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Human-AI Interaction: Simultaneous, Real-time
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Online Models

● Generate simultaneously with input:

● Challenge: “future” unavailable when 
generate “present”
→ Must anticipate the input
→ When misanticipate, must recover from error

Generated at step t

Model condition



Music Jamming

https://www.flickr.com/photos/gutweincreative/9975000744/

Simultanous interplay of coordination, anticipation, and collaborative creativity 
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= sixteenth notes 
(¼ quarter note)
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● Dataset: hooktheory dataset
○ 38k melody-chord pairs of pop song
○ No human preference label

● Model: 8-layer transformer decoder
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Train with MLE: simple but ineffective

Time

Generated at step t

Model condition
● Training with Maximum Likelihood Estimation 

(MLE) is straightforward:
○ Next-token prediction + cross entropy

● However, MLE will cause exposure bias:
○ Only seen perfect condition from data in 

training 
→ Cannot effectively recover from error
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Input Melody

Ground Truth Dmaj7 E F♯m A A  maj7 B Cm E Gm♭ ♭ ♭

Online generation fails to recover from error

C♯mOnline MLE A Bsus4 F♯7 B7 A D  m A  m♭ ♭ ♭

melody transposed up 6 semi-tones (a tritone)
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Powered by ReaLchords:
Real-time melody-to-chord accompaniment

https://docs.google.com/file/d/13WNN85BSfEDItVL5RiTZK5FQGHeZZrkv/preview


Extra Objectives Needed for Online Model
Extra objectives needed that will tell model how to 
anticipate and recover from error
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Reinforcement Learning

Reward 
Models

REINFORCE + value baseline
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Reward Model
● Dataset only contains melody & chords
● Measure on how well model plays with input

→ Train similarity measurement model via self-supervision

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural 
language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.



Contrastive Reward Model
● Train with contrastive objective
● Reward model takes in a complete episode of melody or chord
● Reward as similarity between melody (input) and chord (output)
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ChordsChordsChord
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Contrastive Reward Model is Not Enough
● Limited aspect: Reward overemphasize overall harmonic
● Granularity: any single error could result in big drop in reward

C1

M2

M1

M3

C2 C3Chord Encoder

Melody EncoderChordsChordsMelody

ChordsChordsChord



Discriminative Model: reward with different perspective
● Train the self-supervise contrastive task as binary classification
● Reward as probability of classification
● Measure reward more on synchronization
● *Ensembling same model also boost performance

Encoder

Chord Melody

Chord Melody

Chord Melody



Multi-scale Reward for Better Credit Assignment
● Train reward models with smaller input context
● Ensemble multi-scale models



Multi-scale Reward for Better Credit Assignment
● Train reward models with smaller input context
● Ensemble multi-scale models
● of the full context length, 50% overlap window
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Knowledge Distillation

C G A Fm

Teacher 
ModelC G A Fm

Context Prediction
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Offline-to-online distillation with previlliged information

● Traditional knowledge distillation 
applies KL on data samples 
between different model size

● We apply KL on samples 
generated from interaction 
between offline teacher and 
online policy



Better Generation Quality w/ RL & Knowledge Distillation
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Better Generation Quality & Perceptually Aligned Reward

Human preference
Contrastive reward
Discriminative reward
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Adaptive Accompaniment with ReaLchords
Check more audio samples here: 
https://storage.googleapis.com/realchords/index.html 

https://storage.googleapis.com/realchords/index.html

