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ABSTRACT

Applications and their underlying network largely operate in isola-

tion, passing data back and forth. For several use cases, such isola-

tion is no longer desirable. Tighter application-network (APP-NET)

interactions can lead to a better allocation of network resources for

meeting application performance guarantees. Vice versa, applica-

tions can become more adaptive to the underlying network context.

In this paper, we present the design of an APP-NET interface where

applications become able to pass traffic and monitoring require-

ments to the network and where networks are empowered to share

monitoring and feedback information to the applications. The pre-

sented design is evaluated for two different use cases, illustrating

the potential gains in functionality or performance compared to

situations where such application-network interaction is absent.
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1 INTRODUCTION

Traditionally, applications are designed to be network agnostic,

without knowing in real-time much about the network capabilities

or the network’s ability to satisfy their requirements. As such, the

network behaves like a black box towards applications while being

not aware of application requirements. At most, what networks
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can achieve is to distinguish between different traffic classes, a

behavior that is not sufficient to treat increasingly diverse appli-

cation requirements. Currently, network and application control

planes are separated and are performed by different entities in the

network. In some approaches, the network design is coupled to a

specific application and some of the application logic is moved to

the network nodes (like the "in-network computing" concept [13]).

However, in many use cases, the application types and instances

in the network can change over time and cannot be addressed by

such an approach. Alternatively, the network can expose an API

towards applications [11, 12] for expressing their requirements.

Still, the network configuration is performed by a central entity

that can hardly be dynamic enough to deal with changes in the

application requirements. Also, applications can neither verify net-

work performance nor can enforce certain network configurations

directly.

In many dynamic use cases, like in AR/VR applications, wireless

time-sensitive applications (AGV communication, assembling-line

communication, robot communication), etc., integration between

applications and networking is desirable. Moreover, integration

between the data plane and the control plane is still a challenge. As

such, application requirements should be shared via the data plane

while network nodes can react (e.g. reconfigure scheduling) to such

requirements and enrich the data plane with real-time monitoring

capabilities. On the other hand, higher layer protocol logic can be

optimized based on real-time network feedback. In order to move

towards real-time network application integration, novel ways of

interacting and exchanging a variety of information need to be

defined, involving both the end devices and the network nodes.

For utilizing network reconfiguration and higher layer optimiza-

tion for improved application performance real-time application-

network integration needs to be in place, (i) where application data

and control plane are integrated, by carrying and performing both

applications (APP) requirements and monitoring in-band in real-

time, and (ii) where network nodes and application understand and

take actions based on such information.

In this paper, we present a network-application integration ap-

proach for private professional wireless networks, where both end

devices and network nodes can be controlled. The following main

contributions are made. (i) We design and implement the Appli-

cation Network Agent (ANA) that enables applications to pass on

real-time their traffic requirements and their monitoring needs,

and enables the network to provide feedback towards applications.

(ii) We design the logic of network nodes to process application
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requirements as well as monitoring and feedback information. (iii)

We evaluate the design in two different case studies.

2 ANA DESIGN AND IMPLEMENTATION

Real-time application-network (APP-NET) integration need to be

bi-directional and all the exchanged information need to happen

in-band with the data plane. With such core principle we targeted

a modular design integrating the application’s data plane and the

control plane by placing an Application Network Agent (ANA)

in the path between the application (APP) and the network stack

(NET). Such design leads to a network and system independent APP-

ANA interface and a network stack specific ANA-NET interface.

Via the APP-ANA interface, applications can pass their information

regarding their identification, traffic requirements and monitoring

needs to the network, while the network can pass back information

towards applications, such as the monitored performance of the

traffic flow as well as monitoring feedback from the other end node.

Figure 1 shows the architecture of ANA and its interaction with

the applications and the network. While we have shown how the

in-band monitoring is done in [4], here we describe the ANA ar-

chitecture and how the feedback information is encapsulated in-

band. ANA has a modular architecture that consists of a number of

adapters that enable communication towards multi-plane network

stack in southbound and towards in northbound.

Transport adapter offers interaction between ANA and the

transport layer. For end-to-end communication, transport protocol

parameters are crucial, especially in the case of connection-oriented

transport protocols. As such, the transport adapter enables exposure

of the TCP layer information (e.g. congestion and flow control

window size) while in the north-south direction permits application

to adapt TCP behavior.

Monitoring adapter interfaces ANA with the in-band network

telemetry (INT) plane. The monitoring plane is implemented as

an in-band feature in the data plane, where certain data packets

will collect monitoring info in an end-to-end and in a per-hop and

per-flow fashion, with support for wireless links as well [5]. As we

consider only private professional networks that do not expand to a

large number of network hops, introduced INT overhead is limited

[4].

Feedback adapter interfaces ANA with the feedback plane to

receive themonitored information from the in-bandmonitoring and

feedback plane to be passed via the northbound interface towards

application(s). Two different types of feedback are distinguished:

feedback of data that was collected for the traffic flow with the

node as destination and the feedback of data sent from the des-

tination node to the traffic flow initial node. In the first case, the

feedback is local as the monitored data are already available in

the network monitoring stack. In the second case, the feedback

data are received in-band via the reverse path from the destination

node. Application requirements, monitoring as well as feedback

data are encapsulated in the IPv6 extension header and reported

in-band using data packets. To reduce the overhead, the application

requirements and feedback data are first encoded using Concise

Binary Object Representation (CBOR) before encapsulation.

Exchanged data between ANA and applications and network, re-

spectively, are modeled as JSON data structures. The data structure

that ANA passes towards the monitoring stack and the network

consists of three main parts: the application (APP) identifiers, the

APP properties and the APP requirements as shown in List 1. TheAPP

identifiers include the node ID identifying uniquely the traffic flow

initial node, the APP ID identifying uniquely a type of application

on that node, and the namespace ID that identifies uniquely each

traffic flow of the same APP. The APP properties describe the prop-

erties of the traffic generated by the application (parameters such

as traffic periodicity, payload size, etc.), while the APP requirements

contain the list of required parameters to be fulfilled by the network.

Similarly, the data structure that the network pass to ANA contains

the APP identifiers to which the monitored data are linked to, the

network path the monitoring packet followed, and the INT measure-

ment part. The INT measurement part will contain the end-to-end

measurement (type 0) and hop-by-hop monitored data (type 1).

Listing 1: Application requirements that ANA passes to

monitoring stack.

1 {
2 "app-ctrl:cc":{
3 "identifiers":{
4 "dev-id":334512,
5 "app-id":4325674,
6 "ns-id":1234
7 },
8 "app-prop":{
9 "traffic-types":[
10 {
11 "tt-id":1,
12 "type":"periodic_loop",
13 "payload_size_bytes":64,
14 "period_ms":128
15 }
16 ],
17 "network-paths":[
18 {
19 "np-id":1,
20 "src-ip":"10.0.0.1",
21 "src-port":"*",
22 "dst-ip":"10.0.0.15",
23 "dst-port":"80",
24 "proto":"udp"
25 }
26 ]
27 },
28 "app-req":[
29 {
30 "global":true
31 },
32 {
33 "global":false,
34 "tt-id":1,
35 "np-id":1,
36 "jitter_ms":20,
37 "rtt_ms":100
38 }
39 ]
40 }
41 }

Listing 2: INT monitoring report towards ANA.

1 {
2 "app-ctrl:int":{
3 "identifiers":{
4 */ Same parameters as in APP list... */
5 },
6 "network-path":{
7 */ Same parameters as in APP list... */
8 },
9 "int-measurements":[
10 {
11 "time":6745787244513115940,
12 "type":0,
13 "measurements":[
14 {
15 "Source_TS":6745787239823774206,
16 "Latency_E2E [ms]":5,
17 "counter":338
18 }
19 ]
20 },
21 {
22 "time":6745787244513115940,
23 "type":1,
24 "measurements":[
25 {
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Figure 1: Application Network Agent (ANA) architecture and its integration within network.

26 "Retransmitted ":0,
27 "DataRate_[Mbps]":0,
28 "Queue_Length[pkts]":0,
29 "Received_TS":1570625986395274000,
30 "Node_id":11879605
31 */ Other parameters ... */
32 },
33 ....
34 ]
35 }
36 ]
37 }
38 }

ANA logic processes the data received from both ends and cre-

ates the respective JSON data structures. In the southbound direc-

tion, the monitoring stack will encapsulate APP requirements JSON

data structure into the data packet for injecting it into the network

and to the destination node. Based on application requirements,

ANA logic will instruct the monitoring stack on which flows and

which monitoring parameters to monitor, e.g. for latency require-

ments ANA asks for monitoring of Rx/Tx time-stamping at each

network hop, for reliability requirements it asks to monitor losses

on a per-hop basis, etc. In the other direction, ANA will receive

the INT monitoring feedback as a JSON data structure, extract the

necessary information and pass it towards the application.

Application code changes and technical overhead should be lim-

ited to enable focusing on high-level features. Current applications

interact with the network stack by opening a communication socket

via which the datagrams are being passed. This traditional interface

is extended with a unified, network-independent interface towards

ANA, realized through ZeroMQ1 (ZMQ) messaging. Currently, to

integrate this interface with existing applications, a C library is

provided to be embedded with a few lines of code. The ZMQ mes-

saging entity is used to interconnect the ANA logic with adapters

and APPs. ZMQ has been chosen as a lightweight implementation

of messaging library that supports different messaging patterns, as

well as broker-based or broker-less PUB/SUB. The ZMQ communi-

cation is performed only locally between services in the node, and

for short messages (the case with ANA data structures) the added

latency2 is negligible compared to E2E communication latency.

1https://zeromq.org/
2http://wiki.zeromq.org/results:copying

3 EVALUATION

In this section, we demonstrate the usage of ANA in two given

examples where performance and novel functionalities are achieved

and compare it with other SoT solutions.

3.1 Case studies

3.1.1 Network monitoring and configuration instruction can be con-

trolled by the applications sharing their requirements in-band. An

application passes its requirements to ANA as follow:

zmq::socket_t ANA_socket;

zmq::message_t msg;

...

msg.build(src_IP,src_port,dst_IP,dst_port,trans);

bool flag = ANA_socket.send(msg,latency);

In this case, the application opens a ZMQ socket towards ANA

and passes its identifiers together with the requirements (in this

case end-to-end latency). Once ANA receives the application re-

quirements, ANA will instruct the monitoring plane about the

traffic flow to be monitored, based on the APP identifier part, as

well as parameters to be monitored, based on the APP requirements.

As such, the monitoring plane will collect timestamping and pro-

cessing latency on each network hop by setting the monitoring

bitmap [4]. Using this telemetry data, the end-to-end latency and

jitter can be determined. In addition to this, based on throughput

requirements, ANA can instruct the monitoring plane to collect

info on the data rate of the wireless channel.

In an E2E wireless-wired (1 wireless link and 2 wired links)

network topology in Wilab2 testbed, the network is instructed to

monitor and to maintain a certain level of E2E latency (3 ms <)

for certain time-sensitive (TS) traffic flow. Note that each network

node supports time-aware shaping that is configured based on in-

band application requirements. Figure 2a shows the E2E latency

of a TS traffic flow under network saturated condition with a co-

existing UDP stream. Note that only the wireless hop monitoring

information and E2E latency for TS flow are shown.

3.1.2 Feedback-based adjustment of higher layer protocols based

on the monitored data can be achieved via ANA. It is known that the

congestion control mechanism of TCP can not distinguish between
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Figure 2: Impact of ANI for different scenarios.

packet loss due to wireless issues or network congestion. Regardless

of the packet losses cause, the TCP congestion mechanism will

reduce the amount of data sent. Real-time detailed monitored data

are used to distinguish between such events, so the application

maintains the TCP throughput under wireless losses.

Figure 2b shows the throughput comparison between the default

TCP congestion control mechanism in Linux with the adjusted

control mechanism based on feedback data from the monitoring

plane, for different wireless link loss ratios. The measurements were

carried out in a multi-AP network topology setup with two wireless

and one wired hops in between the end nodes. It is seen that for the

cases with a higher packet loss ratio in wireless links, the feedback

monitored data helps the TCP congestion mechanism to maintain

the throughput. In the case of a wireless link with a 20% packet loss

ratio, the adjusted approach based on the monitored data achieves

six times higher throughput than the default Linux TCP congestion

mechanism.

3.1.3 ANA Packet processing capabilities can be compared with

other SoTA solutions, to evaluate its performance. For perform-

ing such measurements we generate data packets that encapsulate

application requirements and/or INT monitoring information in ad-

dition to the data payload. Measurements are performed in a setup

where two nodes (3.3GHz CPU, 256GB RAM running Ubuntu 18)

are connected by wire. The wired setup is used for its capabilities

to support higher data rates, so we can stress test the proposed

design. The first node will generate the INT enabled traffic while

the other node will process such packets and reply with the mon-

itored data. To compare our results with the results given in [9],

we send 1000 Kpps, where packets are INT-enabled with 50B data

payload. Measurements are done 50 times for 30s long. Based on

such measurements, ANA can process up to 998 Kpps compared

to 855,573 Kpps in [9], resulting in only 2 ‰ throughput decrease

compared to IPv6 traffic processing capabilities.

4 RELATED WORK

Attempts to make networks application aware are not new and they

can be categorized in four main groups: out-of-band unidirectional

[6, 7, 11], out-of-band bidirectional [10], in-band unidirectional

[2, 3, 8] and in-band bidirectional [9]. Schmidt et.al [11] extend

the socket interface with capabilities to support application de-

mand sharing towards network stack. This way socket intents allow

the application to share information about their communication

patterns, however, the network configuration is still done via the

control plane. Recently, application-aware IPv6 Networking [8]

and segmentation routing (SRv6) [3] allow the host application to

convey application information into the network infrastructure. As

such, the network can quickly adapt and perform the necessary

network (re)configuration to maintain certain performance guar-

antees. Miyasaka et.al [9] proposed a network API framework for

application-aware traffic engineering (TE) using SRv6 that allows

end-host applications to include a TE behavior inside the IP packet,

while giving feedback to applications only on failure events.

In addition to application requirements exposure functions, net-

work monitoring functions need to be covered as well to support

network-aware applications. The new approach of in-band network

telemetry (INT) [1] that offers possibilities of fine-grained network

monitoring is extended to wireless networks as well [4], offering

full in-band network monitoring information exposure. Zhang et.al

[14] integrate in-band and out-of-band network monitoring expo-

sure, reducing the necessity of datapath packet format updates or

end-host modification when full in-band is used.

ANA approach benefits compared to out-of-band and unidirec-

tional APP-NET integration are evident. It offers integration of

in-band monitoring and feedback transparent to the application

side. On the other hand, the detailed feedback towards application

enables higher layer optimization (as shown in section 3.1.2), com-

pared to insufficiency of only-on-failure feedback in [9]. Further,

due to in-band realization, proposed solution reduces only by 2

‰ the actual data throughput.

5 CONCLUSION

In this paper, we presented a design approach for a rich and ex-

tensible application network interface. Such design, on the one

hand, enables applications to pass their identification, traffic prop-

erties, and requirements, as well as monitoring needs towards the

network, while on the other hand, the network can monitor the

achieved performance of individual traffic flows and feedback such

information towards applications. The ANA design offers a unified,

network-independent interface for applications to express their

requirements and to get feedback from the network.

The potential benefits of the proposed ANA architecture has

been evaluated in two different use cases. In the first use case, ANA

is used to enable networkmonitoring and reconfiguration according

to the application requirements. The second use case demonstrates

how feedback information from themonitoring plane can be used to

adjust the transport layer behavior for achieving better throughput

under wireless link losses. Next to this, the processing capabilities

of the data plane are not affected in comparison to cases where

such monitoring and feedback plane is absent and are 10% higher

compared to other SoTA solutions.
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