
GROK-LAB: Generating Real On-chip Knowledge for
Intra-cluster Delays Using Timing Extraction

Benjamin Gojman
Department of Computer and

Information Systems
University of Pennsylvania

3330 Walnut Street
Philadelphia, PA 19104

bgojman@seas.upenn.edu

Sirisha Nalmela
Juniper Networks

10 Technology Park Drive
Westford, MA 01886

snalmela@juniper.net

Nikil Mehta
Department of Computer

Science California Institute of
Technology MC 305-16
1200 E. California Blvd.
Pasadena, CA 91125
nikil@caltech.edu

Nicholas Howarth
nhowarth@seas.upenn.edu

André DeHon
andre@acm.org

Department of Electrical and Systems Engineering
University of Pennsylvania

200 S. 33rd St. Philadelphia, PA 19104

ABSTRACT
Timing Extraction identifies the delay of fine-grained com-
ponents within an FPGA. From these computed delays, the
delay of any path can be calculated. Moreover, a comparison
of the fine-grained delays allows a detailed understanding of
the amount and type of process variation that exists in the
FPGA. To obtain these delays, Timing Extraction measures,
using only resources already available in the FPGA, the de-
lay of a small subset of the total paths in the FPGA. We
apply Timing Extraction to the Logic Array Block (LAB)
on an Altera Cyclone III FPGA to obtain a view of the
delay down to near individual LUT granularity, characteriz-
ing components with delays on the order of a few hundred
picoseconds with a resolution of ±3.2 ps. This information
reveals that the 65 nm process used has, on average, random
variation of σ/µ = 4.0% with components having an aver-
age maximum spread of 83 ps. Timing Extraction also shows
that as VDD decreases from 1.2 V to 0.9 V in a Cyclone IV
60 nm FPGA, paths slow down and variation increases from
σ/µ = 4.3% to σ/µ = 5.8%, a clear indication that lowering
VDD magnifies the impact of random variation.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—placement and
routing ; B.8.1 [Performance and Reliability]: Reliabil-
ity, Testing, and Fault-Tolerance; C.4 [Performance of
Systems]: Measurement techniques

General Terms
Algorithms, Measurement, Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’13, February 11–13, 2013, Monterey, California, USA.
Copyright 2013 ACM 978-1-4503-1887-7/13/02 ...$15.00.

1.85 1.88 1.91 1.94

0
4
0

8
0

1
2
0

1
6
0

Path Delay (ns)

F
re

q
u
en

cy

(a) Measured

3.07 3.09

0
2
0
0

4
0
0

6
0
0

Path Delay (ns)

F
re

q
u
en

cy
(b) CAD

1.85 1.88 1.91 1.94

3
.0

7
0

3
.0

7
4

3
.0

7
8

3
.0

8
2

Measured Path Delay (ns)

C
A

D
P

a
th

D
el

ay
(n

s)

(c) Correlation
Figure 1: Path delay of 1000 nearly identical paths of length
7 LUTs, comparing measured delays to delays reported by
the CAD tools for a Cyclone III 65 nm FPGA

Keywords
Component-Specific Mapping; Variation Measurment; Vari-
ation Characterization; In-System Measurement

1. INTRODUCTION
Circuit variation is quickly becoming one of the biggest

problems to overcome if the benefit from Moore’s Law scal-
ing is to continue. It is no longer possible to maintain an
abstraction of identical devices without incurring huge yield
losses, performance penalties, and high energy costs. Cur-
rent techniques such as margining and speed grade binning
are used to deal with this problem. However, they will be-
come prohibitively conservative, only offering a limited so-
lution that will not scale as variation increases.

Fig. 1 concretely demonstrates the price we pay for these
techniques. We carefully measured 1,000 paths consisting
of seven buffers in one logic array block (LAB) of an Al-
tera Cyclone III 65 nm FPGA. Fig. 1a shows a histogram of
the results of these measurements. Similarly, Fig. 1b shows
the distribution of delays as computed by the CAD tools
for these paths. Observe that the mean of the measured
distribution is significantly lower than that reported by the
CAD tools. This illustrates the magnitude of conservative
margining, showing that the fabricated paths are only 60%

http://www.seas.upenn.edu/~bgojman
mailto:bgojman@seas.upenn.edu
http://www.seas.upenn.edu/~andre
mailto:andre@acm.org

the delay predicted by the CAD tools. Moreover, the mea-
sured distribution has a much larger spread — 96 ps vs.
11 ps. Fig. 1c demonstrates there is no correlation between
the delays measured and those reported by the CAD tools.

FPGAs have the unique advantage over ASICs that they
can use more fine-grained and aggressive techniques that
carefully choose which resources to use after fabrication in
order to mitigate adverse variation effects. In [10] we show
that a component-specific mapping solution reduces energy
needs by 50% and will be a necessity to extend beneficial
scaling as variation increases. This approach requires mea-
surement of the underlying resource delays for the CAD tools
to generate a custom mapping perfectly adapted to the vari-
ation in the FPGA. In this paper we present Timing Extrac-
tion, a methodology that allows the kind of fine-grained mea-
surement of fabricated component delays necessary for [10]
in an efficient and inexpensive manner, utilizing only re-
sources already available on conventional FPGAs. To prac-
tically validate Timing Extraction, we apply it to clusters
(LABs) in the Altera Cyclone III and Cyclone IV FPGAs
and confirm that the measurements and calculations reflect
underlying process variation.

The key challenge in Timing Extraction is that it is not
possible to directly measure the characteristics of every LUT
or wire in an FPGA. Nonetheless, we show that it is pos-
sible to obtain fine-grain delays using an indirect approach
to measure, compute and characterize the variation of small
groups of components. Work in [18] demonstrated the fea-
sibility of measuring path delays without the need of any
dedicated test circuitry, by surrounding the path with two
registers that are already part of the reconfigurable fab-
ric. Timing Extraction takes advantage of this measurement
technique but goes further by demonstrating how to use the
measurements to resolve the delays of individual resources.

The measured path is composed of multiple components,
the individual delays of which we would we would like to
know. By configuring and measuring a small set of overlap-
ping paths, we can setup a linear system of equations that,
when solved, gives the individual delay of each component
in the paths [5]. A simple example will give better intuition
as to what the technique actually accomplishes. Consider
that we measure three paths. Path 1 composed of compo-
nent A and B. Path 2, B and C. Finally, Path 3, C and
A. Suppose the delays of the paths are 5ps, 4ps and 3ps
respectively. That leads to the system of equations below:

A+B = 5ps Path 1
B + C = 4ps Path 2
C +A = 3ps Path 3

Even though we did not measure the delays directly, with
little work we can solve for the delay of A, B, and C to be
2ps, 3ps and 1ps respectively.

Timing Extraction does exactly this but at a level that al-
lows us to characterize a full FPGA. Formulating the naive
problem, where every wire and transistor in the FPGA is
represented by a separate variable in the system of equa-
tions, invariably leads to an underdetermined system with-
out a unique solution (Sec. 3.2). However, Timing Extrac-
tion judiciously groups components into discrete units of
knowledge (DUKs) which, combined with a careful selection
of measured paths, guarantee a solution to the delay of each
DUK in the system (Sec. 3.3). With that information, we
can predict the delay of any path that could be used when
mapping logic to the FPGA.

We begin with a brief review of the required background
(Sec. 2). Sec. 3 develops the ideas of Timing Extraction
by using the Cyclone III as a case study. Results from our
measurements are presented in Sec. 4. While we present con-
crete details on how to measure the Cyclone III, the general
technique can be extended to any modern FPGA; in Sec. 5
we briefly sketch how to port the ideas and why they are
generally applicable. An outline of future work is explored
in Sec. 6, before concluding (Sec. 7).

Novel contributions of this work include:

• First identification and demonstration of techniques
for determining the delay of individual LUTs and the
unique interconnect delay between pairs of LUTs using
only on-chip FPGA resources.

– Identification of smallest delay-measurable groups
of components

– Identification of smallest set of measurements nec-
essary to extract complete fine-grain delay infor-
mation within a cluster (LAB)

– Algorithm for calculating component delays from
path measurements

• Technique for predicting delay of any path in a cluster
(LAB) using component LUT delay measurements.

• First set of measurements to fully characterize the de-
lay components within a cluster (LAB) in a commercial
FPGA.

• Quantification of process variation at a near LUT-level
granularity.

• Quantification of increased random variation with volt-
age scaling.

• Characterization of significant contribution from ran-
dom variation in process variation.

2. BACKGROUND

2.1 Process Variation
Process variation refers to differences between device pa-

rameters due to manufacturing. These differences ultimately
affect the delay and energy requirements of the device. Cor-
related variation has historically comprised the majority of
process variation, where the amount a device varies is cor-
related to some parameter, such as location on the wafer.
Consequently, most techniques aim to reduce correlated vari-
ation. Binning, for example, mitigates die-to-die variation,
while biasing reduces correlated regional variation. In
essence, correlated variation provides a model which can be
used to reduce process variation. However, as feature sizes
continue to shrink, more and smaller transistors fit on one
chip, greatly increasing the contribution of random varia-
tion to process variation. Unfortunately, unlike correlated,
random variation is not easily modeled and mitigated.

Fig. 2 shows how the three main contributors to random
variation – oxide thickness, line edge roughness, and random
dopant fluctuations – lead to a significant increase in varia-
tion experienced by Vth, the transistor’s threshold voltage,
as technology scales.

The value of Vth has a direct and profound effect on the
performance and energy requirements of a transistor. Eqs. 1
and 2 represent the current through a transistor during the
saturation and subthreshold operating points [6, 11]. Al-
though physical parameters such as transistor geometry, W ,
L, and dopant concentration, η, have a strong stochastic

Figure 2: σVth as a function of technology nodes, based on
predictive technology models. Considering the individual ef-
fects of random dopant fluctuations (RDF), line edge rough-
ness (LER) and oxide thickness (OTF) from [19]

variation component, it is the exponential dependence on
Vth that brings about the harmful effects of random varia-
tion on the current through a transistor.

Ids,sat = WvsatCox

(
Vgs − Vth − Vd,sat

2

)
(1)

Ids,sub =
W

L
ηCox(n− 1) · vT 2 · e

Vgs−Vth
n · vT

(
1 − e

−Vds
vT

)
(2)

In turn, the propagation delay τpd and leakage energy of the
circuit are a function of current (Eqs. 3, 4).

τpd = Cl ·
Vds

Ids
(3) Eleak = Ids,sub ·Vds · τcycle (4)

As such, random physical variation expresses itself in differ-
ences in the energy efficiency and delay of a transistor.

Statistical static timing analysis (SSTA) [14] attempts to
model the expected random variation and with it the ex-
pected behavior of the FPGA. With this model, the CAD
tools can generate a mapping that, statistically speaking,
will reduce the effects of random variation. Unfortunately,
this solution inherently fails to accommodate every FPGA.
Instead of employing this one-size-fits-all solution, Timing
Extraction measures and extracts detailed delay information
from the FPGA after fabrication. This can then be provided
to the CAD flow which generates a component-specific map-
ping tailoring the design to the particular FPGA.

The delay of a component in the FPGA is not only af-
fected by process variation but can also fluctuate due to
environmental and temperature changes [7] as well as ag-
ing effects [15]. To ensure that measured delays consis-
tently represent process variation, Timing Extraction re-
quires that measurements be taken in a highly controlled
manner. Sec. 4.1 details the controls employed for our appli-
cation on the Cyclone FPGA. The consistency of the results
presented in Sec. 4.3 concretely demonstrates that Timing
Extraction does measure process variation.

2.2 Altera Cyclone LAB Architecture
Timing Extraction is a general methodology that provides

fine-grain delay measurement of small groups of components
within an FPGA. Although it is applicable to any FPGA, to
ground the presentation in this paper, we focus our applica-
tion to the logic array blocks (LAB) of the Altera Cyclone
III and Cyclone IV FPGAs.

The LAB in these FPGAs is composed of 16 Logic Ele-
ments (LE) each having a 4-LUT and optional register out-
put, a set of 38 routing channels for external inputs, and
16 local routing channels for LE-to-LE communication with
50% depopulation (Fig. 4). The scope of this paper limits
delay measurements to the 16 LEs and the 16 local routing
channels in the LAB.

To better understand the results presented later in Sec. 4,
it is worth noting that the architecture of the LUTs is such
that nominally, the first two inputs, A and B, have similar
delays and by design are slower than input C which in turn is
tailored to be slower than input D. Moreover, inputs A and
B form a complete input set, where every LE can connect
to every other LE in the LAB by using either input A or B,
and similarly inputs C and D form a complete input set.

2.3 Path-Delay Measurements
We use a launch-capture technique to measure the delay

of a path in an FPGA. In this approach, a combinatorial cir-
cuit, known as the circuit under test (CUT), is configured
between a launch register and a capture register. Start-
ing at an initial frequency and increasing to a maximum
frequency, signals are sent from the launch register to the
capture register. When a signal fails to reach the capture
register within half of a clock cycle, we know that the de-
lay of the path is greater than twice the frequency at which
that signal was clocked. This technique has been success-
fully used to capture the delay of paths on FPGAs for many
applications [8, 12,13,18].

A limitation of this measurement technique, however, is
that it cannot measure a path that is faster than twice
the highest frequency supported by the FPGA’s on-chip
PLLs. Twice the frequency comes from the fact that the
launch and capture registers are clocked on opposite clock
edges. Therefore, any work that exclusively uses this mea-
surement technique will be limited to reporting delays of
long paths. To ground this, consider that the maximum
frequency for the Cyclone III PLLs used in this work is
402.5 MHz. This means that the fastest path we can mea-
sure is 1

2 · 402.5
= 1.24 ns. Fig. 1a shows that, on average, a

path of length 7 LUTs is measured to take 1.90 ns, mean-
ing that, roughly on average, the delay through one LUT is
271 ps. Combining this fact with our maximum frequency
leads to the conclusion that the smallest path we can mea-
sure is 5 LUTs long. This ignores the expected variation
spread. Therefore, to err on the side of caution, we do not
measure anything with less than 6 LUTs in a path. Nev-
ertheless, as we will later show, this work reports on de-
lays on the order of one LUT by taking delay measurements
of long paths and breaking them into smaller parts. [18]
and [17] take only a single measure within each LAB or CLB
and make no attempt to characterize within-LAB variation.
The most closely related technique used in [3] and [20] takes
the difference between two ring oscillators to extract sub-
cluster delays. However, this approach fails to account for
the unique interconnect delay between pairs of LUTs, nor is
it able to account for register delays.

Due to the nature of cmos and FPGA circuit design that
uses nmos pass transistors, there is a marked delay difference
in a rising transition, as compared to a falling transition. In
order to separate the falling and rising delays, our CUT is
composed of buffers in series. In this way, all elements in a
path transition in the same direction, allowing us to sepa-
rate the rising transition through the path from falling tran-
sitions (Fig. 14). Fig. 3 shows a diagram of the path-delay
measurement circuit used. A signal with a 50% duty cycle
is provided to the launch register. The signal propagates
through the CUT and the capture register records its out-
put. Errors are detected by the two error detection circuits,
one monitoring rising failures, the other, falling failures.

CUT

Launch Capture

Falling Error
Detection

Rising Error
Detection

LAB

Block Under Test

LUT

Test Clock

QDQD

QD

QD

Stimuli

Generator

Rising
Error

Counter

Falling
Error

Counter

Comp.

<

Comp.

<
Test Clock

Figure 3: Components and simplified placement of path-
delay measurement circuit

Because of operating variation such as clock jitter, it is not
sufficient to observe one failure to declare the delay of a path.
Instead, the path is tested at one frequency many times, and
two counters, for rising and falling transitions, keep track
of how many failures occurred at that frequency, for that
transition. If at frequency f , the number of failures reaches
a percent of the total number of transitions, the delay of that
circuit is reported as 1

f
. The transition from no failures to

100% failures is gradual. If we assume that the variation that
caused this gradual failure rate is mostly stochastic and has
a symmetric probability distribution, then the 50% failure
rate provides the most accurate estimate of delay given a
small number of samples. We do not use this frequency for
regular operation, since at this frequency signals fail timing
50% of the time. Knowing the variance in cycle time, we can
then select a suitable operating frequency that keeps timing
errors down to an acceptable level.

3. TIMING EXTRACTION
The general idea behind Timing Extraction is easy to un-

derstand. It is not possible to measure the delay of every
component in an FPGA directly since individual transistors
or wires cannot be isolated from their surrounding compo-
nents. Nevertheless, by measuring the delay of different
paths through an FPGA, it is possible to decompose the
delays of these paths into their constituents. Essentially,
each path consists of a linear sum of the delay of its parts;
therefore, we can cast this problem as a linear system of
equations where each equation represents a path and equals
the measured delay of the path. With enough equations,
we can solve for all the unknowns and directly acquire the
delays of every component used in these paths. In order
for the system of equations to have a unique solution, it is
imperative to carefully select what the variables in the equa-
tions represent. In this section, we use the Altera Cyclone
LAB architecture to ground the development of the general
Timing Extraction methodology. We begin by considering
what is individually calculable, followed by an analysis of
what paths must be measured. This leads to the realization
that our initial assessment of what is individually calculable
is flawed, which ultimately arrives at the notion of discrete
units of knowledge (DUKs), allowing for a complete solution.

3.1 Logical Components
It is not possible to measure the delay of a single wire

or transistor in the FPGA, even indirectly. To explain, con-
sider the simple representation of the Cyclone LUT in Fig. 4.
Suppose we want to know the delay of only the highlighted
crosspoint in isolation. This is not possible since any path
that uses that crosspoint must use the labeled Local Inter-
connect, Output and MUX. However, since any path that
uses this crosspoint will naturally use the other components,

L
o
ca

l
In

te
rc

o
n
n
ec

t

D

Q
4-LUT

Input D
Input C
Input B
Input A

M
U

X

FF

Output

Figure 4: Block diagram of a Cyclone FPGA LE (4-LUT
and register), including local interconnect

LE j

iLE

LE j

iLE

LE j

iLE

Start Node Mid Node End Node

4-LUT

M
U

X

FF
4-LUT

M
U

X

FF
4-LUT

M
U

X

FF

4-LUT

M
U

X

FF
4-LUT

M
U

X

FF
4-LUT

M
U

X

FF

Figure 5: Highlighted, an example of the components that
form each of the three types of LC Nodes in a Cyclone LAB

there is no practical reason to measure its delay independent
of these components. This gives the notion of a Logical Com-
ponent or LC Node, and the first attempt at defining what
the variables in our system of equations represent.

As explained in Sec. 2.3, measured paths start at a regis-
ter, go through zero or more buffers, and end at a register.
A path in a LAB will begin at a register, go through some
number of LUTs and end at a second register. Fig. 5 shows
how we decompose this path into three types of LC Nodes.
The path begins at an LC Node whose first component is a
register, known as a Start Node, goes through zero or more
LC Nodes with no registers, Mid Nodes, and ends at an End
Node, an LC Node whose last component is a register.

Fig. 6a represents a path using groups of Start, Mid and
End Nodes. Thus, we let LC Nodes correspond to variables
in our system of equations and represent each measured path
delay by a linear sum of the delays of these LC Nodes.

To solve for the delay of all LC Nodes, we must measure
at least a number of paths equal to the number of LC Nodes
in a LAB. A Start Node and Mid Node start at one LE
and end at a second LE. Considering there are 16 LEs in
a LAB and two input sets (Sec. 2.2), this gives a total of
16× 15× 2 = 480 Start and 480 Mid Nodes per LAB. Since
End Nodes only use one LE, there are only 16 End Nodes
per LAB. In total, there are 480 + 480 + 16 = 976 LC Nodes
in a LAB, which is the minimum number of paths we must
measure to solve for their delay.

3.2 Matrix Representation
Once we measure a correct set of 976 paths and solve for

the delay of all LC Nodes, it will be possible to reconstruct
the delay of any of the approximately 1018 paths within a
LAB. Therefore, the problem is deciding which 976 paths
to measure. To better discuss this solution, we formulate
our system of equations as a matrix. A path is represented
by a row, while a column describes an LC Node. An entry
Lij in the matrix is 1 if LC Node j forms part of path i,
0 otherwise. Since there are 976 LC Nodes, and we need
at least 976 paths, our matrix will be at least as large as
976×976. Once the delays of the paths are measured, we use
this matrix and the path delays to solve for all LC Nodes.

Linear algebra tells us that if the rank of the original ma-
trix is equal to the number of LC Nodes, then we can solve

S1 M1+ M2+ M3+ E4+

Mid

Node

Start

Node

End

Node

Mid

Node

Mid

Node

(S1+E1) (M1+E2{E1)+ (M2+E3{E2)+ (M3+E4{E3)+

M-DUK

(a)

(b) C-DUK C-DUK C-DUK

Figure 6: Equivalence between LC Node basis and DUK
basis. To build intuition, the shapes give a geometric in-
terpretation to the delay of each LC Node or DUK. The
Equations below each figure show it mathematically

for the delay of each LC Node. Otherwise, if it is less than
the number of LC Nodes, the system is underdetermined
and, in general, contains an infinite number of solutions. Un-
fortunately, even if we measure the delay of all 1018 paths,
the rank of the matrix is 960, 16 less than the total number
of LC Nodes in a LAB. Sec. 5 provides some intuition as to
why this is the case for any FPGA in which we let LC Nodes
represent the variables in the system of equations.

Even though the matrix is rank deficient, it must have a
non-empty vector space which comprises its basis. In turn,
this means that there must be a set of linearly independent
paths, which, when taken together and measured, allow us
to compute the delay of any other measurable path in the
circuit. Since the LAB has a matrix with rank 960, we only
need to measure a linearly independent set of 960 paths to
compute the delay of any path in the LAB. Essentially, in-
stead of using a basis where every path in the matrix is
represented by a linear combination of LC Nodes, we use a
basis where every path is represented by a linear combina-
tion of the 960 paths measured.

Although this approach provides the delay of any path, it
does not achieve the desired results for two reasons. First,
it is difficult to incorporate these results into conventional
routing algorithms when a component-specific route is
sought, since routing algorithms [9] tend to expand routes
incrementally and we only have complete path delay infor-
mation. Second, the basis does not provide a fine-grained
understanding of the variation. The next section addresses
these shortcomings by defining a particularly convenient ba-
sis that spans the matrix yet provides the fine-grain, incre-
mental variation information desired.

3.3 DUK Basis
Timing Extraction’s objective is to provide fine-grain de-

lay information that can then be used to characterize the
variation in the FPGA as well as perform a component-
specific mapping to the FPGA. We know it is not possible
to solve for the delay of every LC Node; however, our so-
lution should allow us to formulate path delays as a linear
sum of a small number of components. By definition, an
LC Node is the smallest delay we care to measure; however,
since we cannot solve for LC Nodes, we consider the next
best thing, a basis where the variables represent a small lin-
ear combination of LC Nodes. We refer to this small linear
combination of LC Nodes as a Discrete Unit of Knowledge,
or DUK. First we introduce the vectors that compose the

iMDjjEiSj+ =

LE j

iLE

4-LUT

M
U

X

FF

4-LUT

M
U

X

FF

(a) M-DUK

jEiMj+ iCDj=iE
LE j

iLE

LE j

iLE

4-LUT

M
U

X

FF
4-LUT

M
U

X

FF

4-LUT

M
U

X

FF
4-LUT

M
U

X

FF

(b) C-DUK

Figure 7: Highlighted, an example of the LC Nodes that
form the two types of DUKs in a Cyclone LAB

DUK basis, then we show the equivalence between an LC-
based and a DUK-based model, finally we demonstrate that
unlike LC Nodes, we can compute the delay of DUKs.

Instead of having three types of variables which are com-
bined to represent a path, this basis contains two types of
DUKs. The delay of a Start Node plus an End Node forms
the first DUK (Eq. 5). On its own, this DUK forms a com-
plete measurable path, starting at a register and ending at
a second register. Moreover, all paths stem from this DUK,
therefore, we refer to it as a Mother DUK, or M-DUK. The
second DUK is known as a Child DUK, or C-DUK. As its
name suggests, it follows the Mother DUK and incremen-
tally grows a path. A C-DUK consists of the delay of a Mid
Node plus the difference of two End Nodes (Eq. 6).

M-DUK =Si + Ej (5)
C-DUK =Mi + Ej − Ek (6)

Assuming we have their delays, together, these two types of
DUK allow us to compose any measurable path in exactly
the same way that LC Nodes did. In general, a measurable
path will be represented by an M-DUK and zero or more
C-DUKs. For a path to be measurable, it must start and
end at a register, M-DUKs naturally represent such paths.
The function of a C-DUK is to replace the End Node and
extend the path by adding a Mid Node and a new End Node.
Consider, for example, the path shown in Fig. 6a consisting
of a Start Node, 3 Mid Nodes and an End Node. We can
easily represent this path in the DUK basis using one M-
DUK and 3 C-DUKs, as shown in Fig. 6b. Fig. 6b represents
each DUK as a jigsaw piece to give a geometric meaning to
the notion that two DUKs must complement each other in
order to correctly represent a path. Here, instead of each
DUK having a different delay, each DUK has a unique shape.
The concave left side of a C-DUK represents the carved out
delay of the subtracted End Node, while the convex right
side of a DUK shows the addition of an End Node.

In general, given a path represented by LC Nodes, we
can easily re-express it using the DUK basis by replacing
the Start Node with an M-DUK containing the same Start
Node, and every Mid Node by a C-DUK composed in part
by the Mid Node and subtracting the same End Node that
is added to the DUK before it. The last C-DUK must also
contain the End Node of the path in question.

3.4 DUKs in Cyclone LAB
Fig. 7 shows how DUKs map to LE i and j in a Cy-

clone LAB. Similar to the Start Node, the M-DUK spans
two LEs. Since there are 16 LEs in a LAB, and two input
sets (Sec. 2.2), there are 16 × 15 × 2 = 480 M-DUKs. An
equal number of C-DUKs exist, since a C-DUK also spans
two LEs. Using the 960 DUKs in a LAB, it is possible to

represent any path in the LAB originally represented by a
set of LC Nodes. Under Fig. 7 appear two LC Node equa-
tions leading to the corresponding DUKs. A subscript prefix
on both the LC Nodes and the DUKs indicate the source LE
and a subscript suffix signals the sink LE. We can establish
a one-to-one correspondence between Start Nodes and M-
DUKs (Fig. 7a) by observing that the prefix and suffix on
the Start Node matches the prefix and suffix of the M-DUK.
Essentially, it indicates that if the Start Node begins in LE
i and ends in LE j, the M-DUK will as well. A similar bijec-
tion exists between Mid Nodes and C-DUKs (Fig. 7b). The
equations in Fig. 7 also indicate which End Nodes must be
added or subtracted to correctly form the DUK.

These equations and this notation allows us to trivially
transform a path based on LC Nodes into one using DUKs.
We replace the Start Node with the M-DUK that has the
same source and sink LE. Similarly we replace every Mid
Node with the matching C-DUK. The delay contributed by
the End Node will already form part of the last DUK. An
example will help solidify this transformation.

Consider the path with four LC Nodes

iSj + jMk + kMl + lE
Applying the transformation algorithm described above leads
to the path

iMDj + jCDk + kCDl

Expand each DUK to its LC Node representation leads to

iSj + jE︸ ︷︷ ︸
iMDj

+ jMk + kE − jE︸ ︷︷ ︸
jCDk

+ kMl + lE − kE︸ ︷︷ ︸
kCDl

Which, after simplifying the terms, equals the original LC
Node-based path.

It is not a coincidence that the number of DUKs, 960,
matches the rank of the matrix formed by paths × LC Nodes.
The algorithm above shows how a linear combination of
DUKs can be used to represent an arbitrary measurable
path. This is the definition of a basis for the matrix. There-
fore, these DUKs form a basis for the path-LC Node matrix.
As such, by obtaining the delay of the 960 DUKs, we can
compute the delay of any of the 1018 paths in the LAB.

This basis is superior to the one suggested at the end
of Sec. 3.2, where 960 linearly independent paths are se-
lected to form the basis, for several reasons. First, DUKs
can be composed incrementally, allowing routing algorithms
to easily incorporate this delay information into their path
search. Second, DUKs provide a uniformity that the other
basis lacks. There is no guarantee that all paths in the other
basis will be of the same length or use similar LUT inputs.
Therefore, it is not easy to compare delays between and
within LABs. DUKs, on the other hand, have two consis-
tent forms, M-DUKs and C-DUKs. We can directly com-
pare one C-DUK using LUT input A to another C-DUK
using LUT input A, and know that if one is faster, it is due
to process variation and not because of differences in what
they represent. Finally, DUKs provide very fine-grain delay
information, almost on the order of one LE, while the other
basis only has delays of paths.

3.5 Obtaining DUK Delays
It should come as no surprise that it is impossible to mea-

sure C-DUKs directly, since one term subtracts the delay
of an End Node. It is relatively simple, however, to figure
out which paths combine to give a C-DUK’s delay. Consider
C-DUK iMj + jE − iE from Fig. 7b. To get this delay we

simply measure a path starting with a set of Nodes repre-
sented by path prefix A and ending in Nodes iMj + jE and
subtract from it a path starting with the Nodes in A and
ending in Node iE. This leads to the path equation:

(A+ iMj + jE) − (A+ iE) = iMj + jE − iE
In a sense, this mathematically demonstrates the purpose

of a C-DUK, removing the last End Node in a path and
replacing it with a new Mid Node and End Node.

Since every M-DUK represents the delay of a Start Node
plus an End Node and a path must begin at a Start Node
and end at an End Node, our path measurement technique
(Sec. 2.3) should allow us to directly measure the delay of
every M-DUK. Unfortunately, as established in Sec. 2.3, the
shortest path we can confidently measure is of length 6, while
an M-DUK forms a much smaller path of length 1 LUT and 2
registers (Fig. 7a). Therefore, we take an indirect approach
to measuring the delay of an M-DUK by measuring three
paths and taking a linear combination of these paths.

To compute the delay of M-DUK iSj + jE, we measure
one path that begins by a set of nodes represented by A
and ends with lMj + jE. Then measure a second path
which begins with iSj + jMk and ends with a set of nodes
represented byB. Finally we measure a path which is similar
to the second path at the beginning and similar to the first
path at the end: A+ lMj + jMk +B. Adding the first two
paths and subtracting the third leads to the delay of the
M-DUK as shown in the following path equation:

(A+ lMj+ jE)+(iSj+ jMk+B)−(A+ lMj+ jMk+B)=iSj+ jE

There exist a few requirements on which nodes may form
part of A and B. Since the third path uses both A and B,
we must make sure that each of the 16 LUTs in the LAB is
used only once between the Nodes in A, B, and the two Mid
Nodes lMj + jMk. Also, A and B should not use the LUT
i or j. These requirements are easy to satisfy and allow for
long paths that we can measure using the limited frequency
resources in the Cyclone III and Cyclone IV FPGAs.

All told, we measure two paths for every C-DUK and three
for each M-DUK, at worst, this means we must measure
2 × 480 + 3 × 480 = 2, 400 paths per LAB. Although this is
slightly larger than the minimum of 960 given by performing
Gaussian Elimination on the path × LC Node matrix, it is
still a small number compared to the total possible paths,
and it meets the Timing Extraction goals: Fine-grain mea-
surements suitable for direct variation characterization and
component-specific routing.

4. EXPERIMENTAL RESULTS
We applied Timing Extraction both to 18 Arrow BeMicro

boards which have a Cyclone III FPGA EP3C16F256C8N
[2] and one Terasic DE0-Nano with a Cyclone IV FPGA
EP4CE22F17C6N [16], modified to allow control over the
FPGA’s internal Vdd. In this section we present the main
results from our measurement experiments on both boards.

4.1 Methodology
The delay of a path in an FPGA is subject to many sources

of variation beyond process variation. These include effects
such as CAD tool decisions, local supply voltage IR-drop,
crosstalk and temperature fluctuations. To annul the effects
of these variation sources we perform our measurements in
a very structured and systematic way. We divide the FPGA
into a control region, where logic required to control the

measurement tests is placed on 66 LABs, and a measure-
ment region containing the LABs that will be measured.
This keeps the control logic away from the paths under test
so that noise effects in the control circuitry will have mini-
mal impact on the measured circuitry. Leveraging the con-
straints provided by QUIP [1], the placement and routing
of all but the LABs being measured is fixed and consistent
for all our measurements. This assures us that signal path
lengths and compositions are identical across test and do
not directly contribute to the differences in measured delays.
QUIP is also used to dictate the placement and routing of
the path being measured within a LAB. Moreover, to re-
duce the overall activity in the FPGA, we do not measure
LABs in parallel, but rather measure LABs one at a time.
This guarantees that local heating and switching-activity-
dependent IR drop do not impact the delay measurements.
What’s more, all measurements are taken in a temperature
controlled room, and we perform our measurement several
times to reach a stable internal temperature before record-
ing the final path delay. All these precautions lead to path
delays measured in a consistent and precise manner with
repeatable results, suggesting the measurements reveal the
underlying process variation and allowing us to compare re-
sults between LABs and FPGAs without worry that other
variation effects cloud our results.

We use the path measurement technique (Sec. 2.3) on 18
Cyclone III FPGAs, to measure the 2,400 paths per LAB
necessary to compute all DUK delays. Each measurement
set taking on average 20 minutes per LAB. Due to limita-
tions in the Cyclone III PLLs, for our measurements, we
increment the frequency at linear intervals of 1.6 ps and at
each frequency, perform 215 path measurements, taking as
the delay of the path the frequency that yields a 50% failure
rate for that path. Unless otherwise specified, throughout
this section we present results related to C-DUKs in LAB
(27,22) of a Cyclone III. Where appropriate, we indicate
more general results.

4.2 Extracted Characterization
Fig. 8 shows the resulting distribution of the paths mea-

sured to compute C-DUKs in a LAB. We highlight four sepa-
rate distributions to isolate two sources of known systematic
difference, the path length (7 and 8 LUTs) and the LUT in-
puts used (A&B or C&D). From these paths, we compute
DUK delays, Fig. 9 shows these distributions for C-DUKs
in a LAB. In this case, the different colors indicate the LUT
input used by the DUK. Fig. 10 shows the individual delays
for each C-DUK over LUT inputs A and B. Note that there
is no single delay associated with a LUT; each source-sink
pair has a unique delay, demonstrating the importance of
accounting for LUT to LUT routing. Within a LAB, on
average, over all 18 FPGAs we see a standard deviation of
σ/µ = 3% for M-DUKs and σ/µ = 5% for C-DUKs.

Fig. 11a and 11b compare the C-DUK delay distribution
of two LABs in one FPGA, and of one LAB in two FP-
GAs, respectively. The results indicate that the variation is
composed of a spatially correlated component, a within-die
correlated component, and a random component. If the vari-
ation was only correlated, the data points on these graphs
would lie on the ∆0ps diagonal line. Similarly, if it was all
random variation, the data points would resemble Fig. 1c.
The correlated components are less apparent, but random
variation is clear when reviewing Fig. 12 which compares the

Path Delay (ns)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

F
re

q
u
en

cy

Inputs C&D, Len 7, µ 2.2, σ 0.09

Inputs C&D, Len 8, µ 2.4, σ 0.07

Inputs A&B, Len 7, µ 3.2, σ 0.02

Inputs A&B, Len 8, µ 3.6, σ 0.02

1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

Figure 8: Path delay distribution for the 960 paths required
to solve all C-DUKs, differentiating known systematic vari-
ation, Cyclone III LAB (27,22)

C-DUK Delay (ps)

0
2

4
6

8
1
2

1
6

2
0

2
4

2
8

F
re

q
u
en

cy

Input D, µ 224, σ 17

Input C, µ 341, σ 15

Input B, µ 399, σ 16

Input A, µ 417, σ 17

190 220 250 280 310 340 370 400 430 460

Figure 9: C-DUK delay distribution, differentiating known
systematic variation, Cyclone III LAB (27,22)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

End LE

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

S
ta

rt
L

E

457 460 438 434 414 433 441 430 428 411 425 434 420 438 412 NA

385 396 401 393 385 398 403 403 403 392 396 401 384 423 NA 398

417 418 422 412 401 415 428 414 417 398 409 420 399 NA 423 430

381 388 393 384 379 389 396 398 390 376 396 416 NA 416 377 371

422 420 422 422 401 418 426 415 417 399 414 NA 426 445 398 409

379 390 390 385 380 390 393 396 393 414 NA 422 382 396 382 372

407 419 417 412 411 425 419 423 422 NA 449 445 414 423 409 403

376 387 387 382 376 387 390 409 NA 392 384 389 370 396 376 368

396 407 400 401 396 406 409 NA 434 422 409 412 396 417 400 390

392 388 393 395 373 412 NA 409 390 373 385 398 377 403 377 384

415 422 423 422 404 NA 453 442 423 406 415 430 411 434 409 415

385 396 395 419 NA 422 397 401 404 387 399 404 388 407 393 382

418 417 417 NA 426 434 423 417 420 404 414 431 408 434 409 416

378 414 NA 409 376 392 395 393 398 382 396 395 379 400 387 376

400 NA 433 434 403 414 412 420 422 403 417 418 404 422 409 401

NA 409 384 381 377 389 390 393 393 379 392 395 379 403 382 398

Figure 10: C-DUK delays in picoseconds over LUT inputs
A and B. Rows index start LE of C-DUK, columns index
end LE. LUT input A shown by highlighted row header, B
otherwise. Cyclone III LAB (27,22)

360 380 400 420 440 460

C-DUK Delay, LAB (27,22) (ps)

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

C
-D

U
K

D
el

ay
,

L
A

B
(3

7
,1

4
)

(p
s)

∆
48

ps
∆

32
ps

∆
16

ps
∆

48
ps

∆
32

ps

∆
16

ps

∆
0p

s

(a) LAB vs LAB, same FPGA

360 380 400 420 440 460

C-DUK Delay, FPGA 1 (ps)
3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

C
-D

U
K

D
el

ay
,

F
P

G
A

2
(p

s)

∆
48

ps
∆

32
ps

∆
16

ps∆
48

ps

∆
32

ps

∆
16

ps

∆
0p

s

(b) FPGA vs FPGA, same LAB

Figure 11: Correlation between C-DUKs in two LABs in
one FPGA (a) and between two FPGAs for the same LAB
(27,22) (b). Diagonal lines indicate difference between re-
sults in terms of d∆ = 1.6 ps. Thicker lines indicate 10d∆.
Red lines at ±2d∆ region. Cyclone III

LAB Column Coordinate

L
A

B
R

ow
C

o
o
rd

in
a
te

1

7

13

19

25

20 25 30 35 40

300 ps

315 ps

330 ps

345 ps

360 ps

375 ps

390 ps

(a) FPGA 1

LAB Column Coordinate

L
A

B
R

ow
C

o
o
rd

in
a
te

1

7

13

19

25

20 25 30 35 40

300 ps

315 ps

330 ps

345 ps

360 ps

375 ps

390 ps

(b) FPGA 2

Figure 12: Delay heatmap for the C-DUK that goes from
LE 10 to LE 8, over a region of 21× 25 LABs for two differ-
ent FPGAs. White columns represent location of embedded
blocks. Cyclone III

LAB Column Coordinate

L
A

B
R

ow
C

o
o
rd

in
a
te

1

7

13

19

25

20 25 30 35 40

300 ps

315 ps

330 ps

345 ps

360 ps

375 ps

390 ps

405 ps

(a) C-DUK 10CD8

LAB Column Coordinate

L
A

B
R

ow
C

o
o
rd

in
a
te

1

7

13

19

25

20 25 30 35 40

300 ps

315 ps

330 ps

345 ps

360 ps

375 ps

390 ps

405 ps

(b) C-DUK 11CD8

Figure 13: Delay heatmap for the C-DUK that goes from
LE 10 to LE 8 (a) and C-DUK from LE 11 to LE 8 (b), over
a region of 21×25 LABs for the same FPGA. White columns
represent location of embedded blocks. Figs. 12a and 13a
show same C-DUK using different heat scales. Cyclone III

delay of the same C-DUK over a region of 21× 25 LABs be-
tween two FPGAs. Fig. 13, which compares two C-DUKs in
one FPGA over the same region, does show correlated vari-
ation, where one C-DUK is clearly slower than the other;
however, there still exists a strong random component.

We also see strong evidence of a mixture of variation types
when considering the DUK delays for rising transitions as
compared to falling transitions (Fig. 14). As previously
pointed out, the nature of cmos and the use of nmos pass
transistors in the FPGA lead us to expect a difference in the
delay of rising and falling transitions. On average, falling
transitions are 9% faster. However, the spread in Fig. 14a
shows a strong random component, due to the fact that

320 340 360 380 400 420

C-DUK Delay, Falling (ps)

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

C
-D

U
K

D
el

ay
,

R
is

in
g

(p
s)

∆
32

ps

∆
16

ps

∆
0p

s

∆
16

ps

∆
80

ps

∆
64

ps

∆
48

ps

(a) DUK Delay

3.10 3.13 3.16 3.19

Path Delay, Falling (ns)

3
.5

0
3
.5

2
3
.5

4
3
.5

6
3
.5

8
P

a
th

D
el

ay
,

R
is

in
g

(n
s) ∆
0.

36
8n

s

∆
0.

35
2n

s

∆
0.

33
6n

s

∆
0.

32
ns

∆
0.

30
4n

s

∆
0.

41
6n

s
∆

0.
4n

s
∆

0.
38

4n
s

(b) Path Delay

Figure 14: Correlation between Rising and Falling delays for
C-DUKs (a) and paths (b). Diagonal lines indicate differ-
ence between results. Cyclone III LAB (27,22)

360 380 400 420 440 460

C-DUK Delay, Run 1 (ps)

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

C
-D

U
K

D
el

ay
,

R
u
n

2
(p

s)

∆
16

ps
∆

16
ps

∆
0p

s

(a) Run vs Run

360 380 400 420 440 460

C-DUK Delay, Path Set 1 (ps)

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

C
-D

U
K

D
el

ay
,

P
a
th

S
et

2
(p

s)

∆
16

ps
∆

16
ps

∆
0p

s

(b) Path Set vs Path Set

Figure 15: Correlation between C-DUKs when measuring the
same paths twice (a) and measuring different path sets yield-
ing the same DUKs (b). Diagonal lines indicate difference
between results in terms of d∆ = 1.6 ps. Thicker lines indi-
cate 10d∆. Red lines at±2d∆ region. Cyclone III LAB(27,22)

pmos and nmos transistors do not have perfectly correlated
relative parameters and can vary independent of each other.

4.3 Measurement Validation
The measurement of the delay of a path can be subject to

many sources of noise; therefore, we would like to build con-
fidence that we are not measuring that noise but rather the
actual delay of paths and DUKs in a consistent manner. As
explained in Sec. 4.1, we control as many aspects as possible
when performing our measurements. To measure if these
controls achieve consistency, we perform the measurements
twice by measuring paths, computing all DUK delays and
repeating. Fig. 15a shows the resulting C-DUK delay when
we measure paths twice. We see high correlation with nearly
all DUKs differing by less than ±3.2 ps (region between red
diagonal lines) between the first and second measurement.

A second form of validation comes from the fact that we can
measure distinct sets of paths that allow us to compute the
delay of the same set of DUKs. Recall from Sec. 3.5 that we
need two paths to compute the delay of C-DUKs and three for
M-DUKs. These paths have a fixed set of LC Nodes that de-
termine which DUK will be computed from their delays, and
a prefix of LC Nodes that do not form part of the final DUK.
We can select a different set of LC Nodes to use for the prefix
without affecting which DUKs we compute. Fig. 15b shows
the resulting C-DUKs when we compute them using two dif-
ferent sets of paths. Considering that the path measurement

Path Delay (ns)

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

F
re

q
u
en

cy
0.9 V, µ 7.0, σ 0.052

1.0 V, µ 5.3, σ 0.033

1.1 V, µ 4.3, σ 0.023

1.2 V, µ 3.6, σ 0.020

3.5 3.9 4.3 4.7 5.1 5.5 5.9 6.3 6.7 7.1

Figure 16: Path delay distribution for Length 8 Paths over
LUT inputs A and B required to solve C-DUKs, differentiat-
ing varying Vdd, Cyclone IV LAB (28,22)

C-DUK Delay (ps)

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

F
re

q
u
en

cy

0.9 V, µ 778, σ 60

1.0 V, µ 592, σ 39

1.1 V, µ 486, σ 28

1.2 V, µ 418, σ 22

340 400 460 520 580 640 700 760 820 880 940

Figure 17: C-DUK delay distribution for LUT inputs A and
B, differentiating varying Vdd, Cyclone IV LAB (28,22)

inherently introduces a difference of ±3.2 ps, Fig. 15b shows
that it matters little which set of paths are measured as long as
we can compute the complete set of DUKs from these paths.
Together these figures show that we can trust our technique
to correctly and consistently compute the delay of DUKs.

4.4 Effects of Varying VDD

Lowering VDD is a common and important way to save
power and energy. In this section we examine the effect that
reducing VDD has on variation. In particular we ask whether
scaling VDD has a purely systematic effect on the variation
distributions or is there a random component as well. To do
this we modify a DE0-Nano board containing a Cyclone IV
FPGA so that we can control the internal VDD. Nominally,
the board provides a 1.2 V VDD. For our tests, we scale at
100 mV increments. At VDD = 0.8 V, a large percent of our
measurements fail and at 0.7 V the board fails to power up.

We know that a lower VDD increases the propagation delay
of a circuit, as well as the standard deviation of the path
delay distribution [4]. We clearly see this effect in Fig. 16, the
delay distribution for the paths of length 8 used to compute
C-DUKs. As we lower VDD the distribution shifts right and
becomes wider. This effect is even more pronounced when we
look at the C-DUK delay distributions in Fig. 17.

To see how the distribution changes when we go from 1.2 V
to 0.9 V we plot correlation graphs (Fig. 18). We would ex-
pect a graph similar to Fig. 15a if lowering VDD only had a
systematic effect on the distribution. However, we observe a
significant random component, indicating that lowering VDD

magnifies the impact of random variation.

360 380 400 420 440 460 480

C-DUK Delay, 1.2V (ps)

6
2
0

6
8
0

7
4
0

8
0
0

8
6
0

9
2
0

C
-D

U
K

D
el

ay
,
0
.9

V
(p

s)

(a) DUK Delay

3.58 3.61 3.64 3.67

Path Delay, 1.2V (ns)

6
.8

6
6
.9

2
6
.9

8
7
.0

4
7
.1

0
7
.1

6
P

a
th

D
el

ay
,
0
.9

V
(n

s)

(b) Path Delay

Figure 18: Correlation between Measuring with Vdd at 1.2V
and 0.9V for C-DUKs (a) and paths of length 8 (b) for LUT
input A and B. Cyclone IV LAB (28,22)

5. GENERALIZING TIMING EXTRACTION
Although Sec. 3 introduces Timing Extraction by apply-

ing it to a Cyclone III LAB, the approach generalizes to any
FPGA that has registers and configurable PLLs. We can dis-
till the essence of Timing Extraction into five concepts.
1. We can measure the delay of a group of components in the

FPGA using only resources already in the FPGA.
2. LC Nodes represent the smallest group of components for

which we need to compute a delay, since, if we use any com-
ponent in an LC Node, we must use all other components
in the LC Node.

3. When using the measurement technique from Sec. 2.3, it is
not possible to solve for the delay of every LC Node when
a measured path begins at a Start Node, goes through zero
or more Mid Nodes, and terminates at an End Node.

4. When representing all measurable paths as a matrix, there
exists a basis that will allow us to compute the delay of any
path in the FPGA using only the delay of vectors in that
basis.

5. We can formulate a basis where every vector is a DUK com-
posed of a small linear combination of LC Nodes.

The first, second, and fourth points are immediate; however,
it is not obvious why the third and fifth hold true. Although a
full explanation, formalization, and proof is beyond the scope
of this paper, we can build some intuition to address the third
point. Consider a simplified circuit that, when represented in
LC Nodes, has all paths being composed by just a Start Node
and an End Node. Moreover, there exists a physical path in
the circuit formed by combining any Start Node with any End
Node. We can represent this situation as a fully connected bi-
partite graph with Start Nodes forming one set and End Nodes
the second. For simplicity, assume that the delay of every path
is measured to be 500 ps. It is easy to show that at least two
solutions to the delay of the nodes exist. One solution assigns
a delay of 200 ps to all Start Nodes and a delay of 300 ps to all
End Nodes. The second solution does the opposite, assigning
300 ps to Start Nodes and 200 ps to End Nodes. A similar cir-
cuit with fewer paths suffers from the same problem. There-
fore, this circuit, and any subset, leads to an underdetermined
system. The argument becomes somewhat more complicated
when considering the more general problem which also in-
cludes Mid Nodes; however, the intuition remains the same.

Showing the fifth point to be true remains part of our future
work. We have already introduced two types of DUKs, yet it
is likely that more will be necessary to decompose an arbitrary
path into DUKs. The exact form and number is not yet clear;

however, we expect that the regularity of FPGAs will help
limit the total number of DUK types. By defining enough
DUK types to be able to decompose an arbitrary measurable
path into DUKs, we will be able to form a DUK basis. Finally,
by defining new DUKs also as a small linear combination of
LC Nodes, we can keep all DUKs small enough to provide
fine-grain, meaningful delay information.

6. FUTURE WORK
The previous section suggests that Timing Extraction is

more generally applicable. This paper applies Timing Ex-
traction exclusively to the LABs. To get the full, intended
benefits of this technique, it is essential to also apply Timing
Extraction to inter-cluster routing and LUT logic. Moreover,
the results section hints at the existence of different types
of variation: systematic, spatially correlated, random, and
shows that Timing Extraction is able to provide the raw in-
formation necessary to understand variation in the FPGA.
To fully harness the power of Timing Extraction, however, a
mathematical analysis of the information it provides should
be performed to quantify how much and what kind of varia-
tion exists within the FPGA.

Finally, we perform our measurements in a highly controlled
setting (Sec. 4.1), this leads to clean and consistent results,
yet, it is not clear which controls are necessary for good re-
sults. Careful experimentation will reveal how the results
change when we change or relax the strong restrictions on our
measurement technique, allowing us to simplify and acceler-
ate path measurements.

7. CONCLUSIONS
We presented Timing Extraction, a method used to ex-

tract the fine-grained delay information necessary to under-
stand variation within the FPGA and to generate component-
specific mappings. We acquire this information using only re-
sources already present in the FPGA. Essentially, we apply a
launch and capture technique to measure a subset of all paths
in the FPGA, and extract small Discrete Units of Knowledge
(DUKs) from these measurements. We can then compose
DUKs to compute the delay of any path in the FPGA and use
them to understand the amount and type of variation present.

We applied this technique to the Logic Array Blocks in
both the Altera Cyclone III and Cyclone IV FPGAs. The
results indicate that, on average, we see σ/µ = 4% variation
in the 65 nm process used for the Cyclone III. Moreover, there
is clear indication that random variation forms a significant
part of the total variation. We expect that as we measure
smaller technology nodes, both the total variation and the
contribution from random variation will increase. By using
Timing Extraction we will be able to characterize and reduce
the adverse effects from this increase.

Acknowledgments
This research was funded in part by National Science Foun-
dation grant CCF-0904577. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation. The authors gratefully
acknowledge donations of software and hardware from Altera
Corporation that facilitated this work.

8. REFERENCES
[1] Altera. Quartus II University Interface Program.

http://www.altera.com/education/univ/research/quip/
unv-quip.html.

[2] Arrow. BeMicro FPGA Evaluation Kit. http://www.
arrownac.com/offers/altera-corporation/bemicro/.

[3] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and
G. Snider. Defect tolerance on the TERAMAC custom
computer. In FCCM, pages 116–123, April 1997.

[4] M. Eisele, J. Berthold, D. Schmitt-Landsiedel, and
R. Mahnkopf. The impact of intra-die device parameter
variations on path delays and on the design for yield of low
voltage digital circuits. IEEE Trans. VLSI Syst.,
5(4):360–368, Dec. 1997.

[5] B. Gojman, N. Mehta, R. Rubin, and A. DeHon.
Component-specific mapping for low-power operation in the
presence of variation and aging. In Low-Power
Variation-Tolerant Design in Nanometer Silicon,
chapter 12, pages 381–432. Springer, 2011.

[6] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant,
L. Chang, K. K. Das, W. Haensch, E. J. Nowak, and D. M.
Sylvester. Ultralow-voltage, minimum-energy CMOS. IBM
J. Res. and Dev., 50(4–5):469–490, July/September 2006.

[7] X. Li, J. Tong, and J. Mao. Temperature-dependent device
behavior in advanced CMOS technologies. In ISSSE,
volume 2, pages 1–4, Sept. 2010.

[8] M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar.
Rapid FPGA delay characterization using clock synthesis
and sparse sampling. In Proc. Intl. Test Conf., 2010.

[9] L. McMurchie and C. Ebeling. PathFinder: A
negotiation-based performance-driven router for FPGAs. In
FPGA, pages 111–117, 1995.

[10] N. Mehta, R. Rubin, and A. DeHon. Limit study of energy
& delay benefits of component-specific routing. In FPGA,
pages 97–106, 2012.

[11] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital
Integrated Circuits. Prentice Hall, 2nd edition, 1999.

[12] P. Sedcole, J. S. Wong, and P. Y. K. Cheung. Modelling
and compensating for clock skew variability in FPGAs.
ICFPT, pages 217–224, 2008.

[13] J. R. Smith and X. Tian. High-resolution delay testing of
interconnect paths in Field-Programmable Gate Arrays.
IEEE Trans. Instrum. Meas., 58(1):187–195, 2009.

[14] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical
Analysis and Optimization for VLSI: Timing and Power.
Integrated Circuits and Systems. Springer, 2005.

[15] E. A. Stott, J. S. J. Wong, P. Pete Sedcole, and P. Y. K.
Cheung. Degradation in FPGAs: measurement and
modelling. In FPGA, page 229, 2010.

[16] Terasic. DE0-Nano Development and Education Board.
http://www.terasic.com.tw/cgi-bin/page/archive.pl?
\Language=English&CategoryNo=139&No=593.

[17] T. Tuan, A. Lesea, C. Kingsley, and S. Trimberger.
Analysis of within-die process variation in 65nm FPGAs. In
ISQED, pages 1–5, March 2011.

[18] J. S. Wong, P. Sedcole, and P. Y. K. Cheung.
Self-measurement of combinatorial circuit delays in FPGAs.
ACM Tr. Reconfig. Tech. and Sys., 2(2):1–22, June 2009.

[19] Y. Ye, S. Gummalla, C.-C. Wang, C. Chakrabarti, and
Y. Cao. Random variability modeling and its impact on
scaled CMOS circuits. J. Comput. Electron.,
9(3-4):108–113, Dec. 2010.

[20] H. Yu, Q. Xu, and P. H. Leong. Fine-grained
characterization of process variation in FPGAs. In ICFPT,
pages 138–145, 2010.

Web links for this document: <http://ic.ese.upenn.edu/abstracts/groklab_fpga2013.html>

http://www.altera.com/education/univ/research/quip/unv-quip.html
http://www.altera.com/education/univ/research/quip/unv-quip.html
http://www.arrownac.com/offers/altera-corporation/bemicro/
http://www.arrownac.com/offers/altera-corporation/bemicro/
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://www.terasic.com.tw/cgi-bin/page/archive.pl?\Language=English&CategoryNo=139&No=593
http://www.terasic.com.tw/cgi-bin/page/archive.pl?\Language=English&CategoryNo=139&No=593
http://ic.ese.upenn.edu/abstracts/groklab_fpga2013.html

