
Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) 
(Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). 

  
 

132 

Satellite and gauge rainfall merging using geographically 
weighted regression 
 
QINGFANG HU1, HANBO YANG2, XIANMENG MENG3, YINTANG WANG1 & 
PENGXIN DENG1 

 1 State Key Labratory of Water Resources and Hydraulic Engineering & Science, Nanjing Hydraulic Research Institute, 
Nanjing, 210029, China 
hqf_work@163.com 

 2 Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China 
 3 School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China 
 

Abstract A residual-based rainfall merging scheme using geographically weighted regression (GWR) has 
been proposed. This method is capable of simultaneously blending various satellite rainfall data with gauge 
measurements and could describe the non-stationary influences of geographical and terrain factors on 
rainfall spatial distribution. Using this new method, an experimental study on merging daily rainfall from the 
Climate Prediction Center Morphing dataset (CMOROH) and gauge measurements was conducted for the 
Ganjiang River basin, in Southeast China. We investigated the capability of the merging scheme for daily 
rainfall estimation under different gauge density. Results showed that under the condition of sparse gauge 
density the merging rainfall scheme is remarkably superior to the interpolation using just gauge data. 
Key words satellite rainfall; rainfall merging; geographically weighted regression; CMORPH 
 
INTRODUCTION 

Satellites usually have near global coverage for remote rainfall monitoring and they are especially 
valuable for regions that lack adequate surface-based measuring techniques. At the same time, 
satellite rainfall datasets are usually free of charge and their availability is not limited by 
administration factors. Due to these advantages, in recent years significant developments have 
been achieved in the field of satellite rainfall estimation. However, satellite rainfall estimates have 
been produced at rather coarse spatial resolutions (0.04° × 0.04° to 0.25° × 0.25°). Moreover, 
satellite rainfall is usually very inaccurate compared with gauge measurements. Thus, the full 
utilization of satellite rainfall in hydrologic and water resources management applications has been 
hindered.  
 To overcome this dilemma and rationally utilize satellite rainfall information, recently great 
efforts have been dedicated to merging satellite and gauge rainfall data. Through blending the 
spatially continuous but coarse satellite rainfall with discrete but accurate gauge measurements, a 
new kind of rainfall with finer resolution can be generated. Because merging would offset the 
measurement errors of the two rainfall estimates, the quality of the combined rainfall may be 
improved to some degree. At present, various rainfall merging schemes have been developed for 
experimental or operational use, such as conditional merging (Sinclair and Pegram, 2005), 
Bayesian merging (Todini, 2001), statistical objective analysis (Pereira Filho, 2004).  
 Although various schemes have been developed, rainfall merging is still a complex and 
important issue. The results of rainfall merging are influenced by the kind of merging scheme, the 
quality of satellite rainfall data, the density of raingauges and so on. Motivated by this, the 
objective of this paper is to develop a residual-based method for merging satellite and raingauge 
rainfall using geographically weighted regression (GWR). Theoretically, this novel method is 
capable of simultaneously blending various satellite rainfall data with gauge measurements and 
could describe the non-stationary influences of geographical and terrain factors on rainfall spatial 
distribution. Using the proposed method, an experimental study on merging the rainfall from 
CMOROH (Joyce et al., 2004) and gauge measurements was conducted for the Ganjiang River 
basin, in southeast China. The capability of our merging scheme for constructing daily rainfall 
fields under different gauge densities is investigated and discussed. The accuracy gain achieved by 
rainfall merging relative to traditional interpolation merely only raingauge measurements is 
analysed.  
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STUDY AREA AND DATASET 

Study area 

The Ganjiang River Basin is located between 113°30′E−116°40′E and 24°29′N−29°11′N in 
Southeast China. With a drainage area of 83 374 km2, it is a major sub-catchment of Poyang Lake, 
the largest freshwater lake in China (Fig. 1). The study area is one of the typical rainstorm regions 
in China. Mean annual precipitation is about 1580 mm in this region. 

 
Fig. 1 Sketch map of the location of the study area and the raingauges’ distribution. 

 
Dataset 

This study area has a dense raingauge network consisting of 325 stations (Fig. 1). These gauges 
are well-distributed spatially and their density is about one per 256 km2. The quality of all the 
rainfall measurements has been proven by strict quality checks and control. Using these 
observations, point-wise daily rainfall series were obtained for the period of 2003–2009.    
 Satellite rainfall from CMORPH during the period of 2003–2009 was also collected. The 
spatial and temporal resolutions of CMORPH are0.25°×0.25° and half-hourly, respectively. The 
daily rainfall series is obtained by accumulating the rainfall of 48 half-hour episodes within a day. 
 
METHODOLOGY 

GWR background 

GWR is a type of regression model with spatially varying coefficients (Fotheringham et al., 2003). 
It enables a non-stationary relationship between the variables in the regression model. By 
calculating local statistics, spatial relationships can be identified and utilized for prediction. GWR 
also disaggregates spatial patterns in the model residuals and reduces the spatial autocorrelation. 
The basic formula of GWR is expressed as: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽𝑖𝑖0 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖(𝑢𝑢𝑖𝑖,𝑣𝑣𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖
𝑝𝑝
𝑘𝑘=1 + 𝜀𝜀𝑖𝑖                  𝑖𝑖 = 1,2, … ,n      (1) 

where Yi and Xik are respectively the dependent and k-th independent variable at location i; ui and vi 
are the coordinates; βi0(ui, vi) is the intercept, βik(ui, vi) is the local regression parameter for Xik and 
εi is the residual, p is the number of independent variables and n is the number of observations. 
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Equation (1) could be rewritten using a matrix method: 
𝒀𝒀 = 𝑿𝑿⊗𝜷𝜷′ + 𝜺𝜺      (2) 

where ⊗ is the sign for logical multiplication; 𝜺𝜺 is the error vector; X and β are two matrices 
consisting of independent variables and local regression coefficients, respectively: 

𝑿𝑿 = �

𝑿𝑿𝟏𝟏
𝑿𝑿𝟐𝟐
⋮
𝑿𝑿𝒏𝒏

� =

⎣
⎢
⎢
⎡
1 𝑋𝑋11 𝑋𝑋12 ⋯ 𝑋𝑋1𝑝𝑝
1 𝑋𝑋21 𝑋𝑋22 ⋯ 𝑋𝑋2𝑝𝑝
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑋𝑋𝑛𝑛1 𝑋𝑋𝑛𝑛2 ⋯ 𝑋𝑋𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎤
     (3) 

𝜷𝜷 = [𝜷𝜷1 𝜷𝜷2 ⋯ 𝜷𝜷𝑛𝑛] = �

𝛽𝛽10   𝛽𝛽20 ⋯ 𝛽𝛽𝑛𝑛0
𝛽𝛽11 𝛽𝛽21 ⋯ 𝛽𝛽𝑛𝑛1
⋮ ⋮ ⋮ ⋮
𝛽𝛽1𝑝𝑝 𝛽𝛽2𝑝𝑝 ⋯ 𝛽𝛽𝑛𝑛𝑛𝑛

�     (4) 

 The number of unsolved parameters in equation (2) is n × (p + 1), which exceeds the number 
of observations. To solve this equation, GWR estimates the coefficients using local weighted least-
squares regression: 

𝜷𝜷�𝑖𝑖 = (𝑿𝑿′𝑾𝑾𝑖𝑖𝑿𝑿)−1𝑿𝑿′𝑾𝑾𝑖𝑖𝒀𝒀     (5) 
where 𝜷𝜷�𝑖𝑖 is the coefficient vector for location i and Wi is the spatial weight matrix:  

𝑾𝑾𝑖𝑖 = �

𝑤𝑤𝑖𝑖1   0 ⋯ 0
0 𝑤𝑤𝑖𝑖1 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑤𝑤𝑖𝑖𝑖𝑖

�     (6) 

The estimates calculated by 𝜷𝜷� 𝑖𝑖 for the observation at location i are as follows: 
𝑦𝑦�𝑖𝑖 = 𝑿𝑿𝑖𝑖(𝑿𝑿′𝑾𝑾𝑖𝑖𝑿𝑿)−1𝑿𝑿′𝑾𝑾𝑖𝑖𝒀𝒀      (7) 

 GWR assumes that observations closer together will have more impact on each other than on 
observations further apart. Hence, a distance decay kernel function is employed for the spatial 
weight matrix. When the distance between observations is greater than the kernel bandwidth, the 
weight rapidly approaches zero. In summary, the kernel function could be grouped into two types, 
namely the fixed and adaptive bandwidths. The former calculates a bandwidth that is held constant 
over space, whereas the latter can adapt bandwidth distance in relation to variable density; 
bandwidths are smaller where data are dense and larger when data are sparse.  
 In this study, the adaptive kernel bandwidth was used as sample densities varied spatially. The 
weight using the exponential distance decay function is calculated as: 

𝑤𝑤𝑖𝑖𝑖𝑖 = �[1 − �𝑑𝑑𝑖𝑖𝑖𝑖/𝑑𝑑𝑖𝑖𝑖𝑖�
2]2    𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖

0                                 𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑑𝑑𝑖𝑖𝑖𝑖
  (8) 

where wij is the weight of observation j for observation i; dij is the distance between observation i 
and j; dik is the distance between observation i and its k-th nearest neighbour.  
 The key step of calibrating GWR is to determining the optimal bandwidth distance (i.e. dik). In 
this paper, it was determined automatically using the corrected Akaike information criterion 
(AICC) (Fotheringham et al., 2003). 
 
GWR based merging 

A residual-based analysis is proposed for merging satellite and raingauge rainfall. It estimates a 
preliminary rainfall field, known as the background field, using satellite rainfall and estimates the 
residual field using residuals at observed points considering the influences of some related 
variables. The merged field is then given by the combination of the predicted error field and 
background field. 



Satellite and gauge rainfall merging using geographically weighted regression 
    

135 

 Taking PB and PO
 as the notation for the background field and observed field respectively, the 

relationship between them and the true field PT is expressed as:  
𝑷𝑷𝑇𝑇 = 𝑷𝑷𝐵𝐵 + 𝒆𝒆𝐵𝐵    (9) 
𝑷𝑷𝑇𝑇 = 𝑷𝑷𝑂𝑂 + 𝒆𝒆𝑂𝑂    (10) 

where eB and eO represent the background and observation errors. Here, the expection of eB and eO 
is denoted using µB and µO, and the variation is denoted by  𝜎𝜎𝐵𝐵2 and  𝜎𝜎𝑂𝑂2, respectively.  
 Under the assumption of µO equal to zero and  𝜎𝜎𝐵𝐵2 much larger than 𝜎𝜎𝑂𝑂2, the following equation 
can be derived: 

𝒆𝒆𝐵𝐵 ≈ 𝑷𝑷𝑂𝑂 − 𝑷𝑷𝐵𝐵    (11) 
 Equation (11) implies that the residual field could be approximated by the difference between 
the observation and background fields. However, considering PO is just known at limited locations, 
it is required to estimate eB at those locations without gauge observations. Assuming that 
background errors are generally correlated in space, this issue can be resolved through local 
interpolation using some nearby values with observations. 
 Based on the framework of the residual-based merging, this paper proposed the merging 
scheme based on GWR. This method has three main steps. First, to construct a background using 
GWR, we describe the relationship between the background rainfall and the satellite estimates at 
any place using local regression: 

𝑃𝑃𝑖𝑖𝐵𝐵 = 𝑏𝑏𝑖𝑖0 + ∑ 𝑏𝑏𝑖𝑖𝑖𝑖  𝑃𝑃𝑖𝑖𝑘𝑘𝑆𝑆
𝑝𝑝
𝑘𝑘=1 + 𝜀𝜀𝑖𝑖                     (12) 

where 𝑃𝑃𝑖𝑖𝑖𝑖𝑆𝑆 is the estimate corresponding to the k-th kind of satellite rainfall at location i; bi0 is the 
intercept, bik is the local regression parameter. bi0 and bik are both probably non-stationary in space.  
 Secondly, also using GWR, at those locations without observations eB is calculated. We 
assumed that the relationship between eB and geographic factors including coordinates u, v and 
elevation z could be described using a locally non-stationary regression equation: 

𝑒𝑒𝑖𝑖𝐵𝐵 = 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝜇𝜇𝑖𝑖 + 𝛽𝛽𝑖𝑖2𝑣𝑣𝑖𝑖 + 𝛽𝛽𝑖𝑖3𝑧𝑧𝑖𝑖 + 𝜀𝜀𝑖𝑖                     (13) 

 Thirdly, the merged field PM can be obtained by combining the background field and the 
estimated residual: 

𝑃𝑃𝑖𝑖𝑀𝑀 = 𝑏𝑏𝑖𝑖0 +∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑆𝑆
𝑝𝑝
𝑘𝑘=1 + 𝜀𝜀𝑖𝑖  + 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝜇𝜇𝑖𝑖 + 𝛽𝛽𝑖𝑖2𝑣𝑣𝑖𝑖 + 𝛽𝛽𝑖𝑖3𝑧𝑧𝑖𝑖 + 𝜀𝜀𝑖𝑖                     (14) 

 After combination of the similar items, equation (14) can be rewritten as: 
𝑃𝑃𝑖𝑖𝑀𝑀 = 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝜇𝜇𝑖𝑖 + 𝛽𝛽𝑖𝑖2𝑣𝑣𝑖𝑖 + 𝛽𝛽𝑖𝑖3𝑧𝑧𝑖𝑖 +∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑆𝑆

𝑝𝑝
𝑘𝑘=4 + 𝜀𝜀𝑖𝑖                                                  (15) 

 Equation (15) is a general form for the rainfall merging scheme based on GWR. As a 
regression model, the number of satellite rainfall in the merging method is theoretically limitless. 
Thus, this proposed method is capable of simultaneously blending multiple kinds of satellite 
rainfall data with gauge measurements. At the same time, equation (15) describes the non-
stationary influences of geographical and terrain factors on the rainfall spatial distribution. 
Although, the gauge rainfall observations are not seen directly in the regression model, their effect 
on the merged results is indirectly reflected via the spatially varying regression coefficients 
derived by equation (5). 
   
Performance assessment 

After the coefficients in equation (15) are optimized using AICC, the merged rainfall at any 
location within the study area can be estimated. We divided all the rainfall data from 325 gauges in 
the Ganjiang River basin into two parts. One part was selected as the calibration data for the GWR 
merging model and the remainder was used for validation. Then, the merged rainfall was 
compared with the validation data and two performance indices: the mean absolute error (MAE) 
and spatial correlation coefficient (CC) were calculated. For one day, the two indices are 
calculated as follows: 
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MAE = ∑ �𝑃𝑃𝑖𝑖𝑀𝑀 − 𝑃𝑃𝑖𝑖𝑂𝑂�
𝑛𝑛𝑣𝑣
𝑖𝑖=1 /𝑛𝑛𝑣𝑣      (16) 

CC = ∑ �𝑃𝑃𝑖𝑖𝑀𝑀 − 𝑃𝑃�𝑖𝑖𝑀𝑀�
𝑛𝑛𝑣𝑣
𝑖𝑖=1 (𝑃𝑃𝑖𝑖𝑂𝑂 − 𝑃𝑃�𝑖𝑖𝑂𝑂)/�∑ (𝑃𝑃𝑖𝑖𝑀𝑀 − 𝑃𝑃�𝑖𝑖𝑀𝑀)2𝑛𝑛𝑣𝑣

𝑖𝑖=1 (𝑃𝑃𝑖𝑖𝑂𝑂 − 𝑃𝑃�𝑖𝑖𝑂𝑂)2     (17) 

where nv is the number of observation for validation, and 𝑃𝑃�𝑖𝑖𝑂𝑂 and 𝑃𝑃�𝑖𝑖𝑀𝑀  stand for the average values 
at the validation locations.  

To explore the accuracy gained by merging surface measurements with CMORPH rainfall 
relative to traditional interpolation using only gauge measurement, two kinds of daily rainfall 
fields were generated. The first was generated by the GWR based merging scheme both using 
CMORPH and gauge rainfall as the data sources, whereas the second was generated by GWR 
interpolation using only the same gauge rainfall (see equation (18)). Here, we use GWR-M and 
GWR-I to denote the two rainfall field construction methods, respectively. Then, under different 
calibration gauge data, MAE and CC for GWR-M and GWR-I were calculated respectively.  

𝑃𝑃𝑖𝑖𝐼𝐼 = 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝜇𝜇𝑖𝑖 + 𝛽𝛽𝑖𝑖2𝑣𝑣𝑖𝑖 + 𝛽𝛽𝑖𝑖3𝑧𝑧𝑖𝑖 + 𝜀𝜀𝑖𝑖                      (18) 

To evaluate the performance improvement gained by GWR-M relative to GWR-I, we further 
calculate the ratio of MAE and CC between the two methods: 

𝑅𝑅MAE = 1 − MAE𝑀𝑀/MAE𝐼𝐼    (19) 

𝑅𝑅CC = CC𝑀𝑀/CC𝐼𝐼 − 1    (20) 

where MAEM and MAEI mean the MAE for GWR-M and GWR-I, respectively, and similarly for 
CCM and CCI. When RMAE and RCC are positive, the error magnitude of the estimated rainfall field 
produced by the merging scheme is lower than with interpolation and the spatial structure is also 
raised.     
 
RESULT AND DISCUSSION 

For the Ganjiang River basin, an experimental study on CMORPH and gauge rainfall merging was 
conducted. Using GWR-M and GWR-I, two sets of daily rainfall fields were generated. The 
rainfall fields are all at a spatial resolution of 1 km × 1 km. To investigate the accuracy gain by 
GWR-M relative to GWR-I under different gauge densities, we gradually changed the number of 
raingauges data for model calibration and calculated the accuracy indices using the validation data. 
 Table 1 shows the results for GWR-M and GWR-I. In Table 1, MAE and CC for the two 
kinds of daily rainfall fields are mean values for the 2557 days from 2003 to 2009; the raingauge 
relative density (denoted using Rd) means the number of calibration raingauges divided by the total 
325 gauges over the study area. For example, when Rd is 2/3, it means that daily rainfall data from 
2/3 of the 325 gauges were selected for calibration while the other 1/3 were used for validation. It 
is seen from Table 1 that both accuracy indices for GWR-M and GWR-I are improved as Rd 
increases. This phenomenon is easy to recognize because the efficient information provided by 
surface measurements for the analysed rainfall fields is approximately proportional to the 
raingauge density. However, the change ratios of MAE and CC with Rd are not even. When Rd is 
less than 1/5, MAE and CC are rather sensitive to the increasing of Rd. However, when Rd exceeds 
1/5, the changing traits for MAE and CC are reversed. 
Table 1 Accuracy indices for daily rainfall fields generated by GWR-M and GWR-I during 2003–2009 in 
the Ganjiang River basin. 

Method Accuracy index 
The relative density of raingauges for calibration (Rd) 

2/3 1/2 1/3 1/4 1/5 1/6 1/8 1/10 1/12 1/15 1/20 1/30 

GWR-I 
CC 0.63 0.61 0.57 0.54 0.53 0.51 0.49 0.47 0.44 0.41 0.39 0.33 

MAE (mm/d) 2.37 2.46 2.62 2.74 2.82 2.91 3.05 3.18 3.33 3.52 3.75 4.2 

GWR-M 
CC 0.63 0.61 0.59 0.56 0.55 0.54 0.52 0.51 0.5 0.48 0.47 0.44 

MAE (mm/d) 2.34 2.42 2.56 2.67 2.73 2.8 2.89 2.98 3.09 3.21 3.34 3.59 
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At the same time, Table 1 indicates that the CC as well as MAE is improved by GWR-M over 
GWR-I. In general, the performance of GWR-M is more or less higher than GWR-I under various 
scenarios of gauge density. Hence, gains are obtained by merging gauge measurements with 
CMORPH. This kind of satellite rainfall data provides useful information for generating daily 
rainfall fields. Figure 2 shows the curves of RMAE–Rd and Rcc–Rd. According to these two curves, 
RMAE and Rcc are obviously higher than zero when Rd is lower than 1/5, or else RMAE and Rcc are 
close to zero. This reveals that, for the study area, the gain achieved by GWR-M is only substantial 
when the raingauges are rather sparse in space. For Rd at 1/10, the improvements of MAE and CC 
gained by GWR-M over GWR-I are 8.5% and 6.3%, respectively; for Rd at 1/20, the 
corresponding values are 20.5% and 10.9%, respectively. 

 

 
Fig. 2 RMAE and RCC under various scenarios of the calibration rain gauges relative to the total 325 in 
the Ganjiang River basin. 

 
CONCLUSIONS 

A residual-based rainfall merging method using GWR was proposed. This method is capable of 
simultaneously blending various satellite rainfall data with gauge measurements and could 
describe the non-stationary influences of geographical and terrain factors on rainfall. An 
experimental study for merging the satellite rainfall from CMOROH and gauge measured was 
conducted over the Ganjiang River basin. Main conclusions are: (1) the performance of the GWR 
based rainfall merging method generally improves with increasing raingauge density; in particular, 
when raingauges are sparse, MAE and CC will be improved rapidly with their density increase;  
(2) CMORPH rainfall actually provides useful information for generating daily rainfall fields. 
However, the gain achieved by the merging scheme relative to traditional interpolation is only 
substantial when the raingauges are rather sparse in space.  
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