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Abstract. This paper addresses the problem of removing the polarization of
membranes from P systems with active membranes — and this is achieved by
allowing the change of membrane labels by means of communication rules
or by membrane dividing rules. As consequences of these results, we obtain
the universality of P systems with active membranes which are allowed to
change the labels of membranes, but do not use polarizations. Universality
results are easily obtained also by direct proofs. By direct constructions, we
also prove that SAT can be solved in linear time by systems without polar-
izations and with label changing possibilities. If non-elementary membranes
can be divided, then SAT can be solved in linear time without using polar-
izations and label changing. Several open problems are also formulated.

1 Introduction

Membrane systems (or P systems) are biologically motivated theoretical
models of distributed parallel computing, introduced in [9], which can be
seen as a general computing architecture where various types of objects can
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be processed by various operations. For a motivation and detailed description
of various P system models we refer to [9, 11].

Very briefly, a P system processes multisets of symbol-objects placed in
the compartments of a hierarchical arrangement of cell-like membranes; the
external membrane is called the skin membrane, while a membrane without
any other membrane inside is said to be elementary. In each compartment,
local evolution rules are used, in the form of multiset rewriting rules. The
rules are applied in a maximally parallel way (all objects which can evolve
should do it), non-deterministically chosing the rules and the objects. A
computation (that is, a sequence of transitions of the system from a config-
uration to another configuration, by using the evolution rules as mentioned
above) is successful only if it halts, reaches a configuration where no rule is
applicable. With a halting computation a result is associated, in the form of
the multiplicity of objects placed in a specified membrane (internal output)
or sent out of the system during the computation (external output). Many
types of P systems can simulate in this way any Turing machine (we say that
they are computationally universal). When addressing decision problems,
a P system is used in the accepting mode: an encoding of the problem is
introduced in the initial configuration, and the computation stops by send-
ing to the environment either an object yes or an object no, depending on
whether or not the problem has a positive or a negative answer, respectively.
We refer to [11-13] etc. for details.

When solving computationally hard problems, the usual approach is the
brute-force one, based on a a time-space trade-off. A frequently used way for
obtaining an exponential working space in a linear time is membrane divi-
sion, inspired from cell division well-known in biology. This operation will
be also used below. Using it, many hard problems, typically NP-complete
problems, were shown to be solvable in polynomial (often, linear) time by
P systems. Details can be found in [10,11,13]. Recently, also PSPACE-
complete problems were attacked in this way (see [16, 1]).

Informally speaking, in P systems with active membranes one uses six
types of rules: (a) multiset rewriting rules, (b) rules for introducing objects
into membranes, (¢) rules for sending objects out of membranes, (d) rules for
dissolving membranes, (e) rules for dividing elementary membranes, and
(f) rules for dividing non-elementary membranes. For most of this paper we
discuss only rules of the first five types; rules for dividing non-elementary
membranes are used only in Section 5.3, in a particular form which we will
introduce directly there.

All these rules are associated with membranes, while membranes have
both a label, from a finite set of labels, and an “electrical polarization", which
can be +, —, or O (for “neutral™).
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However, the electrical charges used in this context are not quite realistic
from a biological point of view. The cell membrane is polarized, but in a
different manner: it is in general positively charged in the external layer and
negatively charged in the inner layer of phospholypidic molecules. On the
other hand, it is possible to have an overall polarization, positive or negative,
of inner vesicles, due to ion exchanges with the inner or upper compartments,
but the changes of these polarizations are done by more complex processes
than by applying single rule as in P systems with active membranes.

Anyway, it is a natural question to consider systems without membrane
polarization — this is to say, systems whose membranes always have the same
polarization, for instance, they are neutral. What is the power and what is
the efficiency of such systems? In particular, are they universal? Can they
solve NP-complete problems efficiently?

The general questions above remain open and we give here only a partial
answer to them. First, we prove that without polarizations we can compute
the Parikh sets of matrix languages (generated by grammars without ap-
pearance checking), and also the Parikh sets of some non-matrix languages.
Then, we address a simpler problem: what else can be added to P systems
with active membranes such that by removing the polarizations we still get
universality and polynomial solutions to NP-complete problems? A sugges-
tion comes already from [11], although not introduced there with this goal:
let us allow the membrane division rules to introduce membranes with new
labels, not necessarily with the same label as the divided membrane. The
idea can be extended also to rules of types (b) and (c): change the label of
a membrane when introducing or expelling an object in/from a membrane.

As we shall see below, for rules of types (c¢) and (e), systems with po-
larized membranes can be simulated by systems with non-polarized mem-
branes, provided that we can change the labels of membranes when sending
objects out of them or when dividing them. For rules of type (e) the result is
true for systems with only two levels of membranes which never change the
polarization of the skin. Note that this is somewhat similar to the biological
observation mentioned above, that the inner vesicles of a cell might be po-
larized, while, moreover, two levels of membranes is a good approximation
of the structure of a cell.

Pleasantly enough, for proving the universality of P systems with active
membranes (and polarization), systems of depth two suffice, and they do
not change the polarization of the skin. Thus, in both cases, we get the
universality as a corollary of the above mentioned results (and the known
proof of universality from [6, 11] — slightly modified).

The case of rules of type (b) remains open: can a P system with active
membranes and polarizations be simulated by a system without polarizations
but allowed to change the label of membranes when introducing objects
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into them? Even without such a simulation lemma, the universality can be
obtained also in this case, by a (surprisingly simple) direct proof.

One already showed that the satisfiability problem of propositional for-
mulae in the conjunctive normal form (SAT problem) can be solved in linear
time with respect to the number of variables and the number of clauses by
a P system with active membranes and polarization using rules of types
(a), (), (c), (e). Unfortunately, the proofs of the two simulation results
mentioned above have a drawback: they introduce non-determinism in the
functioning of the system. This means that they do not imply that SAT can
be solved in polynomial time by systems without polarization — but this is
directly proven, for the two “easy" cases, of changing labels by rules of type
(¢), or (e) (and again it remains open for the case of rules of type (b)).

An interesting result is obtained when using rules of type (f), for divid-
ing non-elementary membranes: SAT is solved in linear time (by a system
constructed in a semi-uniform manner) without using polarizations and label
changing (the universality remains open in this case).

2 Prerequisites and definitions
2.1 Elements of formal language theory

We assume the reader to be familiar with basic elements of complexity theory
and formal language theory, for instance, from [7,14,15]. For an alphabet
V, by V* we denote the free monoid generated by V' under the operation of
concatenation; the empty string is denoted by A, and V*\ {\} is denoted by
V*.By REG, CF, CS, RE we denote the families of languages from Chomsky
hierarchy (regular, context-free, context-sensitive, recursively enumerable
languages, respectively); for a family F'L, by PsF'L we denote the family
of Parikh sets of languages in F'L. As usual, the Parikh mapping associated
with an alphabet V' is denoted by ¥y,. By N we denote the set of non-
positive integers. In the following we will not distinguish between a vector
(y1,...,yp) €N B, its representation by a multiset or its representation by
a string with Parikh vector (y1,...,y3).

Let U be an arbitrary set. A multiset (over U) is a mapping M : U — N;
M (a), for a € U, is the multiplicity of a in the multiset M. We indicate
this fact also in the form (a, M (a)). If the set U is finite, a multiset M/
overU, {(a1, M(ay),. .., (an, M(ay)}, can also be represented by a string:
w = ajl\/l(al) . ai”(“”) or by any of its permutations. In the following we
will not distinguish the representation of multiset by a mapping or by a
string.

A matrix grammar with appearance checking is a computationally uni-
versal rewriting system essentially used below. Details (about regulated
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rewriting) can be found in [3]. For each matrix grammar there is an equivalent
matrix grammar in the binary normal form (this is true both for grammars
with appearance checking and without appearance checking; in the latter
case, the set F' and the matrices of type 3 described below are missing).

A matrix grammar G = (N, T, S, M, F') is in the binary normal form
if N = N U Ny U{S,#}, with these three sets mutually disjoint, and the
matrices in M are in one of the following forms:

1. (S—)XA),WithXGNl,AGNQ,

2. (X - Y, A—x),withX,Y € Nj,Ae€ Ny,x € (NQUT)*,’.QJ‘ <2,
3. (X =Y, A— #),with X, Y € Ni, A € Ny,

4. (X > NMA—x),withX € Nj,A€ Ny, andx € T*, |z| < 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write
it in the form (S — Xjnit Ainit), in order to fix the symbols X, A present
in it), and F' consists exactly of all rules A — # appearing in matrices of
type 3; # is a trap-symbol, because once introduced, it is never removed. A
matrix of type 4 is used only once, in the last step of a derivation.

For w,z € (N UT)* we write w = z if there is a matrix m € M
such that applying once each rule of m to w one can obtain z. A rule can be
skipped if it is in F' and it is not applicable.

The language generated by G is defined by L(G) = {w € T* | S =*
w}. The family of languages of this form is denoted by M AT,.. If the set
F' is empty, then the grammar is said to be without appearance checking;
the corresponding family of languages is denoted by M AT.

Itis known that CF ¢ M AT C M AT,. = RE, PsREG = PsCF C
PsMAT C PsRE, and that CS — M AT # (), PsCS — PsMAT # ()
(for instance, the one-letter languages in M AT are known to be regular,
[5D.

In the proofs below we will use the following slight variant of the binary
normal form: we say that G = (N, T, S, M, F) is in the f-binary normal
formif N = Ny U Ny U {S, f,#}, and instead of matrices (X — A\, A —
x) of type 4 we have matrices of the forms (4') (X — f,A — z) and
(4") (f — X); the new nonterminal f appears only in these matrices and
(f — A) is the only terminal matrix.

2.2 P systems with active membranes

We also assume the reader to be familiar with the basic knowledge of mem-
brane computing, in particular, with P systems with active membranes, for
instance, from [11] (details and recent results from membrane computing
can be found at the web address http://psystems.disco.unimib.it).



116 A. Alhazov et al.

A P system with active membranes (and electrical charges) is a construct

II = <07H7M7w17"'7wva)7

where:

1. m > 1 (the initial degree of the system);

2. O is the alphabet of objects;

3. H is afinite set of labels for membranes;

4. p is a membrane structure, consisting of m membranes with initially
neutral polarizations, labeled (not necessarily in a one-to-one manner)
with elements of H;

5. wi,...,wny are strings over O, describing the multisets of objects (every
symbol in a string represents one copy of the corresponding object)
placed in the m regions of y;

6. R is a finite set of developmental rules, of the following forms:

(@) [a— v,

forh € Hye e {+,—,0},a € O,v € O*
(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes, but not directly involving
the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor are they modified by them);
(b) al |5} =[]},
forh € H,e1,ep € {+,—,0},a,b € O
(communication rules; an object is introduced in the membrane, pos-
sibly modified during this process; also the polarization of the mem-
brane can be modified, but not its label);
© [a) = [ ]2,
forh € H,ey,es € {+,—,0},a,b € O
(communication rules; an object is sent out of the membrane, possibly
modified during this process; also the polarization of the membrane
can be modified, but not its label);
(d) [a]}, =0,
forh € Hyee {+,—,0},a,b€ O
(dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);
© [a]g = [b]2[c],
forh € H,ey,e9,e3 € {+,—,0},a,b,c € O
(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label,
possibly of different polarizations; the object specified in the rule
is replaced in the two new membranes by possibly new objects; the
remaining objects are duplicated and may evolve in the same step by
rules of type (a)).
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The rules of type (a) are applied in the parallel way (all objects which can
evolve by such a rule should do it), while the rules of types (b), (c), (d), (e)
are used sequentially, in the sense that one membrane can be used by at
most one rule of these types at a time. In total, the rules are used in the non-
deterministic maximally parallel manner: all objects and all membranes
which can evolve, should evolve. Only halting computations give a result,
and the result is the vector of natural numbers describing the multiplicity
of objects expelled into the environment during the computation; the set of
vectors computed in this way by the various halting computations in I7 is
denoted by Ps(IT). (Non-halting computations give no result.) Details can
be found in [11].

A P system is called deterministic if there is a single computation. A P
system is called confluent if either all of its computations do not halt, or all
of its computations reach the same halting configuration.

2.3 Removing polarizations, changing labels

Let us introduce now rules — of types (a) — (e) — without polarization.
They are of the following forms (because “no polarization" means “neutral
polarization", we add the subscript O to the previous letters identifying the
five types of rules; as above, O is the alphabet of objects and H is the set of
labels of membranes):

(ao) [a — v],,wherea € O,v € O*,and h € H,
(bo) a[]h—> [b],,where a,b € Oand h € H,

(co) [a], = [],b, wherea,b€ Oand h € H,
(do) [a], — D, Wherea beOandhe H,
(eo) [a], —[b],[c],,where a,b,cc Oand h € H.

Rules of types (a), (b), (¢c) were introduced without the capability of
changing the label of membranes they involve (this makes no sense for
dissolving rules), but in [11] one already considers rules of type (e) which
can change both the label and the polarization of membranes. Such rules are
of the form

[all, = [0l
with a,b,c € O, e1,e9,e3 € {+,—,0}, and hy, he, hs € H,

and they have been called of type (¢’). We extend this idea and this notation
to rules of types (eg), (bo), and (cp): their primed versions indicate the fact
that the labels can be changed. Specifically, these rules are of the following
forms:

(o) a[],, — [b],, wherea,b € O and hy, hy € H,
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(cp) [aly,, — [],,b wherea,b € Oand hyi,hy € H,
(ep) [al,, = [¥],,[cl,, where a,b,c € O and hy, ho, hy € H.

By PsOP(r) we denote the family of sets Ps(I7) computed as described
above by P systems using rules of types listed in 7.

3 The power of P systems without polarizations

The proof of the following result can be found in [11]. Although in [11] this
result is given for sets of natural numbers, hence one-dimensional vectors,
the extension to vectors of arbitrary dimensions is obvious and it holds with
the same proof.

Theorem 1. PsOP(a,b,c) = PsRE.

What is the power of P systems without polarizations? Specifically: what
is the size of the family PsOP(ay, by, co, do, €9)? Is it equal to PsRE? If
not (as we expect), then what about its relation with PsET0L (the Parikh
sets of ETOL languages)? We leave these problems open, and we only prove
here that we can cover in this way at least the Parikh sets of languages
generated by matrix grammars without appearance checking.

The following result is non-trivial, because PsM AT — PsCF # ()
(there are non-semilinear sets of vectors in PsM AT, which is not the case
with PsC'F’), but gives only a partial answer to the question how powerful
P systems without polarization are.

Theorem 2. PsM AT ; PSOP(CL(), bo, co, do, 60).

Proof. Let us consider a matrix grammar (without appearance checking)
G = (N,T,S,M) in the f-binary normal form, hence with N = N; U
NoU{S, f}, and with matrices of the types 1, 2, 4/, 4” specified above. We
assume all matrices of types 2 and 4’ labeled in a one-to-one manner with
ma, ms, ..., my, for t — 1 being the number of these matrices.

We construct the P system

I = (07{172}a[[ ]2]17XinitAinitacv R)y
where
O:N1UN2UTU{X’XENl}U{A,A/,A”|AEN2}
U{Xij, Xi | X €N, 1<i<t4+1,-1<j<t}
U {Aij, A Aj | A€ N2, 1S i<t +1,0< 5 <t}
U {CvclaCQ,C/Qafafa#}U{di|0§i§t+1},



Trading polarizations for labels in P systems with active membranes 119

and the set R contains the following rules (together with the rules we give
explanations about their use and the functioning of the system I7; in the rules
below, we use the morphisms hj,1 < j < ¢+ 1, defined by h;(A) = A;
forall A € Ny, and hj(a) = aforalla € T):

I [X - X],,forall X € Ny; [A— A], forall A € Ny;
[0]2 — [61]2[62]2; [c— #]2

While all symbols from the skin region lose the bars, the inner membrane
is divided into two membranes with the same label 2 and containing the
auxiliary symbols ¢y, ca, respectively. In the membrane containing ¢; we
will simulate a matrix of GG; at the end of the simulation, this membrane will
be dissolved, and the second membrane will be used as starting membrane
with label 2, for a further division.

2. X[ ], = [ Xi,-1],, for some m; : (X — Y, A — x) € M,
2<1<t;
[ X — #],, forall X € Ni;  [co], = [ ]5¢h:
[c2 = #]ys [A— A']),forall A€ Ny.

In the second step of the computation, all symbols A € N» get primed,
while the unique symbol from /N7 should enter the membrane with label 2
having inside the object c; — otherwise, either X introduces the trap-object
# in the skin region, or, if it enters the membrane containing the object ca,
this object cannot exit the membrane and introduces #.

3. [Xi7_1 — XZ‘70]2, forall X € N1,2 <1<t

[A"— A"], forall A € N;

B[], = [ Bjol,, for some m; : (Z — U,B — y) € M,

2<j<t

[ch— #]15 0,2[]2 — [ dol,-
In the third step, also a symbol B € N, can enter into membrane 2 which
contains c1; we will see below that this is obligatory, otherwise the symbol
X — with subscripts — already present there will introduce #. At the same
time, all symbols from the skin get double primed and ¢}, enters the second
membrane with label 2 transformed into dy; we will also see below that if

c’2 enters the first membrane with label 2, then the computation will never
halt.

4, [Xi’() — XZ'71]2, forall X N1,2 <3<t
[Bj’() — Bj71]2, forall B € Ny,2 < j <t
[do — di],; [A” — Ay],, forall A € No.
All symbols “start to count", from 1 to ¢ 4+ 1. Note that during this counting
no symbol from the skin membrane can enter any of the inner membranes.
5. [th —>Xi,k+1]2,forallX eN,L,2<i<t 1L k<i-—1;
[BjJ€ — Bj,k+1]2,f0rallB €ENy,2<3<t 1L k <j7—-2
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[di — diy1],y, foralll <k <t
[Ap — Apqa]y, forall A€ No,1 <k <t

These rules are used during the counting.

6. [Bj7j_1]2 — B},fOl‘ all B e N9,2 <5<t
[ Xii — #]y, forall X € Nj,2<i <t

Only the symbol from Ny can dissolve membrane 2, and this happens in
the moment when it is going to get a subscript j, k with j = k. If i < j,
then X gets the subscript ¢, ¢ before dissolving the membrane, hence the
trap-symbol is introduced. This will also happen if no symbol from Ny were
present in this membrane. If, however, j < ¢, then the membrane will be
“prematurely dissolved", and a symbol X ;, with ¢ > k will be left free in
the skin region, introducing # there — see the rules below. In this way we
check that the symbols X; 1, B; ¢ introduced in the membrane have i = 7,
hence correspond to the same matrix of G.

7. [ Xip— #]forall X e Ny, 2<i<t,1<k<i-—1;
[dp — #],.forallk <t; [cr — A3 [ Xii — Yig] s
[B,Z — hi+1(l')]1,f0rmi : (X —Y B — ZL‘),Y € N, U{f}

The first rule ensures the correct simulation of the matrix m;, the second one
ensures the fact that in the third step dy was sent to the second membrane
with label 2, while the last two rules actually simulate the matrix. Note
that in the meantime, all symbols from N5 present in the skin region have
continued to increase their subscript — and the same with dj, from the second
membrane 2. The symbol Y and the nonterminals from z are introduced
with the subscript equal to the subscripts of all these symbols from the skin
membrane, in order to continue together to count to ¢ 4 1; this is important
for the synchronization of the system.

8. [Yiy1 = Y], forallY € NyU{f};
[Agy1 — A forall A € No;  [dip1 — ¢,

When all symbols get the subscript ¢ + 1, we can return to a configuration
similar to the initial one, with all nonterminals barred, and with ¢ in mem-
brane 2, hence we can iterate the process, and simulate another matrix of

G.

9. f[]2_>[ﬂ2’ [ﬂgéfv
[Ajr — #] . forall Ae No, 1 <k <i <t
[dt+1_>)\]2; [#%#}57‘9:1>2'

After using the terminal matrix of G, we also have to remove the symbols
d and ¢, and, furthermore, no symbol from Ny should be present in the
system. Assume that this is not the case, hence we have at least f, A in
the skin membrane, for some A € N», and ¢ in membrane 2. If f enters
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membrane 2, then ¢ introduces #, hence membrane 2 should be divided,
while f waits and A is replaced by A. In the next step f enters the first
membrane 2 — the second one should be used by c2, as we have seen above —
and A becomes A’. Now, if f dissolves the first membrane 2, then A’ should
pass to A” and then start to count; if A’ enters membrane 2, then f waits, but
it dissolves the membrane in the next step, and A;  is released into the skin
region, where it will introduce #. If f enters the second membrane 2 and
dissolves it, then a symbol dy, is released, and again we introduce # in the
skin region. If no membrane is present, then A will count forever from 1 to
t+1, repeatedly. Thus, the only way to stop is to correctly simulate a terminal
derivation in GG, removing d; 1 at the same time when introducing f.

10. [a], = [],a, foralla € T.

Any terminal symbol is sent out at any time of the computation.

From the previous explanations it is easy to see that ¥ (L(G)) =
Ps(IT), which proves the inclusion PsM AT C PsOP(ay, by, cg, do, €0)
(note that rules of all five types were used).

In order to see that the inclusion is proper, consider the system

II'= ({a}, {1, 2}, [{15] 1, A, {[a = aaly, [a], = a,[a], = [];a}),
which generates the set Ps(I]) = {(2" — 1) |n > 1} ¢ PsMAT. 0

We do not know whether the previous result can be improved by avoiding
the use of some types of rules, or — more interesting — strengthening it to a
characterization of PsRE. Because we believe that such a characterization
is not possible, a related question is to consider further ingredients which
can increase the power. A possibility is to use a priority relation among rules,
of a weak type (a general priority is known to lead to universality, see [11]);
for example, we can use always the rules of some type with priority over
the rules of another type (e.g., always the communication having priority
on dividing a membrane). This possibility, as well as the general problem
concerning the size of the family PsOP(ay, by, co, do, €9), remains open,
and we consider in the next section another way to “pay" for not using
polarization: changing the labels of membranes.

4 The power of changing labels

Clearly, rules of type () or (ay)) are stronger than rules of type (c), where
a € {b,c,e}. It remains open whether these relations (“stronger/weaker")
are proper. Here we are going to present two simulation results.
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4.1 Simulation results

We start by considering the case when rules of type (e(,) are used. They help
at least for a class of systems of a restricted type. Specifically, we say that
a P system (with active membranes and using polarization) is of type D250
if its membrane structure has only two levels (depth two, hence D2) and its
skin membrane never changes the polarization (hence it remains neutral as
at the beginning, a fact indicated by SO0).

Lemma 3. Any P system of type D250 can be simulated by a system using
rules Oftypes (a())a (bO)> (CO)¢ (d0)7 (66)

Proof. Let us consider a system IT = (O, H, yu,wy,. .., wn, R) of type
D2S0. We assume that the skin membrane is labeled with 1 and that this
label is never used for another membrane (this can be easily achieved, by
relabeling the membranes, taking into account that the skin membrane is
never divided). We also assume the rules of type (b) from R (if any) labeled

in a one-to-one manner with elements of a set B (hence we write these
€1

rules in the form r : a[ ];' — [ b]}?, 7 € B). Consider also the alphabet
= {a1 | a € O} and the morphism ¢ : O* — Of defined by
v(a) =a1, a € O.
We construct the system (without polarizations)

= (0/7 Hlv /.L,,QUh <oy Wmy R,)v
with the following components:
O' =0U{aj,d,al |ac 0,1 <i<5b}
u {bg) | r:al 3" — [0]}? is arule of type (b) from R, € B}
U {d,$,8,8", #},
H' ={(h,e),(I.e) | h € H,e € {+,—,0}} U{0},

1/ is the membrane structure p with each membrane with label h

(and polarization 0, as it is the case at the beginning)
labeled with (h, 0),
and with the set R’ constructed as follows.

e Foreachrule [a — ]} € R of type (a), we introduce in R’ the rules:

Al [a_“P( )]<h6>
A3 [ b} —>b”]<he>' [01 = B1] ey
A4 [V — b] hoe) [0] — b] (hey» forallb € O.
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€1

e Foreachrule r : af ;' — [D]}? € R of type (b), we introduce in R’
the rules:

BI af J ey = [05)] eyt
2 [bg)hh,eﬁ = [ba] (h’,ez>[ d]O; [bg) = #] (XL
3 [by = ) oy’

B4 [0 = 0 s oys [T gy = 18] eny [l

€1

e Foreachrule [a];' — [ ];°b € Rof type (c), with h # 1, we introduce
in R’ the rules:

Cl [ al ey = [03] ey [ ] 3

C2 [bs — b’ 5] e’

C3 [05] 1y o) = | Lo ey b5 18 = 8T g 0y

C4 [b5 —b], forallge H'; [§] Woen) [$”] theayL o

e Foreachrule [a]; — b € R of type (d), we introduce in R’ the rules:

D3 [V, — U] ](h’e>’
D4 [ iﬂ (W ,e) — b.

€2

e Foreachrule [a]}" — [0];%[ ¢]7® € R of type (e), we introduce in R’

the rules:

El [aq] (h,e1) [bS]<h/ 62>[C5}(hf 3)?

E2 [a5 — a5$]<h, o-foralla € O,e € {+,-,0}
E3 [af —>o/5’]<h/ o forallar€ O, e € {+,—,0};

E4

ay = « (v eys Torall a € O,e e {+,—,0};

[

[

[$—>$]<h/>f0rallee{+ ,0};

[

[ 9] ey [$"] <h7e>[d]0,f0ralle e {+,—,0}.

o Finally, for each rule | a](l) — [ ]?b of R we introduce in R’ the rule

La o) = [T
e and then, for all labels g € H’ we introduce the rule

[ #],.

The idea behind this construction should be visible: instead of working
with membranes with labels and polarization, [ | ;, we work with membranes
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having only labels, | | hoe)? with the polarizations “stored" as the second
component of the labels; by handling labels we can then handle polariza-
tions; the problem is that the labels are changed only by rules of type (ef));
moreover, we have to carefully arrange the computations in /7’ in order not
to lose the synchronization of computations in /1.

The synchronization is obtained by using symbols with subscripts 1, 2,
3,4, 5, associated with rules of R of the types (a), (b), (¢), (d), (e), respec-
tively, sometimes priming these symbols, and also using labels not only of
the form (h, e}, but also of the form (1’, e). Each step of a computation in IT
is simulated by four steps of a computation in I1’. In the first step all symbols
are like in O, without subscripts or primes, and the labels of membranes are
of the form (h,e). After the first step, all objects which can evolve by a
rule in R can also evolve by a rule in R’ and the objects introduced in this
way have subscripts; these objects have now to evolve in a well determined
manner, completing the simulation of the rule in R and returning to objects
from O only in the last step, the fourth one. Moreover, the simulation of
rules of types (¢), (d), (e) starts by using a rule of R’ of type (ej,), which in-
troduces a “main membrane" with the label of the type (1, e) (with the label
h € H primed), corresponding to the membrane [ |} from p whose rule is
simulated, as well as a “dummy membrane", [ d] ,, containing the “dummy
object" d which never evolves (no rule is associated with this membrane).

In the simulation of a rule of type (b) one introduces a label of type
(I, e) in the second step. In the simulation of rules of all types (b), (¢), (e)
a further division is performed in the fourth step, returning the label (1’, €)
to (h, e), thus making possible the simulation of another rule from R.

Because the case of rules of type (b) is different from the case of the other
rules, we describe it in some details. Assume that we have a membrane [ |}
where we want to use a rule 7 : a |;' — [ b]}>. We start by using the
rule af ]<h,el> — bg)] (hoey)- This is possible, as the symbol a and the
label (h,ep) are available. (In parallel with the rule r, no further rule of
types (b), (¢), (d), (e) can involve the same membrane, but a maximal use
of rules of type (a) should be executed,; this is clearly possible also in IT’,
because the simulation of these rules can also continue in membranes with
labels (1, €) .) The label of the membrane was not changed, but the symbol
b got both the subscript 2 (as associated with rules of type (b)) and the
superscript (), to “remember" which rule we have to simulate. In the next
step, because the label of the membrane is the same as in the first step, we
can involve this membrane in rules of types (b), (c), (d), (e), and this would
be wrong, because it does not correspond to a correct simulation of rules
from R (the simulation of the rule  was not completed). This is prevented

by the rule | bg) — #] (her)* because of the maximal parallelism, it has to be
applied, and this will lead to a non-halting computation. Therefore, we have
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to use the rule | bér)] (her) [ ba] <h,762>[ d] ,, which continues the correct
simulation: the label was changed to (h', e3), hence no new simulation can
be started in this membrane (while the rules of R’ corresponding to rules
of type (a) from R can be applied also in the presence of this label). We
continue in a deterministic way with the rule [ by — b38'] ;, ., (step 3
of the simulation), and we conclude by using the rules [ by, — b] (W e)?
(8], Woesy | ], h,es)| @] o- in parallel. We have returned to a configuration
as that we have started with, hence the simulation of rules from R can
continue. Note the role of the superscript (7) in step 2, when it was necessary
to know the new polarization ey of the membrane, as well as the role of the
special object $, primed or not, which takes care of returning the membrane
to a label (h, e) in the fourth step of the simulation.

The simulation of rules of other types than (b) is easier, in the sense that it
is deterministic, no trap-object is used in order to avoid “wrong" simulations.

In any moment, the objects which were sent out of the system by rules
of R are also sent out of x by the rules of R’.

In all this construction, it is crucial that the skin membrane never changes
its polarization (we cannot divide the skin, hence we cannot handle such a
case in this framework), and that we have inside the skin membrane only ele-
mentary membranes (neither the change of polarization of a non-elementary
membrane can be handled, because we cannot divide non-elementary mem-
branes). With these observations, we conclude that the statement in the
lemma holds. ad

In the previous construction the number of membranes with label O can
grow arbitrarily large. We can prevent this by introducing the following rules
in R

[d—=d]g:[a— N, foralla € O [d], —d"; [d" — )N],.

In this way, all objects from membranes with label 0 are removed, in parallel
with changing d to d’, in the next step the membrane is dissolved, and after
that the new object d” is erased.

We now pass to the case where we can change the label of membranes
by means of rules of type (c).

Lemma 4. Any P system with rules of types (a), (b), (c), (d), (e) can be
simulated by a system using rules of types (ay), (bo), (), (do), (eo)-

Proof. We start again from a system IT = (O, H, y, w1, . . . , Wy, R). With-
out loss of generality we assume that no membrane has the label s. We also
assume all the rules from R labeled in a one-to-one manner with elements of
a set B. Consider again the alphabet O; = {a; | a € O} and the morphism
¢ : O* — Oj defined by p(a) = a1, a € O.
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We construct the system (without polarizations)
= (O H iy wy,...,wn, R,
with the following components:

O =0U {a’,al,al,al,a'l” |a €O}
U {a(r),a'(r),a"(r) i | a€O,re B}
Ufae|a€O,ec{+,—,0}U{Sc|ec{+,—,0}}U{S$, ¥, #},
H' = {(h,e),{h,e,r) | h € Hye € {+,—,0},r € B} U {s},
i/ is obtained from the membrane structure s by using
a new membrane, with label s, to enclose the membrane structure p
(this is the skin membrane of ) and each membrane in

with label h being labeled with (h, 0),

and with the set R’ constructed as follows.

e Foreachrule [a — z]; € R of type (a), we introduce in R’ the rules:

Al [a — ¢(z)] (he)
A2 [ b1 — bll] (h,e>; [ by — bll] <h,e,r);
3 (b — b”]( ) [07 — Y] (hie,r)’
4107 = 0] ey (07 =071, 0
A5 [b] — b] (e [b] — b (herys forallb € O, and r € B.

€1

e Foreachrule r : af ]} — [0]}> € R of type (D), we introduce in R’
the rules:

BL al ] ey = [07] 05
2 [0 ey = [ pea ™
[ — #] , forall g € {(h,e) | h € H,e € {+,—,0}};
B3 b/(r)[ Viheary = [b(r)]
4 [ = b'§] (hear)
5[V = b ey 5 thoeair) = [ e

(hyea,r)?

e Foreachrule r : [a];' — [ |}?b € R of type (c), we introduce in R’
the rules:

Cl [CL] <h,81> _> [ ]<h,6277’>b,(r);

C2 v ] — [b(M)]

(hyea,r) (hoea,r)’
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3 [b(r) _>b//(r)]<h7€2’r>;
C4 | b::f” = V)] gy’
C5 [6"()] sy = [ ) nem -

e Foreachruler : [a]; — b € Roftype (d), weintroduce in R’ the rules:

D1 [CL] (h,e) - [ ](h,e,r)b/(T);
D2 [ ] o — [00)]

D3 [b(r) s b//(?“)] (hor)?
D4 ") — b))
D5 [b")]

(her)’

(her)’

(hewr) b.

e Foreachrule r : [a]}' — [b]}?[]}® € R of type (e), we introduce in
R’ the rules:

El [a] <h761> — [ ]<h,€1,’r'>a,(r);
E2 /()] ]<h,el,r> — [a(T)]<

h,e1,r>;

E3 [0 ey = [eal erm | €es] ey’

E4 [be2 — b/$e2] <h,el,7">; [663 — CI$E3] <h7€1’74>;

E5 [V — b (et [ — (] terrys [ Beid ey = ]<h,ei)$/, for
i—23.

e Finally, for the output of the result, we introduce in R’ the rules
[a], — [ ],a foralla € O,
e and then, for all labels g € H' we introduce the rule

[# — #],.

The idea is the same as in the proof of the previous lemma: instead of
working with membranes with labels and polarization, [ |}, we work with
membranes having only labels, | ] (h,ey» With the polarizations “stored” as
the second component of the labels. This time, one step of a computation in
IT is simulated by five steps in I1’, controlled mainly by the superscripts ()
of symbols from O’, which identify the rule which is simulated. Note that r
appears also in labels of the form (h, e, r), which correspond to labels of the
form (h/, e) in the previous proof (in the sense that these labels are always
returned to labels (h, e) only in the fifth step of simulating a rule of types
(b,), (¢), (d), (e), thus making possible the simulation of another rule).

Again, we use the trap-symbol only for ensuring the correct simulation
of rules of type (b), which is different from the case of the other rules, but
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we do not enter here into details. With the experience of the previous proof,
the reader should be able to see how the computations in 11’ develop.

In all cases of rules different from type (a) it is important to note that
we change the label of the membrane by sending out of it an object, one
copy of which should come back in the next step. In order to ensure this,
both the membrane “remembers" which kind of objects should come back,
because we have r in the label, and the object “remembers" which kind
of membranes has to enter, because it has the superscript (7). Because of
the fact that the number of copies of objects v/ (") is equal to the number of
membranes which send out the objects '(") and because of parallelism, each
membrane which previously has sent out an object ¥'(") will now contain an
object ().

At any moment, the objects which were sent out of the system by rules
of R are also sent out of 1’ by the rules of R’. Consequently, the two systems
IT and II’ are equivalent. 0

In the construction above, except for the new skin membrane, that with
the label s, the membrane structure remains the same (only the labels are
changed during computations).

4.2 Universality consequences

From Theorem 1 (Theorem 7.2.1in [11]) we know that systems with rules of
types (a), (b), (c) are Turing complete. The proof from [11] (recalled there
from [6]) uses only three membranes, arranged in two levels — hence from
this point of view the premises of both lemmas from the previous section
are satisfied. Unfortunately, that proof changes the polarization of the skin
membrane.

A close examination of the proof shows, however, that this change is
done only once, in the end of the computation. More precisely, one starts
from a matrix grammar GG with appearance checking in the binary normal
form. The terminal matrix (X — A\, A — x) of the grammar is replaced
by a matrix of the form (X — f, A — x), where f is a new symbol. The
idea is that when the symbol f is introduced (actually, it is introduced as
f7), the derivation G should be terminal, hence no further rule of it should
be simulated in the constructed P system. To this aim, f’ is sent out of the
system, changing the polarization of the skin membrane from O to +. If the
derivation in G was not terminal, then in the positively polarized skin, each
nonterminal A of GG evolves by a rule A — #, thus preventing the halting
of the computation (we also have there the rule # — #).

This control of the correct termination of the simulation can be achieved
without changing the polarization of the skin membrane, by introducing one
additional membrane, with label 4, at the same level with membranes 2 and
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3, removing the rules which change the polarization of the skin or use its
positive polarization, and considering the following new rules:

vl ]2 — [f15; Al ]I — [#]I, for all nonterminals A of G; [# — #] .

The role of (the positive polarization of) the skin is played now by (the
positive polarization of) membrane 4. In this way we get a system which is
of type D2S0, hence we can conclude:

Theorem 5. PsOP(ay, by, co, () = PsOP(ag, by, ¢{,) = PsRE.

The equalities follow from Lemmas 3, 4, from the previous change of the
proof of Theorem 1, and from the observation that in the proof of Lemma 3
we use rules of type (dp) only for simulating rules of type (d), while in the
proof of Lemma 4 we use rules of types (dp), (ep) only in the simulation of
rules of types (d), (e), respectively.

4.3 Direct universalities

Because we do not have a simulation lemma also for the case of using rules
of type (b)) for changing the labels of membranes, the universality does not
follow for this case as for the other cases, and that is why we look for a
direct proof of universality.

Theorem 6. PsOP(ag,by,co) = PsRE.

Proof. Consider a matrix grammar G = (N, T, S, M, F') with appearance

checking, in the f-binary normal form, hence with N = N;UNyU{S, f, #}

and with the matrices of the forms introduced in Section 2. Assume that all

matrices of types 2, 3, 4’ are injectively labeled with elements of a set B.
We construct the P system of degree 2

H:(O7H>H ]Ximth’ :)"R)’

O=TUNyU{A,, | A€ Noym € ByU{e,c, " c1,c2,c3,c4,C5,#},
H=NU{X,, | X € N,meB}U{l, [},

w1 = cAinit, Wx

init

and the set R containing the following rules. We present them in blocks as
used for simulating matrices of G, thus also having clear the way the system
11 works.

The simulation of a matrix m : (X — Y, A — ), with X € N1,Y €
N1 U{f},is done in three steps, using the next rules:

AL Al lx = [Anly 5 [e—= ]
A2 [Anly, = [y, Ams [ =g
A3 [Am =zl ]y = [y
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The first rule of the matrix is simulated by the change of the label of the
inner membrane, and the correctness of this operation is obvious (one cannot
simulate one rule of the matrix without simulating at the same time also the
other rule).

The simulation of a matrix m : (X — Y, A — #), with X, Y € N;
and A € Na, is done in five steps, using the next rules:

Bl ¢ ]y = [aly s
B2. [a1 = o]y, 5 Al ]y, = [#
B3. [cz]ym — | ]Ymc3;

B4. [03 — 0465]1;
BS. [ea = c]ys e[ ]y, =[]y

While the membrane with label X is used by object ¢, no other rule can
be used. In the next step, if any copy of A is present, then it introduces the
trap-object # and the computation never stops. If no A is present, then the
objects c; evolve, returning the label of the membrane to Y and recreating
the auxiliary object c, for iterating the procedure.

We also consider the following rules:

A[ ]f%[#]f,forallAeNQ; [#%#]f’
[a]; = [ ]ya.foralla € T.

The equality Y7 (L(G)) = Ps(II) easily follows from the above explana-
tions. O

A direct proof of universality can be given also for systems using rules
of the types (ao), (bp), (cj). We leave this task to the reader, and we give
here the direct universality proof for the case of using rules of type (ef)):
only rules of types (ap), (o), and (e) are used, thus improving the first
equality from Theorem 5.

Theorem 7. PsOP(ay, co,€,) = PsRE.

Proof. Consider again a matrix grammar G = (N, T, S, M, F') with ap-
pearance checking, in the f-binary normal form, with the notations and the
assumptions from the previous proof, and construct the P system of degree
2

I=(0,H[[]y, | = coAinit; R),
O=TUNyU{A,, | A€ Noym € B}U{c,c,co,c1,co,d, #},
H=NU{X,,|XeN,meB}uU{0,1, f},

LWL = A wx

init

and the set R containing the following rules.
The simulation of a matrix m : (X — Y, A — ), with X € N,Y €
Ni U{f},is done in three steps, using the next rules:
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Al [A] — [Am]ym[d]o;
A2 [Ay = ady, s
A3. [c}ym =[]y d],.
Again the first rule of the matrix is simulated by the change of the label of
the inner membrane (the “dummy" object d and membrane O play no further
role).
The simulation of a matrix m : (X — Y, A — #), with X, Y € N}
and A € No, is done also in three steps, using the next rules:
BL. [col y = [y [d]y:
B2. [Cl—>CQ]Y 5 A—)#]
B3. [ Cz]ym — CO]Y[ d]O
While the membrane with label X is used by object ¢y, no other rule can
be used. In the next step, if any copy of A is present, then it introduces the
trap-object # and the computation never stops. If no A is present, then the
objects c; evolve, returning the label of the membrane to Y and recreating
the auxiliary object cg, for iterating the procedure.
We also consider the following rules:

[A— #]; forall A€ No; [# — #],, forallh € H;
[a]; = [];a; [a], = []a, foralla € T.
The equality Y7 (L(G)) = Ps(I1) is again obvious. O

Yo

Remark 1. Inthe above proof, the rules of type (cg ) are only used for sending
the result of a computation out of the system. Therefore, rules of types (ag)
and (e(,) are sufficient to reach universality for membrane systems with
internal output.

5 Efficiency

In this section, we will show how to solve the NP-complete problem SAT by
P systems with active membranes by using different combinations of rules
of various types. The SAT problem is probably the best known NP-complete
problem [4]; it asks whether or not for a given formula in the conjunctive
normal form there is a truth-assignment of variables such that the formula
assumes the value true.

Throughout this section we consider accepting (one also says recogniz-
ing) P systems with active membranes, i.e., systems which start working
from an initial configuration where an encoding of a given problem is intro-
duced as an input, and which proceed until sending out the answer, yes or no,
to the problem (all computations halt). Recognizing P systems is a rigorous
framework for dealing with complexity matters in membrane computing
area; for more details, please refer to [12].
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Here, we only briefly recall some basic notions from this area. Consider
adecisional problem X . A family ITx = (IIx(1),IIx(2),...) of P systems
(with active membranes in our case) is called semi-uniform (uniform) if its
elements are constructible in polynomial time starting from X (n) (from n,
respectively), where X (n) denotes the instance of size n of X. We say that
X can be solved in polynomial (linear) time by the family I x if the system
ITx (n) stops in a polynomial (linear, respectively) number of steps, sending
out the object yes if and only if the instance X (n) has a positive answer (if
the system is deterministic, then there is only one computation in I7x(n);
if the system is confluent, several computations are possible, but all of them
stop and all of them send out the same object yes or no corresponding to
the answer to X (n)).

5.1 Solving SAT without polarizations but using label changing

As we have noticed above, the proofs of Lemmas 3, 4 do not preserve
the determinism of the simulated systems; more precisely, the constructed
systems do not always halt, but any “wrong" step with respect to the starting
system will lead to an endless computation. Such a behavior is not accepted
in solving decidability problems with P systems, neither in the deterministic
manner from [13], nor in the slightly more relaxed framework of [11], where
the nondeterminism is allowed, provided that the system is confluent, and
always halts.

However, as somewhat expected, P systems without polarizations, but
with the possibility of changing the labels of membranes (by means of rules
of types () and (e(,)) can solve NP-complete problems in linear time. This
is illustrated below, with direct proofs, for SAT.

Before giving these proofs, it is worth noticing that rules of types
(ao), (eo) suffice in order to generate all 2" truth-assignments for n vari-
ables from a propositional formula. Specifically, let us consider a (non-skin)
membrane | ]0 where we have the objects d; and a;, and also consider the
following rules:

Gl [dl — ai+1di+1]0a 1 <1<

G2 [ai]g — [tiilol fiilg: 1 < i <ms

G3 [tij = tijrlg [fig = fignle 1 <i<j<n.
Ineach step, one “expands" one variable, starting with z; and ending with x,,
deterministically. The truth values ¢; ;, f; ; of variables x; have associated
second subscripts j specifying the step, so that, in n steps the membrane
[ dia1], is divided in 2" membranes, each of them containing a multiset of
the form d,v1vz . . . vy, Where v; € {t; ., fin}.

In a way which will be used in the proof of the Theorem 9, by using the
rules of types (ap), (eo) only, during the generation of truth-assignments
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we can also check which clauses are satisfied by the truth-assignments — we
skip the details here.

Unfortunately, we do not see any way to check the truth value
of the whole formula for these truth-assignments by using only rules
(ao), (bo), (co), (do), (eo), and that is why we use below also rules for chang-
ing the labels.

Theorem 6. P systems with rules of types (ap), (bo), (o), (e() can solve
SAT, in a confluent way, in linear time with respect to the number of variables
and the number of clauses.

Proof. Let us consider a propositional formula in the conjunctive normal
form:

B=CiN...\Chp,
C’i:ym\/...\/ym, 1 <i < m, where

The instance 3 (to which the size (m,n) is associated) is encoded as a
multiset over

V((n,m)) = {zij,2i; |1 <i<m,1<j<n}

The object x; ; represents the variable x; appearing in the clause C; without
negation, and object xi ; represents the variable z; appearing in the clause
C; with negation. Thus, the input multiset w consists of one copy of each
element from the set

{zijlzj €{yip 1<k <L} 1<i<m1<j<n}
U{aiy |-y € {yin | 1<k <L} 1<i<m,1<j<n}.
For given (n,m) € N2, we construct a recognizing P system
(I ((n,m)), V({n,m)), 2) with:
H(<nam>) = (O((n,m)),H,,u, w17w27w77R)a
O<<n7m>) - {x@j?x;,j ’ 1<i<m,0<7< n}
U{d;|0<i<2n+2m+5}
U {ci | 1<:< m} U {€7f07f17yes7n0}7
N:[HQH7]1:
w1 = A, wy = wy = do,
H=1{1,2,3,4,5,6,7},

and the following rules (we also give explanations about the use of these
rules):
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Generation phase
Gl [dl}2—) [di}g[di]4,0§i<n;
G2 [di], = [diya]y[do] 1 €{3,4},0 <i <mn;
G3 [dn]y — [do]; do];-

In 2n + 1 steps, 2" membranes with label 5 are created, corresponding to
the truth-assignments of the variables 1, . .., x,. During this process, the
object d; inside the membrane with label 3 corresponds to the true value of
variable x; 1, and the object d; inside the membrane with label 4 corresponds
to the false value of variable x;, 1. The created membranes with label 1 are
dummy membranes: no rule associated with them is applied; this allows us
to change the membrane labels during the computation.
/

G4 [mij = wijaly [i; 2 @i ] l1<i<m1<j<mn
G5 [xi,0—>ci]3, [xi70—>)\]4,1§i§m;
G6 [x’ivoé)\b, [m§,0—>ci]4,1§i§m.

The labels of the created membranes toggle between 2 at even steps and 3
or 4 at odd steps. Every object z; ; of the input evolves to x; ¢ in 2j — 1
steps. Then, it evolves to ¢; in membranes where frue value was chosen for x ;
(recall thatx; ; = true satisfies clause C;) and is erased in membranes where
Jfalse value was chosen for x;. Similarly, l‘; ; changes to ¢; if z; = false and
is erased if x; = true. After 2n + 1 steps, the membranes with label 5 will
represent all possible truth-assignments of the variables in 3. Every such
membrane will contain dy and the objects representing the clauses satisfied
by the present truth-assignment.

Checking phase
C1 [01]5%[60]6[610]1;
C2 [ci — il <i<m;
C3 [di}6—>[di+1]5[d0]1,0Si<m,[00—>)\}5;
C4 [dm — €f0]5.

A membrane with label 5 where object ¢; appears will change the label to
6 (recall that no rule is ever applied in membranes with label 1 created by
division). In a membrane with label 6, the subscripts of all objects c; are
decremented by one, and at the same time the subscript of d; is incremented
by one and the label of the membrane changes back to 5.

If in the beginning of the checking phase c1, . . ., ¢; are present (0 < 7 <
m), but ¢;41 is absent, then the evolution of the membrane finishes after 2¢
steps with label 5, with d; and without c;. If all objects ¢;, 1 < ¢ < m, are
present in the beginning of the checking phase, then after 2m steps they will
all be rewritten into cg, and dy will evolve into d,,, (and into e fj; in one more
step).

CS5 el = [lses [fo—= filss
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C6 6[]7H[e]7; [f1]5%[d2m+2n+5]6[d0]1;
C7 e[]6—>[e]6.

If § has solutions (suppose 3 has s solutions, 1 < s < 2™), then at step
2n+2m+ 3, every membrane corresponding to a solution of 3 ejects e into
the skin region, and at the same time fj changes to fi. Atstep 2n +2m +4,
one copy of e enters the membrane with label 7, and s membranes change
label from 5 to 6 by rule [ f1], — [ e[ do],. At step 2n +2m + 5, s — 1
copies of e enter in s — 1 membranes of the s + 1 membranes with labels 6
and 7. If 8 has no solution, then no object e enters membrane labeled 7.

Output phase
Ol [d; —>d2+1]7,0§i§2m+2n+5;
02 [cl; - [yesly| do
03 [yes} Hﬁyes;
04 [yes], — [],yes:
05 [d; —>)\]6,26{2n+2m+5 2n +2m + 6};
06 [d2n+2m+6]7 - []7no
07 [n } []1no.

If 3 has solutions, then at step 2n + 2m + 4 the membrane with label 7
receives a copy of e by rule C6. In this case, rule O2 will be applied either
at step 2n + 2m + 5 or at step 2n + 2m + 6 (this can happen if s > 1 and
rule C6 is applied once more at step 2n 4 2m + 5), changing the label of
the membrane from 7 to 6. It will take two more steps to eject object yes in
the skin and then into the environment. If 3 has no solutions, then after step
2n + 2m + 6 the membrane with label 7 remains with label 7 and then rule
06 and afterwards O7 are applied, ejecting object no into the skin and then
into the environment. O

If § has at least two solutions, then the behavior of this system is not
deterministic: in step 2n + 2m + 5 either one of the rules C6 and O2 can
be applied to the membrane with label 7 (applying C6 in step 2n + 2m 4 5
results in one extra copy of e in membrane with label 7 and one copy of e
missing in some membrane with label 6). However, the system is confluent:
in either case mentioned above, after at most three further steps, the system
produces the output yes and halts in the same configuration (the membrane
with label 7 changes its label to 6 and the counter d2y, 1245 OF dopt2m—+6
is erased). From this point of view, using rules of type (c{,) allows to obtain
a stronger result:

Theorem 7. P systems with rules of types (ay), (c;), (€o0) can solve SAT, in
a deterministic way, in linear time with respect to the number of variables
and the number of clauses.
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Proof. Let us consider a propositional formula in the conjunctive normal
form:

B=CiN...N\Chp,
Ci=vi1V...Vyis, 1 <1< m, where

The instance (3 is encoded as a multiset w over X'({n, m)) in the same way
as in the previous proof. For given (n, m) € N2, we construct a recognizing
P system (II({n,m)),V((n,m)), 2), with

1I((n,m)) = (O((n,m)), H, p, w1, wa, R),
O((n,m)) =X((n,m))U{d; |0 <i<4dn+2m+4}U{e; |0<i<n}
U{c |1 <i<m}U{a,t, f,u,v,yes,no},

w=1[1l]
w1 = wa = dp,
H={1,2,3,4,5,6,7),

and the following rules (we also explain the construction here):

Generation phase

Gl [ d; —>ezau} ,0<i<n
2 [a], []2[f]2;
{] = []za. [ fl, =[],
51

ez—>dz+1]l,l€{3 4},0 <i<mn;
ul, = [],a,1 € {3,4}.

In 4n steps, 2" membranes are created, corresponding to the truth-
assignments of the variables x1, . . . , x,,. During this process, object d; inside
the membrane with label 3 corresponds to the true value of variable x;4 1,
and object d; inside the membrane with label 4 corresponds to the false
value of variable x;; 1. Object a is used to choose the truth-assignment of
variables, and object u is used to change the membrane label back to 2.

G6 [wij = mijal, [
le{3,4};
G7 [-Ti,l — 01]3, [CL‘Z'J — )\]4, 1< <m;

G8 [z} = Ny, [7j; —ci, 1 <i<m.

—>x” Upl<i<m,1<j<n,

The label of the created membranes is 2 and then changes to 3 or 4 at
steps 4i + 3, 0 < 7 < n. Every object z; ; of the input evolves to x; 1 in
4(i — 1) steps. Then, it evolves to ¢; in membranes where frue value was
chosen for x; (recall that x; ; = true satisfies clause C}) and is erased in
membranes where false value was chosen for x;. Similarly, j changes to
c; if x; = false, and is erased if z; = true.
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GY [dy — dny1v]s:
G10 [v]2 — []5a; [dpy1 — dou]Q.

After step 4n + 2, the membranes with label 5 will represent all possible
truth-assignments of the variables in 3. Every such membrane will contain
dp, u, and the objects representing the clauses satisfied.

Checking phase
C] [cz—>cz 15 1 <i <m;
2 [u]s—[]ga
3 Leofy = Ly
4 [d; —>d2+1u] 0<i<m-—1;
5 [dm-1 — dm }

By expelling object u, the membrane changes label from 5 to 6. At the same
time the subscripts of all objects c; are decremented by one. A membrane
with label 6 where object ¢y appears will change the label back to 5. At the
same time the subscript of d; is incremented by one and w is reproduced
(except for i = m — 1).

If in the beginning of the checking phase c1,...,c; are present (1 <
1 < m), but ¢;41 is absent, then after 2¢ + 1 steps rule C3 will no longer
be applicable and the membrane will have label 6, no object cg, and will
never change the label again. After m + 7 4+ 1 steps from the beginning
of the checking phase the membrane will stop evolving. If all objects c;,
1 < 4 < m, are present in the beginning of the checking phase, then after
2m steps they all will have been erased, dg will have evolved into d,,, and
the membrane label will be 5.

Output phase
Ol [dm] s — []5yes;
yes]; — [];yes;

2 [
3 [d; —>d2+1] 0<¢:<4n+2m + 3;
4 [ dintomya], — []no.

At step 4n + 2m + 3, every membrane corresponding to a solution of 3
expels yes in the skin region, and in the next step one copy of yes (if any)
is ejected into the environment, changing the label of the skin from 1 to
7. If 8 has no solutions, then after step 4n + 2m + 4 the skin membrane
remains with label 1 and then rule O4 is applied, ejecting the object no into
the environment. a

5.2 Parallel communication

In P systems with active membranes, the evolution rules (those of type (a))
are typically considered as only using objects, while the communication,
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dissolution and division membranes as using both objects and membranes,
and hence cannot be applied in parallel, because a conflict could appear as a
result of a simultaneous application of rules changing membrane polariza-
tions (or labels) in a different way.

However, if we forbid the communication operations to change labels
(type (bo) or (cp)), then we could regard them as not using membranes and
apply them in parallel, like the evolution rules, as is done, for instance, in
the symport/antiport P systems in [8] and in P systems with boundary rules
in [2]. We use subscript p to denote the property of parallel application of
rules of the following forms.

(bop) al], — [b],,where a,b € O and h € H;
(cop) [al, — [],b, where a,b € Oand h € H.

P systems with membrane division with changing labels, and with paral-
lel application of both evolution rules and communication rules of type (bg)
turn out to be able to solve SAT in linear time in a deterministic way, thus
improving from this point of view the result in Theorem 6. The universality
of systems with parallel communication remains as an open question.

Theorem 8. P systems with rules of types (ao), (bop), (o), (e() can solve
SAT, in a deterministic way, in linear time with respect to the number of
variables and the number of clauses.

Proof. Following the generation phase and rules C1-C3 in Theorem 6, we
replace the remaining part of the construction with:

C4 [dm]|; — []56
C5 ef], — €],

At step 2n + 2m + 2, every membrane corresponding to a solution of (3
ejects e in the skin. At step 2n 4 2m + 3, all objects e move in parallel into
a membrane with label 7.

C6 [e]; [YeS]l[do]lé
[yes} — [ yes;
8 [d; —>dz+1] 0<i<2n+2m+ 3;
[d2n+2m+4] — []7110’ [noh - []1n°-

If 3 has a solution, then we replace one copy of e with yes, changing the
label from 7 to 1, send yes out of that membrane and then eject it in the
environment. Otherwise, after step 2n + 2m + 4 the membrane with label
7 will not change its label, so no will be sent out of it and then ejected in
the environment. a

Remark 2. In Theorem 7, no rules of type (by) were used, so its statement
remains valid also for parallel communication “in" (rules of type (bop)).
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5.3 Solving SAT without polarizations and without changing labels

In the brute-force algorithms as those in Section 5, the first phase produces
all 2" truth-assignments for the n variables used and the list of clauses
satisfied. As we have noticed at the beginning of Section 5, this can be done
without using polarization and without using the label changing possibilities.
Actually, rules of types (ap) and (eq) suffice.

The second phase is to check whether there exists a membrane containing
a given set of symbols. If the second phase started from a special membrane
structure (of a form we will see below: with each truth-assignment separately
enclosed in m membranes embedded in each other, corresponding to the m
clauses of a formula — see Fig. 1 for a pictorial representation), then one
could solve the problem without polarizations and without changing labels,
moreover, only using rules of types (ag), (o), and (dy). So, the problem
remains to produce the membrane structure of this “special" form — and this
can be achieved by using non-elementary membrane division rules without
polarization and without changing the labels of membranes.

The rules we are using will be of the form

(fo) H]Z[]j]k = [[1.],l []j]k,wherei,j,k;arelabels.

The meaning of such a rule is that if two membranes with labels 7, j are
placed inside a membrane with label %, then the membrane k is divided so
that one of the new membranes &k contains membrane ¢ and the other one
contains membrane j; all membranes and objects placed inside membranes
1 and j, as well as all membranes and objects from membrane k£ placed
outside membranes ¢ and j, are reproduced in the new copies of membrane
k. As usual, the membranes different from i, j, k (those not involved in this
rule) evolve in the standard non-deterministic maximally parallel manner.

Rules for dividing non-elementary membranes are already known to
be very powerful — illustration can be found in, e.g., [1,16]. As we will
see immediately, they are powerful even in the restricted case where no
polarization is used and the labels of membranes are not changed.

Theorem 9. P systems with rules of types (ag), (co), (do), (eo), (fo), con-
structed in a semi-uniform manner, can solve SAT, in a deterministic way,
in linear time with respect to the number of variables and the number of
clauses.

Proof. Let us consider a propositional formula in the conjunctive normal
form:

B=CiAN...N\Cpy,
Ci=vyiaV...Vyiy, 1 <i<m, where
Yie € {j, -2 |1<j<n}, 1<i<m,1<k<lI.



140 A. Alhazov et al.

The instance 3 of SAT will be encoded in the rules of the P system by
multisets v; and v} of symbols, corresponding to the clauses satisfied by
true and false assignment of x ;, respectively:

vi={c|zje{yip|1<k<[},1<i<m},1<j<n,
vi=A{ei | ~aj € {yin | 1<k <L} 1<i<m}1<j<n
We construct the P system
I =(0,H, p,wp,...,wnts, R), with
O={d;i|0<i<2n+42m+2}U{a;t;, fi|1<i<n}
U{ci |0<i<m}U{yes,no},
=11 Toly - Togolmts
wo = Wm+1 = do,
wi:)\,i¢ {O,m—l—l},
H=1{0,...,m+ 3},

and the following rules (we accompany them with explanations about their
use):

Generation phase
Gl [dgi — ai+1d2i+1]0, forall 0 <7 < n;and
[doi—1 — dai] g, 1 <3 <m; [danti — donyivi]y, 0 <@ <m.

We count to 2n + m, which is the time needed for producing all 2" truth-
assignments for the n variables, as well as membrane sub-structures which
will examine the truth value of formula 3 for each of these truth-assignments;
this counting is done in the central membrane; moreover during the first n
odd steps, symbols ay, ..., a, are subsequently produced.
G2 [ai]o — [ti]o[fi]O’ 1< <n.
In membrane 0, we subsequently choose each variable z;, 1 < ¢ < n, and
both values true and false are associated with it, in form of objects ¢; and
fi, which are separated in two membranes with label 0. The division of
membrane 0 is triggered by the objects a;, which are introduced by the first
rule from group G1 in odd steps; this is important in interleaving the use of
these rules (hence the division of membrane 0) with the use of the rules of
group G4, for dividing membranes placed above membrane 0.
G3 [ti —>Ui]0, [fz —>’Uﬂ0,0 <1 <n.

In membrane 0, we subsequently look for the clauses satisfied by the truth-
assignments of each variable z;, 1 < i < n. After 2n+ m steps, if there is at
least one membrane with label 0 which contains all the symbols ¢y, . . ., ¢,
this means that the truth-assignment from that membrane satisfies all clauses,
hence it satisfies formula 5. Otherwise (if in no membrane with label 0 we
get all objects ¢y, co, . . ., ¢p), the formula [ is not satisfiable.
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G4 [[1;[1iiy = (11l 1)), 0 <i <m,

These are division rules for membranes with label 0, 1, . . ., m, to be used for
the central membrane 0 in steps which alternate with the use of the first rule
of type G1. The division of a membrane with label 1 is then propagated from
lower levels to upper levels of the membrane structure and the membranes are
continuously divided until also a membrane with label m has been divided.
In the following cycle of the division process, the same holds, resulting in
the structure as shown in Fig. 1 after 2n 4+ m steps.

G5 [d2n+m]0 — Cp.

After 2n 4+ m steps, each copy of membrane with label 0 is dissolved and
the contents is released into the surrounding membrane, which is labeled
with 1.

Checking phase
Cl [¢], = c, 1 <i<m.

A membrane with label j, 1 < j < m, is dissolved if and only if c; ap-
pears in it (i.e., clause C} is satisfied by the current truth-assignment); if
this is the case, then the truth-assignment associated with the membrane
is released in the surrounding membrane. Otherwise, the truth-assignment
remains blocked in membrane j and never used at the next steps by the
membranes placed above.

C2 [Co] — CQ.

m+1

The fact the object ¢y appears in the membrane with the label m + 1 means
that there is a truth-assignment which satisfies the formula (. In this case, the
membrane with label m + 1 is dissolved and the contents are released into
the membrane with label m + 2. Otherwise, the formula is not satisfiable,
and the membrane with label m + 1 will not dissolve.

C3[di—>di+1] 0<i<2n+2m + 1.

m+1°
At the same time as the membrane with label m + 1 is dissolved (at step

2n+2m+1), the object doy, - 2/m+1 evolves to doy +-2m+2, and then is released
to the membrane with label m + 2.

Output phase
Ol [d2n+2m+2]m+2 — yes.
02 [al,, 5= [],,,130 a € {yes,no}.

In the next two steps, the object yes is produced, and then sent out to the
environment.

03 [ d2n+2m+2]m+l — no.

04 [no|, ., — no.
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2n

Fig. 1. The membrane structure of the system II after 2n + m steps

If the formula is not satisfiable, then the object d2,4+2m+1 remains in the
membrane with label m + 1, which produces the object no, ejecting it into
the membrane with label m + 2, then into the membrane with label m + 3,
and finally into the environment.

Therefore, in 2n + 2m + 3 steps the system halts and sends into the
environment one of the objects yes, no, indicating whether or not the
formula 3 is satisfiable.

It is easy to see that the system I/ can be constructed in a polynomial
time starting from 3 and this concludes the proof. a

Remark 3. Rules of type (cg) are only needed to output the result in the
environment, so this type can be omitted if we consider internal output:
exactly one of objects yes and no will be introduced in the skin membrane
in the last step of the computation.

6 Final remarks

With the goal of removing the polarizations from P systems with active
membranes, we have investigated the possibility to allow instead to change
the labels of membranes, and we were successful in the case of rules for
sending objects out of a membrane (of type (c)) and in the case of rules
for dividing membranes (of type (e)) — losing however the determinism.
The case of using rules of type (b) (introducing objects into membranes)
for changing the labels has remained open in what concerns the simulation
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results — as well as the possibility to solve SAT in polynomial time — but not
in what concerns the universality.

The use of non-polarized membranes suggests further possibilities in
what concerns the application of rules. For instance, as already mentioned
in Section 5.2, one of the reasons to use the rules of types (b),(c) in a
sequential way was the polarization change (using several rules at the same
time could lead to polarization conflicts). The same reason prevents using
rules of types (1), (¢j) in a parallel manner. When no polarizations are
present and no label is changed, these difficulties do not appear, hence we
can use also rules of types (bg), (co) in parallel: all objects which can enter
or exit a membrane have to do it at the same time, in the maximally parallel
manner.

On the other hand, we can allow also rules of type (a) to change the
polarization or the label of the membrane — and then such a rule should be
applied in a sequential manner, not to lead to label conflicts. We write such
arule in the form [a]}* — [v]}%, or [a], — [v],,.

In total, we get three criteria to classify the rules: changing or not polar-
izations, changing or not labels of membranes, using the rules in parallel or
sequentially. On the other hand, we have rules of five forms (six, if we also
consider rules for dividing non-elementary membranes), each one being of
several possible types with respect to the previous classification. A lot of
classes of P systems are obtained by combining these possibilities, a small
“jungle" which is worth exploring, looking for results of three types: simu-
lation lemmas among different classes of P systems, universality results (as
a consequence of possible simulation lemmas or directly proven), efficiency
results. We hope to return to this topic in a forthcoming paper.
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