(z:) = E(z}) = pi. Furthermore

B, = Zn:E(xs - pi)t + 22E(x,- — i) (i — pj).

=1 >
Now
Ew; — p:)? = 2pg(1 — 2pg); 1> 1
E@ —p1)? =00 + a(l — a)(p — @2
Forj>i1>1

B ~p)@i—p) =0 i j>i41
E(z: — pi)(@is1 — piv1) = pa(l — 4pg).

Forz=1landj>1

E(@ —p)@; —p) =0 ¥ jF>2

E(@ — p)(@2 — p2) = ap® + (1 — a)g® — (1 — 2pg)(g + (p — )ar).
Hence
B, ~ 4pg(1 — 3pg)n

and the law of large numbers holds. It can be stated as follows: If in n trials the
frequency of white balls is m, then the probability of the inequality

%—(p2+q2) <e

tends to 1 as n tends to infinity for any given positive number e.
6. Let r = p? 4 ¢ be the mean probability in infinitely many trials. Find the
divergence coefficient
n
2 (m; — sr)2

i=1
b=E Nr(l —7)

when N = ns trials are divided in n consecutive groups containing s trials each.
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Indication of Solution. From the foregoing formulas it follows that
E@e =7 4+ @ayr — 7+ + + + 4 Tager — 1) = 45pg(1 — 3pg) — 2pg(1 — 4pg)
if @ > 1. Hence

n
EZ: (mi — sr)? = 4Npg(l — 3pg) — 4spg(1 — 8pg) — 2(n — 1)pg(1 — 4pg).
1=2

Again
B(my — sr)* = 4spg(1 — 3pg) — 2pg(8 — 10pg) + p(1 — 6g + 12¢* — 4¢%) —
—alp —q)(1 — 8pg)
so that finally
_2—-6pg 1—4pg (@ —9p — )0 — 8pg)
1-2pg sl —2pg) 2Npg(1 — 2pg)
For large N with a good approximation

_ 2 —6pg 1 —4pg
1-2pg s — 2pg)

7. Two sets of cards containing respectively 12 red and 4 black cards (the first
deck) and 4 red and 12 black cards (the second deck) were used in the following experi-
ment: The first card was taken from the first deck, and in the following trials, after
a red card the next one was taken from the same deck, but after a black one the next
card was taken from the other deck. Altogether 25,000 cards were drawn, and in their
natural order were divided in 1,000 series of 25 cards each. The results are recorded
in Table VI. How close is the agreement between this experiment and the theory?

TasLe VI.—DisTRIBUTION OF RED Carps IN 1,000 SErIEs oF 25 CARDS

Frequency of | Difference, Number of series
red cards, m m — 16 with these frequencies

6 —10 1

7 -9 1
8 - 8 1

9 -7 12
10 - 6 13
11 -5 43
12 — 4 65
13 -3 92
14 - 2 101
15 -1 162
16 0 94
17 1 164
18 2 68
19 3 110
20 4 26
21 5 28
22 6 10
23 7 7
24 8 1
25 9 1
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Ans. In the present case p = ¢’ = 34, p’ = ¢ = }{. Mean probability in infinitely

many trials:
p* 4+ ¢ = § = 0.625.
1.384. Frequency of red cards: 15,696.

Theoretical divergence coefficient: D
Relative frequency:
1884

0.62784,

close to 0.625.

Empirical divergence coefficient: D’ = 1.3845, very close to 1.384.

The probability of taking a card from the second deck is 0.25. Now, by actual
counting, it was found that in 7,500 trials a card was taken from the second deck
1,856 times. Hence, the relative frequency of this event in 7,500 trials is

1853 = 0.2475,
again very close to 0.25.
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CHAPTER XII
PROBABILITIES IN CONTINUUM

1. In the preceding parts of this book, whenever we dealt with
stochastic variables, it was understood that their range of variation was
represented by a finite set of numbers. Although, for the sake of better
understanding of the subject, it was natural to begin with this simplest
case, there are many reasons why it is necessary to introduce into the
calceulus of probability stochastic variables with infinitely many values.
Such variables present themselves naturally in many cases of the type of
Buffon’s needle problem which we had occasion to mention in Chap. VI.

On the other hand, even in dealing with stochastic variables with a
finite, but very large number of values, it is often profitable for the sake
of approximate evaluations, to substitute for them fictitious variables
with infinitely many values. Among these the most important ones by
far are continuous variables.

CasE oF ONE VARIABLE

2. Beginning with the case of a single continuous variable 2, we must
assume that its range of variation is known and represented by a given
interval (@, b), finite or infinite. The knowledge only of the range of
variation of z would not enable us to consider z as a stochastic variable;
to be able to do so, we must introduce in some form or other the considera-
tions of probability. For a continuous variable it is as unnatural to
speak of the probability of any selected single value, as it is to speak of
the dimension of a single selected point on a line. But just as we speak
of the length of a segment of a line, we may introduce the notion of the
probability that = will be confined to a given interval (¢, d), part of (a, b).

In introducing this new notion of probability in any manner whatso-
ever, we must be careful not to fall into contradiction with the laws of
probability which are assumed as fundamental. To this end, if P (¢, d)
is the probability for z to lie in the interval (¢, d), we are led to assume

1° Ple,d) =2 0
2° P(a, b) = 1.

The first assumption is an expression of the fact that probability
can never be negative. The second assumption corresponds to the fact

that z certainly assumes one out of the totality of its possible values.
235
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Next, if the interval (¢, d) is divided into two adjoining intervals
(e, e) and (e, d), we assume

3° Ple, d) = P(c, e) + Ple, d)

in conformity with the theorem of total probability.

For continuous variables it is furthermore assumed: 4° for an infini-
tesimal interval (¢, d), P(c, d) is also infinitesimal.

Properties 3° and 4° show that P(c, d) is a continuous function of ¢
and d and that

Ple, ¢) = 0.

In other words, the probability that z will assume any given value is 0.
At the same time P(c, d) represents the probability of any one of the four
inequalities

c <z <d; =2z <d; c<z=d; csz =d

3. A simple example will serve to clarify these general considerations.
A small ball of negligible dimensions is made to move on the rim of a
circular disk. It is set in motion by a vehement impulse and after many
complete revolutions, retarded by friction and the resistance of the air,
comes to rest. The variety and complexity of causes influencing the
motion of the ball make it impossible to foresee the final position of the
ball when it comes to rest and the whole phenomenon bears characteristic
features of a play of chance. The stochastic variable associated with this
chance phenomenon is the distance from a certain definite point on the
rim (origin) to the final position of the ball, counted in a definite direction,
for example, clockwise. This variable, when we consider the ball as a
mere point, may have any value between 0 and the length of the rim.
The question now arises, how to define the probability that the ball will
stop in a specified portion of the rim, or else that the variable we consider
will have a value belonging to a definite interval, part of its total range
of variation. In trying to define this probability, we must observe the
fundamental requirements set forth in Sec. 2. Besides that, we must of
necessity resort to considerations which are not mathematical in their
nature but are based partly on aprioristic and partly on experimental
grounds. Suppose we take two equal arcs on the rim. There is nothing
perceptible a priori that would make the ball stop in one arc rather than
in another. Besides, actual experiments show that the ball stops in one
arc approximately the same number of times as in another, and this
experimental knowledge together with aprioristic considerations suggests
the assumption that we must attribute equal probabilities to equal arcs,
irrespective of the position of the arcs on the rim. As soon as we agree on
this assumption or hypothesis, the problem becomes mathematical and
can easily be solved.
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Before proceeding to the solution, a remark on the meaning of zero
probability in connection with continuous variables is not out of place.
Zero probability in this case does not mean logical impossibility. We
attribute zero probability to the event that the ball will stop precisely
at the origin. However, that possibility is not altogether excluded
so far as we consider the origin and the ball as mere points. The question
lacks sense if we deal with a material ball and a material rim, no matter
how small the former and how fine the latter.

4. A stochastic variable is said to have uniform distribution of
probability if probabilities attached to two equal intervals are equal.
This means that P(c, d) depends only upon the length d — ¢ = s of the
interval (¢, d) and accordingly can be denoted simply by P(s). Com-
bining two adjoining intervals of the respective lengths s and s’ into a
single interval of length s -+ ', according to requirement 3°, we must
have

(1) P(s 4+ ¢") = P(s) + P(s').

Suppose now that the interval (a, b) of the length & — a = I, represent-
ing the whole range of variation of z, is divided into n equal intervals
of the length I/n. The repeated application of equation (1) gives

l
P(l) = nP(a)
But by requirement 2° P(l) = 1 and hence
pG>=L
n n
Again, repeated application of (1) gives
p(."'_"l> =m
n n

for any integer m < n. Now let us take any interval of length s. For an

appropriate m it will contain the interval %l and be contained in the

interval - + 1l ; hence, referring to requirements 1° and 3°, we shall have
m<pe st
n n

while

ml_s<w’
n
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or

m-l—l_

n

<

33
IIA
o~

Since P(s) and s/! are contained in the same interval of length 1/n,

lP(s) —l§ <%

and this being true for an arbitrary n, no matter how large, it follows that

P(s) =

N!fn

Thus for a variable z with uniform distribution of probability, the
probability of assuming a value belonging to an interval of length s is
given by the ratio of s to the length [ of the whole range of variation of z.
5. In the general case, when we cannot assume the uniform distribu-
tion of probability throughout the whole range of variation of z, we let
ourselves be guided by an analogy with a mass distributed continuously
over g line. In fact, the distribution of a mass satisfies all the require-
ments set forth for probability. In particular, the mass Am contained
in an infinitesimal interval (2, 2 + Az2) is also infinitesimal and the mean
density : )
Am
Az

is generally supposed to tend, with Az converging to 0, to a limit called
‘““density at the point 2. If this density p(2) is known, the mass con-
tained in any interval (c, d) is represented by an integral

j; dp(z)dz.

Following this analogy we admit that the mean density of probability

P(z, 2z + Az)
Az

tends to a limit f(2): density of probability at the point z when the length
of the interval Az tends to 0. Hence, again the probability corresponding
to an interval (¢, d) will be represented by the integral

P(c, d) = f (2 de.

This expression satisfies all the requirements of Sec. 2 if the density of
the probability f(z) is subject to two conditions:
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(@) f(z) = 0for all zin (a, b).
) f *f(e)dz = 1.

The second condition implies, of course, the existence of the integral itself.
But in all cases of any importance the density is continuous, save for
discontinuities of the simplest kind which do not cause any doubts as
to the existence of the above integral.

From the general expression of P(c, d) it follows that for an infini-
tesimal interval (z, 2 + d2) the probability is given by f(2)dz neglecting
infinitesimals of a higher order. For the uniform distribution of proba-
bility over an interval of length I the density is constant and = 1/L.

In other cases we cannot expect to obtain a definite expression for
density unless the variable itself is sufficiently characterized by addi-
tional conditions, either hypothetical or implied by the problem. Thus,
for instance, in applications of probability to problems of theoretical
physics, the physicists have succeeded in obtaining definite probability
distributions by invoking physical laws of admitted universal validity
together with some plausible hypotheses.

6. The interval containing all possible values of a stochastic variable
may be finite or infinite according to the nature of that variable. How-
ever, in all cases we may take the largest possible interval from — « to
+ o0 ; to this end it suffices to define the density outside of the originally
given interval as being = 0. Then the density will be defined for all
real values of z and will satisfy the conditions:

(@) f(2) = 0 for all 2
(b) f_:f(z)dz =1

Furthermore, the probability for z to be in any interval (¢, d) will be

given by
fc “4(2) de.

In particular, taking ¢ = — « and writing ¢ instead of d,

F@t) = f " f(@)dz

represents the probability that z will not exceed or will be less than &
Considered as a function of ¢, F () is never decreasing and varies between
F(—w) =0and F(+») = 1. It is called the “distribution function of
probability.” In case z has uniform distribution of probability over an
interval (a, b) its distribution function is evidently defined as follows:

Fit) =0 for t<a

F@) =t=% for  astsbh

F(i@) =1 for t > b.
Its graph is shown in Fig. 1 on page 240.
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7. The definition of mathematical expectation can easily be extended
to continuous variables; namely, the expectation of z or the mean value
of z is defined by

E(z) = f_:zf(z)dz

provided this integral exists. Similarly, the mathematical expectation
of any function ¢(z) is given by

Elo@)] = [ o).

Of course, the existence of the integral in the right member is presupposed
again. When this integral does not exist, it is meaningless to speak of

the mathematical expectation of ¢(z).
e The mathematical expectation of the
-0 a b +oo power z* with positive integer exponent
is called the moment of the order m or
nth moment. We shall denote it by m, so that

My = f _: 2"f(2)dz.

The dispersion D and the standard deviation of z are defined in the same
way as in Chap. IX; namely,

D =¢2=E(@x — m)?= f_: (2 — m)¥(2)dz = my — mi.

Often it is advisable to consider the mathematical expectation of |z
where o may be any real number, ordinarily positive. This expectation
is called the “absolute moment of the order a.”” Its expression is

b = [ lelf @z,
and it is evident that
Mok = Jar; [Mory1] £ pors.
The mathematical expectation of the function
eitz

where ¢ is a real variable, is of the utmost importance. It is called the
‘“ characteristic function” of distribution and is defined by

ot) = [ ef@)de.
Since f(z) 2 0 and
f_:f(z)dz =1
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the integral defining ¢(¢) is always convergent and

le@®] = 1.

The distribution is completely determined by its characteristic func-
tion. Because by the Fourier theorem

1 (" i
er_ “dtf_ we“("“”f(z)dz = f(x)
at all points of continuity of f(z). But the left-hand member is

- f o (t)eiteds
by the definition of ¢(f) and so

f@) = ﬁ ottt

8. To illustrate the preceding general explanations we shall now con-
sider a few examples.

Example 1. Let = be a variable with uniform distribution of probability over
the interval (0, 7). The density of this distribution being constant

@ =3

the mean value of z is

and the second moment

Hence, the square of the standard deviation
lz

2 = —_m? = —
g% = My my 12
This simple example may be used to illustrate a remark made at the beginning of this
chapter, that sometimes it is profitable to substitute for a variable with a finite but
large number of values a fictitious continuous variable. Suppose thatin flipping a coin
n times, we mark heads by 1 and tails by 0O, thus obtaining a sequence comprising n
units and zeros altogether, disposed in the order of trials. This sequence may be con-
sidered as successive digits in the binary representation of a fraction:

ay [22] On
X=J 47+ g

contained between 0 and 1. X may be considered as a stochastic variable with 2»
values each having the probability 1/27. The probability (e, 8) that X will be con-
tained in the interval (e, 8), or more definitely that X will satisfy the inequalities

a<X =8
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is obviously obtained by multiplying the number of integers N contained in the limits
2" < N £ 278
by 1/2». Now there are exactly _
2%8] — 2ma] = 2*(8 —a) +6; —1<6<1
such integers; hence

‘]
(e, B) =B—a+§'

If n is even moderately large, this probability is very near to the probability
Pla,B) =8—«

that a fictitious variable z with uniform distribution over the interval (0, 1) will
assume 2 value in the interval (e, 8). The first two moments of the variable X are,
respectively

0414244221 1 1
M, = 92n T 9 T onm1

04124224 .. @ =12 1 1 1
M. = pX =3 pm T3gem

and differ little from the respective moments %4 and 14 of the fictitious continuous
variable. Without losing anything essential, we here gain considerably in sim-
plicity by substituting a fictitious continuous variable for the discontinuous variable

X.
Example 2. A thin bar can rotate freely about its middle point P. It is set in
motion and after several revolutions comes to a stop pointing toward a point X on a
line I. The position of the bar is determined by an angle 4

\f formed by itself and the perpendicular PO dropped from P onl; 6

"‘“0}\ varies between the limits —m/2 and =/2 and its distribution is
0 X ¢ supposed to be uniform. The position of X is determined by
Fic. 2. its distance OX = z from O, this distance being positive or nega-

tive according as X is to the right or to the left of the point O.
It is required to find the distribution of the probability of . The relation between 6
and z is
z=atgl
if OP = g or, conversely,

T
6 = arc tg —
ga,

By differentiation we find the relation between dé and dz:

adz
a? + 22

do =

Now,. by hypothesis, the probability that <OPX will be contained between 6 and
9+ dois
ae

™

adz
a? + z?

1
™
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And thc? probability that the distance of X from O will be contained between and.
¢ + dz is the same. Hence, the density of probability for the variable z is

1 a
T a? + 22

f@) =

and the probability corresponding to a finite interval (c, d) is given by

d
1 adz
P(C, d) = ;j; prs T zz.

For the whole range of variation of 2

17 ads _q
rJ—wat + 22

as it should be. However, we cannot speak of the mean value of z or of moments of,
higher order, since the integrals

® xd:c’ e "
W@ 2P o wa® ot

have no meaning. But the characteristic function ¢(f) exists and is given by

£l .
a etdy
o) =- = g—altl
T J — 0? + z?

Example 3. One of the most important distributions (theoretically and prac-
tically) is the so-called “Gaussian’ or “normal” distribution. The density of this

distribution is given by

1@ = Keeo’

with three parameters K, h, ¢. However, only two of these parameters are inde-
pendent, since we must have

f f(@)dz = Kf e el = Kf ey = KZ/T =1;

©

whence

K =

N

and finally

Jz) = %e"“(““) %

To find the meaning of @ and & we observe that the mean value of our variable is

-] -] h =]
L_ oW eaVydy = b (2 — a)eeodz + o f M0 s = g
V' o RV N

-

since
« @0
f (2 — a)e™d*ea’dz = f ue~htidy = 0.
— 0 —
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Thus ¢ has the meaning of the mean value of the normally distributed variable z.
The square of the standard deviation is given by

I I
o‘2=¢f—weh( )2(Z—a)zdz=-\ﬁf—ﬂeh u”du-ﬁz

B o=

whence

1 -
V2
Thus for the normally distributed variable with the mean @ and standard deviation ¢
the density of probability is

1 _(—a)?

@) = o R

Finally, for the variable ¥ = 2 — a¢ with the mean value 0 and the same standard
deviation, the expression of density takes the simplest form

22
202
e 20

@ =

e\ 2r

and the distribution function of probability is represented by the integral
1 11 __z_'«'_
F@) = e 294z
o\ 2r) - »

L 2
y = ——¢ 202
o"\/é;

or the probability curve has a bell-shaped form as shown in the figure corresponding
to ¢ = 1. It has a single maximum corre-

_/\ sponding to # = 0 and on both sides of this
maximum it rapidly approaches the z axis.

The curve of density

Fmo3‘ The characteristic function of normal
.o distribution has a very simple form, By
definition
1 R
ot) = e 20%gisndy
o"\/Zf -
But as
® 8
f e~ %% cos Brdr = \/Ee e (@ >0)
— o0 o
we find that

o2

o(t) = e

The moments of normal distribution (with the mean = 0) can now be easily found.
From the definition of the characteristic function it follows that

dir £=0
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ol 1 /o2\2 1 a?\3 '
i =1___..t2 —f — 4 —_ PO
e 2 +1-2<2>t 1-2~3<2>t“r ’
whence

d2k+1(p(t) . ) d?e(t)
( Ji >t=0 =0; (—1F (W>z =1-8-5--- 2k — 1)a%,

=0
Thus

In our case

Maop4r = 0
mep =1-3 -5 ... (2 — 1)o2.

CasE oFr Two or MORE VARIABLES

9. By analogy it is easy now to extend the notion of probability to
two or more variables considered simultaneously. A pair of special
values z, y of two stochastic variables X, ¥ will be represented geomet-
rically by a point with the coordinates z, y referred to a rectangular
system of axes. The domain S of all the possible values of X and ¥ will
be represented by a portion (finite or infinite) of a plane with a definite
boundary unless this domain coincides with the whole plane. The
probability that the point z, y should belong to an infinitesimal area
dzdy will be expressed by the product ¢(z, y) dzdy where the function
o(z, y) is again called the density of probability at the point z, y. The
density of probability must satisfy two requirements: it is non-negative
in the whole domain S and

[ [ot@, yazdy = 1
S

where the double integral is extended over all the domain S. The
probability for the point z, y to be located in a given domain ¢ is then

given by the integral
[ [ o, v)dady

extended over o.

If o(z, y) is a constant in S, the distribution of probability is called
uniform. The domain S in this case must be finite and if its area is
denoted by the same letter, then

oz, y) =

@l =

The probability for the point z, ¥ to be within the domain ¢ will be given

by the ratio
g

S

denoting the area of the domain ¢ by ¢ again.
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10. We can always substitute the whole plane for the domain 8.
To that end it suffices to set
oz, y) =0
in all points not belonging to S. We shall then have
oz, y) 20

everywhere and

f_: f_: oz, y)drdy = 1.

By doing so we have the advantage of stating results in a perfectly general
form without mentioning the domain S. However, in dealing with
particular problems, it is more convenient to consider only those points
which can actually represent simultaneous values of the variables.
The probability of simultaneous inequalities

a <z <b; c<y<d

according to the general definition is represented by the double integral

j;bj;dga(x, y)dzdy.

This corresponds to the compound probability of two events and we must
see that the fundamental theorem of compound probabilities continues
to hold. Taking ¢ = — o, d = 4 « the repeated integral

[az [ o, vy

represents the probability P(a, b) for the variable X (as if it were con-
sidered alone without any reference to Y) to have its value in (a, b).
The function

1@ = [ e, vy
represents the density of probability of X. Thus
P(a, ) = [f(@)ds.

In a similar way
Fy) = [ olz, y)dz

represents the density of the probability of ¥; and the probability @(c, d)
that this variable has its value in (¢, d) is given by

Qe, d) = [F@)dy.
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Now the double integral
b
S [ et vydady

can be written in either of the forms

[ [ e ey = [z [*Fiay
j;b j;dsO(x, y)dxdy = j; F (y)dy - _]; bfl(a:)do;

where

s

j; e y)d:v; . = fc *o(e, )y
[ 1@ [ Faay

may be considered as densities of conditional probabilities, respectively,
for Y when it is known that X has a value in (@, b) and for X when it is
known that Y has value in (¢, d). The preceding expressions for the
probability of the simultaneous inequalities

a<z<b, c<y<d

have the same form as the theorem of compound probability and may be
considered as its extension. The conditional probability for Y to have
its value in (¢, d) when it is known that X hasits value in (a, b) is given by

[ Fway.

Now, we define variables X and Y as independent when the proba-
bility for Y to be in (¢, d) is not affected by the knowledge that X belongs
to (a, b), which means that

_£ “Fry)dy = j: Fly)dy

Fi(y) =

or
b od d b

j; j: o(z, y)dady = fc F(y)dy - j; f@)dz
and, since intervals (a, b) and (¢, d) are arbitrary,

oz, y) = fl@) - F(y)
at points of continuity. Hence, the density of probability for two
independent variables is a product of a function of z alone by a function
of y alone. Conversely, when this condition is satisfied the variables are
independent. For independent variables the probability of the simul-
taneous inequalities

a<z<b
c<y<d
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has a simple expression

[P1@adz- [*Fa)dy

which is the product of the probability for X to have its value in the
interval (a, b) by the probability for ¥ to have its value in the interval
(¢, d), in perfect analogy with the compound probability of two inde-
pendent events.

Finally, the mathematical expectation of any function ¥ (z, y) can be
defined by

B 9) = [ [ v, v)el, y)dady

provided the integral in the right member exists.
11. It is hardly necessary to dwell at length upon the case of several

stochastic variables. A system of particular values i, zs, . . . 2, of
n stochastic variables X, X,, . . . X, may be considered as a point in
n-dimensional space. The density of probability is a non-negative func-
tion ¢(z1, %2, . . . za) defined in the whole space and satisfying the
condition

f_:f_: R f_:go(:cl, Zo, . . . Tn)dxidze ¢ - - dr, = 1.
The probability for a point representing X;, X., . . . X, to be located

in a given domain ¢ is given by the integral

ff .. fga(:cl, Ty . . . To)dzidTe . . . dZ,

extended over . In the case of uniform distribution of probability,
¢(Z1, Ty, . . . Tn) Is by definition a constant in a certain finite region
of space and =0 outside of that region. If V is the volume of that
region and » the volume of the domain ¢, the ratio »/V gives the proba-
bility that a point belongs to o.

The probability of the simultaneous mequah’mes

a; < z1 < by Gy < Ze < bgj . .. Gy <2, <hb,

is given by the integral
b1 [*b2 bn
j;,lj;, .. j;nqa(:vh Zoy o o . ZTn)d21dT2 . . . dZa

which, by introduction of the conditional probabilities as in the case of
two variables, can be put into the form of a product of » integrals in a
manner perfectly analogous to the expression of the probability of a
compound event with n components. Finally, the variables are inde-
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pendent if the density o(z1, zs, . . . z,) is a product of n functions
depending only upon zi, 2, . . . z,, respectively, and conversely.
The expression

ElY(z1, 22y + - - za)] = f_:f_: Cee f_:thadxldxz e dz,

serves to define the mathematical expectation of any function ¥(z,
Toy, . . - Tn) Of Ty, Toy . . . Zp.

12. Since in introducing the extended idea of probability we took
care to preserve the fundamental theorems of the calculus of probability,
we may be sure that other theorems derived from them will hold for
continuous variables. In particular, theorems concerning mathematical
expectation and the fundamental lemma in Chap. X, Sec. 1, hold for
continuous variables. Upon this basis as we have seen was built the
proof of the law of large numbers. Hence, this important theorem
applies equally to continuous variables.

GEOMETRICAL PROBLEMS

13. A few geometrical problems will afford a good illustration of the
foregoing general principles.

Problem 1. A rectilinear segment AB is divided by a point C into
two parts AC = a, CB =b. Points X and Y are
taken at random on AC and CB, respectively. Whatis 4 _*¥C ¥ B
the probability that AX, XY, BY can form a triangle ? Fio. 4.

Solution. We must first agree upon the meaning of the expression
“at random.” The idea suggested by this expression implies that the

R way of selecting points X and Y gives no preference to
any point of AC and CB, respectively. Consequently,
variables x = AX and y = BY may be assumed to have
uniform distribution of probability. The domain of the
point z, y is a rectangle OMPN with the sides OM = a,
0 S§M QON =b. Inorderthat AX, XY, BY can form a triangle

Fie. 5. the following inequalities must be fulfilled:

z<(a+b—2z—y) +y or z<at+db—=z
y<l@+b—z—y) +=z or y<a-d+b-—y
a+b—z—y<z-+uy.
These inequalities are equivalent to
a-+b a-+b a+b
5 ’ y < 5 3 $+y> ) .

To interpret them geometrically through P draw a line QPR making
<RQO = 45°. TFrom the mid-point of QR drop the perpendiculars
VS, VW on 0X, OY. Then the preceding inequalities limit the position

N

z <
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of the point z, y to the shaded area SVW, whose part T'SU is contained
in the rectangle OMPN. Variables z and y are independent and have
uniform distribution. Hence, the density of probability of the pair
z, y is constant and the probability that the point «, ¥ is in the triangle
TSU will be
Area TSU _ 3bb _ 10
Area OMPN ~ ab 2a
At the same time this is the probability for AX, XY, BY to form a
triangle.
Problem 2. On a line AB two points X, X, are taken at random.
What is the probability that 4X;, XX, X,.B can form a triangle?

X2

c—2% 3B
P 0 M
A B
s F—
X Xz D L 4
Fic. 6. Fia. 7.

Solution. Variables AX; = 21, AX. = 2, are independent and have
uniform distribution of probability. The domain of all possible positions
of the point z1, z2 is a square with the side AB = [. Positions of this
point when AX;, XX, X.B form a triangle can be characterized as
follows. First, if X precedes X, we have

To—nn<zi+1—x or x.z-—x1<%
<z —z1+ 11— or x1<%
l

l—zs <2 —21+ 71 or x2>§

which means that z;, 2, belongs to the triangle OPN, the definition of
which is evident if L, M, N, P are mid-points of the sides of the square
ABCD. Second, if X, follows X,, we have

l l
:121—172<-2-; -'172<§; -'131>%
and these inequalities define the area OLM. Since the distribution of

Z1, T2 is uniform, the required probability is

Area OLM + Area ONP _ 3l 1
=1

Area ABCD 1

Problem 3. A chord is drawn at random in a given circle. What is
the probability that it is greater than the side of the equilateral triangle
ingeribed in that circle?
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Solution 1. The position of the chord drawn at random can be deter-
mined by its distance from the center of the circle. This distance may
vary between 0 and R, the radius of the circle. The chord is greater
than the side of the equilateral triangle inscribed in the circle if its dis-
tance from the center is less than 24R. Hence, the required probability

iR 1
pl = % = -2--

Solution 2. Through one end of the chord, draw a tangent AT.
The angle ¢ varying from 0° to 180° determines the position of the

chord. If it is greater than the side of the inscribed equilat-

eral triangle, the angle ¢ must lie between 60° and 120°.

B
Hence the answer

_120°—60° _ 1

Fia. 8. b= W B g
The fact that we obtain two different numbers for the same probability
seems paradoxical, and the problem itself is known as “Bertrand’s
paradox.” However, going attentively over both solutions, we discover
that we are really dealing with two different problems. In the first
solution it was assumed that the distance of the chord from the center
has uniform distribution, while in the second solution the distribution
of the angle ¢ was taken as uniform. The second solution may be con-
sidered reasonable if a thin bar or a needle can rotate freely about A
and if, being set in motion, it determines the chord AB by its ultimate
position. On the other hand, the first solution is acceptable if a circular
disk is thrown upon a board ruled with parallel lines distant from one
another by the diameter of the disk. The intersection of the disk with
one of the lines determines a chord, and the probability that it is greater
than the side of the inscribed equilateral triangle can reasonably be
assumed to be 14.

A general remark applies to all problems of this kind. When a
certain geometrical element, such as a point or a line, is supposed to be
taken at random, it should be clearly indicated by what kind of
mechanism this is to be done. Only then the hypothetically assumed
distribution can be put to an experimental test and either confirmed
(approximately) or rejected.

14. Buffon’s Needle Problem. A board is ruled with equidistant
parallel lines, the width of the strip between two consecutive lines being
d. A needle so fine that it can be likened to a rectilinear segment of the

‘length I < d is thrown on the board. What is the probability that the
needle will intersect one of the lines (naturally not more than one)?

Solution. This is the oldest problem dealing with geometrical
probabilities. It was mentioned by Buffon, the celebrated French
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naturalist of the eighteenth century, in the Proceedings of the Paris
Academy of Sciences (1733) and later reproduced with its solution in
Buffon’s book ‘““Essai d’arithmétique morale,” published in 1777.

Let us determine the position of the needle by the distance OP = z of
its middle point from the nearest line, and the acute angle ¢ between OP
and the needle. Variables z and ¢ may be considered as independent.
Furthermore, z and ¢ vary respectively between 0 and 14d, and 0 and
/2. As a hypothesis we assume the distribution of probability for

x
(] D
0 a4’
Fic. 9. Fie. 10.

z and ¢ as uniform. The domain of z, ¢ is a rectangle OABC with
OA = 7/2,0C = d/2. Now, the needle intersects one of the lines if

l
x<§COS¢

and then the point z, ¢ lies in the shaded area below the curve

l
z =3 oS -

Since the distribution of z, ¢ is uniform, the required probability will be

_ Area OAD
o P = Avea OABC

But
l 2 l
Area OAD = QJ; cos odo = 5
Area OABC = gg
and consequently
=2
wd

On pages 112-113 an account was given of experiments made by several
authors in connection with Buffon’s problem. They all show good agree-
ment with the theory and indirectly confirm the hypothesis assumed in
deriving the above expression for probability.

15. Extension of Buffon’s Problem. A thin plate in the shape of a
convex polygon, of dimensions so small that it cannot intersect two of
the lines simultaneously, is thrown on a board ruled, as in Buffon’s needle
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problem. What is the probability that the boundary of the plate will
intersect one of the lines?

Solution. Suppose that the polygonal boundary has five sides.
Let these sides (and their lengths) be denoted by

a, B,7, 5, ¢

Each of them is shorter than the distance d between two consecutive
lines. On account of convexity, a line can intersect either none or two
(and only two) sides. Accordingly, combining sides in pairs, we can
distinguish 10 mutually exclusive cases and denote their probabilities by

(aB), (av), (ad), (ae), (BY), (88), (Be), (vd), (ve), (Ge).
The required probability will be given by the sum

p = (aB) + (av) + (ad) + (ae) + (By) + (B3) + (Be) + (v8) +
+ (ve) + (de).

On the other hand, the side « can be intersected by a line in four mutually
exclusive ways; namely, together with 8 or v, or 8, or e. Hence, if («) is
the probability of intersection

(@) = (aB) + (av) + (@d) + (ae),
and similarly
B) = (Ba) + (By) + (Bd) + (Be)
() = (v&) + (¥8) + (v8) + (ve)
(8) = (ba) + (88) + (8y) + (3¢
(&) = (ea) + (eB) + (e7) + (),
whence
(@) + B) + (v) + (&) + (e) = 2p.
But
w=2 @©=2% w2 ©-3 0-%
and consequently

_atBtv+ite P
wd T wd

where P is the perimeter of the polygonal boundary. Evidently this
result is perfectly general. Since it does not depend upon the number of
sides, by passage to the limit, it can be extended to the case of a plate
bounded by any convex curve.

16. Second Solution of Buffon’s Problem. Barbier has given another
‘extremely ingenious solution of Buffon’s problem and of its extension.
‘Let (1) be an unknown probability that the needle will intersect a line.



oo <o

T
TR

254 INTRODUCTION TO MATHEMATICAL PROBABILITY [Camap. XII

Imagine that the needle is divided into two parts I’ and /. Evidently a
line intersects the needle if, and only if, it intersects either the first or
the second part. Hence, by the theorem of total probabilities

f@© = @) + 5",
whence, as in Sec. 4, we conclude
o =da

where C is a constant independent of I. The whole question is how to
determine this constant. Barbier’s ingenious idea was to let this
problem depend on the solution of another one: A polygonal line (convex
or not) is thrown upon the board; what is the mathematical expectation
of the number of points of intersection? The perimeter of the polygonal
line can be subdivided into 7 rectilinear parts ai, ¢, . . . a, all less than
d. With these n parts we can associate n variables 21, 22, . . . Zn, such
that

z; = 1 if one of the lines intersects a;

z; = 0 otherwise.
The sum
' s=z1+ 2+ -+ 2

evidently gives the total number of the points of intersection. Hence
E(s) = E(x) + E(xs) + - - - + E(zn)
and, if p; is the probability of intersection of a; with one (and only one)
line,
E(z:) = p..
But, according to the previous result,
p: = Cas.
Hence, we have a perfectly general formula
E(s)=Clai+a+ --- +a,) =CP

where P is the perimeter of the polygonal line. The result holds for any
curvilinear arc (closed or not) as can be seen by the method of limits.
This formula applied to a circle with the diameter d gives

C-md =2
since such a circle has always exactly two points of intersection with
the lines of the system. Thus we find that

2
C=
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and
2l
f (l) = -a

as obtained before. For a closed convex line of sufficiently small dimen-
sions only tW.O cases are possible: two intersections (probability p), or
none (probability 1 — p), whence E(s) = 2p and

2P
2p = 7
or
_ P
T nd
in agreement with the result obtained in Sec. 15.

17. Laplace’s Problem. A board is covered with a set of congruent
rectangles as shown in the figure, and a thin needle is
thrown on the board. Supposing that the needle is shorter
than the smaller sides of the rectangles, find the probability
that the needle will be entirely contained in one of the
rectangles of the set. Fre. 11.

Solution. Let AB = a, AD = b be the sides of the rectangle which
contains the middle point of the needle, the length of which is

ll<al<b).
Taking AB and AD for coordinate axes, the position of the needle is
determined by two coordinates z, y of its middle point
and the angle ¢ formed by the needle with the z axis.
4 ¢ We may consider z, y, ¢ as three independent variables
-with uniform distribution of probability. The domain
1 5 " filled up with all possible points =z, y, ¢ is a
Fie. 12. parallelepipedon

Y

_r il

2 2
and the distribution of probability throughout this domain is uniform.
To characterize the domain of points representing positions of the

H M
D, c D c

G 13 ’ yA

A B A B

E J
F1e. 13. Fia. 14.

middle point of the needle when it is located entirely within ABCD we

oonsider the sections of that domain by planes ¢ = constant and their

0<z<aq; 0<y<b; <g<
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projections on the plane zy. These projections are represented by
the shaded areas in Figs. 13 and 14 corresponding to positive and negative
o, respectively.

In Fig. 13

«PAB = ¢;  AP|BF||CR|DG

and AP = BE = BF = CR = DG@ = DH = il
Similarly, in the second figure

4JAB = »;  AJ|BQ|CL|DS

and AJ = AK = BQ = CL =CM = DS =}l
The area of the rectangle PQRS corresponding to these two cases can be
expressed as follows:

Area PQRS = (a — lcos ¢)(b — I sin ¢) = ab — I(b cos ¢ + a sin ¢) +
-+ 12 sin ¢ cos ¢,
Area PQRS = (a — L cos ¢)(b + I sin ¢) = ab — I(b cos ¢ — a sin ¢) —
— [2sin ¢ cos ¢.

Without distinguishing positive and negative values of ¢, we may write
F(p) = area PQRS = ab — bl cos ¢ — lajsin ¢| 4 31%sin 2¢)|.
The volume of the domain representing positions of the needle entirely

within ABCD is:

o= [ F(o)do = wab — L — 2l + 12
]

while
V = 7ab
is the volume of the domain
0<z<a 0<y<b —=fs<o<L
2 2
Hence, the required probability is:
_2l(a+0b) -

p=1 wab

and the complementary probability for the needle to intersect the
boundary of one of the rectangles is:

_2@+b) -8
7= wab
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Buffon’s problem may be considered as a limiting case whena = o
and, indeed, by setting @ = «, we find that

2
T b
in conformity with the result in Sec. 14.

These examples may suffice to give an idea of problems in geometric
probabilities. Sylvester, Crofton, and others have enriched this field
by extremely ingenious methods of evaluating, or rather of avoiding
evaluations, of very complicated multiple integrals. However, from the
standpoint of principles, these investigations, ingenious as they are,
do not contribute much to the general theory of probability.

Problems for Solution

1. A point X is taken at random on a rectilinear segment AB = I whose middle
point is 0. 'What is the probability that AX, BX, and AO can form a triangle? The
distribution of AX = z is assumed to be uniform. Ans. 15.

2. Two points Xi, X, are taken at random on AB =1l
Assuming uniform distribution of probability, what is the mathe- 4 X
matical expectation of any power n of the distance between X, Fra. 15

and X,?
Ans flfl[x -—x]”dxldm— 2
Jo S0 TN TR T i £ ) + 2)

3. Three points X1, X», X; are taken at random on AB. What is the probability
that X; lies between X; and X.?
Ans. 14, assuming uniform distribution of probability.
4. A rectilinear segment AB is divided into four equal parts

AC = C0 = 0D = DB.

Supposing that the distribution of probability is symmetric with respect to O, let P
be the probability that a point selected at random on AB will be between C and D.
Also, let @ be the probability that the middle point between
two points selected at random will be between C and D. Prove

1+P2
2

B

s e e e
A C OD B
Fig. 16. that Q >

Himt: The middle point of a segment XX, is surely between C and D if : (i) X,
and X, are in CO; or (ii) X and X, are in OD; or (iii) X and X, are on opposite sides
of 0.

6. Two points X, X. are chosen at random in a circle of radius r. Assuming
uniform distribution of probability, what is the mathematical expectation of their
distance? Amns. Denoting the required mathematical expectation by M, we have

2t = j; 2” J; "B(r, 0, 0%)dbde’

where

r r
F(r, 6,6 = J; j; \/p2 + p” — 2pp’ cos (6 — 8")pp'dpdp’.
Hence, varying r by dr
dF = 2rdr Or\/r2 + p2 — 2rp cos (8 — 6")pdp
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and

' dw2rAM) = dnrdr j; 2 j; "7 5T = 2rp co8 wpdpde.

By introduction of new polar coordinates the integral in the right member can be

exhibited as
g 2r cos w 1 er 32
dw uldy = —6r3 cos? wdw = —r3,
-z 0 3 0 9
2

Thus
Fic. 17. d(rrtM) = 138ridy
whence.
_ 1287
-

6. A board is covered with congruent rectangles as in Laplace’s problem. A coin
the diameter of which is less than the smaller side of the rectangles is thrown on the
board. What is the probability that it will be partly in one rectangle and partly in
another? Ans. a, b, r being respectively the sides of the rectangles and radius of the
coin, the required probability is

r(a +b — 2r)
ab

7. Solve Buffon’s problem when the needle is longer than the distance between
two consecutive lines. Amns. The probability for the needle to intersect at least one
line is

2l . 2
p = —(1 — sin @) + 2
rd T

where ¢, is determined by cos ¢o = d/I.

8. A board is covered with congruent triangles whose sides are a, b, c. A needle
whose length is less than the shortest altitude of any one of these triangles is thrown
on the board. What is the probability that the needle will be contained entirely
within one of the triangles? Ans. The required probability is

n (Aa? + Bb? 4 Cer)l2 _ (40 + 4b + 4c —3I)I

1
2rQ? 27Q

where 4, B, C are angles opposite to sides a, b, c and @ is double the area of the triangle.

For equilateral triangles
2f 1\?
. +() _@(4 __l>.
3\a Ta a

9. On each of the circles 0i, O, Os, . . . with respective radii ry, rq, 73, . .
points M1, M2, Ms, . . . are taken at random. Supposing that the series

ritre s+ o-v -
iz divergent, while the series

I A T SRR
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is convergent, prove that the probability that the length of the vector

OM = 0.M, + 0.1, +0:Ms + - - - + 0.M,

will be > R tends to 0 as B — = no matter how large = is.
Indication of Solution. Let zi, s, . . . Yy, Y2 - . . Ya be components of
OMy, OM>, . . . OM, on two rectangular axes OX, 0Y. Then

M
E(z:) = E(y:) =0 Z
o p 7 () @ &*

B(a) = E@) = 3 i
IG. .

By Tshebysheff’s lemma (Chap. X, Sec. 1) the probabilities Q and @’ of the inequalities

2 2 2 PR G
lx1+xz+---+:c,.|>t\/r‘+“+r"+ =th
2 2

2 2 2 PR G
1y1+y2+---+yn[>t\/rl+r2+2r3+ =t\/g

are both less than 1/¢2. Now, if the length OM > R then either

R G
ey + 22 + - - +$n|>\—/—;=t\/§

or
|y1+yz+'--+y,.|>—R—=t —-
Va2 N2

Hence, the probability P for the length of OM to be > R is less than Q + Q’;
that is,
. 2a
P<@+@Q< B

10. Prove that

11 1, 2 2
. i+, + -0 2
lim 1 2 “dxydxs + ¢+ dzs =
n=°°j(;-£ j;xx—l—:cz-i--‘-—I—xnxlxz i

Hint: Considering 21, 22, . . . Z. as continuous stochastic variables with uniform
distribution over the interval (0, 1) prove with the help of Tshebysheff’s inequality
that the probability of

YY)

2 d4ait - ol 2
3 “ZmFmt - tm 3Te

for any ¢ > O tendsto 1 as n — o,
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CHAPTER XIII ‘
THE GENERAL CONCEPT OF DISTRIBUTION

1. In dealing with continuous stochastic variables we have introduced
the important concept of the function of distribution. Denoting the
density of probability by f(2), this function was defined by

F(t) = f_‘ _f(2)dz

and it represents the probability of the inequality
r <t

For a variable with a finite number of values the function of distribu-
tion can be defined as the sum

F() = 3 ps
zi <t
where pi, P2, - . . D are respective probabilities of all possible values
Zi, Zs, . . . T, of the variable z. The notation z; < ¢ is intended to
show that the summation is extended over all values of z less than &.
Again, F(t) for any real ¢ represents the probability of the inequality

r <t

In this case F(¥) is a discontinuous function, never decreasing and varying
between F(— ) = 0 and F(+ «) = 1. Its discontinuities are located
at the points z1, z3, . . . z, and are such that

F(:ZJ,,-I— 0) —F@Ii - 0) = Pi,
denoting, in the customary way,
Flx; — 0) = lim F(z; — ¢
when ¢, through positive values, converges to 0. To represent F(f)
graphically we note that
F(@) =0 for <z

F@) = p: for 1< t <1y
F@) = p1+ p2 for Te <t < x3

Fit) =pi+pe+ - -+ + pa for Ty < &
260
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As for the value of F(f) at the point ¢ = z;, it is F(z; — 0). Hence,
the graph of F(£) consists of rectilinear segments as shown in the figure
(for n = 4;21= —2;2, = 0;05 = 1,24 = 3; p1 = pa = P3 = ps = )
and belongs to the so-called step lines.

Thus, in case of a continuous variable the distribution function is
given by an integral, and in case of a discontinuous variable, by a sum.
In stating theorems equally true for continuous and discontinuous
variables, it would be tedious always to distinguish these two cases.
The question naturally arises whether it is possible to represent distribu-
tion functions, moments, and .similar quantities by using new symbols
equally applicable to continuous and discontinuous variables. In a
similar kind of investigation Stieltjes was confronted with the same

A oo
Fia. 19.

difficulties and he succeeded in overcoming them by introducing a new
kind of integrals known as ‘““Stieltjes’ integrals.”

STiELTIES’ INTEGRALS

2. Let ¢(z) be a never decreasing function defined in the interval
a £z =b. For any particular value of the argument both the limits
(for e converging to 0 through positive values)

lim ¢(zo + €) = oz + 0)
lim ¢(z0 — €) = @(z0 — 0)

exist. Since evidently
oo — 0) = o) < o0+ 0),
Zo is a point of continuity of ¢(2) if
o(m — 0) = o(zo + 0).
If, however, :
o(zo — 0) < @(z0 + 0)
o(z) is discontinuous at zo, and the difference
mo = @20 + 0) — ¢(ze — 0)

gives the measure of discontinuity or simply discontinuity. Since
for any number of points of discontinuity @, 1, . . . Z, the sum of
discontinuities

my + mi+ - - - + mn £ 0(b) — (@)
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the points of discontinuity form a countable set. For there are only a
finite number of discontinuities above any given number, so that, con-
sidering the sequence

6> 81 >8> - - ¢

tending to 0, there is only a finite number of points with discontinuities
>§; also a finite number of points with discontinuities =6 and > 4§,
and so on. It follows that points of discontinuity can be arranged into
a single sequence and hence form a countable set.

It may happen, however, that ¢(z) may have discontinuities in any
interval, no matter how small; but at any rate there are points of con-
tinuity in any interval. If o(zo 4 €) > @0 — ¢) for all sufficiently small
e > 0 the point x, is called a “point of increase” of ¢(z). In particular,
any point of discontinuity is a point of increase.

3. Let f(z) be a continuous function in the interval a < 2 = b. By
inserting points 21 < 72 < . . . < z, this interval is subdivided into
n + 1 partial intervals. In each of these we arbitrarily select points
£, &1, . . . £, and form the sum’

S = f(&)le(@) — ¢@)] + f(EDle(z) — (@)l + - - - +
+f(£n)[¢(b) - ‘P(xﬂ)]’

It can be proved in the same way as for ordinary integrals that when
all intervals

Ty —Q Ty — L1, ... 0 — Za

tend to zero uniformly, the sum S tends to a definite limit. This limit,
called Stieltjes’ integral, does not depend upon the manner of subdividing
the interval (a, b) or upon the choice of points %, £, . . . £&. It has
a perfectly definite value as soon as f(x) and ¢(z) (together with a, b)
are given, and accordingly is denoted by

[ 1@,

In case o(z) has a continuous derivative, do(z) can be interpreted
as the ordinary differential; Stieltjes’ integral then coincides with the
ordinary one. In other cases dy(z) is a new symbol introduced as a
reminder of the origin of Stieltjes’ integral. In particular, if o(z) is a
step function with discontinuities p;, ps, s . . . at the points z;,
Tz, T3, - . . , Stieltjes’ integral coincides with the sum

Zpif (:)

which is a finite sum or an absolutely convergent infinite series according
as the set of points of discontinuity is finite or infinite.
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Stieltjes’ integrals possess many properties of ordinary integrals.
For instance, the mean-value theorem holds for them in the form:

[ 1@3de@ = FOl®) — o]

where a < £ £b.  Also, if f(z) has a continuous derivative, we have an
analogue for the integration by parts

L 1@de@) = 106®) — f@e(@ — [ @) @)

where df(r) means an ordinary differential and the integral in the right
member is an ordinary integral. However, some important properties
of ordinary integrals do not hold universally for Stieltjes’ integrals. For
instance, considered as functions of b or a, they may have discontinuities.

In the definition of Stieltjes’ integral it was assumed that a and b
were finite numbers. Stieltjes’ integral over the interval — o, + o is
defined in an ordinary way as being the limit of

[1@det)

when a and b tend independently to — % and + «, respectively. In
other words,

[ i@de@ =tim [f@)de@ when a——w, b+,
provided this limit exists. If it does not exist, the symbol

[ 1@de)
has no meaning.

Tre GENERAL CoNcEPT OF DISTRIBUTION

4. The most general type of distribution function of probability,
covering all imaginable cases, is given by a never decreasing function
F(t) defined for all real values of ¢ and varying from F(—«) = 0 to
F(4+ o) = 1. If at points of discontinuity we set

F(t) =F@ —0),
then for any ¢ the probability of the inequality
<Lt
will be given by F(¢). Also, the pro’bability of the inequalities

h=o<t
will be
F(t:) — F(ty).
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The case of continuous F(f), having a continuous derivative f(t)
(save for a finite set of points of discontinuity), corresponds to a ‘con-
tinuous variable distributed with the density f(t), since

F(t) = f_‘ _f(@)dz.

If F(t) is a step function with a finite number of discontinuities, it charac-
terizes the distribution of probability of a variable with a finite number
of values. Finally, if F(¢) is a step function with an infinite set of dis-
continuities distributed without density, it corresponds to a variable
whose values can be arranged in a sequence according to their magnitude.
These are the most important types of variables considered in the
calculus of probability, and for all of them the distribution function can
be represented by Stieltjes’ integral

F() = f_‘ _dF (z).

The mathematical expectation of any continuous function f(¢) is
defined by Stieltjes’ integral

BU®) = [ fOdF @)

provided it has a meaning. In particular, moments of the order n (n
positive integer) and absolute moments of the order « (« real) are defined,
respectively, by

m, = [ 7 vdf()
pa = [ likdF ()

and we always have
M| < pim.
Finally,

ot) = [ et=dF @)

is the characteristic function of distribution. Since the integral exists
for any real ¢, this function is defined for all real values ¢ and satisfies the
inequality

o) = 1.

INEQUALITIES FOR MOMENTS

5. Moments of any distribution satisfy certain inequalities, which
it is important to know. They all are particular cases of the following
very general inequality due to Liapounoff.
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%iapounoff’s Inequality. Let a, b, ¢ be three real numbers satisfying
the inequalities

az=bz=c¢

(\%

0

and pa, ke, i absolute moments of orders a, b, ¢ for an arbitrary distribu-
tion. Then the following inequality holds:

B S uebube.

Proof. a. Let pi, P2, . . . pu; T3, %3, . . . z, be positive numbers
and
o(2) = puaf + par§ + - - - + pazd.
Then for arbitrary real numbers sy, 83, . . . s, the following inequality
holds:
e R 2
1) so( — - ”) = o(sDe(s) - - - o(sy)-

For p = 2 this inequality follows immediately from the known inequality
due to Cauchy:

(ia,b;)z < 20,2 : ﬁ:bg
1 1 1

by taking in it
32

81
a; = Vpz2, b: = Vpixsd.

For p = 4 we have

4 2 2
ortoaoto) o (nd ) (nd0) < oo

and continuing in the same manner we find in general that

2m
¢(sl+s2 + - +82") < o(s)0(E) - - - p(sm).

Let m be taken so that 2™ > p and let us take in the last inequality
Si+sa+ - +sp

3p+1=3p+2="’=82m=s= p

Since

si+se+ - F 8w ps+ (2™ —p)s _
2= - 2m =°

we shall have

(P(S)zm g tﬂ\/S))w(Sv\' L ¢(SP)¢(S)ZM—p’
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whence »
o(8)? = e(si)e(se) - - - o(sn),
which is inequality (1).
b. Let a =2 b = ¢ = 0 beintegers. Takingp = ¢ — ¢; Sp = 8 =

c e =8 = C) Sombpl = * ¢ 0 = 840 = G, WE have
s1+ s+ - - - +sa_.,_(a—b)c+(b—c)a=b
a — C a—¢c¢

and consequently, by virtue of (1),

@ <2271x5’> i é (2?&3:) _(Ep,x;‘) .
1 1 1

If a=9p/s, b=gq/s, ¢ =r1/s are rational numbers (¢ =2 b = ¢ = 0),

—

it suffices to take, in (2), p, ¢, r instead of a, b, ¢, replace z; by z%, and
raise both members to the power 1/s to ascertain that (2) holds for
rational a, b, ¢. Finally, the passage to the limit makes it clear that (2)
holds for real a, b, ¢, provideda =2 b = ¢ = 0.

¢. Let the interval 4 to B be subdivided into partial intervals by
inserting numbers t; < ¢ < - - - < ¢, between A and B and let

po=F() —F(4), p1=F()—FQF),...p.=F(B)—F({)
ZTo = |A'7 Ty = ltllr v e Tn = ltn[-

Then the three sums

n n n
S, Ypas Dpa
0 0 0

will tend to the respective limits

[ rare, [Diara), [ ieare

when all differences 4 — ¢, 82 — 1, . . . B — ¢, tend to 0 uniformly.
‘Hence, passing to the limit in (2), we get

([ rar@)™ = (f1ear@)™ - ([ lear®) ™

and finally, letting A tend to —» and B to + «,
( I |t[bdF(t>)““‘ < ( f_ :]tlch(t))“"’ : ( f__:]t[“dF(t))b“"

H S pgtube

or
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as stated.

. a . .
Taking b = __:2_|-_c, Liapounoff’s inequality becomes

a—c a—c
ae r

Ba¥e S u 2 p
2

@ ’
whence
2
Hate = Kella
2

267

for any two real positive numbers ¢ and ¢. If k and I are two positive

integers and we take ¢ = 2k, a = 21, then

IJ'I%+Z = pormor

or
My S My
since
[Mpega] S prsr and Mo = Mag, Hor = M.
Another important inequality results if we take ¢ = 0. Then, since
o =1,
by = b
or
1 1
5
by = 3

if @ > b > 0. This amounts to

loew clogwe 45y

b T a
which is equivalent to the statement that
Iog M
z

is an increasing funection of x for positive z.

CoMPOSITION OF DISTRIBUTION FUNCTIONS

6. An important problem in the calculus of probability is to find the
distribution function of the sum of several independent variables when
distribution functions of these variables are known. It suffices to show
how this problem can be solved for the sum of two independent variables.

Let z and y be two independent variables with the corresponding
distribution functions F(f) and G(f). To find the distribution function

H(t) of their sum
z=z+y
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is the same ag to find the probability of the inequality
z+y<t

for an arbitrary real number ¢. Here, for the sake of simplicity and in
view of the applications we propose to consider later, we shall assume that
one, at least, of the variables z, y has continuous distribution with

generally continuous density.
At first, let both z and y have continuous distributions so that

FO) = [* j@dz; 6@ = [*_g@da.
The probability of the inequality

z+y <t

according to the general principles stated in Chap. XII is expressed by
the double integral

HE) = [ [1@e(y)dsdy
extended over the domain

z+y <t

Now, following ordinary rules, we can reduce this double integral to a
repeated integral. To this end, for any fixed z we integrate g(y) between
limits — « and ¢ — z, thus obtaining

f:zg(y)dy = G(t — 7).

Then, after multiplying by f(z), we integrate the resulting expression
between limits — «© and -+« for z. The final result will be

H(t) = f_:G(t — 2)f(x)dz
or, written as Stieltjes’ integral,
HE®) = [~ 6t — ©)dF(2).

In the second place, let z be a discontinuous variable with different
values zy, 2, 5, . . . and corresponding probabilities pi, p2, Ps, + - . -
For z = z; the inequality

z+y<i
is equivalent to -
y <t— s
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and the probability of this inequality is Gt — z;). Since the probability
of z = z;is p;, the compound probability of the two events

T = X
z+y<t
will be
pE{E — ).
The total probability H () of the inequality
z+y <t

will be expressed by the sum
H() = ZpG(t — =)

extended over all possible values of z. But this sum can again be written
as Stieltjes’ integral:

(1) H() = f_":G(t — 2)dF (2).

In both cases we obtain the same expression for H(f). Evidently
H () can also be defined as the mathematical expectation of G(t — z):
H(t) = E{G(t — 2)}
taken with respect to the variable z. The important formula (1) is
known as the formula for composition of distribution functions F(¥)
and G(t).
Example. Let z and y be two normally distributed variables with means = 0

and respective standard deviations o1 and o.. Instead of using (1), it is better to
write H(¢) as a double integral

1 LN
H(t) = f fe 2018 208y
2mwo 102

extended over the domain

z+y <t

To evaluate this integral, it is natural to introduce z 4+ y = z as a new variable and
find constants C, D, «, 8 so as to have identically

332 yz
53 t53 = Cle+y)* + Dl + By)?
207 20,
whence one easily finds -
E
-1 -1
T 206t +od) " 20%3(0} + o)
a=97} B=—d

and

z? y: 1 . a2 o \? .
20? + 203 T 20 + ag){(x To et (dlz o'zy> }
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The Jacobian of
(23 L-2%
z=r+y, u=—T——y
(51 g2
with respect to z, y being
1 1
o2 o1 o'f + o-‘Z
5] oy C102

H(t) can be presented as the double integral

_2tul
H(t e 2@t dady
@ = 2n(o} +°'2)ff

with the domain of integration defined by a single inequality:

2 <t
Hence,
1 LR LA © ¥
HG) = ——— 2(o'x’+cz’)df 2(@2+a?) gy
® 27r(o'f+o'§)f_ o “)_.°
or
1 t _ 22
Ht) = —=———= f e 20iitorg,
V2@t + D) - ’
gince

© o ____u
f e 20ty = 2 (o} + 0'%)-

0

The expression obtained for H(t) leads to a remarkable conclusion:
The sum of two normally distributed variables with means = 0 and
standard deviations ¢; and o3 is also a normally distributed variable with
the mean = 0 and the standard deviation ¢ = 4/¢% + ¢%. If the means
of z and y are a, and a., then evidently z will be normally distributed
with the mean ¢ = a; 4 a» and the standard deviation ¢ = \/o? + 2.

Repeated application of this result leads to the following important

theorem:
If 21, 2o, . . . x, are normally distributed independent variables with
means ai, Az, . . . G, and standard deviations oy, o2, . . . on, then their sum

=ontmt o+

is again normally distributed with the mean a = a1+ az + - - - + an

and the standard deviation ¢ = \/o% + 0% + - - + + o2.
Finally, any linear function

U = %1 + %z + ¢ CaZn

is normally distributed with the mean a = ¢ia; + a2 + - - - + ¢o@n
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and the standard deviation ¢ = /cleI + ot + - - - F c22. In
particular, the arithmetic mean

i+ 2o+ - 4z,
n

of identical normally distributed variables with the mean a and the
standard deviation ¢ is normally distributed about the mean a and with

the standard deviation o/+/7. Hence, the conclusion may be drawn
that the probability P of the inequality

Tit s+ -+,

n

—a <e

is given by

¢ o no,

P = V/n e 2y = 2 (- e 24t
o\ 2mrJ —e Vor Jo

and rapidly approaches 1 as n increases. This is & more definite form

of the law of large numbers applied to normally distributed (identical or

equal) variables.

DETERMINATION OF DisTrRIiBUTION WHEN ITs CEARACTERISTIC FUNCTION
Is Gvex

7. One of the most important conclusions to be drawn from the
preceding considerations is that the distribution function of probability
is uniquely determined by the characteristic function. The known
proofs of this fact are rather subtle, owing to the use of conditionally
convergent integrals. However, such integrals can be avoided by resort-
ing to an ingenious device due to Liapounoff. In the general case, the
distribution function of a variable z has discontinuities. To avoid the
bad effect of these discontinuities, Liapounoff introduces a continuous
variable y that, with reasonable probability, can have values only in the
vicinity of 0. It may be surmised, therefore, that the continuous
distribution function of the sum z + y will approximately represent that
of x and, by disposing of a parameter involved in the distribution function
of y, will tend to it as a limit. To make these explanations more definite,
let ¥ be a normally distributed variable whose distribution function is

GQ@) = h\l/;f_t we—%dz.

When £ is small, the probabilities of any one of the inequalities

¥y >e y < —e
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will be extremely small and even will tend to 0 when & tends to 0. Hence,
the distribution function H(t) of the sum z + y is likely to tend to
F(t) as a limit when A tends to 0. !

To prove this in all rigor, we apply the composition formula (Sec, &)
to our case. We obtain the following expression for H(t): )

H) = \1/; f_:dp(@ f:’e*ﬁdz

or, in more convenient form

i—zx
® 7

H() = % f aF@) [ evdu;
w™T,J) — -— 0

and furthermore, integrating by parts,

= h\l/— f-‘:e" (t—z_x)zF(x)dx.

ko

H()

The integral in the right member can be split into three parts

hﬁ () rea Yo f " rayas +
+ h———% _t::e*(t_Tx) F(z)dz.

Now, for positive T

1 ® 1
—_— e'duy < ze~T%,
Wf:r 2

Making use of this inequality, we find that

1 f (t x) F(x)d:c<h

AV

€2

\/;‘L‘-H (t_z)dx—-———f e‘"’d’u< 5¢ T

(t x) F(z)dz < le 28

and similarly

h\/_ -

so that

_ 1
H(t)—h

e U 1 e _u e
e PR+ wdu + ———fe PR — uw)du + 6e 7%
\/7_&[) h\/;' 0
I<o<l.
Given an arbitrary ¢ > 0, the number e can be taken so small that

0=Flt+u —F@t+0) <o
0SFEt—-0)—Ft—u <o
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for 0 < u < ¢, whence

1 (o= CPE+O) [,
h\/;ﬁe F(t + u)du v j;e du| < o

5 F(t - 0) i
hF t — —u2
h\/_f ( —_—W j;e du| <o
and

F - i _e
H(t) = (t + 0) + F(t 0)f e__ugdu + 0} 20' + e hﬁ); Ial' < 1.
\/; Jo

On the other hand,

€2

1 0//

1 (* I 1 e
—— —u? = e v . TR 77
\/;rj;e =3 \/;j; =gTgeh 0<T<Y,
h

so that finally

I

O)I, < 2 + Ze_ﬁ;

iH(t) NET) el

and for all sufficiently small & (¢ being kept fixed)

HE - FE+0 ;—F(t - 0)1 < 4o
that is,
lim H() = FEF O +FE=0)
h—0 2

or, if ¢ is a point of continuity,
lim H@) = F().
h—0

Now we must find another analytical representation for H(f). To
this end we consider the difference

H(t) — H(O) = f_ @) f P e,
i

and, to represent in a convenient way the inner integral, we make use
of the known integral

L]

1
27 )

e~tvig—ividy = g3
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Multiplying both sides by dw and integrating between -—?L and t———h—f
we find
1 e
—= edu = teir—— —dy
'\/7—!' z w
"R
and

_hw?

H() — H(O) = & f iF () f Lol — ",

w

The next step is to reverse the order of integrations, an operation
which can be easily justified in this case. The result will be:

17 B — g, (7
H(@) — HO) = g e * ———T—dvf e =dF (z)
or
1 o ho"" 1 — -—n.t
HO —HO) =5 | ¢ To0)—5— R
since

o) = f_:e"“dF(x).

Now, taking the limit of H () for h converging to 0, we have at any point
of continuity of F(¢)

_h?

@) F) = ¢ + % lim f_ ) q,(v)-l—‘—e'—’fdo

w

where the constant
o= F(+0) + F(—0)
- 2

is determined by the condition F(— ) = 0. Thus, the distribution
function is completely determined by (2) at all points of continuity when
the characteristic function ¢(v) is given.
Example 1. Let us apply (2) to find the distribution corresponding to the
characteristic function
o2
o) = 2.
Since in this case the integral whose limit we seek is uniformly convergent with
respect to h, we find simply

0

’%2 — vt

Ft) = C + _1_ 1____‘3__._
—® w
=) 7_2_1;2 . t

=( + — 2 .SL"._.Udu.

21 ) - w v
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On the other hand (Chap. VII, page 128),

@ op? , ¢ u?
f T2 vdv=\/;fe )
— v [ 0

so that
F@) = C Y I
t) =C — e 3ofdu + ——— e 2oidu,
V2 ) w a\/ZJ:. w
Taking { = — «», the condition F(— ») = 0 gives
e 2¢’du,
o"\/?ﬂrf
and so finally

F@) =

. \/_f e 2v2du

Naturally, we find a normal distribution with the standard dewatlon o (compare page

270).
Example 2. What is the distribution determined by the characteristic function

o) =eer, a>0?

As in the preceding example we find that

F(t) = + —l—f e—al'a|81n tvdv =( + _]lf e—avsm tvd?).
2rJ - = v 7Jo v

But
alr- sin v ° a
— ~a. = ~av B ——
dtj; e " dv ]; e~ cos tvdy e prd
whence
1(* sintr, of® d& of° ds 1
— eav. dy = ~ —_— = - ——
T Jo ] rJoa?+ 22 wJ-a?+x2 2
Thus

t
1 a dx
F(‘)=C‘5+;£wm

and the condition F(— o) = 0 gives C = 14, so that finally

¢
a dx
F@t) = ;f_ ey

Naturally we find the same distribution as that considered in Example 2, page 243.
Sometimes it is called ‘Cauchy’s distribution’ with the parameter a.

CoMPOSITION OF CHARACTERISTIC FUNCTIONS
8. Having n independent variables zi, %2, . . . . Whose charac-
teristic functions are ¢1(f), ¢a2(f), . . . @a(f), the product

e(t) = e1t)e2(®) - - - @ald)
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is the’characteristic function of their sum
s=z+ 2+ - -+ T
In fact, the characteristic function of s is by definition
o) = E(e¥?) = E(e!t - gimt - - . gitat),

Since z1, 3, . . . @, are independent variables, the expectation of the
product

ei:clt ,eizzt . e eiznt
is equal to the product of the expectations of the factors, whence

() = e1(®ea®) - - - eald).

This simple theorem is of great importance since it determines the
characteristic function of the sum of independent variables and indirectly
its function of distribution.

9. A few examples will illustrate the preceding remark.

Example 1. Consider n independent normally distributed variables 1, 2, . . . 2a
with means = 0 and standard deviations o1, o2, . . . on. Their characteristic func-
tions are

okt
ont) =e 2 ; k=12 ...n

and the characteristic function of their sum

s=o 22t T2
will be
o2
o(t) =¢ 2
where
=0t 4o+ ...+l
Hence s is a normally distributed variable with the mean 0 and the standard deviation

c=Veita+ - +al

as we found previously by a method involving a considerable amount of calculation.

Example 2. Independent variables zi, ., . . . z. have Cauchy’s distributions
with parameters ai, ds, . . . @». Since the characteristic function of z is
g"’“k!‘l,

the characteristic function of the sum

s=zi+z+ - 2
will be
p(t) = emeld
where
a=a;+az+--~ +am

Hence, s again has Cauchy’s distribution with the parameter a; + ay + - - - + @a.
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Example 8. Let zi, 2, . . . 2. be independent variables with uniform distribu-
tion of probability in the interval (0, 7). The characteristic function of any one of
them is

Hence, the characteristic function of their sum s will be

at — 1\*
- (55

The distribution function of s is given by

® b2 il n —
_ ._ iy 1 — Lot
Fit) =C + K <e . 1) 2
h 0 iy b7

and, since the integral again is uniformly convergent, ' .

1 s iy . 1\™ — g—ivt
Fo - o+t (e . 1) 1=
2r ) — »

iy w
The evaluation of this integral presents certain difficulties. To avoid them we
notice that the integrand considered as a function of a
complex variable v is holomorphic everywhere. Hence,
we can substitute for the rectilinear path of integration
the path I as shown in Fig. 20.
Now it is easy to show that integrating over the path I' we have

Real axis

o
Fia. 20.

if g>0
f<g) f zn+1 21”'1‘-’.1%': if g § 0

f eils — 1 “t_i_z
T iz 2

being a linear combination of integrals of the type f(g) with g = O reduces to 0.

Similarly,
n
J = (—1)"+1f 1 — etz ﬂe*:‘ztdz _ 1:”+1l—"2 (—1)kaj(kl -8
T ilz iz o ”

‘ or, in explicit form,
2 o "
= ;L—!'E (_1)k0n<i - ) .
kst
Referring to the above expression of F(t), we find that

POy =+ > <—1y«c:;<’i - k)

t
k§i

The integral
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The constant C = 0 since F(f) and the sum in the right member both vanish for
= 0. The final expression of F(t) is, therefore:

S S £ S E T RG] E PR R )
F(t)—1-2~3~.n[<z> 1<l l)+ 1-2 (z 2) }

The series in the right member is continued as long as arguments remain positive.
Such is the probability that the sum

Ttz + - T

of n independent variables, uniformly distributed throughout the interval (0, {), will
be less than &. The above expression is due to Laplace, who, however, obtained it in
quite a different manner.

Problems for Solution
1. Prove directly the inequality

Matc = Kake

2
for absolute moments.
Hint: The quadratic form in A, u

f Nz + plzf2)2de(z)

is definite or semidefinite. Show that the equality sign cannot hold if «(z) has at
least two points of increase «, 8 such that «:p is neither O nor +1.

2. Let 1, 25, . . . z. be n variables. Denoting the absolute moment of the order
afor z; by p, and by ws the quotient
_ #g-l«-)s ~+ Mgi)a + .-+ #gz;)a
w§ = é
145
R Y Y O
prove that
1 1
o 5
if ' >8>0.

Hinr: Use Liapounoff’s inequality.
3. A variable is distributed over the interval (0, 4 =) with a decreasing density of
probability. Show that in this case moments M, and M, satisfy the inequality
M} £ §M, (Gauss)
and that in general

1 1
' [ + DM £ [(» + DM
if v >pu>0.
Indication of the Proof. Show first that the existence of the integral

j; w:z;'f (x)dz

in case f(z) is a positive and decreasing function implies the existence of the limit

lim a**if(a) = 0; a— 4+ o,
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Hence, deduce that

j;”xdsa(x) =1, j;“x#ﬂd«a(x) = (u + )M, f) *ptide(z) = (v + 1)My

where ¢(z) = f(0) — f(z) and, finally, apply the inequality

[j; ”xm-ldp(z)]y = [j; wx*’“dqa(x)]” . [j; Mﬂwl@(-’ﬂ)]y—m'

4. Using the composition formula (1), page 269, prove Laplace’s formula on
page 278 by mathematical induction.

6. Prove that the distribution function of probability for a variable whose charac-
teristic function ¢(t) is given can be determined by the formula

1T @) 1 — e
Fi) =C ] 1= e™
®) = C + lim 21rf gy

Hint: In carrying out Liapounoff’s idea, take an auxiliary variable with the dis-

tribution
1 I El
Q) = f e dz.

17 eivady \
= = o,
) — wl + x2

Many definite integrals can be evaluated using the relation between characteristic
and distribution functions, as the following example shows.

6. Let z be distributed over (— «, + ) with the density 4e'=l. The character-
istic function being in this case

Also make use of the integral

1
) =
o) Tt p
we find
1 71— 1 ("
= —_— e P —lz|
F@it)=C + om) o+ 02)dv 2]_ K dz,
whence

1 © gmint
- = p—ltl
‘ll'f—aol _H,zd” e,
an integral due to Laplace.
T. A variable is said to have Poisson’s distribution if it can have only integral
values 0, 1, 2, . . . and the probability of z = kis

ake™

kY’

the quantity o is ealled “parameter” of distribution. If n variables have Poisson’s
distribution with parameters ai, @;, . . . @s, show that their sum has also Poisson’s
distribution, the parameter of which is a1 + a2 + + + - =+ @n.
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8. Prove the following result:

1 (@)sﬁnw,ﬁ,:_1+_1___[(t+n)n_@(t+n_2y+
— .- 2n 1

27 v v 2 2.4.6.
nin — 1) ]

+ 12 @¢+n—4)
the series being continued as long as arguments remain positive.
Hint: Consider the sum of n uniformly distributed variables in the interval
{—1, 4+1) and express its distribution function in two different ways.
9. Establish the expression for the mathematical expectation of the absolute
value of the sum of # uniformly distributed variables in the interval (—14, +14).
Amns.

2
4-6---@2n+2)

Elxl + o -l— v +xn| P 2 - [nu-{—l — ?(n — 2)n+1 +

_l..’_?’_(_?%_“z_l)(n_.@nﬂ_ C ],

the series being continued as long as the arguments remain positive.

Hint: Apply Laplace’s formula on page 278, conveniently modified, to express the
expectation of 21 + 22 + - - + -+ 2z, and that of |21 + za + - - - + 24l

10. Show that under the same conditions as in Prob. 9

0 n-1
n sin ¢ sin ¢t — ¢ cos ¢
Bz, + 20+ - - + 2, = ———f <—~> e
2r ) - o\ 1 {3
Hint: Prove and use the following formula
T . .
TWEr 1 —_
lim f Gl Sk PR
T= o — x .

11. Let #; and z, be two identical and normally distributed variables with the
mean = 0 and the standard deviation . If z is defined as the greater of the values
|z1], |za], that is,

z = max. (jz1], |zal)
find the mean value of = as well as that of 2. Ans.

Blz) = %, Ba?) = (1 + f:)az.

z = min. (|z1], |2af, . . . |za))

12. Let

where 21, 22, . . . . are identical normally distributed variables with the mean = 0
and the standard deviation ¢. Find the mean value of z. Ans. Setting for brevity

5 [t ut
\\//%j;e—ﬂ?du = 0(t),
o o

E@) =_];°°{1 — 8(t) }mdt,

we have
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In particular for n = 2
20
B@) = —=(V/2 - 1).
Vo )

For large n asymptotically

o\ /2
n+1
13. A variable with the mean = 0 and the standard deviation = 1 is called a
“reduced variable.” By changing the origin and the unit of measurement any
variable can be made reduced. For, if « has the mean a and the standard deviation ¢
the variable

E(x) ~

U =
a

is reduced. The distribution function of the reduced variable % can be called the
“reduced law of distribution.”

As we have seen, variables z; and z. with normal distribution have the same
reduced law of distribution, as does their sum. The question may be raised: Is the
normal law of distribution a unique law possessing this property? (G. Pélya.)

Solution. Let zi, z2 be two variables for which the second moment of the distri-
bution exists, so that we can speak of their means and standard deviations. Let z;
have its mean a: and its standard deviation oy; likewise, let a; and o2 be the mean and
the standard deviation of zs. Three reduced variables

u1=x1—al, uZ:xz—az’ u3=x1+xz—a1—-az
2 2 Vet
have by hypothesis the same law of distribution. Hence, they have the same charac-
teristic function ¢(f) whence we can draw the conclusion that the characteristic
functions of zi, xs, z1 + z: are, respectively,

oilt) = Empled); el = iploa);  pall) = eRCrtedp(n/ot + k)

Since
es(t) = @1(t)oa(t),

we must have for an arbitrary real ¢
¢(ot)o(ont) = o(\/at + o),
or
@) elat)e(Bt) = o(t)
where
a=—2—-9 ﬂ=__2...__; - p=1.

Vot + o Vot + o}
Since (1) holds for every real ¢, we shall have

olat) = o(a®)e(aft); () = p(aBt)p(B%)

and

©) e(t) = ola?)p(abt)o(8%).

Applying (1) again to each of these factors in the right member of (2), we find that
3 o(f) = elat)o(a?Bt)*e(aB) e (8%)




282 INTRODUCTION TO MATHEMATICAL PROBABILITY [Crmap. XII1

and proceeding in the same way, we arrive at the general formula
(€] o(t) = elamt)rop(am™ 1B - - - p(B)7n
where po, p1, . - . ps are coefficients in the expansion

(42" =po+pz+ - + pat™
The arguments

vy = a™, v =B, ... vy =

tend uniformly to 0 since @ < 1, 8 < 1. The quotient

© 1
o0 —1_ f #2dF (1) f (1 — p)eieds
v? — 0

is represented by a uniformly convergent integral; hence
NZORE SN
].'lII].'—"—vz—---——-2 —‘mtdF(t)— 5
or
o) =1+ [—§ + (@)?
where
e(w) — 0 as v — 0.
At the same time
log () = [—3% + 8(v)]v? (principal branch of log)

where again
8(v) —» 0 as v — 0.

Now, taking logarithms of both members of (4)

log o(t) = —32(pea® + P1a®™262 + « + « fPu%2) + Q@ = —32 + @
where .
Q = tApod(ve)a® + p18(w)a®™ 282 + -+« + 4 Pud(va)B*].

Given ¢ > 0, we can take n so large that

[8(w:)] < e 1=0,1,...n
whence
Q] < e

Thus

llog ¢(t) + 32| < a2
and since ¢ can be taken arbitrarily small,

log o(2) + 482 =0
or

‘P(t) = e—%tz:

which shows that the normal law is the only one with the required properties, among
all laws with finite second moments.
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CHAPTER XIV
FUNDAMENTAL LIMIT THEOREMS

1. Bernoulli’s theorem, as we have seen in Chap. VII, follows from a
more general one known as Laplace’s limit theorem. In terms already
familiar to us, this theorem can be stated as follows: Let an event E
oceur m times in a series of n» independent trials with constant probability
p. As n becomes infinite, the distribution function of the quotient

m — np

VvV npg

approaches
1 b e
Vo) we du
as a limit; or, to state it in a less precise form, the distribution of the
above quotient tends to normal.

Just as Bernoulli’s theorem itself is a very particular case of the general
law of large numbers, so Laplace’s limit theorem is a special case of
another extremely general theorem, the discovery of which by Laplace
may be considered as the crowning achievement of his persistent efforts,
extending over a period of more than twenty years, to find the approxi-
mate distribution of probability for sums consisting of a great many
independent components with almost arbitrary distributions. The
result at which Laplace finally arrived is as astonishing as it is simple:
if £, 25, . . . 2o (B(z:) = 0,2 =1, 2, ... n)areindependent variables
(subject to some very mild limitations not stated, however, by Laplace)
and B, is the dispersion of their sum, then for large n the distribution of
the quotient

Zi+ 22+ -0 A+,
VB,

is nearly normal. To put it more precisely, the distribution functxon
of this quotient tends to the limit

e~ hidy

t
vV 27!' —_
as n becomes infinite.

Laplace’s attempt to prove this important proposition does not stand

the test of modern rigor and, besides, cannot easily be made rigorous.
283
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The same is true of the attempts made by later investigators, notably
Poisson,- Cauchy, and many others. Only after a lapse of many years
were truly rigorous proofs of Laplace’s theorem given. This important
achievement is the result of the work of three great Russian mathemati-
cians: Tshebysheff (1887), Markoff (1898), and Liapounoff (1900-1901).
An account of Tshebysheff’s and Markoff’s ingenious investigations is
given in Appendix II. Here we shall follow Liapounoff; for his method
of proof has the advantage of simplicity even compared with more recent
proofs, of which that given by J. W. Lindeberg deserves special mention.!

2. Before going into details of analysis, we shall state the limit theo-
rem in a very general form due to Liapounoff.

Laplace-Liapounoff’s Theorem. Let zi, s, . . . z, be independent
variables with their means = 0, possessing absolute moments of the order
2 + § (where & is some number > 0):

1) 2) (n)
usRe, usRe - - . wSs

If, denoting by B, the dispersion of the sum xi + 22 + * * + =+ Zn, the
quotient
=#§25+#(225+ e +l‘(ﬁ-)_5
143
B, 2
tends to 0 as n — «, the probability of the inequality

Tit s+ - A 2.
V' B.

Wn

<t

tends uniformly to the limat

LA e
> f_ we du.

It is natural that the complete proof of a theorem of such character
cannot be too short, and to make the proof clearer it is advisable to
divide it into logically separated parts.

3. The Fundamental Lemma. Let s, be a variable, depending on an
integer n, with the mean = 0 and the standard deviation = 1. If dis
characteristic function

@a(v) = E(e™*)
tends to

e 2

! Lindeberg’s proof, as well as later proofs by P. Levy and others, make use of an
ingenious artifice due to Liapounoff. Lindeberg explicitly acknowledges his indebted-
ness to Liapounoff, while Levy and other French writers fail to give due credit to the
great Russian mathematician.
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uniformly in any given finite interval (—1, 1), then the distribution function
F.(t) of s, tends uniformly (in the domain of all real values of t) to the limat

e~ du.

1
V2
Proof. a. Together with the variable s,, whose distribution function
is F,(t), Liapounoff considers another variable
Tw = $n T Y
where y is a normally distributed variable with the distribution function
y _z
7 \/— e ®dzx.

Denoting the distribution function of 7, by H.(f), we have (Chap. XIII,
Sec. 7)

Gly) =

t—2x
b R
) Ha(t) = % f R f e,
On account of the inequality

—\;—; L e~du = —;—e—”; T=0

we have:

Fort — 2z < 0: ——f —“’du———e (L;E), 0§ 1.

For ¢ >0 h—fd 1 f—*d 1 ‘(”)
or x___7 u = —-gx U = —'—6

™ — 0

0<9” =1,
Hence, introducing these expressions into (1),

H.@) = f dF . (z) +—f -(5° z) dF . (z) — = t e_(t{‘j)ﬂdlf’ﬂ(x)

where again 0 < 8, <1; 0 <6, <1. This leads to the following
inequality:

[Ha(t) — Fo(®)] < %f_‘w e—(%ﬁ)zdﬁ’n(x).
But

( ) —2\/_ e—ﬂd‘-w(r t)dv
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and consequently
I

|Ha(t) — Fal)] < —= 1 \/_ B T vty (v)dy

or

hp2

@) |Ha) — Fa(0) < \/_{ f P S P e‘;:]dv +

e .
+f e * Ee‘i”‘dv}-
— o0

Here we split the first integral into three Ji, J2, J3, taken respectively
between limits —«, —I; —I, [; I, + < and denote the second integral

22

by Js Since p.(») — ¢ 2| < 2, we shall have

s

3) .__h_lJl +J4 < __I.Lf me*}%ﬂ‘dv < 2 &
4/x VT Vr h
because
j; e~ du < ;m
for positive z. Also
h (= -Z h
4 Jd < 2dy = —
“ 4\/"'4| wx) L TR

To estimate J» we shall denote by e,(l) the maximum of |¢,(v) — ¢ 2|in
the interval —{ = v = [I. Then

he.() (= %2 1
(5) : \/lu < :/(7_3 e Tdv = 2.
Finally, taking into account (2), (3), (4), and (5), we find
_ (2
(6) B = F0] < 3o + Lo+ 20

b. Expression (1) of H,(f) can be transformed in a manner similar
to that employed in Chap. XIII, Sec. 7, if we first write

t—zx

= 1, 1 =
vy =5+ — [ " evdu
'\/— - 2 '\/—f
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Thus we get
1, 1 ° -2 — i, ()
= _— 4 »
H.(t) 2+21r _ e — dv
or
Ha(f) = f TPy + (7 — ()b
Now
1(° ——sm ) 1(° —yf—’i’sin v e -2 B2
2 -2 7 2y = &
Tj;e —dv ﬂ_j;e 2}d<4m_ov.e dv47r
since
_hn? 2
0<1l1—e¢ ¢ < %v_

and consequently
1 1" -Zsint
O

To find an upper bound of the integral in the right member, we split
it into five integrals Iy, I, Is, I, Is taken respectively between limits
—oo, —=l; =, =N; =X\, \; A ;L . To estimate Is, we notice
that

hﬂ 1 ) h’v l‘Pn(v) ‘
(7) < E + E;T- dv.

o) — 1] 5 2 f _:xzdﬁnw -7

2 2
Ay
and
loa(v) — e 2| < o=
Hence
1 1™ A2
ST < = = 0.
®) 21('[[3! = WJ:) tdv 2m

22
To estimate I, + I4, we use the inequality |¢.(v) — e 2| = €.(I) and we
get

hzvz
©) —IIz + 1= 2D f \Ef(l})&

Finally, dealing with I, and Is, we use the obvious inequality

02

lea(v) —e 2] =2
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and we obtain
_Gye

1 2(" ’”dv 4e *

Taking into account (7), (8), (9), and (10), the following inequality
results:

_ Ly
() n 4e *
Vi 7 (h)?

vl

1f 6——s1n tvl
0

™

In it, since X is still at our disposal, we can take
= ¢, ()%
The inequality thus obtained when combined with (6) gives (« = hl)

© _23 . 22 -‘%2
an |F. -5 - %ﬂ R
of N _
+ 2 (51; + 717)(104 Yie ) + 3enl)-

Here « and 7 are arbitrary positive numbers. We dispose of them in
the following manner: Given an arbitrary positive number ¢, we take a
so large as to have

a? al?

4e ¢ 2¢ ¢ 1
7_ra2+—\/7_ra<§e

and after that we select [ large enough to make
a ao? 1
__—\/gl + m < §€.
Finally, since for a fixed I, e.(l) by hyvothesis, tends to 0 when n — «,
there exists a number 7, such that

1 1 1 1
— — —1)% 3 = =,
(27'_ + \/17) (e V)i, (D)F + 25,,(1) < 3¢
for all n > ne. The inequality (11) then shows that
F.(t) — -1— - lf e‘— sin 1tvd‘v
TJo

for n > no and this means that

1,
I;%Fn(t)—'“_*' f . v=——\/1__—§ﬂr—f e 2dy

<e
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uniformly in ¢ because the number n,, as clearly follows from the pre-
ceding analysis, depends upon e only and not upon t.

Remark 1. Without changing anything in the proof, we can state
the fundamental lemma in a slightly generalized form as follows: If ¢,
tends to the limit £, the probability of the tnequality

Sp < in
tends to

1 ¢
e~ dy,
V 21rf - .

Remark 2. The fundamental lemma, although not explicitly stated
by Liapounoff, is implicitly contained in his proof. More general
propositions of the same nature have been published by Pélya and Lévy.
The very elegant result due to the latter can be stated as follows: If
the characteristic function of the variable s, tends to the characteristic function

() = [ 7 e=dF (z)
of a fizxed distribution uniformly in any fintte interval, then
lim F.(t) = F(¢)

at any point of continuity of F(2).
The above proof, corresponding to the particular case

Fo == [ e,

can be used, almost without any changes, in proving the general proposi-
tion of Lévy.
4. Proof of Liapounoff’s Theorem. a. If Liapounoff’s condition

#éﬂ).a + ng-q)-a + -+ #é:za

8 - O
B.'2
is satisfied for a certain 6 > 0, it will be satisfied for all smaller 8.
Let fi(f) be the distribution function of z:(z =1, 2, . . . n). The

sum
J@ = fi)) + () + - - - + 120

being a nondecreasing function of ¢, the following inequality holds
(Chap. XIII, Sec. 5):

(f " ear) ™ = (7 eas)* ™" - (f 7 edr)" ™,



200 INTRODUCTION TO MATHEMATICAL PROBABILITY [Crar. XTIV

provided ¢ > b > ¢ > 0. We take here
=2+ 3 =248, c=2
supposing 0 < & < 8. Then

7 epare) = Z#E’fﬂa, [ lease) = Zuss [ a0 = B
1 1

and
n &
(2#§ﬁ15> = Bﬁ“(E#%a) :
1

But this inequality is equivalent to

n
(3 (k)
> uiy 2#24.5
1

)%z

7=
Bnl +3 Bnl +§
and it shows that
n
2#%’25
7 —0
Bnl +3
if
n
2#&3—5
1 . — 0’
B.'z

provided 0 < 8 < 5. Hence, in the proof we can assume that the funda-
mental condition is satisfied for some positive § < 1.
b. Liapounoff’s inequality (Chap. XIII, Sec. 5) with ¢ =0, b = 2,
= 2 -+ 6 when applied to z; gives

B S )% b= Ead).
Hence,
2
i 513 2
(12) b < (u&is) o WIF
B»n. 1+_
B, 2

and, since it is assumed that w, — 0, all the quotients

b L =12 ...n)

B, biFbit - b
will converge to 0 uniformly as n — .



Suc. 4] FUNDAMENTAL LIMIT THEOREMS 291

¢. The following formula can easily be obtained by means of integra-
tion by parts:

2?2 1
etz =14+ iz — 5~ xzf (et=t — 1)(1 — t)dt.
0
If z is real and in absolute value >22 we have

[+

1
%@W—Mltw<ﬁ<

since
leist — 1] < 2.

If 2] = 2, we can use the inequality

8
Jei=t — 1] < 27 < 2'-’51715

and find

1 lx! +8 Ixiﬂ-s

f@m-nu-n%~326<7f

Thus, for every real

o
e“‘=1+zx——-+ 5 6 = 1.
Substituting here
T =t ij = t&,
and taking the mathematical expectation of both members, we have
(13) %@=Ewm=1-$n+ohﬂmm 6 < 1
2B,z

Furthermore, since

1——x=e*’—~§x2; z > 0; 0<o<1,

we can write

b e (Y

(14) 1 3 Bnt =¢ 5\3B,

If walf**® < 1, we shall have, by virtue of (12),
by

Ok
Bt <1
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and consequently

s 5 s
1+ 12 142
(bkt2>2 _ (bki2> 2<bkt2> 2 <1 <_Z_7£> ? < 18 s
2B.) \2B, 2B. 1-3\2B. DA
38,) ~\28B;) \zB = e

This inequality, together with (13) and (14), leads to the following
expression of ¢x(f):

_be
(15) ot) = ¢ B (1 + o)
where
&) (&)
(16) lo] < ge% _"‘2_4-85]t[2+s < 3i‘_2_+_55[t’z+a'
B, B,

d. The characteristic function of the variable
=$1+$2+ 2

Sn VB
is

o) = e1)ee(®) * - - ealt)
because 21, Z3, . . . Z, are independent variables. Hence, by (15)
. o) =e 1 + o)A F02) + + - (L +0n)
o) =63 < (Lt loa) (L +laal) - - = (LHloa) =1 < gimHint - Henl —1
and
an lo(t) — e=¥t] < granl®™™® — 1
taking into account inequalities (16). Inequality (17) holds if

walt|? < 1.

Suppose, now, that ¢ is confined to an arbitrary finite interval
—-IZtsl
Because w,, by hypothesis, tends to 0, the difference

244
e3wnl+ — 1

will tend to 0 as » — «. In connection with (17) this shows that
o(t) — e~

uniformly in any finite interval. It suffices now to invoke the funda-
mental lemma to complete the proof of Liapounoff’s theorem.

b. Particular Cases. This theorem is extremely general and it is
hardly possible to find cases of any practical importance to which it
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could not be applied. Two particularly significant cases deserve special
mention.

First Case. Let us suppose that variables z1, 72, . . . Z»are bounded,
so that any possible value of any one of them is absolutely less than a
constant C. Evidently

us S CUEG3) = C%:
and hence
<&

8
Wn = 5'
2
n

&y

It suffices to assume that
B, =bi+bo+ - +0ba

tends to infinity to be sure that w, — 0. Hence, dealing with bounded
independent variables, the condition for the validity of the limit theorem
is

B, — = as n— «,

which is equivalent to the statement that the series

by +bo b3+ - - -
is divergent.

Poisson’s series of trials affords a good illustration of this case. In
the usual way, we attach to each of the trials a variable which assumes
two values, 1 and 0, according as an event E occurs or fails in that trial.
Let p; and ¢; = 1 — p; be the respective probabilities of the occurrence
and failure of E in the sth trial. The variable z; attached to this trial
is defined by

z; = 1if E occurs,
z; = 0 if F fails.
Noticing that
E(zi) = Di
we introduce new variables
Ty = 2 — P¢ (z=1,2,n)

with the mean 0, whose sum is given by
m — np

where m is the number of occurrences of E in n trials and p the mean
probability

=p1+p2+ +pn.
n

p
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In our case
E(@2%) = pu:

n
B, = Zpiqi.
1

Hence, we can fortnulate the following theorem:
Theorem. The probability of the inequality

m—np<t\/§;

and

tends uniformly to the limit

as n— », provided the series

EpiQi
1
18 divergent. At the same time the probability of the inequalities

VB, < m — np <t/ B

tends uniformly (in ty, ts) to the limit

1o
e 2qu.

Second Case. Let 2z, 2zp, . . . én be identical variables with the
common mean a and dispersion b. Supposing that for some positive &

Elz; — al?* = ¢

exists, we have

ne c -3

Wy = Té = —1:23 ‘n 2

(nb) 2 b 2

and hence w, — 0 as n— «. The limit theorem applied to this case
can be stated as follows:

The probability of the inequality

zZit 2+ 0 42, — na < i\/nb
tends uniformly to
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provided
Elz; — a2+

exists for some positive 8. As a corollary we have: The probability of the

inequalities
_tJ Z1+32+ +zn—a<t\/§
n n

\/__fe 2du

This proposition is regarded as justification of the ordinary procedure
of taking a mean of several observed measurements of the same quantity,
made under the same conditions, to approximate its “true value.”
Barring systematical errors which should be eliminated by a careful
study of the tools used for measurements, the true value of the unknown
quantity is regarded as coinciding with the expectation of a set of poten-
tially possible values each having a certain probability of materializing
in actual measurement. Since for comparatively small ¢ the above
integral comes very near to 1 and

WP
n

for large n becomes as small as we please, the probability of the mean of a
very large number of observations deviating very little from the true
value of the quantity to be measured, will be close to 1 and herein lies
the justification of the rule of mean mentioned above.

tends to

EstiMaTiON OF THE ERROR TERM,

6. The limit theorem is a proposition of an essentially asymptotic
character. It states merely that the distribution function F,.(f) of the
variable
s _nitzet - A2

" VB,

approaches the limit

2
Vo f._ we du
as n becomes infinite when a certain condition is fulfilled. For practical
purposes it is very important to estimate the error committed by replac-
ing F.(t) by its limit when » is a finite but very large number. In his
original paper Liapounoff had this important problem in his mind and
for that reason entered into more detailed elaboration of various parts
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of his proof than was strictly necessary to establish an asymptotic
theorem.

We do not intend to reproduce here this part of Liapounoff’s investiga-~
tion; it suffices to indicate the final result. Assuming the existence of
absolute moments of the third order Elzi|®; ¢ =1, 2, . . . n, we shall
suppose n so large that

1) + ,LL + v e _l_ #%n) —];
Wy = j3 < 50
Then, setting

Fat) = gy + R,

t
\/ —
we shall have
1
IR < gwn[<1og 537)7 + 1.1] + o log 3 —1— + —wnée—%w» -t

Although this limit for the error term is probably too high, it seems
to be the best available. However, it is greatly desirable to have a more
genuine estimation of R.

7. Hypothesis of Elementary Errors. It is considered as an experi-
mental fact that accidental errors of observations (or measurements)
follow closely the law of normal distribution. In the sphere of biology,
similar phenomena have been observed as to the size of the bodies and
various organs of living organisms. What can be suggested as an
explanation of these observed facts? In regard to errors of observations,
Laplace proposed a hypothesis which may sound plausible. He considers
the total error as a sum of numerous very small elementary errors due
to independent causes.

It can hardly be doubted that various independent or nearly inde-
pendent causes contribute to the total error. In astronomical observa-
tions, for instance, slight changes in the temperature, irregular currents
of air, vibrations of buildings, and even the state of the organs of percep-
tion of an observer may be considered as but a small part of such causes.
One can easily understand that the growth of the organs of living organ-
isms is also dependent on many factors of accidental character which
independently tend to increase or decrease the size of the organs. If,
on the ground of such evidence, we accept Laplace’s hypothesis, we can
try the explanation of the normal law of distribution on the basis of the
general theorems established above.

Suppose that elementary errors do not exceed in absolute value a
certain number [, very small compared with the standard deviation o
of their sum. The quantity denoted by w, in the preceding section will
be less than the ratio [/ and hence will be a small number; and the same
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will be true of the error term R. Hence, the distribution of the total
error will be nearly normal.

Laplace’s explanation of the observed prevalence of normal distribu-
tions may be accepted as plausible, at least. But the question may be
raised whether elementary errors are small enough and numerous enough
to make the difference between the true distribution function of the total
error and that of a normal distribution small. Besides, Laplace’s
hypothesis is based on the principle of superposition of small effects and
thus introduces another assumption of an arbitrary character.

Finally, the experimental data quoted in support of the normal dis-
tribution of errors of observations and biological measurements are not
numerous enough for one to place full confidence in them. Hence, the
widely accepted statistical theories based on the normal law of distribu-
tion cannot be fully relied on and may be considered merely as substitutes
for more accurate knowledge which we do not yet possess in dealing with
problems of vital importance in the sphere of human activities.

LiviT THEOREMS FOR DEPENDENT VARIABLES

8. The fundamental limit theorem can be extended to sums of depend-
ent variables as, under special assumptions, was shown first by Markoff
and later by S. Bernstein, whose work may be considered an outstanding
recent contribution to the theory of probability. However, the condi-
tions for the validity of the theorems established by Bernstein are rather
complicated, and the whole subject seems to lack ultimate simplicity.
For that reason we confine ourselves here to a few special cases.

Example 1. Let us consider a simple chain in which probabilities for an event ¥
to occur in any trial are p’ and p’’, respectively, according as E occurred or failed in
the preceding trial. The probability for E to occur at the nth trial when the results of
other trials are unknown is

pn=p+ (o1 — p)ot

where »; is the initial probability, § = p’ — »" and

‘The mean probability for = trials is given by

o pr—pl—2a
br=p+ n 1 -3
80 that p may be considered as the mean probability in infinitely many trials.
In the usual way, to trials 1, 2, 3, . . . we attach variables zi, z;, z3, . . . so that
in general

z =1—p; or Ti = —pi
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according as E occurs or fails in the 7th trial. If m is the number of occurrences of
E in 7 trials, the sum

A e
of dependent variables represents
M — NPn.
Evidently
E(m — np,) =0
and, as we have seen in Chap. XI, See. 7,

1 )
B = Blm — )t ~ npar

1 5 .
that is, the ratio of B,: np I + 3 tends to 1 as # becomes infinite.

In order to find an appropriate expression of the characteristic function of the
quotient .
M — NP

\/B.
we shall endeavor first to find the generating function w.(f) for probabilities
Ppalm =0,1,2, ... 1)

to have exactly m oceurrences of F in n trials. Let Am,» be the probability of m
oceurrences when the whole series ends with E and similarly Bn . the probability of
m occurrences when this series ends with F, the event opposite to E. The following
relations follow immediately from the definition of a chain

Am,n+1 = Am_x,np' + Bm—l,np"

(18) Bnnit = Aming’ + Buag'.

Let

en(t) = 2‘0 Am,ntmy ‘/’n(t) = 2“ Bm,ni"‘
m=0

m=0
be the generating function of An,» and Bn... From relations (18) it follows that

0n+1(t) = p'tbn(t) + P"'ta(t)
Yni1(t) = @'0a(t) + ¢'"¥au ().

These relations established for » 2 1 will hold even for n = 0 if we define 6,(f) and
o) by

(19)

2’00 + p"Yo = p1
¢’ + ¢ =1 —1p;
whence
90 + 1//0 =1.

From (19) one can easily conclude that both 6,(t) and ya(t) satisfy the same equa-
tion in finite differences of the second order

Oniz — ('t + ¢')bny1 + 816, =0
Varz — (0t 4+ ¢ Wnga + Styn = 0.
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Evidently

Pm.,ﬂ- = Am,n + Bm.'n;
hence

"’n(t) = on(t) -+ ’l’n(t)

satisfies the equation
(20) : Wnig ~ (P’t -+ q")wn+1 + 8twn =0
and is completely determined by it and the initial conditions

. we =1, w1 = q1 + pi.
1nce
' =p+g§ ¢’ =gq+ pd

the characteristic equation corresponding to (20) can be written
=D =38 =¢~—-Dilp + ¢8)¢ — 3
and for small ¢ — 1 its roots can be expanded into power series

G=1l4+alt—1 +eclt—-12+---
Se=8+di(t —1) +do(t —1)2+ - - -,

The genei'al expression of w,(t) will be
wn(t) = AgT + Bty = Af + Banng™
where to satisfy the initial conditions we must take
A___i'z"Ql"Plf; g —fitatpd
=4 fa— &1
Having found wa(t), the characteristic function of

m — NPn

RV

will be given by

—nB 1 PR
on(v) = ¢ VB"w,.(e \/B”).
To study the asymptotic behavior of ¢.(») when v is confined to a finite fixed
interval —I < v £ I, we notice that then
v

VB,

will be well within the convergence region of the series we are going to consider now.
By means of Lagrange’s series or otherwise, we find the following expansion of log ¢ in
power series of t — 1

U =

2 )
ogri=p6 -1 — (5 - e -1+

convergent for sufficiently small valuesof £ — 1. By setting{ = ¢ we obtain another
power series in %
pgl 434

log &1 = piu — —

;2 PO
21— T
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convergent for sufficiently small v. Hence

2
npui— ﬂpq%f—a % +nutgu)
=e

— npui +nznqi 7 —mutg(w)

Th=e °2

where g(u) is a bounded function of %, u being contained in a certain interval (—r, 7).
By substituting

here, we easily conclude that

e-npnv Bn{ﬂ
tends uniformly to the limit
-2
e 2
in the interval —I £ » < I while
— NP
e v/Bn T

remains there uniformly bounded. Since, as can easily be seen, A and B can be
represented by power series

A =1+ awu + au? + -

B=—a1u-——a2u2~—‘-

A tends uniformly to 1 and B tends uniformly to 0. Hence, finally, ¢.(») in any fixed
02

interval —I < » =<1 tends uniformly to e 2. It suffices to apply the fundamental

lemma to conclude that the probability of the inequality

m — nPn < ta\/Ba
tends uniformly to the limit

e 2du

\/27

if ¢, tends to 2.

1 8
Since B, is asymptotic to npq I i_ 3 and P, differs from p by a quantity of the order

1/n, the inequality

1+36
m—np<t\/1j5'npq

Mm — NPn < tn\/Bn

with ¢, tending to ¢, whence, using the above established result, the following theorem
due to Markoff can be derived:

ean be written in the form
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Theorem. For a simple chain the probability of the inequalities

1+ 1T+5
i 1_6npq<m—np<i2\/1_5npq

tends to the limat
73 ut
__1_ ¢ 2du
V 21!' t1
as n —>» «.

Example 2. Considering an indefinite series of Bernoullian trials with the prob-
ability p for an event A to occur, we can regard pairs of consecutive trials 1 and 2,
2 and 3, 3 and 4, and so on, as forming a new series of trials which may produce an
event E consisting of two successive oceurrences of 4( = AA) or an event F opposite
to B (F = AB, BA, BB). With respect to E the trials of the new series are no longer
independent. Let m be the number of occurrences of E in n trials. Then

E(im — np?) =0
and
B, = E(m — np?)? = np*q(1 + 3p) — 2p%q

as was shown in Chap. XI, Sec. 6.
Let P, be the probability of exactly m occurrences of F in a series of n trials.
Evidently
Pm,ﬂ. = 44m,n +‘ Bm,n

where A.,.» and B, are the probabilities of m occurrences of £ when the Bernoullian
series of » + 1 trials ends with 4 or B, respectively. By an easy application of the
theorems of total and compound probabilities we get

Am,n+1 = Am—l‘np + Bm,np
Bm,n—}-l = A-m,uq + Bm,"q.

Corresponding to these relations the generating functions

0,,{t) = iAm,ntm; Wn(t) = é Bm.ﬂ-tm
m=0

m=0
satisfy the following equations in finite differences:

on-a-l = pten -+ P‘//n
Xl/n-b-l = qen + q‘rbn

holding even for n = 0 if we set 60 = p, %o = g. Hence, it follows that 6.(¢) and
Vn(t) satisfy the same equations of the second order

Onre — (D6 + Q)0ns1 4+ pgt — 1)8n =0
Yniyor — (P5 - q)K[’n+1 -+ PQ(i - 1)‘//n =0

and so does their sum

wnlt) = 0uft) F ¥0ld) = 2, Prnst™.

m=0
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Thus, to determine w.(f) we have the equation
wnt2 = (P8 + Qewnpr +pgt — Do =0
and the initial conditions
w =1, o =1 — p? + p%.
The general expression of w.(f) is
wn(t) = Agt + By = Agt + Bprgr(t — D"
where ¢; and ¢ are roots of the equation

P—r=p¢—-1)¢ -9
and

_—hbl4p— 1)

; B=§'1—'1—P2(t—1)_
11— §e

4 11— ¢

If &1 is the root which for ¢ = 1 reduces to 1, we easily find the following series

p2(—p? + 2pq)

5 =124 -

log ¢ = (¢ — 1) +

or, setting ¢ = ¢ and supposing u sufficiently small,

PaQ + 3)

3 uz_l_.-._

log &1 = ip%u —

As to A and B, they can be developed into series of the form

A=14cut+ .- -
B —cu? A - - -

Hence, reasoning in the same manner as in Example 1, we can conclude that the
characteristic function

_no% i )
on(v) = e VBuw(evEs)
of the variable
m — np?

\/B.
»?

tends to the limit e_guniformly in any finite and fixed interval —1 £ v < 1. Refer-
ring, finally, to the fundamental lemma, we reach the following conclusion: The
probability of the inequalities

v/ np*(1 + 3p) < m — np? < t:7/np’g(1 + 3p)
tends uniformly (with respect to £; and ;) to the limit

1 t2 _ut
[
\/2; t

as n — w0,
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Problems for Solution

1. Consider a series of independent variables i, #», 23, . . . where in general
z (b =1,2,3, . .. )canhave only two values k* and —k® each with the probability
14. Show that the limit theorem holds for the variables thus defined if o > —14,
but the law of large numbers holds only if « < 14

Solution. Evidently

E(zi) =0, E@}) =k@,  Elzs = k3=

From Euler’s formula (Appendix I) we derive two asymptotic expressions

B, = 12 4 2%« 4 . .. L p~y it
2 + 1
13 +23 + R n3a+l
o o « .. & A~ -
+n 3+ 1
Hence
(2a+1)g 0
w. 1 —>
" 8w t1 v ©

so that the limit theorem holds. For « = 14 the probability of the inequalities

<x1+xz+ cc Tt
n

/2 €
\/21\ e~ Wiy = —2—f e~ % du
)0 '\/7—r 0

and the law of large numbers does not hold.
2. Let m; be the number of successes in 7 Bernoullian trials with the probability p.
Show that the limit theorem holds for variables

€

tends to the limit

but the law of large numbers does not hold (Bernstein).
Hinr:

s1 8+ - - +Sn=(PQ)—§ [(l—{'—%*’ \/;;)x’-']_
1 1
+<—\7§+"' +\/;L>x2+-~ \/;xn]

where 2, 2, . . . T, are independent variables with two values ¢ and —p associated
in the customary way with trials 1,2, . . . n.
3. Consider an infinite sequence of independent variables @i, s, 3, . . . Where

x; can have three values

0, (log k), — (log k)*
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with the corresponding probabilities

2 1 1
L G Tamlg bt Gra gkt @l (& +a log &+

« being a sufficiently large constant. Moreover, u and p satisfy the inequality
2u —p +1>0.

Show (a) that Liapounoff’s condition is satisfied when p < 1 and hence the limit
theorem holds; (b) that this condition is not satisfied if p = 1 and at the same time the
limit theorem fails at least for p > 1.

Solution. a. By using Euler’s formula we find

1+; 5
@utl—p) 2 36-1
(2+5)M+1_p{log(n+a)} .

W~
Hence the first part is answered.
b. The probability of the inequality

T+t + 220
is less than

1
zkz & + o) log (b F )7
=1

and this, in case p > 1, is less than

1 1-p,
g 1( og «

Hence, the probability of the equality
21+ 224+ - - +2,=0

2
T (log @) and the limit theorem cannot hold. Note
o —
that B, — « because 2u — p + 1 > 0.
4. Prove the asymptotic formula

remains always >1 —

nt 1

n?
1+n+1’2+ S +1——-——‘2. PRS-
n being a large integer.
Hivr: Apply Liapounoff’s theorem to n variables distributed according to Poisson’s
law with parameter 1.
6. By resorting to the fundamental lemma, prove the following theorem due to
Markoff: If for a variable s, with the mean = 0 and the standard deviation = 1

l 0
lim E(sk) = the — ¥tqy
n—r o '\/ 2w ) ©
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for any given k = 3, 4, 5, . . . , then the probability of the inequality s, < ¢ tends
to the limit
1 £

Vor) -

6. In many special cases the limit of the error term can be considerably lower than
that given in Sec. 6. For instance, if variables zi, 72, . . . 2, are identical and uni-
formly distributed in the interval —24, 14 the probability F.(t) of the inequality

—1
e~ Uiy,

z1_"'x2"l""'-'_xn.<t ':{12

differs from
t u?

1 ~3
— du
\/er Y

by less (in absolute value) than

1 1f2\" 12 -Z2
— 4= + = 24
7.5n  w\x 3
the last two terms being completely negligible for somewhat large n.
Indication of the Proof. First establish the inequalities

N 0 of

sin ¢ —= —7s%
, mes eI
¢ ¢

olt,

sin ¢ -
<e

for 0 £ ¢ < v/2. Further, represent F,.() by the integral
. 3\"
1= 5" "N | sin ot
f — Nn)sinut,
] \/—?; v
.
n

and split it into two integrals taken between 0 and 7r'\/;/ '\/L—‘l and w\/;/ \/Ié and
+ .

7. Supposing again that zi1, z2, . . . . are identical and uniformly distributed in
the interval —34, 14, proe that forn = 2

1
F.@t) = 3 +

o

[}
;0 0<6<l.
60/ n

8. Let s, be a variable with the mean = 0 and standard deviation =1. If its
characteristic function ¢ (f) tends to e7%¢" as n — o« uniformly in any finite interval

-l =t £ 1, show that
Elsa| — ,\/-2-
w

P
2 ¢ — ¢n(t)
E|s,| — % = ng 2 di.
T 7 Jy

Elzy + 2 + - - - +xnl=\/6ﬁr+

Hint:
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9. If independent variables zi, 22, . . . %, with means =0 satisfy Liapounoff’s
condition, prove that

é__._.
E[121+3}z+ R +xn[Nr\/;Bn

10. Show that for a simple chain of trials

2npgl + 8 +5
E[’m—'ﬂp!f\'\/ r 1—20

» being the mean probability in infinite series of trials and 6 = p’ — p”.

11. A series of dependent trials can be illustrated by the following urn scheme:
Two urns, 1 and 2, contain white and black balls in such proportions that the prob-
ability of drawing a white ball from 1 is p, whereas the probability of drawing a
white ball from 2 is ¢ = 1 — p. Whenever a ball taken from an urn is white, the
next ball is taken from the same urn, but if it is black, the next ball is drawn from the
other urn. The urn at the first drawing is selected by lot, the probabilities of select-
ing the first or the second urn being given. Evidently the course of trials is deter-
mined by these rules without any ambiguity. Let m denote the number of white balls
obtained in n drawings and let

a = p? + ¢%
Show that the probability of the inequality

2(1 — 3pg)

m — no <t'\/Loe(l — a)n; L =
1 —2pg

approaches the limit

t u?
1 f e 2du.
V-«
Indication of the Proof. Let

P(l) ; P2 - p@ . P"“

m 15’ m 7’/’
be the probabilities of having m white balls in # trials when (a) the last ball is white

and from urn 1; (b) the last ball is white and from urn 2; (¢) the last ball is black and
from urn 1; and (d) the last ball is black and from urn 2. The sum

Ppon = P(l) +P(2) +P(3\ +P(4)

represents the probability of having exactly m white balls in n trials. The generating
functions of probabilities P,(,f)n satisfy the following equations
(1)

@
@

pi(ef) + o9
gt(ey?) + o)
(e + {1)
¢§.+)1 = p(w(z) + o)

whence it can be shown that they all, as well as their sum—the generating function of
P, ~—satisfy the same equation of the second order

H

Znyy — b2ny1 + pq(t’ — Dz, = 0.
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Setting ¢ = e®, one of the characteristic roots will be given by

2
(1 ~2pgyiu—4pg(1—3p) g + - - -
(4

fof small 4, while the other root tends to 0 as u — 0. The final conclusion can now
be reached in the same way as in Examples 1 and 2, pages 297 and 301.
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CHAPTER XV

NORMAL DISTRIBUTION IN TWO DIMENSIONS. LIMIT
THEOREM FOR SUMS OF INDEPENDENT VECTORS.
ORIGIN OF NORMAL CORRELATION

1. The concept of normal distribution can easily be extended to two
and more variables. Since the extension to more than two variables
does not involve new ideas, we shall confine ourselves to the case of
two-dimensional normal distribution.

Two variables, z, y, are said to be normally distributed if for them
the density of probability has the form

e ¢
where
¢ = ar? + 2bzy + cy? + 2dx + 2ey + f

is a quadratic function of z, y becoming positive and infinitely large
together with |z| 4 |yl. This requirement is fulfilled if, and only if,

ax? + 2bzxy + cy?

is a positive quadratic form. The necessary and sufficient conditions
for this are:

a > 0; ac —b2=A>0.
Since A > 0 (even a milder requirement A 5 0 suffices), constants z,, yo
can be found so that
o =a@— 20)* + 26 — 2)(y —yo) + ¢y —ya)? +¢

identically in z, y. It follows that the density of probability e~¢ may be
presented thus:

e~ = Ke—o(z—2z0—%(z—20) (y—yi—c(y~y0)?,

The expression in the right member depends on six parameters K;
a, b, ¢; 2o, yo. But the requirement

f __: f _:e—v’dxdy =1

reduces the number of independent parameters to five. We can take
a, b, ¢; xo, yo for independent parameters and determine K by the condition

K f * f * gata—m) = B(a— 20 w0 —elv-vd gdy = 1
— 0 —®
308
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which, by introducing new variables

E=2z—x0, 1=Y—Y
- can be exhibited thus
Kf" [ eemiraisdy = 1.
To evaluate this and similar double integrals we observe that the positive
quadratic form
aé® + 2bén + cn®
can be presented in infinitely many ways as a sum of two squares
ag? + 2bén + en? = (af + Bn)* + (v& + 60)%,
whence
a=a’+7v% =+ b=af+ s
and
(@b — By)? = A.
By changing the signs of « and 8 if necessary, we can always suppose
ad — By = +V/A.
Now we take
u=oaf+ By, v=vE+ 0
for new variables of integration. Since the Jacobian of u, » with respect

to £ nis V/A, the Jacobian of £, 4 with respect to , v will be 1/ +/A and,
by the known rules

f ) f ) oD tdy = *\}_j f ) f " evdudy = §K

Thus
Kr VA
=T =, K=Y~
VA 4

That is, the general expression for the density of probability in two-
dimensional normal distribution is

~/ac — b2
.._ﬂc._._b_e—-a(x—- 20) 2= 2b(2—20) (y—yo)—c(y—vo) 2,

s

2. Parameters m,, yo represent the mean values of variables z, y.
To prove this, let us consider

AT ® ‘
E(x ol xo) = %f f (3; — xo)e—a(z—-:co)L-Zb(z-—-a:o)(l/—-zlo)—c(y—yo)ﬁdxdy.
-0~
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To evaluate the double integral, we can express z and y through new
variables u, v introduced in the preceding section. We have

ou — PBv —yu + av

T — Zo = — Yo =
== YT N

and
E(z — 20) = 7‘-—\172 JL :‘ﬁ:(éu — Bv)e~v*=*dudy = 0,
whence
E(x) =
and similarly
E(y) = .

3. Having found the meaning of zo, 7o we may consider instead of z, y,
variables # — %o, ¥ — %, whose mean values = 0. Denoting these new
variables by z, ¥ again the expression of the density of probability for
z, y will be:

— h2
ac b g0z 2boy—cy?,
T

It contains only three parameters, a, b, ¢. To find the intrinsic meaning
of a, b, ¢ let us consider the mathematical expectation of (z + Ay)?
where M is an arbitrary constant. We have

E(x + M) = —\é—x f f (z + Ny)2e—oz—sy—cvidydy,
or, introducing u, » defined as in Sec. 1 as new variables of integration,
1 o0 0
B+ = 16— w426 — (=8 + e +
+ (B —Na)W2e—v="dudy =
= %f J‘ [(6 — )2 + (B — M) Jule"*dudy =

82 + B2 aff + yé v? + o?
=25 T ox TN
But ‘
82 4 B = ¢, ¥? + a? = q, aB +vé=0b,
whence

E(2?) + 2\E(zy) + ME(y?) = Z_CA _ 2% + )\22%,

and since X is arbitrary

B@) =g Ba@) = —gp B = &
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On the other hand, if ¢y, op, and r are respectively standard deviations
of z, y and their correlation coefficient, we have

E@*) =},  E(y) =rows, E@?) =i

Hence
L 52 SR b __,
2A 1 A~ oA = 0102
and
— h2
s = ol — 1)
or
1
A==y
Finally,
a = 1 R — S N
T 2031 — 12’ T T%md =) T =
V/y—

20’10'2'\/1 — TZ'

With these values for a, b, ¢, and 4/A the density of probability can
be presented as follows:

(O R  ON

21['0'10’2'\/ 1 — r2

and the probability for a point z, ¥ to belong to a given domain D will be
expressed by the double integral

_t (([rmslG) RG]
2#0102\/1T7-2ffe e dady
(D)

extended over D.
4, Curves

1 z\? Ty y\*] _,
2(1 _ 7"2)[(0'-—1) - 27‘;{;; + <;2 - l = Const.

are evidently similar and similarly placed ellipses with the common
center at the origin. For obvious reasons they are called ellipses of
equal probability. The area of an ellipse corresponding to a given value
of [ (ellipse 1) is

'\% = 2rlo0a/1 — 72,
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whence the area of an infinitesimal ring between ellipses [ and I - dl
has the expression

2ro10s\/1 — ridl.

The infinitesimal probability for a point z, y to lie in that ring is

expressed by
e~ dl.

Finally, by integrating this expression between limits I; and I > I, we
find

eh — gk
as the expression of the probability for z, ¥ to belong to the ring between
two ellipses [y and ls. Ifl; =0andl =1,

1—e¢?

gives the probability for z, y to belong to the ellipse I.
If » numbers I, I;, I, . . . l.—1 are determined by the conditions

_1
n+1
the whole plane is divided into n 4 1 regions of equal probability:
namely, the interior of the ellipse, rings betweenl, I1; 13, la; . . . lns, lng
and, finally, part of the plane outside of the ellipse I,_;.

6. To find the distribution function of the variable 2 (without any
regard to y), we must take for D the domain

1 —_— e—-l = e—l — 6—11 — e—l; —_ e—lz = e e ¢ = e'—‘ln_g —_ e—-ln_x —

- <z <i; —o <y < 4o,
As the integral

2 \/1 Tzf f ol (5) 40 () D gy —
Mo 102 - — o

22 : 22

— 1 _z
2612 2(0-r)(z = 012
\/1 - Tzf-—-noe dx f—we dz 0'1\/27[' _we 21dx’

we see that the probability of the inequality
z <t

is expressed by

e 2ﬂ’dx.

a1V 27r —w
Similarly, the probability of the inequality

y <t
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.

18

1 ¢ L ;
e 2o7dy.

v N

Thus, if two variables z, y are normally distributed with their
means = 0, each one of them taken separately has a normal distribution
of probability with the common mean 0 and the respective standard
deviations oy and o2.  Variables z and y are not independent except when
r = 0. For if they were independent the probability of the point
z, y belonging to an infinitesimal rectangle

t<z<t+di <y <7-4+dr

would be
1 B
2012 2022
271'0'10'26 *dtdr,
whereas it is
1 £\2
_____1___{2(1—12)[(;) "o o +(v») ]dth
2wo1004/1 — r?

and these expressions are different unless r = 0. Thus, except for r = 0,
normally distributed variables are necessarily dependent in the sense
of the theory of probability. Dependent variables are often called
“correlated variables.” In particular, variables are said to be in ‘“‘normal
correlation’ when they are normally distributed.

6. The probability of simultaneous inequalities

X< < X/, y <t
is represented by the repeated integral

x 2 e Y I _e=7
1 f e 2v12dxf e szz(l—rz)[y r;x] dy

271’0’10'2‘\/1 — 7?2 b4

1 X’e~§%dx
o1V 2 X

is the probability that z will be contained between X and X’. Hence
(Chap. XII, Sec. 10) the ratio

while

f ’ 2u . f _2——-—“——2(1_ 2)[3‘/"‘71-2:;]2

1 x € 1dx g Zo2*1-—r o d dy
— 2 Xz

ooV 2r(1 — r?) j;{ By

can be considered as the probability of the inequality
y <t



314 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cmar. XV

it being known that z is contained between X and X’. Considering X’ as
variable and converging to X the above ratio evidently tends to the
limit

—

1 t _.___1___[1,._,"_2;;]’
P — e 202%(1-13) o1 dy
a2/ 1 - 7‘2‘\/ 27rf

which can be considered as the distribution function of ¥ when z has a
fixed value X. Hence, ¥ for z = X has a normal distribution with the
standard deviation

0‘2\/1 — r?

and the mean
Y = rZX.
[}

Interpreted geometrically, this equation represents the so-called
““line of regression’ of ¥ on z.

In a similar way, we conclude that for y = ¥ the distribution of =
is normal with the standard deviation

0'1‘\/1 — 72

and the mean

X =2y
2

a
This equation represents the line of regression of z on y.

LIMIT THEOREM FOR SUMS OF INDEPENDENT VECTORS

7. So far normal distribution in two dimensions has been considered
abstractly without indication of its natural origin. One-dimensional
normal distribution may be considered as a limiting case of probability
distributions of sums of independent variables. In the same manner
two-dimensional normal distribution or normal correlation appears as a
limit of probability distributions of sums of independent vectors.

Two series of stochastic variables

L1, T2y, « « « Tn
Y, Y2y - - - Yn
define n stochastic vectors vi, vs, . . . v, so that z;, y; represent com-

ponents of v; on two fixed coordinate axes. If
E(:C.,,) = a3 E(yi) = b,
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the vector a; with the components a;, b; is called the mean value of v;.
Evidently the mean value of

Vv=vi4+ve+ - 4+,
is represented by the vector
a=a+a+ - +aa

and that of v — a is a vanishing vector. Without loss of generality
we may assume at the outset that

E(z;) = E(ys) = 0; 1=12 ...n,

in which case E(v) = 0. Vectors vy, vs . . . V, are said to be inde-
pendent if variables z;, y; are independent of the rest of the variables
z;, y; where 7 = 1.
In what follows we shall deal exclusively with independent vectors.
8. As before, let zz, yx be components of the vector

vilk=1,2, ... n).
Then

X=zi+z:+ - -+
Y=yid+ys+ - +vn

will be the components of the sum
v=vi+v+ - - 4V

If
E(zy) = E(yx) = 0
E@}) =b, E@) =cn  Elwys = di
then
E(X) =0, EY)=0
E(X?) =bi+b2+ - -+ +b.= B,
E(Yz) =c¢y+ce+ - - - + ¢ = C,
E(XY)=di+de+ - - - +du=ra/BaA/Cs
because

E(zy) =0 if  jsd,

variables z; and y; being independent.
Let us introduce instead of variables zz, yx(k = 1,2, . . . n) new
variables

Lk Y

VB, " V.
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and correspondingly

instead of X, ¥. We shall have:
E(&) = E(m) =0
B = Eo) =&

and
E(s) =E(@ =0
E(s?) = E(e?) =1
E(so) = 7.

The quantity r», the correlation coefficient of s and o, is in absolute value
=1. We define .

8(u, v) = Elgirt]

as the characteristic function of the vector s, ¢. Evidently ¢(u, 0) and
¢(0, ») are respectively the characteristic functions of s and ¢. Since

6i(ua+wf) = pilufitony) . gilubrtvnd . . . gilukntogns)
and the factors in the right-hand member represent independent varia-
bles, we shall have
o(u, v) = E(eitwirtm) . Beiutrtom)) . . . F(gitutatom)),
9. For what follows it is very important to investigate the behavior

of ¢(u,v) when n increases indefinitely while u,» do not exceed an
arbitrary but fixed number 7 in absolute value.

Let
Blzi|* = fr, Elyil® = g
and
ftfot - +fa_
B} = @n
g1+ga+ - - - +gn_
i = 7.
If w, and 7, tend to 0 as n — «, we shall have
1) |6(u, v) — e-ibruetod| < galomtm — 1
provided

Iul =gA lvl =1
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and = is so large as to make

Uo} +7i) < L.
Since
ettt =1 + i(ufy + vme) — %(ufk + vme)? +

g . (uhe £ vm)® 'g ) e < 1,

we shall have:

. bk 2d}c Cr
(ugpton)) = —_——y? - 7 —_ 5 2
E(eiwttomw) = 1 3B % B nuv o +

+ E‘Elufk +oml?; 0] <1

On the other hand,

4.y} P - 2
{ - b wr — 2d, Cr o 2B T 2BC, 20w +

— Uy — 5V =

2B 2+/B.C, 2C,
+ & iBus + ol 107 <1

and so
bk . 2dk

B(ee) = ¢ BRGSO Bt + )l +
+ ‘6“E|u£k + ol

Furthermore,
E(uty + vme)? < PP(wf + 20in} +12) <1

because

E#) = 5 < wl, EM) = 5’“— n8,  El&m| < wln}

Also
[B(ugr + vme)?]? < [E(ué 4 o)} £ Elub, 4+ omf®

Elug + onf® < 4l3<fk + os>

Taking into account these various inequalities, we may write

b ui e 2dk

20k e
E(eitutitom)) = ¢ T2B T2y /BuCn | 20 (1 4+ oz)
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where
7 Ji g e, g
ol < g 40y + &) < (s + &)
Finally,
o(u, v) = e~teHrmuotod (] 4 5)(1 +0g3) - - - (1 4 a4)
and »

|¢(u’ 1)) — e-—-}(u’—l—Zr,,uv+v2)[ < eld’][+lﬂ'z]+"'+|0~n| -1 < 64lﬂ(w»+nn) -1

as was stated.
10. Theorem. Let P denote the probability of simullaneous inequalities

to§8<t1; 1'0§0’<1'1.

Provided r., remains less than o fized number o < 1 2n absolute value and
the above introduced quantities wa, 1, tend to 0 as n — ©, P can be expressed
as

1 b (P11 —-'—1—-—-(t2—27‘ntr+'r’)
- IA—rd
p 27“/1____7_3.[“ f o T didr + A,

where A, tends to 0 uniformly in to, t1; 7o, T1.
If, in addition, r, itself tends to the limit r(|r| < 1)P will tend uniformly

1 i Tle“ﬂl—l;;y(t’—‘—Zrtr+‘r’)dtd
- T.
201 = 72 ) 4 Jno

Proof. a. In trying to extend Liapounoff’s proof to the present case
we introduce an auxiliary quantity II defined as

I = E<h—}—wj:e_(i’?)zdu . j::le_(”—%)zdv)-
Using the inequality

1 ©
— e~tdt <
\/FL

one can eagily derive the following inequalities:
—l-—fhe“(gh:)zdu : fﬂe_(v;_d)zdv - 1<
hzﬂ' to o
< %(e_(h__;_s) n 6_(!0;8) T e___(r;;a)ﬂ + e_(fo;a'):)

to

e

22 for z >0,

@
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if
3) to = s <ty 020 <7y

and
@ e [fe o [y <R R
+ e-(-n.h_—z)z “+ e—(ﬂ;d)z)

if at least one of the inequalities (3) is not fulfilled. From the definition
of II, P and from (2) and (4) it follows that

[P —1] < —i-E(e—(t—%l__ﬁ)2 + g_(h;a)2 + e_(%)z + e_(r_oh—_g)’).
But referring to (1) and setting

et — 1 = g, (1)

we have by virtue of the developments in Chap. XIV, Sec. 3,

R\ 2
8 ¢ ~(-2-)

b. Replacing t;, 71 by variable quantities ¢, r and taking the second
derivative of IT with respect to ¢ and , we get

o _ (1 () -(5)),

dtdr ~—
On the other hand

(=2 _(=2)* 2 [f [ _M
_l.e b ) ( k ) - e T ittutro) gicuston) gy
T 472 ) o) - « ’
whence

2 ® © By
(6) g‘i{% = # f f P )e‘“‘“‘*‘f”)qs(u, v)dudy.

Here we substitute
é(u, v) = e=turamvted | g(y p),
For all real u, v
lg(u, )| = 2.

If lu| =1, |v]| =1, where [l is an arbitrarily fixed number, and = is large

enough, we have
lg(u, 9)| = (D).
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Hence, the double integral

LA,
74_%] f e T )e—“‘“""”)g(u, v)dudy

extended over the region outside of the square |u| < I, || < lis less than

R2l2

_k % hﬂr’ 1
1 f f e 4(u2+v2)dudv = }rf e & rdr <
i

22 h?

u2fypex]2?

in absolute value. The same double integral extended over the square
[u| =1, |v] = 1is less than

l2
7?C“’n(l)
in absolute value. Thus, referring to (6)

o © © __h_2 _l
T 41—2[ f ¢ EEI TR sttutro Gy + R

didr
and
hzzz
IR < an(l) +4

Now

R w202 2

T =1 - Mas by <
and

h? h?
— 4 (u2H-2rpuvtv?) (1,2 2 .
161r2f f e (w? + v9)dudy = @ — )i < o G —

Hence

= %f f i It ki dudy + B

and
e

Ky h2
R < ozn(l) +¢ +

dr(1 — o?)}

By transformation to new Varmbles

E=u+rw; q=v\/1_:—r§
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the foregoing double integral becomes

fz "’lﬂ 'LtE-f—z T—tirn
/—_—‘—1 = Tzf_ wf 2 Vi=ra? dfdn =
1
- 1 e—m(lz—ZTntT-}-‘r’))
TV 1 — 12
so that finally
2 1 .
aIl 1 e—m(t-—%'ntr—i—f?)_l_ R

dtdr ~ 27/ — 72
Integrating this expression with respect to ¢ and r between limits &, &
and 7o, 71, We get:

2 o SR SNP ot b
W =g [
— Tpdb J7o

where

rol e

e
4 2
@) ol <t — ) — TO){ Sanl) + & T h ]
4r(l — @?)

Hence combining inequality (5) with (7) and (8),

1 (P11 1
-1 ¢ BT I g +A
271"\/1 - 7',27' to 70 "

(hl)

where

|aq] < [2 + —(tl — to)(r1 — To):]an(l) + o {% ? i

tl - to)(7'1 - To)h2_
3
4r(l — o?)2

+ (1 — ) (1 — To)} + hV2 + (

Considering &, t1; 70, 71 as variable and denoting an arbitrarily large
number by L, we shall assume at first that the rectangle D

b= s =ty TS0 =711
is completely- contained in the square @:
|Sl =L, l‘TI = L.
Then, taking A = - we shall have
L 121
Al < (2 4 l>a,.(1) i 4<%z 2+4L2) PO, e PR

(1l — a)g
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Given an arbitrary positive number ¢, we take I so large as to have

_t -3 _L 2]—1
le % __8__1 2412 +\/§l 2+__£_l____ <l€.
Nz 3~ 2
(1l — a?)?
After that, since a,(I) — 0 as n — o« (for a fixed ) we can find a number
no(e) so that

4L2l2)"1

T

an(l) < e—(2 +
2
for n > ny(¢). Finally, we shall have
|AL] < e
as soon as n > moe(e); that is, A, tends to 0 uniformly in any rectangle D
contained in the square @ with an arbitrarily large side 2L.

¢. To prove that A, tends to 0 uniformly no matter what are &, ¢:;
0, 71 We observe that the integral

: 1 2 2
1 ffe-‘m(l 2rntr +r )dth
2r/1 — 72

extended over the area outside of @ becomes infinitesimal as L — «.
Accordingly, we take L so large as to make this integral <e/2 (no matter
what » is) and in addition to have L=! < ¢/4. The number L selected
according to these requirements will be kept fixed.

Let D’ represent that part of D which is inside @, the remaining part or
parts (if there are any) being D”. Let P’ and P”’ denote the probabilities
that the point s, ¢ shall be contained in D’ or D", respectively. Also,
let J’ and J” be the integrals

1
1 f f ¢ B T T gy
/1 — 72

extended over D’ and D", respectively. By what has been proved, given
e > 0 a number n,(¢) can be found so that

[P — J'| <e
for n > ne(e). Now
_ P =P 4 P J=J +J,
whence
|P—=J| <e+P'+J"

for » > no(e). Since by Tshebysheff’s lemma (Chap. X, Sec. 1) the
probability of either one of the inequalities
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ls§ >L  or le] > L
is less than 1/L, we shall have
2

7" £ €.
P’ < I < 3
Also,
J" < %y
whence
[P —J| < 2

for n > ne(e); that is, the difference

p—_ 1 f hf e e P
2rv/1 = riJu Jn

tends to 0 uniformly, no matter what &, ¢;; 7, 71 are.

Finally, the last statement of the theorem appears as almost evident
and does not require an elaborate proof.

11. The theorem just proved concerns the asymptotic behavior of
the probability P of simultaneous inequalities

t058<t1; 1‘0§0‘<T1

which, due to the definition of s and ¢, are equivalent to the inequalities

VB Sx1+22+ ¢+ - + 2. <tVB,
VO Eyity+ - - FYn <71VCa

From the geometrical standpoint the above domain of s, ¢ is a rec-
tangle. But the theorem can be extended to the case of any given
domain R for the point s, 0. It is hardly necessary to enter into details
of the proof based on the definition of a double integral. It suffices to
state the theorem itself:

Fundamental Theorem. The probability for the point (s, ¢) to be
located in a given domain R can be represented, for large m, by the integral

1
1 e—m(t3—2rnh+12) didr
2r/1 — 72

extended over R, with an error which tends uniformly to 0 as n becomes
infinite, provided

w,.->0, 77%'*)07
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while for all n
[ra] < @ < 1.

In less precise terms we may say that under very general conditions
the probability distribution of the components of a vector which is the
sum of a great many independent vectors will be nearly normal.

The first rigorous proof of the limit theorem for sums of independent
vectors was published by 8. Bernstein in 1926. Like the proof developed
here it proceeds on the same lines as Liapounoff’s proof for sums of
independent variables. Moreover, Bernstein has shown that the limit
theorem may hold even in case of dependent vectors when certain addi-
tional conditions are fulfilled.

12. A good illustration of the fundamental theorem is afforded by
series of independent trials with three alternatives, E, F, G. For the
sake of simplicity we shall assume that probabilities of E, F, G are
D, ¢, v in all trials. Naturally

p+qg+r=1.
In the usual way, we associate with these trials triads of variables

Tiy Yiy @i (i=1,2,3,...)
so that ;

z; = 1 or 0 according as E occurs or fails at the sth trial;
y: = 1 or 0 according as F occurs or fails at the 7th trial;
2; = 1 or 0 according as @ occurs or fails at the sth trial.

Evidently
Bz) = B@) = p
E(y) = E@W) =¢
so that vectors v; with components
Li=zi—p, m=yi—q

have their means = 0. The independence of trials involves the inde-
pendence of vectors vi, Vs, . . . V.. Hence we can apply the preceding
considerations to the vector

vV=vitvet -+,
with the components

X=titbt - +&

" Y=m+mn+t - +n.
We have

B, = E(X? =np(1l —p); Cn=E(Y? =ng(l — g).
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Moreover,

E(gm) = E(zys) — pg = —pg
and

E(XY) = rav/BaA/Co = —npg
whence

g .
Voed —p)A —q)

The quantities denoted by f, ¢» in Sec. 9 are in our case

= E|&* = p(1 — p)* + (1 — p)p?
= Eml* = q(1 — ¢)*+ (1 — 9)¢*

Tn = —

Hence

N _pd—p°+ (- p)p® gl -+ (1 — q)q
" nipl(l — p)t "= nigi(T — g)?

and the conditions

wn, — 0, Nn —0

are satisfied. The fundamental theorem, therefore, can be applied.
If &, I, m are the respective frequencies of events E, F, G in n trials, the
quantities X and Y represent the discrepancies

A=k — np, w=1—ng.
Introducing the third discrepancy
v=m — nr
we shall have
AN u+v=

so that » is determined when X and p are given. The last two quantities,
however, may have various values depending on chance. Concerning
them the following statement follows from the fundamental theorem:

Theorem. The probability that discrepancies N, u tn n trials shall
simultaneously satisfy the inequalities

ao'\/ﬁ <AL alx/ﬁ; Bo‘\/’i—l <wp< 61‘\/711

tends uniformly, with indefinitely increasing n, to the limit

B Y2447
27'“\/qu~£0 f K dadﬁ
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where, to have symmetrical notation, v ts a variable defined by
a+B+y=0

On account of symmetry, perfectly similar statements can be made in
regard to any two pairs of discrepancies A, p, »

Since the fundamental theorem and its proof can be extended without
any difficulty to vectors of more than two dimensions, we shall have
in the case of trials with more than three alternatives a result perfectly
analogous to the last theorem.

Theorem. FEach of n independent trials admits of k alternatives E,,
E,, . . . Ej the probabilities and the frequencies of which respectively are
D1, P2y - - - Du and my, Mo, . . . my. The probability that the discrep-
ancies m; — npi(s = 1,2, . . . k — 1) should satisfy simultaneously the

inequalities
av/n < m; — np; < B\/n
tends uniformly, with indefinitely increasing n, to the limdt

12&’

B ﬁk..x
f f V' dtdty -+« dfys
@1

o= —E+ta+ -0+ teoa).
_From this theorem, by resorting to the definition of a multiple integral,
we may deduce an important corollary: Let P, denote the probability of the
inequality

(2'n') T \/ Pip2 - -
where

(mi — np1)? | (mg — np,)? (my — npy)?
... < 42
— + p— + + — = x%

Then, as n tends to infinity P, tends to the limat

t1z tz’ &
f f D1 m +-i’;)dt1dt2 st dtk—l
(21r) 3 ‘\/thz ..

where the integration 1s extended over the (k — 1) dimensional ellipsoid

e=B4di il

It is easy to see that the deternunant of the quadratic form ¢ in
(k — 1) variables is (pp2 - - - pr)~L. Hence, by a proper linear trans-
formation the above integral reduces to

ff f __(',12+11z2+ +v;._|)d Wdve ¢ 0 dvgy
(21r) 7
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the domain of integration being v? 423+ - - - 42, < x2 But
this multiple integral, as will be shown in Chap. XVI, Sec. 1, can be
reduced to a simple integral
k-1
2 x 1.,
T~ | e % uF2du.
(k=1 J;
2

Thus
1

x _1.,
lim P, = TT_—_’—"f e 2 yk—2dy,
QTr(k - 1) 0
2
The probability @, = 1 — P, of the opposite inequality

(m1— np1)? | (me —npy)® | | (mp — npp)?
(4) — + — + + BT > x?

tends to the limit
1 f ¢ - )
%—3 /7. 1\ 4 Ut o
271(7_5_.1) x

2
and for large n we have an approximate formula

1

© 1 2
Qn = %= —“f e_éuuk“zdu, )
2_221*(]0 ; 1) X

but the degree of approximation remains unknown. In practice, to
test whether the observed deviations of frequencies from their expected
values are significant, the value of the sum (A4), say x2, is found; then
by the above approximate formula the probability that the sum (4) will
be greater than x?2 is computed. If this probability is very small, then
the obtained system of deviations is significantly different from what
could be expected as a result of chance alone. The lack of information
as to the error incurred by using an approximate expression of @, renders
the application of this ‘‘x?-test’”’ devised by Pearson somewhat dubious.

HyroTHETICAL EXPLANATION OF EMPIRICALLY VERIFIED CASES OF
NorMAL CORRELATION

13. Normal distribution in two dimensions plays an important part
in target practice. Itis generally assumed on the basis of varied evidence
collected in actual target practice that points of a target hit by projectiles
are scattered in a manner suggesting normal distribution. By referring
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points hit by projectiles to a fixed coordinate system on the target, it is
possible from their coordinates to find approximately (provided the
number of shots is large) the elements of ellipses of equal probability.
Dividing the surface of the target into regions of equal probabilities as
described in Sec. 4, and counting the actual number of hits in each
region, the resulting numbers in many reported instances are nearly
equal. That and the agreement with other criteria are generally con-
sidered as evidence in favor of assuming the probability in target
practice to be normally distributed.

Two-dimensional normal distribution or normal correlation has been
found to exist between measurable attributes, such as the length of the
body and weight of living organisms. Attributes like statures of parents
and their descendants, aecording to Galton, again show evidence of
normal correlation.

Facing such a variety of facts pointing to the existence of normal
correlation, one is tempted to account for it by some more or less plausible
hypothesis. It is generally assumed that deviations of two magnitudes
from their mean values are caused by the combined action of a great
many independent causes, each affecting both magnitudes in a very small
degree. Clearly, the resulting deviations under such circumstances may
be regarded as components of the sum of a great many independent
vectors. Then, to explain the existence of normal correlation, reference
is made to the fundamental theorem in See. 11.

Problems for Solution v

1. Let p denote the probability that two normally distributed variables (with
means = 0) will have values of opposite signs. Show that between p and the corre-
lation coefficient r the following relation holds:

7 = cOoS pr.

2. Variables z, y (with the means = 0) are normally distributed. Show that the
probability for the point z, y to be located in an ellipse

gy g102 o‘g

is greater than the probability corresponding to any other domain of the same area.

3. Three dice colored in white, red, and blue are tossed simultaneously n times.
Let X and Y represent the total number of points on pairs: white, red and white, blue.
Show that the probability of simultaneous inequalities

Tn 4+ V& <X <Tn + 6V 38n; T+ 10Vn <Y <Tn + 7V 30

tends to the limit
1 1 P71
f f e St g
V'3 to J70

asn —» «,
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4. Three dice, white, red, and blue, are tossed simultaneously » times. If k and i
are frequencies of 10 points on pairs: white, red; red, blue; show that the probability
of simultaneous inequalities

1/ n<k< +t 11 —'n 1
L 144 144 < < —I—n

tends to the limit
2V f f e Mt didr
120 to To
as n— .

5. Two players, A and B, take part in a game arranged as follows: Each time one
ball is taken from an urn containing 8 white, 6 black, and 1 red ball; if this ball is

white, A and B both gain $1;
black, A4 loses $2, B loses $4;
red, 4 gains $4, B gains $16.

Let sn and o, be the sums gained by 4 and B after n games. Show that the probability
of simultaneous inequalities

3an < s <LV En; oV 48n < on < 711V 48n

for very large » will be approximately equal to

_\/’6 i1 (P71
~— ¢ = 8@+ =gy,
L to e/T0

Note that the probability of the inequality s.on < 0 is about 0.13—not very small—

so that it is not very unlikely that the luck will be with one player and against another.
6. Concentric circles Cy, Cs, C3, . . . in unlimited numbers are described about

the origin 0. Points Py, P,, P, . . . are taken at random on these circles. Let R

be the end point of the vector representing the sum of vectors OP;, OP., OP3, . .

If 7y, 74y 73, . . . areradii of Cy, Cs, Cs, . . . and the condition

Rt el
2 2 273 -
(Tl +TZ+ st +Tn)'
is fulfilled, show that the probability that R will lie within the circle described with the
radius p about the origin will be very nearly equal to
p2

1 — ¢ 7FESE T T

as n— «

for large n.
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CHAPTER XVI

DISTRIBUTION OF CERTAIN FUNCTIONS OF NORMALLY
DISTRIBUTED VARIABLES

1. In modern statistics much emphasis is laid upon distributions of
certain functions involving normally distributed variables. Such dis-
tributions are considered as a basis for various ‘‘tests of significance”
for small samples, that is, when the number of observed data is small.
Some of the most important cases of this kind will be considered in this
chapter.

Problem 1. Independent variables zi, @2, . . . Z, are normally
distributed about their common mean = 0 with the same standard
deviation ¢. Find the distribution function of the sum of their squares

s=uxf+234 - 42l
Solution. The inequality
A 22 <t

-1 < z; < V7%,

the distribution function of z2is

being equivalent to

,,z

Fi) Vi i L (5 for 20
(1) = e dr = — | e 2% 2dy or =
L,
F:@t) =0 for t<0.
Hence, the characteristic function of any one of the variables z3, 2%,
. xkis

),

and that of their sum

Consequently, the distribution function of s is expressed by

F@) = ¢ 422" ("‘/2) f R el i

g o)

It

331
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and it remains to transform this integral. To this end, imagine a variable
distributed over the interval (0, + «) with the density

Its characteristic function is
1 L\-2
(d\/§)‘"<272 - @‘) ?

and since the distribution function is given a priori, we must have for
t=z0

—n _u on_ —n 0 — p—itv
(i\—/z)—— te 20792 1du = const. + (2v/2) 1—e dv.
r(Z) Jo : I o i sy — w 2

2 252

Hence

1S

F(@) = const. + 1 f 7T gy,
(a'\/i)"]?(%) 0

The constant must be = 0 since F(¢) as well as the integral in the right
member vanishes for £ = 0. The final expression is therefore:

F() =————-1———-fle Wy for 120
(a\/é)"r(g)
Fi@) =0 for t<0.
The probability of the inequality
24234+ - - - 22 <Y,

on the other hand, can be expressed directly as a multiple integral

F( x1’+:c22-|—2 © +a?
t o2 e
) = (U \/27_1_)“ f f f dxdzs dz,

extended over the volume of the n-dimensional sphere S
B4zt tc F22 <t

By equating both expressions of F(t), we obtain an important transforma-
tion,
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2zt o o o 2
(1) ff PR fe 202 d$1dx2 PPN dx,,, =

If F(z2 + 2% 4 - - - -+ z2) is an arbitrary function of

u=af+a}+ - - +2
the integral

_ izl v - - taa?
T 20t 2 o e 2 PR
= A Pt heddnda - - do

extended over the whole n-dimensional space represents the mathematical
expectation of F(u). On the other hand, the distribution function of
u being known the same multiple integral will be equal to

[
wa)nr(%)ﬁ

Taking in particular ¢ = 1, F(u) = e*” we get the formula

1 —
—Z (2124 ¢ - ¢ Fz)FaTEF - - - FZal
@) fffe oy - - - da, =
3 2
w2 ® —Ftaut 22
- [T,
n

2

_ n=2
e 2F(u)u 2 du

which will be used later.
2. Problem 2. Variables z1, Zs, . . . Z, are defined as in Prob. 1.

Denoting their arithmetic mean by

_Titot 2.

n

)

find the distribution function of the sum
=@ =8+ @—98+ " + (@ — 9%
Solution. The probability of the inequality
2 <t

is expressed by the multiple integral
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a:x=+-’622+ +$nd i p
F@ = X10Tg © - AT,
® (a\/—21r)“f f f o

extended over the volume of the n-dimensional ellipsoid

(1 — )2+ (e — 824+ -+ - + (za — 2L

Let
Ty — 8 = Uy, To— 8§ =Uy * " " Tn — 8§ = Un,
whence
U4 U, =0
and
bt Fai=wdFuwi+ - +ul 4 nst

Taking %1, Uz, . . . %n—, and s for new variables, we must first find the
Jacobian J of zi1, @3, . . . z. with respect to w1, us, . . . Un-1, 8. It is

1 1 0 0 0 1100---0

1 0 1 0 0 1010 0
st 0o o 1 of=|........ P

1 0 0 0--- 1 100 0 1

1 -1 -1 -1+ =1 n 0 0 0 0

In the new variables the expression for F () will be

m’ ultuelt - - ¢ tun?
OR \/_)” f f J’ TE T dsdusdug - - - diy

and the domain of integration in the space of the new variables is defined
by
—w L 8K @
wtuw+ - Fui g (mtu o Fuan)? <t

After performing the integration with respect to s, we get

I I
F(t) = @ \/-—)n_lff f 2“’ duidus * + ¢ duy_y.

The quadratic form
e=uitui+ - Ful gt Ut o+ Uunr)?

can be represented as a sum of the squares of (n — 1) linear forms in
variables uy, s, . . . Up_i:

p=vi+0vi+ - +oi,
The Jacobian
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3(1)1, Uy « . o Un_l)
6(u1, Uy o . . u,._l)

is the square root of the determinant of the form ¢, which is the same
as the determinant of linear forms

10
§£;=2u1+u2+"'+un—l
19

She =W T et e
L C.
§ﬁ=u1+u2+“'+2un—1-

Now, in general

p times

AL - - -1

lx o e .

Pl a— e -
111 - - - A

so that the determinant of ¢ is =n, whence

(w1, Vg, + + + Upi) -

a(ula Ugy * ° ° un-—l)
and
a(ul, Uy, * " ° u,._l) _ .L.
6(2)1, Vg, * " 'I/'n._.]_) —\/ﬁ
Therefore, taking vy, vs, . . . va.—1for new variables, F(t) can be expressed
as follows

F 1 f m=+v22+2~ . +vn..12d p g
) = ——— S I o? vidvy - 0 dva
® (a\/?r)"’lff . !

where the integral is extended over the volume of the sphere
vi+od 4 - - 02 <Y

This multiple integral is exactly of the type considered in the preceding
problem, and it can be reduced to a simple integral as follows

'uz’+vzz+ * Fong?
T dyydg c c ¢ Avpr =

n-1
2

™

¢ _u -3
=—""——fe 20%, 2 du.
r("_:_l> 0

[ ]
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After substitution, the final expression of F(f) is

u n—3
F(t) = 1 fte—g’—’u_—z—du for ¢t>0
(a\/i)”‘lr(n————z'l) 0
F®) =0 for ¢=<0.

3. Problem 3. Variables xi, 25, . . . z, are defined as in Prob. 1.
As in Prob. 2, we set '
P e o2 e wl k.
n
U = Ty — §; t1=12 ...n

and introduce the quantity

e,__\/u%+u%--~+u,=:

n

‘What is the distribution function of the ratio

S
€

or, which is the same, the probability F(f) of the inequality
s < te?

Solution. First, assuming ¢ to be positive, let us find the probability
¢(t) of the inequality

s = ie
or
2
ultui+ - tuls S
This probability can be presented in the form
o) = __n___f me’_%f—"lif s)ds
(ev/2m)" Jo (

where the multiple integral

wiltus+ - - - funl
V(s) = ff <. fe 20t dusdus + + -+ din_y

in which

Un = — (U +ug + - ¢ - + Un-1)
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is extended over the domain
A u%-l—’u%-l—"'+uﬁ_1+(U1+u2+"'+uﬂ_.1)2§-t—2—

Proceeding in exactly the same manner as in Prob. 2, we can transform
¥(s) into

_ %+t - 22 - ¢ tona?
‘I’(S) ff f D dl)ldvz o dv,...l

extended over the sphere

2
R R R N
in the space of the variables vy, vs, . . . v4—1. For this multiple integral

we can substitute a simple integral

n—1 ns? 3 n—1 n—1 .

3 % _ % n— T2 o, 2 _ng
T f o By Ty = T f ¢ g2t
o 1\,Jo n — 1

2

and thus reduce ¥(s) to the form

n—1 n—2
3,72 (i _rE
\I’(S) = Q‘r_____?L_f e 202£n—2d£.
N 1\Jo
(5
After substitution we can express ¢(t) as a repeated integral
oms = _mt  Cf e
o(t) = I e 2s | e 20°En—2g,
\/1?(0'\/5)"1‘(" ; ) 0 °

The derivative of ¢(2) is

1

o) = - Vi \/25:@ )ﬁ”e—g}i(H;, Tk =
__.(_)___(1 + tz)’g

Va3

I3
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whence
G)
oy =c-—— o[ %
Wr(" . ) (1 + 22)2
Now
® dz \/;P(n ; 1)
o(+w) = 0; f 5 = -
TT 4272 1‘(§)

go that C = 1 and

(2
() o _a
=1 \/7?1‘("2_2— 1>f" “(1 +:2)12L-

Such is the probability of the inequality-
8§ = fe.
The probability F(t) of the inequality
s < le

F(%) v dy
; 1>f N

x/;r(” (1 + 222

‘but this is established only for positive f. However, this result holds
for negative ¢ as well. For ¢ being negative = —r the inequality

will be 1 — 6(f) or

F@) =

s < —7e
is entirely equivalent to

—8 > T€

and its probability is evidently

F(—1) = ¢(1) =1 — ( > >f 1+ 2) 2dz

e
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)

\/_1_( >f (1 4 22 2d.z-—l

which permits of writing the preceding expression for F(—7) as follows'

vy ) -

\fr< )f (A + 29 3 =

But

1(5)
a5

Thus, no matter whether ¢ is positive or negative, the distribution func-
tion of the ratio

(1 + 2%) 2dz

S
€

or the probability of the inequality
s < e

1(3)
var(tg)

The distribution of the quotient s/e was discovered by a British
statistician who wrote under the pseudonym ‘“Student,” and it is com-
monly referred to as “Student’s distribution.” The first rigorous proof
was published by R. A. Fisher.

4. Problem 4. Variables z, y are in normal correlation. A sample of
n corresponding pairs, i, ¥1; T, Y2} - - - Tn, Ya is taken and the *“correla~
tion coefficient of the sample” is found by the formula

Z(ws — 8)(ys — §')
V2 — 9t Z(y: — )2
where, for the sake of abbreviation,
Titzet A Y1yt Ye

n n

is given by

F@t) = (1 + 2%) 2dz.

p =

S =
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Find the distribution function of p, that is, the probability P of the
inequality p < R for a given R(—1 < R < 1).

Solution. Since the expression of p is homogeneous of degree 0 in
T1, L2, - . - Tn) Y1, Yo, - - - YnWecanassumeo; = gz = 1. Also without
loss of generality the expectations of z and y may be supposed =0.
Denoting by r the correlation coefficient of z and y, the density of proba-
bility in the two-dimensional distribution will be:

1 (22— 2ra)
2(1—12)
%e T .

2r(1 — r?)
Hence the required probability will be expressed by the multiple integral

P= f f f ) “dzy - - - daady, - -+ dy,

(@m)»(1 — r%)?
extended over the 2n-dimensional domain
3) (@i — s)(yi — ) < BV Z(@:i — 9)? Z(ys — &)?
and
4) o = Zz} + Zy? — 2r3zy..
Replacing z;, y:(2 = 1,2, . . . n),respectively, by v/1 — r2z;, /1 — r2y,

we can write P thus:

1 — r2)2 ’
_((21)7;‘)_[,[ fe zd:z:l'"ol:z;,,dyl---dy,L

while (3) and (4) still hold but with the new notation for the variables.
Let us set now

Ti — 8§ = u; yi — 8 =,
then
U+ U+ 0 AU, =0, vit+o2+ -0 40, = 0.
Introducing s, 8"; w1, us, . . . Up—z ; 01, Vs, . . . Vn_;8S DEW variables, we

find as in Seec. 2

2(1 — r2)2
p=" ((2T)nr) ff fe Pdsds'duy - - - dupydvy - - - dvn_y

where

¥ = ns® + ns'? — 2nrss’ + Su? + Zvf — 2rSuw;



Sec. 4] DISTRIBUTION OF CERTAIN FUNCTIONS 341

and the domain of integration is defined by the inequalities

—wo < §< ®; —wn <8 < w
Suw; < R/ Zuf - 202

Now by the same linear transformation the quadratic forms Zu?,
Zv? (each containing n — 1 independent variables) can be transformed
into

n—1 n—1

2 2.
zwi: Ezu
=1 t=1

at the same time

n n—1
zuiv.; = 2 WiZs.
1=1 t=1

Proceeding as in Sec. 2 and noting that

0 £ n
—5 (875" —2rss) 2
f f e 2 T dsdy = —
—wJ-w nV1 —1r?

we find that
— 2 2
F= (1(25")_1 f f f ¢ Fdwy - vz den
where

= 3w + 2z} — 2r3wz;
and the domain of integration in the space of 2n — 2 dimensions is defined
by

Swiz: < B/ Zw?- Z2k

We shall integrate now in regard to variables 2y, 2s, . . . 2.1 for a fized
system of values wy, we, . . . Wa—1. To this end we use an orthogonal
transformation

21 = ciif1 Feele + 0 0 0+ Cramifaa
2y = Co,181 + Coole + © ¢ 0 F C2a—1ln1

n—1 = Cn—l 1?1 + Cn—1 2?2 "l" : + Cn-—l,n-—lg‘n—l
in which the elements of the first column are

w; (2
ci.l = = —

Veit o Ful, ¥

1
|
1
;
4
;
;
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Deﬁning E1, 22, R Y by

wr = ci,if1 Feede + 0 0 0+ Crnabea
we = Czaf1 + Ca2fa + ¢ 0 0+ Canabna

we shall have & =w, & = - - - = g1 = 0. By the properties of
orthogonal transformations

Tz} = 22, Zzaw; = 2k = wiy

so that for a fixed system of values wi, wz, . . . Wa—1 the domain of
integration in the space of variables {1, {2, . . . {n—1 Will be

(5) t1 < RV/ZEE
Thus we must first evaluate the integral
J = H ... fg—%(s“22+ s Fmed) =i trehidede, - - - di,on.
If ¢, < 0 no restriction is imposed upon ¢z, . . . &1y if ¢1 > 0, then

1
g+ +§-3._1>(§2—1)§%.

Consequently the result of integration in regard to s, . . . {n—1 can be
presented thus:

riw? 1 1
—— ® =zttt =524 - 0 gna?)
J=ce2 ._.j;gz dg'lff...er 1d§-2...dg‘n_1
where the inner integral is extended over the domain
2 2 1 2
G+ +0..< 'R‘z"'lfl

and cis a constant. Making use of formula (1), Sec. 1, ﬁhe expression of
J reduces to

n—2 1 3
rw? T @ _Lootiue o(m1) w
J=ce? — Lf e gt rdflf e 2973y,
("= 2\Jo 0
(%)
This has to be multiplied by
1 n=1l 1o
@;)—"—_—1(1 -1 2 e e 2dwl © o dWa—
and integrated over the whole space of the variables wy, ws, . . . Wn_1.

The resulting expression for P will be
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T — r2) 2 wit
P—cons‘o—"r (1 r) >ff fe 2* Mdw, - - + dw,—1

o

where

-1 ¢
M = f” i +mhd fl(m e 2v"“sdv

Now we differentiate in regard to R, reverse the order of integrations,
and make use of formula (2), Sec. 1; the resulting value of dP/dR will
then be expressed as a double integral

2 - 2—2:- 2y 2 —= (2 +u? riu
dP _x 2(1 —1r?) R) f f (t+ ) + Rt (tu)—2dtdu,

dR o n—1
(3 ()

— 2 _ 2 2
dR (1 - 72‘F (n(];. 2)R ) f f e— (e +ud +Rrtu (fy ) n—2dt dy,

r(’-‘—'é—)r(ﬁg—l) ;n/__ I'(n — 2).

In the double integral we make transformation to new variables £, 7
defined by

or

since

The Jacobian of £, w in regard to £, n, being 14£-1, we have

f@f we_%(tz+uz)+thu(tu)n_2dtdu _ lfwfwe_n(i;'_‘—zer) "__2d‘r)d£ _
0
1d£
r

and so, finally,

dP not dt
% = E?) ﬁ oht — By

In case r = 0, that is, when the variables z, y are uncorrelated, we have
a very simple expression of P:
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S

In case r = 0 the integral
T d
o (cht — Rr)»!

can still be found in finite form. We have, in fact,

—4

° (i 1 T .
J; Py e \/T_—__ZW[§+MC sin (Rr)],

whence

® dt D e '_ e .
J; (cht — Rr)»t ~ (n — 2)! olR'"“‘z{[1 Rr?] [2 + are sin (Rr)]},

and so

n— 4d_

P= {fa—m

where

{[1 - p2r2]—%[ -+ are sin (rp) :I}dp,

n-1
T—(n—2)(1 — 7-2) 2

4 =—0 =%

When n is an even number, this integral appears in a very simple finite
form, but in case of an odd n certain integrals of a rather complicated
type appear. Besides, the behavior of P for somewhat large n cannot
be easily grasped by using this integral expression for P.

5. Fisher, who was first to discover the rigorous distribution of the
correlation coefficient, called attention to the fact that, setting

- 9= o)
KRV o e

the distribution of 2 will be nearly normal even for comparatively small
values of n. Let us set {hR = w, th{ = r; then P can be expressed thus:

P_n——2f“’f°° chzdidz
T x  J_.Jo (chichzchi — shishz) !

Instead of { it is convenient to introduce a new variable r so that

chichzchi — shishz = 1='ch(z — ¢).
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Then
P = n—2 (chz dz L=3(1 — 7)»2dr
AR ki) Vio o
where

_chG+ D) _ chlw+0)
2chzcht = 2chwchi

for all values of z under consideration. Now

=31 — T)"“zd'r Val(n — 1)
o V1-—opr T(n — %)

and

=31 — 7)y»2dr < \/;I‘(n -1 1+ P

o V1-—opr I‘(n—%)( 2"*1)
since

17'“5(1 - 'r)"_zdr
V1i-— 0

for 0 < p <1 as can be ea,sﬂy verified. Consequently

P=(n—2)I‘(n—1) @ (chz\* dz .
VorT(n — ) J-o\¢hi) [ch(z — )" ,
chiw+¢) 6 .
'[1+ Schacht I —1) 0 <0<l
As to the integral in this formula, its approximate expression, omitting
terms of the higher order, is:

w _2n-—-3 e _271.—3 o—£)2
P (2 ”dz— th¢ Pt (=01
—w 2n — 3

Thus for somewhat large n the required value of P can be found with
the help of a simple approximate formula.

The various distributions dealt with in this chapter are undoubtedly
of great value when applied to variables which have normal or nearly
normal distribution. Whether they are always used legitimately can
be doubted. At least the ‘“onus probandi” that the “populations’” with
which they deal are even approximately normal rests with the statisticians.

1‘r‘*(l — )" (1 4 pr)dsr

Problems for Solution
1. Show that

n 2
H 1+c\/— _nu oy 1 ¢ 1
lim —n—n_-_f n€ 242 du ='———:_f e 2
n—w = (n 0 '\/21|— -
22r 5 ‘

Hr~r: Liapounoff’s theorem and Prob. 1, page 332.
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2. With the same assumptions and notations as in Prob. 3, page 336, show that the
distribution function of the quotient

Z; —S§

; 1=1,2...n
€

is

-1 n—4
) ¢ 7 _
F@) = 2 f (1 ——Z—z——) dr if It] =Vn-—-1
n —2\J~-v/n-1 n—1
1r(n—-1)1"<——é—>
Fty=1 & t>n—-1; F$)=0 i t<—~/n-0L

It is worthy of notice that for » = 4 the distribution is uniform.?

3. In two series of observations, samples zy, %3, . . . Znand ¥1, ¥z, . . . Yar from
the same normally distributed population (or of the same normally distributed vari-
able) are obtained. Denoting for brevity

_otzet - o gyt -ty

n ) i
1 1
=Al; T )IZ@ =92 + 2@ — ),

(“ Student”). Ams.

find the distribution function of the quot.lent

P<n 5 Z - 1) t d
F@) = f S —
r_. +n'—1
wr(’iiﬁz__?) —w e

@+
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APPENDIX I

1. Euler’s Summation Formula. ILet f(z) be a function with a
continuous derivative f'(z) in an interval (a, b) where o and b > a are
arbitrary real numbers. The notation

n<b

>, f(n)

n>a
will be used to designate the sum extended over all integers n which are
>aand =b. Itisanimportant problem to devise means for the approxi-
mate evaluation of the above sum when it contains a considerable number
of terms.

Let [z], as usual, denote the largest integer contained in a real number
z, so that
z=[z]+86

where 6, so-called ‘‘fractional part’” of z, satisfies the inequalities
0=0<1.

Considered as functions of a continuous variable z, both [z] and ¢ have
discontinuities for integral values of z. The function

ple) =3 —0=[]-=z+3

is likewise discontinuous for integral values of z. Besides, it is a periodic
funection of z with the period 1; that is, we have

p(x + 1) = p(z)
for any real z. With this notation adopted we have the “llowing
important formula:

n<b .
- b
W i = [F@dz + p®FG) — e(@f(@) — [ p@F @)on
n>a
which is known as “‘Euler’s summation formula.”
Proof. Let k be the least integer >a and [ the greatest integer =b.
The sum in the left member of (1) is, by definition,

f&) +f+1) + - - +50

and we must show that this is equal to the right member. To this end

we write first
347
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j=1-1
[r@r @iz = [f@r@ds + [o@f @dz+ 3, [T e@f @
i=k

Next, since j is an integer,

i+1 i+1 . .
J:_ e(@)f (z)dzx = j; (j -+ %)f’(x)dx - _ () +.£(.7 + 1) +

J+1
+ | e
and
S RS NS) !
J , +
p> [ o@r@as = SBEIO ~n§1f<n>+ [ s

On the other hand,
& k
[r@r@is = [(k-1-2+r@a = 12— @ +
k
+ f f(z)dz

" ' AV () ’
Jor@a = [(1- 2+ 3@ =D 1 om0 + [ 100,
so that finally
[e@r@de = =) =k +1) = - - —70) +

+ () — p(@)f(@) + [f(2)da;

whence
n=b

> 1) = [(1@)dz + o®)F®) - p@f(@) — [(o@)f @)da,

n>a

which completes the proof of Euler’s formula.
Corollary 1. The integral

Jrp@4dz = o(a)
represents a continuous and periodic function of  with the period 1. For
ol + 1) — o) = f " o(2)de =f‘j; 'o(e)de = j; '3 — 2)dz = 0.

fo<sz=x<1,
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ow = [ (4~ e = 202

6(1 — 8)
2

and in general

a(z) =

where 8 is a fractional part of . Hence, for every real z

0=o(x) =1
Supposing that f"/(z) exists and is continuous in (a, b) and integrating by
parts, we get

[o@1' @dz = o®)7'®) = o@f (@) - [(o@)" @)z,

which leads to another form of Euler’s formula:

nsb

S = [F@ds + s G) — p@f(@) — oB)' ®) +

n>a

+o@)f (@) + [ o(@)f"@)da.

Corollary 2. If f(z) is defined for all # = a and possesses a continuous
derivative throughout the interval (a, 4+ «); if, besides, the integral

[ @) @de

exists, then for a variable limit b we have

n<b

@) 3,5t = C + [$®)db + o)) + [, @) @)da

n>a

where C is a constant with respect to b.
It suffices to substitute for

[lo@)f @)z
the difference
[ @ @iz ~ ["o@)r @)z

and separate the terms depending upon b from those involving a.

2. Stirling’s Formula. Factorials increase with extreme rapidity
and their exact computation soon becomes practically impossible. The
question then naturally arises of finding a convenient approximate
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expression for large factorials, which question is answered by a celebrated
formula usually known as ‘“Stirling’s formula,” although, in the main,
it was established by de Moivre in connection with problems on proba-
bility. De Moivre did not establish the relation to the number

T = 3.14159 . . .

of the constant involved in his formula; it was done by Stirling.
In formula (2) it suffices to take a = 14, f(z) = log z, and replace b
by an arbitrary integer » to arrive at the remarkable expression

log (1-2-3 . -n) =C+<n+%)logn—n+pr———-(xzdx

where C is a constant. For the sake of brevity we shall set

w(n) = j;”p(x)dx'

X

Now

“p@ydr (" Tp(x)dx f"“p(x)dx
L _J; L

z

and

f""’lp(x)dx . flp(u)du _J‘*p(u)du Lo(w)du _
& z  Jou-+k 0u+k+ *u—l-k—
=f ~—-u)du+ e —u)du__l_f* (1 — 2u)2du
o u+k u+k  2Jo +u)E+1—u)

Hence
w(m) = 3 [(1 — 20)Fa(w)du
where
Falw) = gac ORI
Since '

k+wk+1—u) =kk+1) +u—u
it follows that for 0 < u < 14

k+uwk+1—u)>kk+1)
E+uE+1l-—uw <E+12<E&+HE+ .

Thus for 0 < u < 14
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| 1 1
Fa(u) < ;m -1

1 1
R > 2T HEy Ty

Making use of these limits, we find that

w(n) < }—f%(l — 2u)%u = L
2n 0 12n

1 \ 1

and consequently can set
1

“(") = B

where
0<6<4i.
Accordingly

log (1-2-3 .- n) =C+<n+%>logn~—n+12(n1+9).

The constant C depends in a remarkable way on the number .
To show this we start from the well-known expression for = due to Wallis:

T hm(2.2.44 . 20 2n ”— o
g =~ "M\1'3°3°5 m—12n+1/)

which follows from the infinite product

. x? z? x?
smz—-x(l ——7—;5><1 —4—1—r—2><1—w> < e

by taking ¢ = /2. Since

2 244 o 2n 2n 2:4.6---2n 2 1
1335 "2n—12n+1 |[1-3-5
we get from Wallis’ formula

. 2:4.6---2n :
'\/;=hm[1.3.5._(2n_1)——;]7 n— ©,

On the other hand,
2.4.6-.-2n=2".1.
1.3-5.-- @n—1) = 57—
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so that :
o f2m(1-2-3 .. .m)? 1
V“hm{ 1.5.3 ~on 7;;}' no e

or, taking logarithms

This result is commonly known as Stirling’s formula.
For a finite n we have

1:2.-3 .- -0 =2rnnme . g

where
1 1
B+ <™ <5
The expression

V 2rnnre™

log /7 =lim [2nlog 2 +2log (1-2-3 - n) —
log(l 2 3.--2n) —%logn]
But, neglecting infinitesimals,
log(1-2:3.--n)=C+@n+%logn—n
log(1:2:83---2n) =C+ (2n + %) log 2n — 2n
whence
lim [2nlog2 +2log (1-2-3 -+ - n) — .
—log(1-2-3-.-2n) —3logn] =C — %log2.
Thus
logv/m = C — % log 2, C = log v/2r
“and finally
B) log(1-2-3---n) =log\/§_zr+(n+%)logn—n+
+1_2—(_171¢7); 0<o< %
This is equivalent to two inequalities
1
el2n+6 < ,]i_vé_%m < 6121;
which show that for indefinitely increasing n
fim 228 --n_ 1.
\/ZT?L nre"
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is thus an approximate value of the factorial 1-2-83 . . . n for large n
in the sense that the ratio of both is near to 1; that is, the relative error is
small. On the contrary, the absolute error will be arbitrarily large for
large n, but this is irrelevant when Stirling’s approximation is applied
to quotients of factorials.

In this connection it is useful to derive two further inequalities.

Let m < n; we have, then,

k=n—1

1
Fr(u) — Fa(u) = ; TrwE+1i-w

and further, supposing 0 < u < 14,

k=n—1
Faulw) — Falu) < Em?}f%
k=m
k=n—1
B 1 1 1
Fnlo) = Falt) > kz<k+%)<k+%>‘m+%‘n+—;-
Hence,
1 1 1 1
om) — o) <gop ~gm @0~ > HE T T Be 1D

and, if I is a third arbitrary positive integer,

a(m) + o) — o(n) < 3= + 15~ 1o
1 1 1
ofm) +ol) =) > g T2+ D Be T D

3. Some Definite Integrals. The value of the important definite

integral
o -
ﬁ) e~%dt
can be found in various ways. One of the simplest is the following: Let
I =f0 e~trdt

in general where 7 is an arbitrary integer 20. Integrating by parts one
can easily establish the recurrence relation

Jn = n -; 1J75-—2;
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whence
.8.5-..2m -1
1-2.8.. - m
J2m+1=w_é‘_—'_—'

On the other hand,
Tri1 + 2N + Ny = ﬂ)‘” ettt + \) %,

which shows that
g1 + 200 + NJ ey >0

for all real \. Hence, the roots of the polynomial in the left member are
imaginary, and this implies

J2 < Jnird s,

Taking n = 2m and n = 2m + 1 and using the preceding expression
for Jom and Jom41, we find

2:4.6---2m 1 < Jic 2:4-6--2m 1
135 --@n—D/amt2 " 135 - @2m—1)/am
But

hence
Jo = [revit = 3/

Here substituting { = +/au, where a is a positive parameter, we get

® 1 jr
—au? L
ﬁ e ' dy, 2J;

As a generalization of the last integral we may consider the following one:
V= j; e™°** cos budu.
The simplest way to find the value of this integral is to take the derivative

av _
&b

and transform the right member by partial integration. The result is

o
—f €% sin bu - udu
0
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av b
r vl
or
' b2
d(Veta) = 0,
whence
b2
V = Ce %,

To determine the constant C, take b = 0; then

C =)o = J; eovtdy, = %\/é’
c 1 [r-Z
e~ cos budu = = [—e 4.
0 2Na

The equivalent form of this integral is as follows:

so that finally

o © T b2
f %% oo budu = emouttibudy = A\/:G 4a_
-— 0 — a

355



APPENDIX II
METHOD OF MOMENTS AND ITS APPLICATIONS

1. Introductory Remarks. To prove the fundamental limit theorem
Tshebysheff devised an ingenious method, known as the ‘“method of
moments,” which later was completed and simplified by one of the most
prominent among Tshebysheff’s disciples, the late Markoff. The
simplicity and elegance inherent in this method of moments make it
advisable to present in this Appendix a brief exposition of it.

The distribution of a mass spread over a given interval (a, b) may be
characterized by a never decreasing function ¢(z), defined in (a, b)
and varying from ¢(a) = 0 to ¢(b) = mo, where mo is the total mass con-
tained in (a, b). Since ¢() is never decreasing, for any particular point
Zo, both the limits

lim ¢(zo — €) = o(zs — 0)
lim o(zo + €) = ¢(x0 + 0)

exist when a positive number e tends to 0. Evidently

f @(zo — 0) = o(x0) = (20 + 0).
I
ez — 0) = o(z0 + 0) = (o),

then z, is a “point of continuity’” of ¢(x). In case
ekxo + 0) > o(m — 0),

zo is a point of discontinuity of ¢(z), and the positive difference
(@0 + 0) — o(zo — 0)

may be considered as a mass concentrated at the point zo. In all cases
@(® — 0) is the total mass on the segment (a, 2) excluding the end point
o, whereas ¢(zo + 0) is the mass spread over the same segment including
the point ;.

The points of discontinuity, if there are any, form an enumerable set,
whence it follows that in any part of the interval (a, b) there are points of
continuity.

If for any sufficiently small positive e

ﬂa(xﬂ +eo> ¢(x0 - e))

%o is called a “point of increase” of ¢(z). There is at least one point of
increase and there might be infinitely many. For instance, if
356
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o(x) =0 for aszse
o) =my for c¢<z b,

then ¢ is the only point of increase. On the other hand, for

o(®) = mer—

every point of the interval (a, b) is a point of increase. In case of a
finite number of points of increase the whole mass is concentrated in
these points and the distribution function ¢(z) is a step function with a
finite number of steps.

Stieltjes’ integrals

[ldo@) =mo,  [lrdo(e) = m, - - - [wido(z) = m:

represent respectively the whole mass mo and its moments about the
origin of the order 1, 2, . . . 2. When the distribution function ¢(z)
is given, moments mq, mi, Mms, . . . m; (provided they exist) are deter-
mined. If, however, these moments are given and are known to originate
in a certain distribution of a mass over (o, b), the question may be raised
with what error the mass spread over an interval (a, ) can be determined
by these data? In other words, given me, mi, ms, . . . m; what are the
precise upper and lower bounds of a mass spread over an interval (a, z)?
Such is the question raised by Tshebysheff in a short but important article
“Sur les valeurs limites des intégrales’” (1874).! The results contained
in this article, including very remarkable inequalities which indeed are of
fundamental importance, are given without proof. The first proof of
these results and the complete solution of the question raised by Tsheby-
sheff was given by Markoff in his eminent thesis ““On some applications
of algebraic continued fractions” (St. Petersburg, 1884), written in
Russian and therefore comparatively little known.

Suppose that p; is the limit of the error with which we can evaluate the
mass belonging to the interval (a, z) or, which is almost the same, the
value of o(x), when moments mo, my, Me, . . . m; are given. If, with ¢
tending to infinity, p; tends to O for any given z, then the distribution
function ¢(x) will be completely determined by giving all the moments

Mo, M1, Moy . . . .
One case of this kind, that in which

.3.5... 2k —1
o = 1, m%=135 2k( ). S

1 Jour. Liouville, Ser. 2, T. XIX, 1874.
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was considered by Tshebysheff in a later paper, ‘“Sur deux théorémes
relatifs aux probabilités” (1887)! devoted to the application of his
method to the proof of the limit theorem under certain rather general
conditions. The success of this proof is due to the fact that moments,
as given above, uniquely determine the normal distribution

po(z) = —\—/l_;f: e~ “du

of the mass 1 over the infinite interval (— o, 4+ ).

After these preliminary remarks and before proceeding to an orderly
exposition of the method of moments, it is advisable to devote a few pages
to continued fractions associated with power series, for continued frac-
tions are the natural tools in questions of the kind we shall consider.

2. Continued Fractions Associated with Power Series. Let

A 4, A
$(0) = mtatamt s (A0

be a power series arranged according to decreasing powers of z where the
smallest exponent «; is positive. We consider this power series from a
purely formal point of view merely as a means to form a sequence of
rational fractions

Al .A1 A2 Al A2 A3

7 gm T  mtom e
and we need not be concerned about its convergence.

Evidently 1/4(2) can again be expanded into power series, arranged

according to decreasing powers of z. Let its integral part, containing
non-negative powers of 2, be denoted by ¢i(z), and let the fractional part

B, B, 6 B;
AtETET

containing negative powers of 2, be denoted by — ¢:1(2), so that
1
3@ 0:1(2) — ¢1(2).

In the same way

1
¢1(2)

can be represented thus:

ﬁ%=m@—m@

t Qeuvres complétes de P. L. Tshebysheff, Tome 2, p. 482.
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where ¢2(2) is a polynomia,l and

$2(2) = + po : .

z‘YI z’yz

a power series containing only negative powers of z. Further, we shall
have

GO — 6

with a certain polynomial qa(z) and a power series

$a(2) = : 4 Do =+

251 sz

containing negative powers of z, and so on. Thus we are led to consider a
continued fraction (finite or infinite)

) =_1
g — =

gs — -

associated with ¢(2) in the sense that the formal expansion of

; 1
L — —
Q2 : 1

% — 6:(2)

into a power series will reproduce exactly ¢(z). The continued fraction
(1) is again considered from a purely formal standpoint as a mere abbre-
viation of the sequence of its convergents

P, P, 1 . P

1 1
oL - S TS R | PR
@ ¢ Q ¢-—= Q@ ¢-=—_1
Q2 q2
as
The polynomials
Py, Py, Ps, . ..
Ql; Q?) Q3; LR

can be found step by step by the recurrence relations

""‘QLP@—I— 0—2}
2 1 =2, 3,4,
() Qz = QzQz—-] - Qt-—2

P1=1 Po"’o

Q1 = ¢y, Q=1
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from which the following identical relation follows:
(3) Pi(2)Qi(2) — Qi(2)Pia(2) = 1,
showing that all fractions
Pi(2)
Qi(2)
are irreducible. Evidently degrees of consecutive denominators of
convergents form an increasing sequence and the degree of Q:(z) is at
least 7. Since
1y _ Pi(giys — ¢i4:(2)) — Picy _

e ' T Qg — (@) — Qin
Q2 — . . 1

T g1 — ¢ini(?)

= Pis — Pidia(?)
Qiy1 — Quidia(?)
we can write
o) = Pip1 — Pidita(2)
Qir1 — Qidi1(2)
in the sense that the formal development of the right-hand member is
identical with ¢(2). By virtue of relation (3)
1
¢ — Q: Qi(ai+1 — Qibir1)
The degree of Q; being A; and that of @iy, being Ay, the expansion of
, Qi(Qis1 — Qidiyy)
in a series of descending powers of z begins with the power 2**lis,
Hence,

P; M
¢(Z) - 6 = z)\i‘{’)\ul + te

1

and, since Miy1 = N\ + 1, the expansion of

o(2 "‘@

begins with a term of the order 2\; 4+ 1 in 1/z at least. This property
characterizes the convergents P;/Q; completely. For let P/Q be a
rational fraction whose denominator is of the nth degree and such that
in the expansion of

6 — &
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the lowest term is of the order 2n + 1in 1/zat least. Then P/Q coincides
with one of the convergents to the continued fraction (1). Let ¢ be

determined by the condition

A =n < )\.‘+1.
Then
P; M
¢(z) - Q = oo +

whence in the expansion of

P_D
Q

the lowest term will be of degree 2n + 1 or i + N1 in 1/2.

degree of

PQ: — PQ
- in z is not greater than both the numbers
N—n-—1 and n — Mg

which are both negative while

PQ; — P:Q
is a polynomial. Hence, identically,
PQ;—PQ =0
or
P _b
Q &

which proves the statement.

Hence, the

b
3. Continued Fraction Associated with f -;—i—‘i—_(%);- Let ¢(z) be a never

decreasing function characterizing the distribution of a mass over an
interval (a, b). The moments of this distribution up to the moment of

the order 2n are represented by integrals

m = [ldo(@),  m = [ede(a),

my = ﬁﬂdgo(a:), C e Mgy = Lba;i’"dw(x).
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Let

moml . . . mn

MM Moty mim m

1 . _|mime - - - npl |
Ay = mo; A = ; Az = [mimema|; ¢+ - Ay =
M1Me
' M2MM3M 4

MaMint1 * ° * Mg

If o(z) has not less than n + 1 points of increase, we must have
Ao>0, A >0, A, >0,

and conversely, if these inequalities are satisfied, ¢(z) has at least n + 1
points of increase. To prove this, consider the quadratic form

6 = j; Yo + bz + - - - 4 taz)do(2)
in n + 1 variables &, ¢;, . . . {». Evidently

¢ = Em#jt;i; (7:,J = O, 1, 2, .« e ’I‘L)

80 that A, is the determinant of ¢ and Aq, A, . .. A,y its principal
minors. The form ¢ cannot vanish unless &, =4 = - . - =¢, = 0.
For if x = £ is a point of increase and ¢ = 0, we must have also

“+e
[+t + - -+ taan)de() =0
for an arbitrary positive ¢, whence by the mean value theorem

o+t + - )o@ =0 (E—e<n<E+e

or
b+t + - - - il =
because
+e
Tde(@) > 0.

Letting e converge to 0, we conclude
b+bté+ -+ =0

at any point of increase. Since there are at least n + 1 points of increase
the equation

fo4+tix + -+ +lar =0
would have at least n -+ 1 roots and that necessitates

t0=t1=... =tn=0.
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Hence, the quadratic form ¢, which is never negative, can vanish
only if all its variables vanish; that is, ¢ is a definite positive form. Its
determinant A, and all its principal minors An—1, Ans, . . . A, must be
positive, which proves the first statement.

Suppose the conditions

Ay >0, Ar>0,...0,>0

satisfied and let o(x) have s < n + 1 points of increase. Then the
integral representing ¢ reduces to a finite sum

¢ =pillo +bbr + - - - FEDF pallo +bik2 + - - - + 45D+
+ M +p8(t0+t1£s+ <t +tn$?)2

denoting by pi, ps, . . . p. masses concentrated in the s points of
increase &1, &2, . . . &. Now, since s £ n constants &, £;, . . . £, not
all zero, can be determined by the system of equations

bo+tidi+ - - - +1.8=0
bo+liba+ - - - +1E3=0

t0+tl£8+ st +tn£2 = 0.

Thus ¢ vanishes when not all variables vanish; hence, its determinant
A, = 0, contrary to hypothesis.
From now on we shall assume that ¢(z) has at least n 4+ 1 points of

increase. The integral
® do(2)
e? —Z

can be expanded into a formal power series of 1/z, thus

b
dgo(x) My my Mo Man
f,m—7+?+7€+ o tmn T
and this power series can be converted iuto a continued fraction as
explained in Sec. 2. Let

P 1 P 2 P ,,,’ P n+1

it St X

Ql QZ Qn Qn+1
be the first n 4+ 1 convergents to that continued fraction. I say that the
degrees of their denominators are, respectively, 1, 2, 3, ... n 4+ 1.
Since these degrees form an increasing sequence, it suffices to show that
there exists a convergent with the denominator of a given degree

s<n+1

This convergent P/Q is completely determined by the condition that in &
formal expansion of the difference
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*do(r) _ P
aR—Z Q

into a power series of 1/z, terms involving 1/2, 1/2% . .. 1/z* are
absent. This is the same as to say that in the expansion of

b
o [ - re

there are no terms involving 1/z, 1/2%, . . . 1/z°. The preceding expres-
sion can be written thus:

b b
Q(z)de(x) + L Q(z; : g(x)dgo(x) ~ P(z) = 'z{-i_!-i 4+ e

a 2 —2

Since
b —
(98 =994,0) - p)
a
is a polynomial in 2, it must vanish identically. That gives

b
@ P@ = |9 = G0

To determine Q(z) we must express the conditions that in the expansion of

f *Q(@)do(2)

2 —z

terms in 1/2z, 1/2% . . . 1/2* vanish. These conditions are equivalent to
s relations

®) [le@ie) =0,  ['Q@de(@) =0, - - - ['2Q@)de(z) =0,

which in turn amount to the single requirement that

(6) [ 6Q@)de(z) = 0

for an arbitrary polynomial 6(z) of degree < s — 1.

Conversely, if there exists a polynomial Q(z) of degree s satisfying con-
ditions (5), and P(z) is determined by equation (4), then P(z)/Q(z) is a
convergent whose denominator is of degree s. For then the expansion of

fbd«:(x) _P@
a® —Z Q(Z)

lacks the terms in 1/z, 1/22, . . . 1/z%.
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Let
Q(Z) =l + Iz 4+ 122 R = lo—y2sl + 28

Then equations (5) become

Moly + maly + mals + + -+ + Myilses + M =0
milo + maly + mals + -+ + Melimy + My1 = 0

Ma—ily + Mals + Mapale + - -+ 4 Mos—slsy + Mae—1 = 0.

This system of linear equations determines completely the coefficients
lo, Iy, - . . ls—1 since its determinant A,_; > 0.
The existence of a convergent with the denominator of degree

s=n+1

being established, it follows that the denominator of the sth convergent
P,/Q; is exactly of degree s. The denominator @, is determined, except
for a constant factor, and can be presented in the form:

1 2z 22 ...z
Mo M1Me = v Mg
Q, = my Moz -+ + Mgyl
A‘-l .....
Me—1MsMg 1 « « + Mas—1.

A remarkable result follows from equation (6) by taking @ = @, and
6 = Qy; namely,

) fosQ.' do(z) =0 i s=¢
while
j; "Qo(x) >0 (s £ 7).

In the general relation
Q: = quQo1 — Qu
the polynomial ¢, must be of the first degree
gs = a + By

which shows that the continued fraction associated with
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has the form

_1 1
alz—‘_ﬁl_azz‘i-ﬁz"

a2 + B — .

The next question is, how to determine the constants o, and .. Multi-
plying both members of the equation

Qs = (aaz + Bs)Qs—l - Qs—z (S ; 2)

by Q._2de(2), integrating between limits @ and b, and taking into account
(7), we get

0 = a0 [ 2Qu1Qusdele) — [ Q2:de(@).
On the other hand, the highest terms in @,—; and Q,—» are

s ¢+ 0 12Tl Qg - - - 9T

Hence,
Q2 = _1"'Qc—1 + ¢
O]

where ¢ is a polynomial of degree <s — 2. Referring to equation (6),
we have

b 1 [?
j; 2Qs—2Qs—1do(2) = a:_‘lj; QZ_1de(2)

and consequently

o5 j;stz—zdsﬂ(z)'

w102 ide()

Suppose that the following moments are given: mq, my, . . . M2} how
many of the coefficients o, can be found? Evidently oz = 1/mo. Fur-
thermore, @y = 1 and Q: is completely determined given m, and m..
Relation (8) determines an, and Q. will be completely determined given
Mo, M1, M2, Mms. 'The same relation again determines «;, and Q; will be
determined given mo, my, . . . ms. Proceeding in the same way, we
conclude that, given mo, m1, ms, . . . Man, all the polynomials

QQJ Qly Q27 « e . Qn

@®

as well as constants

01, O2, O3y « + o Cpil
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can be determined. It is important to note that all these constants are
positive.

Proceeding in a similar manner, the following expression can be found

[ o)

Bs = —as
" [fazdot)
It follows that constants
B1, B2 . . . B
are determined by our data, but not B,+1. Forif s = n + 1, the integral
[P2d0(2)

can be expressed as a linear function of mo, M1, . . . Mgny: With known
coefficients. But maa41 is not included among our data; hence, Bri1
cannot be determined.

4. Properties of Polynomials ,. Theorem. ' Roois of the equation

Q:(x) =0 (s=mn)
are real, simple, and contained within the interval (a, b).
Proof. Let Q.(2) change its sign r < s times when 2 passes through
points 21, s, . . . 2, contained strictly within (a, b). Setting
02) =z—2z20( —2) - - - (2 — 2)
the product
0(2)Qs(2)

does not change its sign when z increases from a to b. However,
b
[ 6@0.6)de() =0,

and this necessitates that
0(2)Qs(2)

or Q,(2) vanishes in all points of increase of ¢(2). But this is impossible,
since by hypothesis there are at least n + 1 points of increase, whereas
the degree s of @, does not exceed n. Consequently, Q,(2) changes its
sign in the interval (a, b) exactly s times and has all its roots real, simple,
and located within (a, b).

It follows from this theorem that the convergent

Lig
Qn
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can be resolved into a sum of simple fractions as follows:

Pue) _ A A A
© Qn(z)—z-z1+z—z2+ +z——zn
where 2y, 25, . . . 2, are roots of the equation Q.(2) = 0 and in general
- Pn(zk)‘
4= 0

The right member of (9) can be expanded into power series of 1/z, the
coefficient of 1/2* being

n
2 Aol
a=1

By the property of convergents we must have the following equations:

n
3 4o = mo

a=1

n
D, detrt = Mmoo,
a=1

These equations can be condensed into one,

(10) 3 4T = [(T@)de()

a=1

which should hold for any polynomial T'(2) of degree <2n — 1.
Let us take for T'(2) a polynomial of degree 2n — 2:

Tte) = [(_—-i%(—?]

Then
T(za) = 1, T(zg) =0 if B# «

and consequently, by virtue of equation (10),

Ao = f b[%rdﬂa >0,

Thus constants A, As, . . . A, are all positive, which shows that P,(z)
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has the same sign as @,(2:). Now in the sequence

Qn(21), Qulza), - - . Qs(2n)

any two consecutive terms are of opposite signs. The same being true of
the sequence

Po(21), Pu(2e), . . . Po(2,),

it follows that the roots of P.(z) are all simple, real, and located in the
intervals

(21, 22); (23, 20); . . . (2a-1, 20).

Finally, we shall prove the following theorem:
Theorem. For any real

Qn(2)Qns(z) — Qf_1(z)Qn(z)
18 a positive number.
Proof. From the relations
Qs(z) = (0[82 + Bx)Qa—l(z) - Qs—2(2>
Q:(z) = (az + Be)Qe-1(2) — Qs—2(x)
it follows that
Qs(z)Qa——l(x) - Qs(x)Qa-—l(z)

=2

= aaQu—l (Z) Qa-—-l (IIZ) + .
+ Q:—1(2)Qo2(2) — Qos(2)Qus(2)

g—

whence, taking s = 1, 2, 3, . . . n and adding results,

n

Q(®)Qns(z) — Qu@)Qus(2) _ Easgg_l(x>cz,_1(z).

2 —Z

g=1

It suffices now to take z = z to arrive at the identity

Qr(@)@n1(®) — @ a(@)Qu(®) = X 0uQes(2)

s=1

Since @ = 1 and «, > 0, it is evident that
Qr(2)Qn-1(2) — Qr_1(2)@u(z) > 0

for every real z.

5. Equivalent Point Distributions. If the whole mass can be con-
centrated in a finite number of points so as to produce the same I first
moments as a given distribution, we have an ‘“equivalent point distribu-
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tion” in respect to the I first moments. In what follows we shall suppose
that the whole mass is spread over an infinite interval — o, « and that
the given moments, originating in a distribution with at least n 41
points of increase, are

Mo, M1, M2, . . . Man.
The question is: Is it possible to find an equivalent point distribution

where the whole mass is concentrated in n + 1 points? Let the unknown
points be

f, 82 . - - b
and the masses concentrated in them
A1, Ay . . . Anpa.

Evidently the question will be answered in the affirmative if the system

of 2n 4+ 1 equations
n+1

2 Aa = My
a=1
n+1

(A) nt+1

......

can be satisfied by real numbers &1, &, . . . fupa; Ay, Asy . . . Apgy,
the last n 4+ 1 numbers being posifive. The number of unknowns being
greater by one unit than the number of equations, we can introduce the
additional requirement that one of the numbers &, &, . . . £.41 should
be equal to a given real number v. The system (4) may be replaced by
the single requirement that the equation

n+1

- (1) S AT (5) = f__:T(x)dqo(x)
a=1

shall hold for any polynomial T'(z) of degree =<2n. Let Q(z) be the
polynomial of degree n + 1 having roots &, &, . . . £ue1 and let 6(z) be
an arbitrary polynomial of degree <n — 1. Then we can apply equation
(11) to

T(z) = 6(z)Q().
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Since Q(£.) = 0, we shall have
(12) J . 0@e@det) =0

for an arbitrary polynomial 6(z) of degree <n — 1. Presently we shall
see that requirement (12) together with Q(v) = 0 determines Q(z), save
for a constant factor if

v Qn(v) 5 0.
Dividing @(z) by @.(z), we have identically
Q@) = (& + p)Qn(z) + Ras(z)

where R,._i1(z) is a polynomial of degree <n — 1. If 6(z) is an arbi-
trary polynomial of degree <n — 2,

Oz + )6(z)
will be of degree =n — 1. Hence
[ 0 + w6@)@@)de) =0
by (6), and (12) shows that
L *0(2) Rur(z)do(z) = 0

for an arbitrary polynomial 6(z) of degree <n — 2. The last require-
ment shows that R,_i(z) differs from Q,_:(z) by a constant factor. Since
the highest coefficient in @(x) is arbitrary, we can set

Rni(2) = —Qn(2).
In the equation
Q(x) = ()\27 + M)Qn(x) - Qn—l(x)

it remains to determine constants X and . Multiplying both members by
Qn_1(z)de(z) and integrating between — o and «, we get

M oQeQude@) = [7 Q2 ide(a)
or
2 qante) = [ ardeto.
But
[T de@
[ Qe
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whence
)\ = Onpil.
The equation

0= Q(?)) = (an-i—l?) + P)Qn(v) - Qn—-l(v)

serves to determine u if Q,(v) % 0. The final expression of Q(z) will be

0@ = (sate 0 + 2=20)g.0) — . .

Owing to recurrence relations

Q: = (a2 + B2)Q1 — Qo; Qs = (asz + B5)Q2 — Q1; - - -
Qn = (anx -+ .Bn)Qn-—l b Qn——z,

it is evident that

Q Qny Qnyy - - o @1, Q=1

in a Sturm series. For £ = — «, it contains » + 1 variations and for
z = « only permanences. It follows that the equation

Q) =0
has exactly n -+ 1 distinct real roots and among them ». Thus, if the
problem is solvable, the numbers £, %, . . . .41 are determined as
roots of

Q=) =0.

Furthermore, all unknowns 4. will be positive. In fact, from equation
(11) it follows that

4= | o= >0

Now we must show that constants 4« can actually be determined so as
to satisfy equations (4). To this end let

P = [ 908040 | arne— 0 + &0 e )~ P

Then
Q(x)f_:g-"f_(—z% —P@) = | Y0

—_— L —Z

and, on account of (12), the expansion of the right member into power
series of 1/x lacks the termsin 1/z, 1/22 . . . 1/2*. Hence, the expan-

sion of
f” de(s) _ P(z)
—wZ—2 Q)
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lacks the terms in 1/z, 1/z%, . . . 1/z**1; that is,

P(x)_?_?'b_o my Man
Q_(xj._x—*—?_!_..._*—.am.{-...

On the other hand, resolving in simple fractions,

P(x) - A1 Ag . An+1 .
Q@) z-& z-&HT Tt

Expanding the right member into power series of 1/z and comparing
with the preceding expansion, we obtain the system (4). By the previous
remark all constants 4. are positive. Thus, there exists a point distribu-
tion in which masses concentrated in n 4 1 points produce moments
Mg, M1, . . . Maa. One of these points » may be taken arbitrarily, with
the condition

Qn(v) # 0

being observed, however.

6. Tshebysheff’s Inequalities. In a note referred to in the introduec-
tion Tshebysheff made known certain inequalities of the utmost impor-
tance for the theory we are concerned with. The first very ingenious
proof of them was given by Markoff in 1884 and, by a remarkable
coincidence, the same proof was rediscovered almost at the same time
by Stieltjes. A few years later, Stieltjes found another totally different
proof; and it is this second proof that we shall follow.

Let ¢(z) be a distribution function of a mass spread over the interval
— o, . Supposing that a moment of the order ¢,

[ ado(@) = m,

exists, we shall show first that

lim Li(mg — (1)) = 0
lim lip(—0) = 0

when [ tends to +«. For
ﬂ “ride(z) = I lmdqa(x) = lp(+») — o(D)]
or
Limo — o) = [ “2'de(a).
Similarly
|[TLade@)| 2 U7 do(w) = To(-D)
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or
. -l .
to(—D = | [ aide@).
Now both integrals
ﬁ “side(r) and f ! wido(a)

converge to 0 as [ tends to -+ « ; whence both statements follow immedi-
ately. Integrating by parts, we have

f; zide(z) = lol) — mg — ¢ J; l[go(:c) — melxtdx
[2 i@ = (=D e(=D) — [ @ e(e)da,
whence, letting [ converge to 4+ o,
m; = f_:x"‘dgo(x) = —-ij;w[go(x) — mglzt~ldx — if_(_) wxi"lga(a:)d:c.

If the same mass mo, with the same moment m;, is spread according to
the law characterized by the function ¢(z), we shall have

m; = f_wwxidnlz(x) = —ij;”[zp(x) — molz*dx — zf_c_’ u“:ci“H//(x)dx,
whence
(13) [ 27 Me(@ = y@)lde = o.

Suppose the moments
Mo, M1, M2, . . . Moy

of the distribution characterized by ¢(z) are known. Provided o(z)
has at least n -+ 1 points of increase, there exists an equivalent point
distribution, defined in Sec. 5 and characterized by the step function
¥(z) which can be defined as follows:

Y(x) =0 for —w <z <&
Y(r) = Ay for HE=Zzx < &
Y(@) = A + 4, for L=<
W@) = Ai b Ast+ -+ A, for £ S5 < b
V() =A, + A, 4+ - - + A for fo1 S 1 < Foo,

provided roots £, £2, . . . £n41 of the equation Q(x) = 0 are arranged
in an increasing order of magnitude.
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Equation (13) will hold for ¢ =1, 2, 3, . . . 2n or, which is the
same, the equation

(14) [ 0@le@ — v@dz =0

will hold for an arbitrary polynomial 6(z) of degree <2n — 1. The
function

h(z) = o(z) — ¢()

in general has ordinary discontinuities. We can prove now that h(z), if
not identically equal to 0 at all points of continuity, changes its sign at
least 2n times.! Suppose, on the contrary, that it changes sign r < 2n
times; namely, at the points

ai, Gz, . - . G
Taking
0z) =z —a)@—a) - - (@ — a),
equation (14) will be satisfied, while the integrand
8(z)h(z),
if not 0, will be of the same sign, for example, positive. Let £ be any
point of continuity of A(z). If ¢ =a; (Z =1,2, ... r) then h(a;)) =0

since h(z) changes sign at a;.  If £ does not coincide with any one of the
numbers a1, &, . . . G, then for an arbitrarily small positive ¢ we must

have
fz T o(@)h(e)dz = 0.

But by continuity
6(x)h(x)

remains in the interval (§ — ¢ £ + ¢) for sufficiently small ¢ above a
certain positive number unless h(¢) = 0. Thus, if h(z) does not vanish
at all points of continuity (in which case ¢(z) and ¢(z) do not differ
essentially), it must change sign at least 2n times. Let us see now where
the change of sign can occur. In the intervals

— o, & and fnp, + 0

1A function f(z) is said to change sign once in (a, b) if in this interval there
exists a point or points ¢ such that, for instance, f(z) = 0 in (a, ¢) and f(z) < O0in
(¢, b), equality signs not holding throughout the respective intervals. The change
of sign oceurs n times if (a, b) can be divided in » intervals in which f(z) changes

sign once.
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o(x) — ¢Y(x) evidently cannot change sign. Within each of the intervals

Ei—ly Ei

there can be at most one change of sign, since ¢(x) remains constant
there, and ¢(z) can only increase. The sign may change also at the
points of discontinuity of y(z); that is, at the points &, &, . . . &up.
Altogether, o(z) — ¢(2) cannot change sign more than 2n -+ 1 times
and not less than 2z times.

Since Y(z) = 0 so far as z < & and o(& — €) is not negative for
positive ¢, we must have

o(f1 — € — (& — ¢ 2 0.
Also Y(z) = mo for > £ny1 and o(z) < my, so that
o(knsr + € — Yl +¢) 0.
At first let us suppose
p(f1— ¢ — Y& — ¢ >0, o(fns1 + € — Y€1 +¢) <O.

In this case ¢(z) — ¢(z) must change sign an odd number of times; that is,
not less than 2n + 1 times. Since this cannot happen more than 2n + 1
times, the number of times ¢(x) — ¥(x) changes its sign must be exactly
2n -+ 1. These changes occur once within each interval

Eia, &

and in each of the points £, &, . . . &41. When the change of sign
oceurs in the interval (&_L‘,i‘gi) where y(z) remains constant, because ¢(z)
never decreases, we must have for sufficiently small ¢

(15) o(ti — e —yY(ti— € > 0.
But the sign changes in passing the point £;; therefore,
(16) ot +e) —Y(&+ e <O.

The equalities
olli— & —Y(Er— ¢ =0,  olbnr1+ € — (1 +¢ =0

cannot both hold for all sufficiently small . For then there would not
be a change of sign at £ and &1, so that the number of changes would
not be greater than 2n — 1 which is impossible. Therefore, let

os1—¢ —Y(li—¢) =0 and (&1 + € — Y(Enpn +¢) <O

Then there will be exactly 2n changes of sign: one in earh of the intervals

§i1, &



APPENDIX 11 377

and in each of the points &, &, . . . £,01. The inequalities (15) and
(16) would hold for ¢ = 2, but

o1 — € —Y(&r— ¢ =0, e(br+¢ —yY(Ei+¢ <0

for all sufficiently small e.
Now let

e(bn1 + 6 — Y(fnpa + ¢ =0 and ol —¢ =Yl —e >0

for all sufficiently small positive e. Then there will be exactly 2n changes
of sign: In each of the points £, &, . . . £, and in each of the n intervals

i1, &
The inequalities (15) and (16) will again hold for 7 < n, but
(g1 — € —Yllnt1 — € >0 and (b1 + € — Y(bnpa+¢ =0

for all sufficiently small e. Letting ¢ converge to 0, we shall have

o(&: — 0) = (& — 0)
ol +0) S (& +0)

fori=1,2,3, ... n-4 1lin all cases. Then, since
o(&) Z o(& — 0);  o(&) S (& +0),
we shall have also

o(&) Z Y& — 0)
o(&) S Y&+ 0)+

or, taking into consideration the definition of the function y(x)

i—1
_ P(&)
B2 27

1

P(&)
o(&) = Z=1Q—7@l—)'

These are the inequalities to which Tshebysheff’s name is justly
attached. For a particular root & = v they can be written thus:
P(&)
>
o) = = Q' (&)
(17) 1<
= <dQ'(£1)

50
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with the evident meaning of the extent of summations. Another, less
explicit, form of the same inequalities is

o) Z ¢ — 0)
o(v) = ¢ +0).

As to P(z) and Q(z), they can be taken in the form:

P(2) = [awn(e — 9)Qu(0) + Qu-1(0)]Pn(2) — @n(v)Prs(2)
Q@) = [ansi(e — 0)Q@n(v) + Qu-1(9)]@n(x) — Qn(v) Qnr(2).

Thus far we have assumed that v was different from any root of the
equation

(18)

Qn(x) = 01
but all the results hold, even if
Q.(») = 0.
To prove this, we note first that when a variable v approaches a root £ of
Q.(z), one root of Q(x) (either £ or £,,1) tends to — « or + o, while the
remaining » roots approach the n roots i, zs, . . . %, of the equation
Q.(z) = 0.

If £ tends to negative infinity, it is easy to see thag

P(%)
Q' (&)

tends to 0. In this case the other quotients

P(&)
Q' (&)

tend respectively to
P,.(xl)’ P,,(a:z)’ .
Qn(21)" Qn(z2) '
If £.41 tends to positive infinity the quotients
P(&) ., _
_—_Q’(Ez)’l =12 ...n
approach respectively

Py, , _
;(xz)’l =123, ...mn

while
P(Eﬂ-{-l)
Q' (ny1)
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tends to 0. Now takev = £ — eand v = £ + e in (17) and let the posi-
tive number e converge to 0. Takinginto account the preceding remarks,
we find in the limit

_ Pn(xl)
p(§—0) 2 0 (z)
<&
P.(z)
(9(5 + 0) = Q',,,(xl),
1 5¢
whence again
Pn(xl)
GD(E) = m
1<k
Pn(:vz)
(¥ = x,SEQ"‘(’”)-

But these inequalities follow directly from (17) by taking v = &.
Since

Yo+ 0) =0 —0) = 58

it follows from inequalities (18) that

0§<P(v)-¢(v—0)§g,%))-

On the other hand, one easily finds that

PQ) _ 1 .
Q0  ann@u®)?® + QL 0)Qn(v) — Q1 @)Qu(v)

But referring to the end of Sec. 4,

®)Quar(®) — Ga()Qn(®) = 3, wQea(v)?,
s=1

whence
1 Qn(®)? + Q) Qns(0) — Gy )@a(0) = Q@) @a(®) — Q1 0)Qusa(2).
Finally,
1
0=¢0) =0 =0 = 50,00 = COm0)

If ¢;(v) is another distribution function with the same moments

Mo, M1, M2, . . . Man,
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we shall have also

1
0= () —y(v—0) = :H_I(U)Qn(p) — Q,’,(D)an(v)’

and as a consequence,
(19) le1(v) — ¢@)] £ xa(v)
—a very important inequality. Here for brevity we use the notation

xa(0) = L :
" T80 — COGL0)

7. Application to Norma! Distribution. An important particular
case is that of a normal distribution characterized by the function

xr
e~ du.

o(z) = "
V).
In this case it is easy to give an explicit expression of the polynomials
Qnu(z). Let

dne—=*

Hu(z) = ¢ dz»

Integrating by parts, one can prove that forl = n — 1
f _:e‘“x‘Hn(x)d:c = 0.

Hence, one may conclude that Q.(z) differs from H,(z) by a constant
factor. . Let -
Qn(w) = ann(x)-
To determine ¢,, we may use the relation
H.(z) = —2zH,1(z) — 2(n — 1)H, ()

which can readily be established. Introducing polynomials Qn, this’
relation becomes

Qu(z) = —2xcc:Qn-1($) — 2(n — 1)00"2@"_2(:0).
Hence,
LI = ol =0
Coz 2n — 2 %n = cn_l’ Bn=0..

Since Ho(z) = Qo(z) = 1, we have ¢, = 1; also

a1=_1~=1=._.zﬂ
Mo <



R WS T

B st e i et s

APPENDIX II 381

whence ¢; = —14. The knowledge of ¢, and ¢ together with the relation
_ Cn—2 .
R

allows determination of all members of the sequence ¢s, ¢, ¢4 . .
The final expressions are as follows,

1
Gm = om1-3°5 - @m —1)
-1
Comtl = 5ok T.9.4-6 - - - 9m

From the above relation between H.(z), H.1(z), H.s(z) and owing to
the fact that #,(z) is an even or odd polynomial, according as n is even or
odd, one finds

Hyn(0) = (—2)"-1-83-5 -+ (2m — 1),

while another relation
H,(z) = —2nH,1(z),

following from the definition of H,.(z), gives

H;, ;(0) = (=2)m-1-3-5 - - (2m — 1).
These preliminaries being established, we shall prove now that
1

X0 = e T AW HG) — H 0 Hm®)
attaing its maximum for » = 0. Let
QW) = Hlpy(0)Hu(0) — Hi0)Han o).

Then, taking into account the differential equation for polynomials

H.(v):
: H!@®) = 20H,(v) — 2nH ()
we find that
aQ
T = 200 — 2H,(v) Hpi1(v).
On the other hand,
d H,@)
= — 2 —_—
Q H1(v) & Hoa @)
and denoting roots of the polynomial H,:(v) in general by &,
d Hn(v) _ Hn(g) 1

B Hom(v)  &dH (5 @ — D
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Consequently

Ho) 1
Q= Hn+1(v)22H;+l(E) (— 92
Again
Hu(0)Hoii(v) = Hua(v)? EH’:EE) (:: 52)2’

and so

H.(%) £ _ —H,y1(v)? £ .
.__. = 2Hn+1(v) EH;HJ(S) (1) . E)Z - n —-|'—- 1 E(v - 5)2

Roots of the polynomial H,..(z) being symmetrically located with
respect to 0, we have:

2(«) = DI ‘Et—*“v f DERN 2”2@2 —zzwz’

and finally
ag Hypa(v)?
W n+1 E(v — 5
Hence
aQ . aQ .
TZ;>0 if v < 0; d<0 if v >0

that is, Q(v) attains its maximum forv = 0 and x,(v) attains its maximum
for v = 0. Referring to the above expressions of com, Coms1; Hem(0),
H%,.11(0), we find that

© = 2-4-6 - 2m

Xam 3-5-7 - (2m+1)
2.4-

X2m+](0) 6 2m

3-5:7T-- - @2m+1)
In Appendix I, page 354, we find the inequality

2-4:6- - 2m 1 _
1-3:5-++-@2m—1)\/4m + 2 2

N

whence

2:4:6---2m <\/ T
3:5:7---2m+1) 4m + 2
Thus, in all cases

30 = xa(0) < \/zln
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whence, by virtue of inequality (19),

o1) = ¢ < \J2

Thus any distribution function ¢;(») with the moments

1-3:5---2k—-1)

my = 1, Meop—1 = 0, Mo = o

(k= n)

corresponding to

o(v) = % f ’ e~*du

differs from ¢(v) by less than

.
2n
Since this quantity tends to 0 when n increases indefinitely, we have the

following theorem proved for the first time by Tshebysheff:
The system of infinstely many equations

f doz) = 1; f 2¥1dg(z) = 0; f dp(z) =
_1:3:5- - @k—1)

2k

k=123, ...

uniquely determines a never decreasing function ¢(x) such that o(— ») = 0;
namely,
1 z
o(z) = — e~ du.
(@) 7).

8. Tshebysheff-Markoff’s Fundamental Theorem. Whenamass = 1
is distributed according to the law characterized by a function F(z, \)
depending upon a parameter A\, we say that the distribution is variable.
Notwithstanding the variability of distribution, it may happen that its
moments remain constant. If they are equal to moments of normal
distribution with density

e

7

then by the preceding theorem we have rigorously

Pz, ) = % f gy

no matter what X\ is.
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Generally moments of a variable distribution are themselves variable.
Suppose that each one of them, when X\ tends to a certain limit (for
instance «), tends to the corresponding moment of normal distribution.
One can foresee that under such circumstances F(z, ) will tend to

o(x) = L

V2

In fact, the following fundamental theorem holds:
Fundamental Theorem. If, for o variable distribution characterized

by the function F(z, M),

lim f :cx"dF(x, A = % f _: e srtd; A— ®
for any fived bk = 0,1,2,8, . .., then
lim F(v, \) = :/L;fjwe“”’dm; A— w0
uniformly in v.
Proof. Let
Mo, M1, M2, - . . Man

be 2n 4+ 1 moments corresponding to a normal distribution. They
allow formation of the polynomials ’

Q(z), Qi(x), . . . Qu(x) and Q(z) .

and the function designated in Sec. 6 by ¢(x). Similar entities cor-
responding to the variable distribution will be specified by an asterisk.
Since

mE — my as A— ©
and since A, > 0, we shall have
A* >0

for sufficiently large A. Then F(z, \) will have not less than n + 1
points of increase and the whole theory can be applied to variable dis-
tribution. In particular, we shall have

0= o) — Y@ — 0) = xav)
(20) _
0=F(@ N —¢*@ — 0) = x30).
Now Q*()(s =0, 1, 2,...n) and Q*(x) depend rationally upon
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mi(k=0,1,2, ... 2n); hence, without any difficulty one can see that

Q%) = Qs(x); s=0,1,2,...n
Q*(z) — Q(x)

as X — o ; whence,
Xx(v) = xa(v).
Again
¥* — 0) = ¢ — 0)

as N — «. A few explanations are necessary to prove this. At first let
Q.(v) # 0. Then the polynomial Q(x) will have n + 1 roots

E<tE << <

Since the roots of an algebraic equation vary continuously with its
coefficients, it is evident that for sufficiently large A the equation

Q*) =0
will have n + 1 roots:
< <HE< - <8y

and £% will tend to £ as N — . In this case, it is evident that ¢*(v — 0)
will tend to ¢(v — 0). If Q.(v) = 0, it may happen that £% or &%, tends
respectively to — « or -} as A — o, while the other roots tend to the
roots

L1y, L2y « « « Tn
of the equation
Qn(z) = 0.

But the terms in ¢*(» — 0) corresponding to infinitely increasing roots
tend to 0, and again

¥ — 0) = y(v — 0).

Now

x(0) < \/;;—;

Consequently, given an arbitrary positive number e, we can select 7 so
large as to have

T
X'n(v) < ,\/"2"’;1’ < €.
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Having selected » in this manner, we shall keep it fixed. Then by the
preceding remarks a number L can be found so that

x*@) < \/5?7; < e
W —0) — ¢*( — 0)| < e
for A > L. Combining this with inequalities (20), we find
[F0, \) — o@)] < 3e

for N > L. And this proves the convergence of F(v, \) to ¢{v) for a
fixed arbitrary ». To show that the equation

v

1
lim F(v, ) = "\7‘7—1_ e=dz

—

holds uniformly for a variable » we can follow a very simple reasoning due
to Pélya. Since ¢(—») =0, ¢(+ =) =1 and () is an increasing
function, one can determine two numbers @, and @, so that

o(z) £ pla) < -52- for =
1— o) =1 — ¢(am) <§ for T2 an

Next, because ¢(z) is a continuous funection, the interval (ao, a.) can be
subdivided into partial intervals by inserting between a, and a, points
a1 < ap < ¢+ < @u1 SO that

0 < ¢(arr) — elaz) < %
fork =0,1,2, ... 2 — 1. By the preceding result, for all sufficiently
large A
Flay, N) < %; 1 — F(an, N) <%
and ) '
[FlanN) — olan)] <=; k=1,2 ...n—1.
Now consider the interval (— », a). Here for v £ q
0=Fm,N) <5 0<¢0) <5

‘ and
[Fv, \) — o) < e
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For v belonging to the interval (a,, + «)
01 —Fu,N) <z, 0<1-— @ <%;

-whence again
[F(»,\) — o()] <e.
Finally, let
ar =0 < Qg k=012 ...n—1).
Then
Fo,N) — o) 2 F(a, ) — ¢(ars) =
= [F(ar, N) — o(an)] + [e(ar) — ¢(at1)]

Flo,N) — o) = F(art1, \) — olar) =

© = [F(ars, V) — e(ar)] + [elan) — olan)l-
But

Fla, N) = o(a) > — 55 (@) = elas) > —3

Flares N) — olam) < 55 oann) — olan) < é’
whence
—e < F(r,\) — o(v) < e

Thus, given ¢, there exists a number L(e) depending upon e alone and
such that
[F(,\) — o@)] <

for A > L(e) no matter what value is attributed to v.

The fundamental theorem with reference to probability can be stated
as follows:

Let s, be a stochastic variable depending upon a variable positive integer
n. If the mathematical expectation E(sF) for any fized k =1, 2, 3, . . .
tends, as n increases indefinitely, to the corresponding expectation

E(z*) = —\}—; ’ zhe~=*dr

of a normally distributed variable, then the probability of the inequality

S <V

_\—}_1; f _v we“”’dx

tends to the limit

and that uniformly in v.
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In very many cases it is much easier to make sure that the conditions
of this theorem are fulfilled and then, in one stroke, to pass to the limit
theorem for probability, than to attack the problem directly.

ArprricaTiON TO SUMS OF INDEPENDENT VARIABLES

9. Let 21, 25, 23, . . . be independent variables whose number can be
increased indefinitely. Without losing anything in generality, we may
suppose from the beginning

E@) =0; k=1,2 3 ....

We assume the existence of

E@®) = b
for all k=1, 2, 3,.... Also, we assume for some positive & the
existence of absolute moments
E|zy|#+8 = pf+d; E=1213,....

Liapounoff’s theorem, with which we dealt at length in Chap. XIV,
states that the probability of the inequality

sitezt A
V2B, |

<t

where
B,=bi4+bs+ - +0ba

tends uniformly to the limit

1
— eodr
VT)-w
as n — », provided
#(12+6) _I_ “(224-5) + « e e + 'ufn2+5) _)0
148 )
B, 2

Liapounoff’s result in regard to generality of conditions surpassed by
far what had been established before by Tshebysheff and Markoff, whose
proofs were based on the fundamental result derived in the preceding sec-
tion. Since Liapounoff’s conditions do not require the existence of
moments in an infinite number, it seemed that the method of moments
was not powerful enough to establish the limit theorem in such a general
form. Nevertheless, by resorting to an ingenious artifice, of which we
made use in Chap. X, Sec. 8, Markoff finally succeeded in proving the
limit theorem by the method of moments to the same degree of generality
as did Liapounoff.
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Markoff’s artifice consists in associating with the variable 2z; two new
variables zz and yi defined as follows:

Let N be a positive number which in the course of proof will be
selected so as to tend to infinity together with n. Then

T = 2k, Y = 0 if [Zkl _-<_— N
= 0, Yr = 2k if |2 > N.

Evidently 2, @&, y» are connected by the relation

2y = Ty + Yx
whence
(1) E(zi) + E(yr) = 0.
Moreover
E(zp) + E@wd) = E(z) = bs
(22)

Elxk!2+8 + Elyk[z+a - Elzkl2+6 - I~“§c2+5)7

as one can see immediately from the definition of z, and .
Since z is bounded, mathematical expectations

E(a})

exist for all integer exponentsl = 1,2,3, . . . andfork =1,2,3, . . ..
In the following we shall use the notations

[B(@l)| = ¢ 1=1,23,...
@ 4P 4+ - - 4 ¢ =B
“(12+5) -+ ,u<22+5’ + - -+ #;2+5) = Cﬂ_

Not to obscure the essential steps of the reasoning we shall first
establish a few preliminary results.
Lemma 1. Let gy represent the probability that yi = 0; then

C.
Q1+92+" : _l,—q”éﬁ'ﬂ_"g’

Proof. Let or(z) be the distribution function of 2. Since y; # 0
only if |z;] > N, the probability gx is not greater than

f:quak(m) + ‘[degok(x),
On the other hand,
f__ivlsclz-l—édqok(x) + f lex[%ad%(x) < uEto.
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But

[t + e 2 o)+ [ oo
whence

(‘2+5)

o = f_ dew(z) + f der(z) Nz+a'

The inequality to be proved follows immediately.
Lemma 2. The following inequality holds:

Proof. From

Elyy|2+e £ pg+s

which is a consequence of the second equation (22) it follows that

(2+6)

E(y?) = N

The first equation (22)
o + E@) = b

gives
% M§c2+6>
by Z ¢ = by — N
Taking the sum for k = 1, 2,3, . . . n, we get
B,z B, =B, — %;
whence
1z By s 1- Cn
=B, ™~ B,N?

Lemma 3. Fore = 3,

C(le) + 6(26) + o . e + Csf) < (N2>.%2
e =\RB '
5 n

B2

Proof. This inequality follows immediately from the

evident
inequalities

¢? = Elzp|® £ N2E(2) < N ;.
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C. \
<N2+5) )

Lemma 4. The following inequality holds

c(ll) + 6(21) + e + anl)
B}

IIA

Proof. Since
E(xr) + E(yr) =0,
we have
¢ = [E(xy)| = |E(yn)| < Elysl|.
On the o'ther hand, by virtue of Schwarz’s inequality
[Ely)| + Elysl + - - - + Elyall? =

S@+at o+ o) DEG S By

k=1

whence the statement follows immediately.
If the variable integer N should be subject to the requirements that
both the ratios
C

T
Nt

N2

B,

should tend to 0 when n increases indefinitely, then the preceding lemmas
would give three important corollaries. But before stating these
corollaries we must ascertain the possibility of selecting N as required.
It suffices to take

and

1
N = (B.C.)*F.

. N Bi+§

Then

1%

=]

by virtue of Liapounoff’s condition.

Also
C, _ C. 2L+s o Ca 2—_%
B.N°® NBE Bi+g

will tend to 0. By selecting N in this manner we can state the following

corollaries:
Corollary 1. The sum

ittt

tends to 0 as n — ©.



392 INTRODUCTION TO MATHEMATICAL PROBABILITY

Corollary 2. The ratio

B,
B.

tends to 1.
Corollary 3. The ratio

P 4+ - e
e
B?

tends to 0 for all positive integer exponents e except e = 2.
10. Let F,(f) and ¢.(f) represent, respectively, the probabilities of the
inequalities

Zi 2+ 0+
2B,

N o7 e e a2
/2B,

By repeating the reasoning developed in Chap. X, Sec. 8, we find that
Fo) — o) a4+ @2+ * *  +

<t

< i

Hence,
lim (Fn(f) — ¢.(1)) =0 as n—
by Corollary 1. It suffices therefore to show

@ (t) — \/wf_t ) evdx as n —> o,

and that can be done by the method of moments. By the polynomial
theorem '

Ty ATy 4 - A w\" m! Sup. -2
2B, Zalﬁl S eAl mom

where the summation extends over all systems of positive integers

a2 = - - z \satisfying the condition
a+pB4+ - +A=m
and Sug, - .. » denotes a symmetrical function of letters z, 132, R

determmed by one of its terms

"3
z3r8 . . . )
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if I represents the number of integers «, 8, . . . \. Since variables
Zi, T3, . . . %, are independent, we have

e a2 T R o2 L m! Gap, .. 2
E( /2B, ) —Ea!ﬁ!-~->\! m m

where Gap. . . . is obtained by replacing powers of variables by mathe-
matical expectations of these powers. It is almost evident that

1
lGa.ﬁ,---')\‘ < C(Ia) +c(2a) + o cga).c(lﬂ) +ch) 4o +cg‘ﬂ) .
m = a 8
B2 B,* B,*?
c‘f‘) + 0‘2” + - +Cg‘)_
A
B,?

Now if not all the exponents «, 8, . . . A are = 2 (which is possible
only when m is even), by virtue of Corollary 3 the right member as well as

Gap, .. .2

m
2

tends to 0. Hence

2B,

if m is odd.

But for even m we have

“ e e m !G
23 Ex1+$2+ + 2, _m 2.2,---2__)0
( ) ( /TBn 2m B m
Let us consider now (m being even)
m m m
13_7'32= I T A 2= 2° Hyap, ... 0
B, B, E)\!u! el m

where summation extends over all systems of positive integers
A g I g PR ; w

satisfying the condition

. ANtp+ - Fo=

»| 3
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and Hay, . .. o1s & symmetric function of ¢§?, ¢f?, . . . ¢{? determined by
its term
(032)))‘(0(22))‘_‘ . (652))w,
I being the number of subseripts A, 4, . . . ©. Apparently
Ha oo < (PN 4 (e + - - - + (c@»
mo = B3
B,2 "
E)" + @)+ + F (62
Besides
67(62) é N2, (C;c2)>e é N20_2C](c2) § N2a—2bk
and
(0(12))2 + (6(22))6 + ce e (C;Z))e < N2 e—1
if e > 1. Thus
H,,, e g
B,2
if not all subscripts N\, u, . . . w are equal to 1. It follows that

n
2

B' m H] Iy » « « 1
4 U A | Bkt L L
(B,,) (2) m 0.
B,2

But by Corollary 2
BI

B, 1
a:nd eVidently H1,1, e .1 = Gz,z, e e . 9. Hence
() gt
B,%

and this in connection with (23) shows that for an even m
E(»’Ul -+ x5 +2'B‘ -+ xn)m_) m! .
m
n mf '
2(3):
Finally, no matter whether the exponent m is odd or even, we have

T4+ - A\ 1
QB" \/7_1' -

©

T™e— .

lim E’<
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Tshebysheff-Markoff’s fundamental theorem can be applied directly
and leads to the result:

lim ¢,(f) = —\%_—ft e~ dx
T~

uniformly in §. On the other hand, as has been established before,
lim [Fa() — ¢.(t)] = 0

uniformly in {. Hence, finally

t
lim Fo(f) = % ﬁ e
uniformly in ¢.

And this is the fundamental limit theorem with Liapounoff’s condi-
tions now proved by the method of moments. This proof, due to
Markoff, is simple enough and of high elegance. However, preliminary
considerations which underlie the proof of the fundamental theorem,
though simple and elegant also, are rather long. Nevertheless, we must
bear in mind that they are not only useful in connection with the theory
of probability, but they have great importance in other fields of analysis.
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ON A GAUSSIAN PROBLEM

1. In a letter to Laplace dated January 30, 1812,! Gauss mentions a
difficult problem in probability for which he could not find a perfectly
satisfactory solution. We quote from his letter: ’

Je me rappelle pourtant d’un probléme curieux duquel je me suis occupé il y
a 12 ans, mais lequel je n’ai pas réussi alors 4 résoudre & ma satisfaction. Peut-
étre daignerez-vous en occuper quelques moments: dans ce cas je suis sur que vous
trouverez une solution plus compléte. Ta voici: Soit M une quantité inconnue
entre les limites O et 1 pour laquelle toutes les valeurs sont ou également probables
ou plus ou moins selon une loi donnée: qu’on la suppose convertie en une fraction
continue

M=

8

1

+7

Quelle est la probabilité qu’en s’arrétant dans le développement & un terme fini
¢ la fraction suivante
1
a(n+1) + 1

aGtD o

soit entre les limites 0 et 2? Je la designe par P(n, z) et j’ai en supposant toutes
les valeurs également probables

P(0, z) = =.

P(1, ) est une fonction transcendante dépendant de la fonction
11 1
1+ 3 + 3 + -+ p

que Euler nomme inéxplicable et sur laquelle je viens de donner plusieurs re-
cherches dans un mémoire présenté 4 notre Société des Sciences qui sera bientdt
imprimé. Mais pour le cas ou 7 est plus grand, la valeur exacte de P(n, z) semble
intraitable. Cependant j’ai trouvé par des raisonnements trés simples que pour
n infinie

log (1
P(n, z) = 28U+ 1E)ngr z)

1 Gauss’ Werke, X, 1, p. 371.
396
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Mais les efforts que j’ai fait lors de mes recherches pour assigner

log (1 + z)

P(n, z) — Tog 2

pour une valeur trés grande de n, mais pas infinie, ont été infructueux.

The problem itself and the main difficulty in its solution are clearly
indicated in this passage. The problem is difficult indeed, and no
satisfactory solution was offered before 1928, when Professor R. O.
Kuzmin succeeded in solving it in a very remarkable and elegant way.

2. Analytical Expression for P,(r). We shall use the notation
P,(z) for the.probability which Gauss designated by P(n, ). The first
question that presents itself is how to express P,(z) in a proper analytical
form. Let 6(vy, vs, . . . s, ) be an interval whose end points are
represented by two continued fractions:

1 1

= 1 and -, 1

v+ 7+ . . v+ o
RS

. 1

v+ 2 Tt
with positive integer incomplete quotients vi, vy, . . . v, while z is a
positive number 1. Two such intervals corresponding to two different
systems of integers v:, ve, . . . v, and vj, vs, . . . v, do not overlap;
that is, do not have common inner points. For, if they had a common
inner point represented by an irrational number N (which we can always
suppose), we should have for some positive 2’ < 1 and 2" < 1

1 1

- v + —_—

. R £

+ ¥ e

'.+__.____1 .

v, + 2"

But that is impossible unless v] = vy, 5 = vs, . . . V; = .
A number M being selected at random between 0 and 1 and converted

into a continued fraction

Vg + * 1
R S S
Un + &
if the quantity ¢ turns out to be contained between 0 and z < 1, M must
belong to one (and only one) of the intervals 8(vi, vz, . . . va, ) cor-

responding to one of all the possible systems of n positive integers
vy, U2, - . . Un Since M has a uniform distribution of probability and
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since the length of the interval (1, v, . . . s, 7) is

1 1

n 1 —
(=1 01+v—2+. . 1)1-["1)2_}_

o

1
v + 2 .+v_n

the required probability P.(z) will be expressed by the sum

1
V1,02 - . . D +. 2)2_!-.‘
T4 L ._|__1

U+ T Un.,

extended over all systems of positive integers vy, v, . . . v». In general
let
g i- 1 G=1,2 ...n)
’ v+ 1
.+ o
be a convergent to the continued fraction
1

v1+v+

1
-+ o
Then the above expression for P,(z) can be exhibited in a more convenient
form:
B [Pt aPas 5]_
® P = 3 Co{gie g

By the very definition of P,(z) we must have P,(1) = 1; hence the
important relation

1
@ oo !

This result can also be established directly by resorting to the original
expression of P,(1) and performing summation first with respect to vy,
then with respect to v,, ete.

Relation (2) can be interpreted as follows: Let & in general be the
length of an interval 8(v, ve, . . . v,, 1). Then

25 =1
summation being extended over the (enumerable) set of intervals 6.
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3. The Derivative of P,(r). In attempting to show that P,(z)
tends uniformly to a limit function as n — « it is easier to begin with its
derivative p,(z). Series

1
E (Qn + xQn—-l)z
obtained by formal derivation of (1) is uniformly convergent in the
interval (0, 1). For

Qn + Qn
Q- >—§——1

whence

1 < 2
(Qn + xQn—l)z Qn(Qn + Qn—l)

and the series

2 2 _a
Qn(Qn + Qn—l)
is convergent. Hence

dP.(z)
4z = P = EWT

Since
Qn = 02Qn—1 + Qu—s
we have
1 1
Pa(2) = E 2 (on + 2)2
V1,2, o . . 1)"<Qn—1 + o, + xQn_z
and, performing summation with respect to vi, vs, . . . v for constant
Un
1 _ 1
E = P\ ¥ )
1,92, « + » Vn-l Qn—l + Qn~2 .
whence

Pa(z) = 2_“—1( ¥ x/ (vn 41- z)?
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or else

1 1
/ = —_—
\3) pn(x) zpn-—l(v + x)('l) + $)2
=1
—an important recurrence relation which permits determining com-
pletely the sequence of functions
pi(z), pa(2), - - -

starting with po(z) = .

4. Discussion of a More General Recurrence Relation. In discussing
relation (3) the fact that po(z) = 1is of no consequence. We may start
with any function fo(z) subject to some natural limitations, and form a
sequence

f1(®@), fol2), fs(z), . - -

by means of the recurrence relation

. 1 1
(4) fa() = Ef n—1(m>m'
v=1

The following properties of f,(z) follow easily from this relation:
a. If

Jo(z) =

8

then
@) =g55 n=123 ...
For

_ 1 1 _a
fl(’”)“"zl(v+x“v+x+1>‘1+z

whence the general statement follows immediately.

b. If
M
T4 Sh@ ST
then
M
45 Sh@ S The
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Follows from (a) and equation (4) itself.
As a corollary we have: Let M, and m, be the precise upper and
lower bounds of

QA +2)falx) (=012 ...)
in the interval 0 £ z < 1. Then

MOZMlgMgg .

My S M SEMe = - -+

¢. We-hdve

fos - éff N
N ﬁwf"'1<tl¢>% = J:f n-1(z)dz = J;lfo(x)dx.

d. The following relations can easily be established by mathematical
induction:

~ P, + zP._;) 1

) = i@t ST e
P, + zP, 1

Jan(z) = Ef "(Qn F xQn—1>(Qn + 2Qn1)?
P, + 2P, 1

Jon(2) = 2f2n<Qn + xQn—l)(Qn + an—l)z.

......

Let us suppose now that the function fo(z) defined in the interval
0sz=1

possesses a derivative everywhere in this interval and let uo be an upper
bound of |fj(x)| while M is an upper bound of |(1 + z)fo(z)|. Then by
property (b)

f2@)] = M;  |fw@| = M;  |fa@ =M. ...

The function f,(z) represented by the series
1
falz) = Efo(u)m ,

where u stands for

P’u + xPn—l
Qn -+ 5'7Qn-1‘7
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has a derivative; for the series obtained by a formal differentiation

! ( 1) Qn—l
Julz) = Efo(u) (Q F 2Q. )" 22f0<u)(Q T 20, 0)°
is uniformly convergent and represents f,(z). Now

) Q'n—l 1
@ F 200 < @

and

Qﬁ > Qn(Qn ;‘ Qﬂ-—l)_

Hence

Qn—l 1 —
2 D g s < M g o ~ M
by virtue of (2). On the other hand, the inequality

Qn(Qn + Qn—l) = (vnQn-—-l + Qn-—Z) [(Un + 1)Q’"r—'1 + Qn—2] >
> 2Qn—-1(Qn—l + Qn—z)

holding for n = 2 together with an evident inequality
Q:1(@1 + Q) = 2
shows that

Qn(Qn + Qn—-l) > 2 (n _Z_ 2).
Thus

Qn(Qn + Qn-—-l) . Qn(Qn + Qn—l) >
2 2
> 2n_2Qn(Qn + Qn—-l)

(@ + 2Qu1)* > Q- Q2 >

and consequently
( 1) Mo
S i <
Hence, we may conclude that
m = gt + AM

is an upper bound of |f,(z)|]. Similarly, starting with the second equation
in (d), we find that

u2=2%1.—2+4M
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is an upper bound of [f},(z)|, and so forth. In general, the recurrence
relation

mo=m +4M (k=123 )

determines upper bounds of

lf:;(xN: ]f;n(x)la lf;n(x)l, P

It is easy to see that in general

ko 4aM
B < 5ieg + 1= 2

so that for sufficiently large n
we < 5M.

5. Main Inequalities. Let

(@) = folw) = 77

z

Then

falz) — T_"?_*’b__oa_: = pu(z) =
T PRSI SRR ) S S —
- Setg e > 12 Ve T e

Since the intervals § defined at the end of Sec. 2 do not overlap and cover
completely the whole interval (0, 1), we may write:

1t 1 1 1
l= §ﬁ eo(x)dz = —52 J;)qoo(x)dx = —2-2 (PO(ul)—_—_Qn(Qn O

the latter part following from the mean value theorem and u; being a
number contained within the interval . By subtraction we find

o) = 5~ 1> g Do) — el gy

and, since both-w and u; belong to the same interval §,

Ko + Mo
eou) — ¢(u1) > — =555

Consequently,

Mo+ mo
21(.

> -

Mg Mo+ Mo
fn(x)_1+x‘l> onti
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and a fortiori

mo + 1 — 27" (o + M)

It follows that
&) mi = mo + 1 — 27(ug 4 mo).*
In a similar way, ;onsidering the function

— MU —

and setting

L= 3 @),

we shall have

Mo — 1y 4+ 27"(uo + M)
fﬂ(x) < 1 +x ’

whence
(6) M, £ My — 1+ 27%(po + My).
Further, from (5) and (6)
My —my = Mo— mo + 27" (po + Mo) — 1 — Lu.
But
L4+l =3log2 (Mo—mo) = (1 — k)(Mo — mg); K < 0.66,
so that finally
My — my < k(Mo — mo) + 277 (uo -+ My).
Starting with f.(z), fau(z}, . . . instead of f3(z), in a similar way we find

Mz — 1My < k(Ml - ml) + 2_"+1(M1. + Ml)
Mz — ms < E(Mz — mg) + 27 (uy + M)

Mn — My < k(Mn—l - mn-—l) + 2-—n+1(”"_1 + Mn-—-l)-
From these inequalities it follows that

Mﬂ- — My < (MO - mO)kn + 2t [F‘Okn“l + ”lkn_z + e -+ Mn—1 +
+ Mol b Madet 4 - - M)

Without losing anything in generality, we may suppose that f,(z) is a
positive function. Then :

* M, m; are used here with the same meaning as Mns, ma. in Sec. 4.
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M £ M,, we < SM, k=123 ...)
at least for sufficiently large n. Owing to these inequalities we shall have
. B\ 6M,
(7) M, Mn < (Mo - mo)k + ,(1,0(—2-) -+ (T:—__E)_z.n:_l.
This irequality shows that sequences .

Moz Mz M, 2 - - -
m=m =me S - -

approach a common limit a. The following method can be used to find
the value of this limit. Let N be an arbitrary sufficiently large integer
and n the integer defined by

nt =N < (n+41)>2%

Then
My M. n
1+=z = fun(a) = 1+
and therefore
M M n
1+z = fnlo) = 1+
The last inequality permits presenting fv(z) thus:
a
(8) fu(x) = Tz + oM, — ma); 18] <1,
whence

[iw@ds = [fw)de = alog2 + 0(Ma —m), 9] <1,

and, because M, — m, ultimately becomes as small as we please in
absolute value,

alog2 = j; 1fo(:c)alac.
Equation (8) shows clearly that the sequence of functions

fol@), fi(@), folz), . . .

defined by the recurrence relation (4) approaches uniformly the limit
function

a

1+
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where

1 1
aq = lo—g—é'ﬁ fo(x)dfl?

6. Solution of the Gaussian Problem. It suffices to apply the preced-
ing considerations to the case fo(x) = po(z) = 1. In this case M, = 2,
mg =1, o = 0 and '

1 .
log 2

a =

Consequently,

1 " 3 .
pr(z) = T F2) log 2 + 0<k + mﬁ) ol <1

where n = [v/N]. It suffices to integrate this expression between limits
Oand ¢ < 1to find

_log (1 41¢) N 3 .
As N — «
pN(t)_JM

log 2

as stated by Gauss. Moreover,

log (1 + %) N 3
P~ C ] < i+ )

for sufficiently large, but finite N.



TABLE OF THE PROBABILITY INTEGRAL

1 z
b =——= | et
V2 Jo
*(z) z () z @(2) 2z &(2)
0.00 0.0000 0.65 0.2422 1.30 0.4032 1.95 0.4744
0.01 0.0040 0.66 0.2454 1.31 0.4049 1.96 0.4750
0.02 0.0080 0.67 0.2486 1.32 0.4066 1.97 0.4756
0.03 0.0120 0.68 0.2517 1.33 0.4082 1.98 0.4761
0.04 ..0.0160 0.69 0.2549 1.34 0.4099 1.99 0.4767
0.05 0.0199 0.70 0.2580 1.35 0.4115 2.00 0.4772
0.06 0.0239 0.71 0.2611 1.36 0.4131 2.02 0.4783
0.07 0.0279 0.72 0.2642 1.37 0.4147 2.04 0.4793
0.08 0.0319 0.73 0.2673 1.38 0.4162 2.06 0.4803
- 0.09 0.0359 0.74 0.2703 1.39 0.4177 2.08 0.4812
0.10 0.0398 0.75 0.2734 1.40 0.4192 2.10 0.4821
0.11 0.0438 0.76 0.2764 1.41 0.4207 2.12 0.4830
0.12 0.0478 0.77 0.2794 1.42 0.4222 2.14 0.4838
0.13 0.0517 0.78 0.2823 1.43 0.4236 2.16 0.4846
0.14 0.0557 0.79 0.2852 1.44 0.4251 2.18 0.4854
0.15 0.0596 0.80 0.2881 1.45 0.4265 2.20 0.4861
0.16 0.0636 0.81 0.2910 1.46 0.4279 2.22 0.4868
0.17 0.0675 0.82 0.2939 1.47 0.4292 2.24 0.4875
0.18 0.0714 0.83 0.2967 1.48 0.4306 2.26 0.4881
0.19 0.0753 0.84 0.2995 1.49 0.4319 2.28 0.4887
0.20 0.0793 0.85 0.3023 1.50 0.4332 2.30 0.4893
0.21 0.0832 0.86 0.3051 1.51 0.4345 2.32 0.4898
0.22 0.0871 0.87 0.3078 1.52 0.4357 2.34 0.4904
0.23 0.0910 0.88 0.3106 1.53 0.4370 2.36 0.4909
0.24 0.0948 0.89 0.3133 1.54 0.4382 2.38 0.4913
0.25 0.0987 0.90 0.3159 1.55 0.4394 2.40 0.4918
0.26 0.1026 0.91 0.3186 1.56 0.4406 2.42 0.4922
0.27 0.1064 0.92 0.3212 1.57 0.4418 2.44 0.4927
0.28 0.1103 0.93 0.3238 1.58 0.4429 2.46 0.4931
0.29 0.1141 0.94 0.3264 1.59 0.4441 2.48 0.4934
0.30 0.1179 0.95 0.3289 1.60 0.4452 2.50 0.4938
0.31 0.1217 0.96 0.3315 1.61 0.4463 2.52 0.4941
0.32 0.1255 0.97 0.3340 1.62 0.4474 2.54 0.4945
0.33 0.1293 0.98 0.3365 1.63 0.4484 2.56 0.4948
0.34 0.1331 0.99 0.3389 1.64 C.4495 2.58 0.4951
0.35 0.1368 1.00 0.3413 1.65 0.4505 2.60 0.4953
0.36 0.1406 1.01 0.3438 1.66 0.4515 2.62 0.4956
0.37 0.1443 1.02 0.3461 1.67 0.4525 2.64 0.4959
0.38 0.1480 1.03 0.3485 1.68 0.4535 2.66 0.4961
0.39 0.1517 1.04 0.3508 1.69 0.4545 2.68 0.4963
0.40 0.1554 1.056 0.3531 1.70 0.4554 2.70 0.4965
0.41 0.1591 1.06 0.3554 1.71 0.4564 2.72 0.4967
0.42 0.1628 1.07 0.3577 1.72 0.4573 2.74 0.4969
0.43 0.1664 1.08 0.3599 1.73 0.4582 2.76 0.4971
0.44 0.1700 1.09 0.3621 1.74 0.4591 2.78 0.4973
0.45 0.1736 1.10 0.3643 1.75 0.4599 2.80 0.4974
0.46 0.1772 1.11 0.3665 1.76 0.4608 2.82 0.4976
0.47 0.1808 1.12 0.3686 1.77 0.4616 2.84 0.4977
0.48 0.1844 1.13 0.3708 1.78 0.4625 2.86 0.4979
0.49 0.1879 1.14 0.3729 1.79 0.4633 2.88 0.4980
0.50 0.1915 1.15 0.3749 1.80 0.4641 2.90 0.4981
0.51 0.1950 1.16 0.3770 1.81 0.4649 2.92 0.4982
0.52 0.1985 1.17 0.3790 1.82 0.4656 2.94 0.4984
0.53 0.2019 1.18 0.3810 1.83 0.4664 2.96 0.4985
0.54 0.2054 1.19 0.3830 1.84 0.4671 2.98 0.4986
0.55 0.2088 1.20 0.3849 1.85 0.4678 3.00 0.49865
0.56 0.2123 1.21 0.3869 1.86 0.4686 3.20 0.49931
0.57 0.2157 1.22 0.3888 1.87 0.4693 3.40 0.49966
0.58 0.2190 1.23 0.3907 1.88 0.4699 3.60 0.499841
0.59 0.2224 1.24 0.3925 1.89 0.4706 3.80 0.499928
0.60 0.2257 1.25 0.3944 1.90 0.4713 4.00 0.499968
0.61 0.2291 1.26 0.3962 1.91 0.4719 4.50 0.499997
0.62 0.2324 1.27 0.3980 1.92 0.4726 5.00 0.499997
0.63 0.2357 1.28 0.3997 1.93 0.4732
0.64 0.2389 1.29 0.4015 1.94 0.4738
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INDEX

Arrangements, 18
B

Bayes’ formula (theorem), 61

Bernoulli criterion, 5

Bernoulli theorem, 96

Bernoulli trials, 45

Bernstein, S., inequality, 205

_ Bertrand’s paradox, 251

Buffon’s needle problem, 113, 251
Barbier’s solution of, 253

C

Cantelli’s theorem, 101
Cauchy’s distribution, 243, 275
Characteristic function, composition of,
275
of distribution, 240, 264
Coefficient, correlation, 339
divergence, 212, 214, 216
Combinations, 18
Compound probability, theorem of, 31
Continued fractions, 358, 361, 396
Markoff’s method of, 52
Continuous variables, 235
Correlation, normal (see Normal cor-
relation)
Correlation coefficient, distribution of,
339

D

Difference equations, ordinary, 75, 78
partial, 84

Dispersion, definition, 172
of sums, 173

Distribution, Cauchy’s, 243, 275
characteristic function of, 264
of correlation coefficient, 339

Distribution, determination of, 271
equivalent point, 369
general concept of, 263
normal (Gaussian), 243
Poisson’s, 279
“Student’s,”” 339
Distribution function of probability,
239, 263
Divergence coefficient, empirical, 212
Lexis’ case, 214
Poisson’s case, 214
theoretical, 212
Tschuprow’s theorem, 216

E

Elementary errors, hypothesis of, 296
Ellipses of equal probability, 311, 328
Estimation of error term, 295
Euler’s summation formula, 177, 201,
303, 347

Events, compound, 29

contingent, 3

dependent, 33

equally likely, 4, 5,7

exhaustive, 6

future, 65

incompatible, 37

independent, 32, 33

mutually exclusive, 6, 27

opposite, 29
Expectation, mathematical, 161

of a product, 171

of a sum, 165

Factorials, 349

Fourier theorem, 241

French lottery, 19, 108

Frequency, 96

Fundamental lemma (see Limit theorem)

Fundamental theorem (see Tshebysheff-
Markoff theorem)
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G

Gaussian distribution, 243

Gaussian problem, 396 N

Generating function of probabilities,
47, 78, 85, 89, 93, 94

H

Hermite polynomials, 72
Hypothesis of elementary errors, 296

I
Independence, definition of, 32, 33
K

Khintchine (see Law of large numbers)
Kolmogoroff (see Law of large numbers;
Strong law of large numbers)

L

Lagrange’s series, 84, 150
Laplace-Liapounoff (see Limit theorem)
Laplace’s problem, 255
Laurent’s series, 87, 148
Law of large numbers, generalization
by Markoff, 191
for identical variables (Khintchine),
195
Kolmogoroff’s lemma, 201
theorem, 185
Tshebysheff’s lemma, 182
Law of repeated logarithm, 204
Law of succession, 69
Lexis’ case, 214
Liapounoff condition (see Limit theorem)
Liapounoff inequality, 265
Limit theorem, Bernoullian case, 131
for sums of independent vectors, 318,
323, 325, 326
fundameéntal lemma, 284
Laplace-Liapounoff, 284
Line of regression, 314
Lottery, French (see French lottery)

M

Marbe’s problem, 231
Markoff’s theorem, infinite dispersion,
191

INTRODUCTION TO MATHEMATICAL PROBABILITY

Markoff’s theorem, for simple chains, 301
Markoff-Tshebysheff  theorem (see
Tshebysheff-Markoff theorem)
Mathematical expectation, definition of,

161
of a produet, 171
of a sum, 165
Mathematical probability, definition of,
6.
Moments, absolute, 240, 264
inequalities for, 264
method of (Markoff’s), 356f.

N

Normal correlation, 313
origin of, 327

Normal distribution, Gaussian, 243
two-dimensional, 308

P

Pearson’s “‘x2-test,” 327
Permutations, 18
Point, of continuity, 261, 356
of increase, 262, 356
Poisson series, 182, 293
Poisson’s case, 214
Poisson’s distribution, 279
Poisson’s formula, 137
Poisson’s theorem, 208, 294
Polynomials, Hermite (see Hermite)
Probability, approximate evaluation of,
by Markoff’s method, 52
compound, 29, 31
conditional, 33
definition (classical) of, 6
total, 27, 28
Probability integral, 128
table of, 407

R

Relative frequency, 96
Runs, problem of, 77

S

Simple chains, 74, 223, 207
Markoff’s theorem for, 301
Standard deviation, 173



INDEX

Stieltjes’ integrals, 261

Stirling’s formula, 349

Stochastic variables, 161

Sirong law of large numbers (Kolmo-
goroff), 202 -

¢“Student’s’ distribution, 339

T

Table of probability integral, 407

Tests of significance, 331

Total probakility, theorem of, 27, 28

Trials, dependent, independent, repeated,
44, 45

411

Tschuprow (see Divergence coefficient)
Tshebysheff-Markoff theorem, funda-
mental, 304, 384

application, 388
Tshebysheft’s inequalities, 373
Tshebysheff’s inequality, 204
Tshebysheff’s lemma, 182
Tshebysheff’s problem, 199

v

Variables, continuous, 235
independent, 171
stochastic, 161

Vectors (see Limit theorem)



