
17

SLATE performance improvements:
QR and eigenvalues
Kadir Akbudak
Paul Bagwell
Sebastien Cayrols
Mark Gates
Dalal Sukkari
Asim YarKhan
Jack Dongarra

Innovative Computing Laboratory

April 19, 2021

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
04-2021 first publication

@techreport{akbudak2021slate-qr-eig,

author={Kadir Akbudak and Paul Bagwell and Sebastien Cayrols and Mark Gates

and Dalal Sukkari and Asim YarKhan and Jack Dongarra},

title={{SLATE} performance improvements: {QR} and eigenvalues, {SWAN} No. 17},

institution={Innovative Computing Laboratory, University of Tennessee},

year={2021},

month={4},

number={ICL-UT-XX-XX},

note={revision 04-2021},

url={https://www.icl.utk.edu/publications/swan-017},

}

i

Contents

Contents ii

1 Introduction 1

2 QR factorization (geqrf) 1
2.1 GPU Implementation of Triangular Matrix-Matrix Multiplication (trmm) 1
2.2 GPU Implementation of unmqr . 1

3 Hermitian eigenvalue problem (heev and syev) 2
3.1 Three Stage Algorithms . 2
3.2 Performance Improvements . 4

4 Triangular solves (trsm) 6
4.1 trsm implementation . 6
4.2 trsmA: a variant of trsm targeting a small number of RHS 8
4.3 Performance comparison . 9
4.4 Experimental results . 10

References 12

ii

2 QR factorization (geqrf)

1 Introduction

SLATE (So�ware for Linear Algebra Targeting Exascale) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
O�ce of Science and National Nuclear Security Administration (NNSA). The objective of
SLATE is to provide distributed, GPU-accelerated dense linear algebra capabilities to the US
Department of Energy and to the high-performance computing (HPC) community at large.

This report will discuss current e�orts in improving performance in SLATE, with focus on the
QR and eigenvalue factorizations. These improvements are intended to be general and many
of them should be applicable to the other algorithms implemented in SLATE.

2 QR factorization (geqrf)

The Communication Avoiding QR (CAQR) factorization algorithm used in the geqrf operation
is presented in the SLATE Working Note 7 [1]. In this section, we present two performance
enhancements to the geqrf operation in SLATE.

2.1 GPU Implementation of TriangularMatrix-MatrixMultiplication (trmm)

The unmqr operation used in geqrf heavily depends on trmm and gemm operations. The GPU
implementation of gemm is used during unmqr, however the GPU implementation of trmm
was missing. Batched trmm operation is implemented for GPUs.

Figure 1 presents the performances of the new GPU implementation of the trmm operation, as
well as the existing GPU implementation of gemm and CPU implementation of trmm. The
experiments are performed on a DGX-1 system with eight V100 SXM2 GPUs. The system has
two Intel Xeon CPUs (E5-2698 v4 @ 2.20GHz with 20 cores). Each GPU can deliver 7.8 TFlop/s
when double precision arithmetic is used. The number of OpenMP threads is set to 40 for the
trmm runs on the host, otherwise the number of OpenMP threads is set to 20. All GPU runs
are performed on a single GPU. The result for the best performing tile size is reported. As seen
in Figure 1, gemm achieves 7 TFlop/s, which is 90% of the peak performance. The performance
of the new GPU implementation of trmm is very close to that of gemm.

2.2 GPU Implementation of unmqr

The QR factorization implementation uses the unmqr operations to apply Householder re�ec-
tors from the local QR factorization during the trailing matrix update. The only missing GPU
kernel within unmqr was trmm. So a�er the new GPU implementation of trmm presented in
Section 2.1, we implement a new GPU version of unmqr. The new implementation is traced in
order to discover an unnecessary data movements between the host and the GPU. Only a copy
operation is detected causing extra data movement and it is �xed.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

3 Hermitian eigenvalue problem (heev and . . .

4000 6000 8000 10000 12000 14000
Matrix Size

0

1000

2000

3000

4000

5000

6000

7000

GF
lo

p/
s gemm V100

trmm V100
trmm Host

Figure 1: Performance of gemm and trmm in terms of GFlop/s on the host and one V100. The
performance of the new GPU implementation of trmm is very close to that of gemm.

Figure 2 presents the performance of the geqrf operation before and a�er the addition of the
GPU implementation of the unmqr operation. The experiments are performed on the same
system mentioned in Section 2.1. As seen in the �gure, there is considerable performance
improvement for larger matrix sizes when the GPU kernel for unmqr is used within the geqrf
operation in SLATE.

We identi�ed additional improvements that can be made in QR, such as moving look-ahead
panel updates to the GPU. We are in the process of implementing these additional changes,
which we expect to provide signi�cant performance improvement.

3 Hermitian eigenvalue problem (heev and syev)

The Hermitian eigenvalue computations are essential for many scienti�c problems, such as,
quantum chemistry, quantum physics. Solving the Hermitian eigenvalue problem is to decom-
pose the dense matrix A ∈ Rn×n into A = VΛV>, where, Λ = diag(λ1, λ2, ..., λn) is the matrix
of all the eigenvalues, and V is orthogonal matrix containing the eigenvectors (VV> = I).

3.1 Three Stage Algorithms

We solve the symmetric eigenvalue problem by a three stage algorithm, shown in Figure 3:
The three stages algorithm to solve the Hermitian eigenvalue problem is presented in SLATE
Working Note 13 [2]. To ensure this report is self-contained, we brie�y recall these stages:

(1) First stage reduction from full to symmetric band (eigenvalue) form, which uses Level 3
BLAS.

(2) Second stage reduction band to symmetric tridiagonal (eigenvalue) form. This uses a
bulge chasing algorithm.

2

3 Hermitian eigenvalue problem (heev and . . . 3.1 Three Stage Algorithms

2000 4000 6000 8000 10000 12000 14000 16000
Matrix Size

200

400

600

800

1000

GF
lo

p/
s

7%

0%

-4%

3%

14%

2%

21%

7%
after
before

Figure 2: Performance of the geqrf operation before and after the addition of the new GPU
implementation of unmqr. With the new unmqr GPU kernel, 7% improvement is observed in the
performance of geqrf for the largest matrix.

A Λ

1. Hermitian
to band
(he2hb)

2. band to
tridiagonal

(hb2st)

3. tridiagonal
eigenvalue solver

(sterf, etc.)

traditional (hetrd)

Figure 3: Three stage symmetric/Hermitian eigenvalue and SVD algorithms.
Three stage symmetric/Hermitian eigenvalue (top) and SVD (bottom) algorithms.

3

3 Hermitian eigenvalue problem (heev and . . . 3.2 Performance Improvements

(3) Third stage reduction to diagonal form, revealing the eigenvalues. Currently we use QR
iteration, but could also use divide and conquer, MRRR, bisection, or other solver.

This is in contrast to the traditional algorithm used in LAPACK and ScaLAPACK that goes
directly from full to bidiagonal or symmetric tridiagonal, which uses Level 2 BLAS and is
memory-bandwidth limited.

The �rst stage proceeds by computing a QR factorization of a block column to annihilate entries
below the diagonal, and updating the trailing matrix. It repeats factoring block columns, until
the entire matrix is brought to band form. The width of the block columns and rows is the
resulting matrix bandwidth, nb.

Figure 4: Symmetric bulge-chasing algorithm. Only the lower triangle is accessed; the upper triangle
is known implicitly by symmetry.

The second stage reduces the band form to the �nal tridiagonal form using a bulge chasing
technique, as shown in Figure 4. Symmetry is taken into account, so only entries in the lower
triangle are computed, while entries in the upper triangle are known by symmetry. It involves
6nbn2 operations, so it takes a small percentage of the total operations, which decreases with
n. The operations are memory bound, but are fused together as Level 2.5 BLAS [3] for cache
e�ciency. We designed the algorithm to use �ne-grained, memory-aware tasks in an out-of-
order, data-�ow task-scheduling technique that enhances data locality [4, 5].

The second stage proceeds in a series of sweeps, each sweep bringing one row to tridiagonal
and chasing the created �ll-in elements down to the bottom right of the matrix using successive
orthogonal transformations.

Once the tridiagonal reduction is achieved, the implicit QR eigensolver steqr2 calculates the
eigenvalues and optionally its associated eigenvectors of the condensed matrix structure. The
steqr2 is amodi�ed version of LAPACK routine steqr, to alloweach process to performupdates
on the distributed matrix Q2, and achieve some parallelization during this step.

3.2 Performance Improvements

We optimized the performance of Hermitian to Hermitian band reduction he2hb, by looking
at the dependency graph and insert OpenMP tasks to improve and extend the parallelization
of the various operations of he2hb. Algorithm 3.1 presents the he2hb implementation and
parallelization using OpenMP tasks.

4

3 Hermitian eigenvalue problem (heev and . . . 3.2 Performance Improvements

Algorithm 3.1Hermitian to Hermitian band reduction (he2hb).
for k = 0 to nt− 1 do

// QR of panel
internal::geqrf<Target::HostTask>(A panel, Tlocal panel, ib, max panel threads);
internal::ttqrt<Target::HostTask>(A panel, Treduce panel);
// QR update trailing submatrix
for i = k + 1 to nt− 1 do

#pragma omp task depend(inout:row[i])
for j: indices do

if i == j then
hemm(Side::Le�, 1.0, A(i, j), A(j, k), 1.0, W(i, k));

else if i > j then
gemm(1.0, A(i, j), A(j, k), 1.0, W(i, k));

else
gemm(1.0, conj transpose(A(j, i)), A(j, k), 1.0, W(i, k));

end if
end for
i0 = indices[0];
auto TVAVT0 = W.sub(i, i, k, k);
auto T0 = Tlocal.sub(i0, i0, k, k);
if T0.mb < T0.nb then

// trapezoid
T0 = T0.slice(0, mb-1, 0, mb-1);
TVAVT0 = TVAVT0.slice(0, mb-1, 0, nb-1);

end if
auto Tk0 = TriangularMatrix(Uplo::Upper, Diag::NonUnit, T0);
trmm(Side::Right, Diag::NonUnit, 1.0, Tk0(0, 0), TVAVT0(0, 0));

end for
if A.tileIsLocal(i0, i0) then

auto TVAVT = W(0, 0);
for i: indices do

#pragma omp task depend(in:row[i]) depend(inout:block[0])
gemm(1.0, conj transpose(A(i, k)), W(i, k), 1.0, TVAVT);

end for
auto TVAVT0 = W.sub(0, 0, 0, 0);
auto T0 = Tlocal.sub(i0, i0, k, k);
if T0.mb < T0.nb then

// trapezoid
T0 = T0.slice(0, mb-1, 0, mb-1);
TVAVT0 = TVAVT0.slice(0, mb-1, 0, nb-1);

end if
auto Tk0 = TriangularMatrix(Uplo::Upper, Diag::NonUnit, T0);
#pragma omp task depend(in:block[k]) depend(inout:block[0])
trmm(Side::Le�, Diag::NonUnit, 1.0, conj transpose(Tk0(0, 0)), TVAVT0(0, 0));
for i: indices do

#pragma omp task depend(in:block[0]) depend(inout:row[i])
gemm(-0.5, A(i, k), TVAVT, 1.0, W(i, k));

end for
#pragma omp taskwait
internal::her2k<Target::HostTask>(-1.0, A.sub(k+1, nt-1, k, k), W.sub(k+1, nt-1, k, k), 1.0, A.sub(k+1, nt-1));

else
for j = k + 1 to nt− 1 do

#pragma omp task depend(in:row[j]) depend(in:block[k]) depend(inout:block[j])
for i: indices do

if i > j then
gemm(-1.0, A(i, k), conj transpose(W(j, k)), 1.0, A(i, j));

else
gemm(-1.0, W(j, k), conj transpose(A(i, k)), 1.0, A(j, i));

end if
end for

end for
end if
internal::hettmqr<Target::HostTask>(Op::ConjTrans, A panel, Treduce panel, A.sub(k+1, nt-1));

end for

5

4 Triangular solves (trsm)

 0

 100

 200

 300

 400

 500

 600

 700

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

T
im

e
 (

s
e
c
)

Matrix Size

SLATE, before

PLASMA-2.8.0

SLATE, after

(a) 1×1 grid con�guration

 0

 50

 100

 150

 200

 250

 300

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

T
im

e
 (

s
e
c
)

Matrix Size

SLATE, before

SLATE, after

(b) 2×2 grid con�guration

Figure 5: Performance comparison of Hermitian to Hermitian band reduction.

We studied the impact of inserting OpenMP tasks on a single node on a local machine Saturn
using CPU only. The performance optimization using GPUs is an ongoing e�ort. The e�ect
of our performance updates can be seen in the performance of the double-precision he2hb

shown in Figure 5. Figure 5a compares the performance of he2hb before and a�er paralleliz-
ing the code using OpenMP tasks against the PLASMA implementation of he2hb. Inserting
OpenMP tasks achieves up to 10× speedup compared to its original implementation. Moreover,
SLATE and PLASMA he2hb implementations now perform similarly. Figure 5b shows up to 4×
improvement in the he2hb performance using a 2×2 grid con�guration.

4 Triangular solves (trsm)

Many operations such as LU factorization require at some point to solve multiple triangular
systems, either with one or more right-hand sides (RHS):

op(A)X = B, (1)

where op(A) = A or AH is either an upper or a lower triangular matrix of dimension m×m, B
is a matrix that contains n RHS of dimension m, and X is the requested solution with the same
dimension as B.

In SLATE, the matrices A, B, and X are stored using tiles of size nb. Figure 6 shows the
representation of the data in the case of the forward substitution, i.e., A is a lower triangular
matrix. For distributed computation, tiles are distributed among the processors and thus they
have to be communicated when and where they are needed. For example, the �rst step during
the forward substitution is the computation of the solution of A1,1X1 = B1. If A1,1 and B1 are
not located on the same processor, we have to move either A1,1 where B1 is or vice versa.

4.1 trsm implementation

The existing trsm in SLATE targets solvingmany triangular systems (right-hand sides) involving
the same matrix A, i.e., n is large. Therefore, the implemented strategy is to move tiles of A to
where the associated tiles of B are located, and is detailed in Algorithm 4.1. For simplicity, we
assume that the dimensions of the matrices are multiples of nb. Therefore we have m = k ∗ nb

6

4 Triangular solves (trsm) 4.1 trsm implementation

A1,1 B1

Figure 6: Data representation of Equation (1), where the computation is done inplace (colored area
represent the actual data while the shape represents the storage in memory).

and n = l ∗ nb. Moreover, we deliberately omit the update of B as it is not relevant regarding the
data movement. The algorithm iterates over the k diagonal tiles of A. At iteration i, we move
Ai,i to where the corresponding tiles of B, Bi,: are located. Then the computed solution, Bi,: is
gathered along with the o� diagonal tiles Ai+1:k,i where the sub-tiles of Bi,: are located. Note
that we use the MATLAB notation. Therefore, Bi,: = Bi,1:l is the i-th block row of the matrix B.

Algorithm 4.1 trsm(A,B)

Require: A ∈ Cm×m

Require: B ∈ Cm×n

nb is the tile size
m = k ∗ nb
n = l ∗ nb
for i=1:k do
Broadcast Ai,i where Bi,: are located,
Solve inplace Ai,iXi,: = Bi,:,
for j=i+1:k do
Broadcast Aj,i where Bj,: are located,

end for
for j=1:l do
Broadcast Bi,j where Bi+1:k,j are located,

end for
end for

We now compute the communication cost of this strategy. A simple approach to evaluate the
cost is the case where the number of RHS is fewer than or equal to the tile size, i.e., n ≤ nb and
so l = 1. Based on it and used in the proof, we present the more general case in Lemma 4.1.

Lemma 4.1. Assume that A is a triangular matrix of dimension m×m and B is a matrix of dimension
m× n, both distributed as tiles of size nb. Assume that m = k ∗ nb and n = l ∗ nb. Finally, assume that
tiles are distributed such that a processor owns at most one tile of A and B.

Let cA be the cost to move one tile of A, and cB be the cost to move one tile of B.

The overall cost C of Algorithm 4.1 is given by

C = cA log (l) (2k− 1) + cB log ((k− 1)!) . (2)

7

4 Triangular solves (trsm) 4.2 trsmA: a variant of trsm targeting a small . . .

Proof. In order to prove Equation (2), we �rst consider the simplest case, we then extend the
result. We also consider the case that maximizes the communication which is a process owns a
single tile of A and B.

Assume that A is a triangular matrix of dimension m×m and B is a matrix of dimension m× n,
both distributed as tiles of size nb. Assume that m = k ∗ nb and n ≤ nb, i.e., l = 1.

Let cA be the cost to move one tile of A, and cB be the cost to move one tile of B.

The cost C to solve Equation (1) using Algorithm 4.1 is given by

C =
k−1

∑
i=1

(cA + cA + cB log (k− i)) + cA (3)

= 2cA (k− 1) + cB log ((k− 1)!) + cA (4)

= cA (2k− 1) + cB log ((k− 1)!) . (5)

We now extend the case to any l. The main di�erence comes from the broadcast that adds the
term log (l) to each data movement that involves a tile of A. Equation (3) becomes:

C =
k−1

∑
i=1

(cA log (l) + cA log (l) + cB log (k− i)) + cA log (l) (6)

= cA log (l) (2k− 1) + cB log ((k− 1)!) . (7)

For a small number of RHS, say l = 1, we have cA � cB. Moreover, for a reasonable number
of tiles k, Equation (5) is dominated by the term cA (2k− 1). We thus propose implementing a
variant where tiles of B are moved instead of tiles of A. We refer to this variant as trsmA.

4.2 trsmA: a variant of trsm targeting a small number of RHS

In this section, we present the implementation of the trsmA and compare it with trsm to show
its limitation.

We �rst present in Algorithm 4.2 the modi�cation that allows us to move the tiles of B instead
of the tiles of A. Since the tiles of B are moved where the associated tiles of A are located, it
implies that the contributions are also distributed. Therefore, in order to solve Ai,iXi,: = Bi,:,

we need to perform a reduction operation of the form ∑i
j=1 B(j)

i,: where Ai,i is located. Then we
solve the associated system before we broadcast the solution Bi,:. We also need to send back the
tiles of this solution where they are originally located.

Similarly to the trsm implementation, we can compute the communication cost of the trsmA
algorithm.

Lemma 4.2. Assume that A is a triangular matrix of dimension m×m and B is a matrix of dimension
m× n, both distributed as tiles of size nb. Assume that m = k ∗ nb and n = l ∗ nb. Assume that tiles are
distributed such that a processor owns at most one tile of A and B.

8

4 Triangular solves (trsm) 4.3 Performance comparison

Algorithm 4.2 trsmA(A,B)

Require: A ∈ Cm×m

Require: B ∈ Cm×n

nb is the tile size
m = k ∗ nb
n = l ∗ nb
for i=1:k do
Reduce contribution B(j)

i,: where Ai,i,
Solve inplace Ai,iXi,: = Bi,:,
Broadcast Bi,: where Ai+1:k,i are located,
Send back Bi,: where it should be located,

end for

Let cB be the cost to move one tile of B.

The overall cost C of Algorithm 4.2 is given by

C = lcB ×
(k + 3) k

2
+ lcB log ((k− 1)!) . (8)

Proof. In order to prove Equation (8), we �rst consider the simplest case, then we extend the
result. We also consider the case that maximizes the communication which is a process owns a
single tile of A and B.

Assume that A is a triangular matrix of dimension m×m and B is a matrix of dimension m× n,
both distributed as tiles of size nb. Assume that m = k ∗ nb and n ≤ nb, i.e., l = 1.

Let cB be the cost to move one tile of B.

The cost C to solve Equation (1) using Algorithm 4.2 is given by

C = cB + cB log (k− 1) + cB +
k−1

∑
i=2

((i + 1) cB + cB log (k− i)) + kcB + cB (9)

= cB (k + 3) + cB log (k− 1) + cB

(
(k + 3) (k− 2)

2
+ log ((k− 2)!)

)
(10)

= cB ×
(k + 3) k

2
+ cB log ((k− 1)!) . (11)

We now extend the case to any l. This means cB is replaced by lcB. Equation (9) becomes:

C = lcB ×
(k + 3) k

2
+ lcB log ((k− 1)!) . (12)

4.3 Performance comparison

The trsmA algorithm aims to reduce the execution time for a small number of RHS. We now
study the limit of this variant in the extreme case of one RHS and compare its cost with the

9

4 Triangular solves (trsm) 4.4 Experimental results

trsm algorithm. We want to determine whether the trsmA implementation is always better in
this extreme case.

We �rst recall the di�erence of cost for each approach: cA (2k− 1) and cB × (k+3)k
2 for moving

A, B respectively. For this comparison, we also have cA = nb ∗ cB. This gives us:

∆C = nb ∗ cB (2k− 1)− cB ×
(k + 3) k

2
(13)

=
cB

2
(
−k2 + k (4nb− 3)− 2nb

)
. (14)

Equation (14) is equal to 0 for a value of k greater than 4nb.

The trsmA variant has therefore some limitation, mainly coming from the reduce operation in
Algorithm 4.2 that is linear. Therefore, this variant may not be bene�cial for a large number of
tiles. However, in practice, we are not in the case where each process owns a single tile of A and
B.

4.4 Experimental results

In this section, we compare the trsmAwith the original trsm on the Summit supercomputer. We
focus our study on CPU only. The GPU version is an ongoing work. We do all our experiments
on four nodes, 24 MPI ranks, and 7 cores per rank, giving a grid size of 4× 6. We use the
following so�ware stack: spectrum-mpi/10.3.1.2-20200121, essl/6.2.1-0, netlib-lapack/3.8.0, and
netlib-scalapack/2.0.2.

We �rst study the performance for di�erent numbers of RHS, in Figure 7. We take as example
a matrix of size 50 000 and a tile size of 448 since this value gives the best performance for
Cholesky. In Figure 7a, the number of RHS varies from one to 10. We observe that we reach up
to 7.5× speedup for one RHS. When the number of RHS increases, we see less performance
improvement, reaching around 4× speedup. In Figure 7b, we keep on increasing the number
of RHS. We note that for #RHS equal to 600, both algorithms perform at the same speed. For
more RHS, the number of RHS is too large to allow the trsmA approach to be bene�cial. It
actually make sense since cA = cB in that case.

Next, we focus our study on a single RHS. Figure 8 shows the impact of the tile size for di�erent
matrix size on the performance. We take as the reference the runtime of trsm on a matrix of
size 100 000 and we compute the speedup by comparing trsmA with trsm. Results con�rm the
interest of using this variant. The larger the dimension of the matrix is, the more the speedup
we obtain. For the largest dimension, 100 000, we reach a 12.6× speedup for nb = 768. Note
that the best speedup is not always given by the same tile size. The trend seems to show that
increasing the dimension of A may require a larger tile size.

To highlight the bene�t of trsmA over trsm, we recorded execution trace for each method and
we show them in Figure 9. In this example, the matrix is of dimension 50 000, the tile size of
448, and only one RHS. As we suspected, we observe that a large portion of the execution is
spent in waiting the tiles of A, in Figure 9a. On the other hand, this waiting time is drastically
reduced, as shown in Figure 9b.

10

4 Triangular solves (trsm) 4.4 Experimental results

1 2 3 4 5 6 7 8 9 10
#rhs

1

2

3

4

5

6

7

S
pe

ed
up

trsm trsmA

(a) Speedup for small #RHS

100 101 102 103

#rhs

0

100

200

300

400

500

600

G
Fl

op
s/

s

trsm trsmA

(b) Performance for larger #RHS

Figure 7: Performance comparison between trsm and trsmA on a matrix of dimension 50 000 on
four nodes, 24 MPI ranks, a tile size nb = 448.

128 256 384 512 640 768 896 1024
Tile size

2

4

6

8

10

12

S
pe

ed
up

trsm
10000
20000
30000

40000
50000
100000

Figure 8: Performance comparison between trsm and trsmA on different matrix size and for different
tile size, on four nodes, 24 MPI ranks.

11

References References

SLATE version 2020.10.00, id a429b5b

input: ./tester-dev --type d --nb 448 --dim 50000x1 --grid 4x6 --check y --ref n --target host --lookahead 1 --alpha 2.0 --repeat 1 --trace y --uplo u trsm

2021-04-15 15:47:00, MPI size 24, OpenMP threads 28, CUDA devices available 1

MPI_Barrier

MPI_Recv

MPI_Send

blas::axpy

blas::gemm

blas::trsm

(a) trsm

MPI_Barrier

MPI_Recv

MPI_Send

blas::axpy

blas::gemm

blas::trsm

SLATE version 2020.10.00, id a429b5b

input: ./tester-dev --type d --nb 448 --dim 50000x1 --grid 4x6 --check y --ref n --target host --lookahead 1 --alpha 2.0 --repeat 1 --trace y --uplo u trsmA

2021-04-15 14:24:03, MPI size 24, OpenMP threads 28, CUDA devices available 1

(b) trsmA

Figure 9: Comparison of the trace for both trsm and trsmA on a matrix of dimension 50 000 on four
nodes, 24 MPI ranks, a tile size nb = 448.

We have presented trsmA, a variant of the already implemented trsm, where the tiles of B are
moved instead of the tiles of A. This approach gives SLATE great improvement for a small
number of RHS, reaching 12× speedup in the case of amatrix A of dimension 100 000. However,
it remains to obtain a better bound that will tell us which variant to use, depending on the grid
con�guration for example. We also expect this approach to be more bene�cial in the GPU case.

References

[1] MarkGates, Ali Charara, Jakub Kurzak, Asim YarKhan, Ichitaro Yamazaki, and JackDongarra.
SLATE working note 9: Least squares performance report. Technical Report ICL-UT-11-28,
Innovative Computing Laboratory, University of Tennessee, December 2018. revision
12-2018.

[2] Mark Gates, Mohammed Al Farhan, Ali Charara, Jakub Kurzak, Dalal Sukkari, Asim YarKhan,
and Jack Dongarra. SLATE working note 13: Implementing singular value and symmet-
ric/hermitian eigenvalue solvers. Technical Report ICL-UT-19-07, Innovative Computing
Laboratory, University of Tennessee, September 2019. revision 04-2020.

12

References References

[3] GaryWHowell, JamesWDemmel, Charles T Fulton, Sven Hammarling, and KarenMarmol.
Cache e�cient bidiagonalization using BLAS 2.5 operators. ACMTransactions onMathematical
So�ware (TOMS), 34(3):14, 2008. doi: 10.1145/1356052.1356055.

[4] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel singular value
algorithm and its implementation for multicore hardware. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (SC’13), page 90.
ACM, 2013. doi: 10.1145/2503210.2503292.

[5] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for
symmetric eigenvalue problems using aggregated �ne-grained and memory-aware kernels.
In Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’11), pages 8:1–8:11. ACM, 2011. doi: 10.1145/2063384.2063394.

13

	Contents
	Introduction
	QR factorization (geqrf)
	GPU Implementation of Triangular Matrix-Matrix Multiplication (trmm)
	GPU Implementation of unmqr

	Hermitian eigenvalue problem (heev and syev)
	Three Stage Algorithms
	Performance Improvements

	Triangular solves (trsm)
	trsm implementation
	trsmA: a variant of trsm targeting a small number of RHS
	Performance comparison
	Experimental results

	References

