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INTRODUCTION

To understand neural processing we need to study structure and function
at many levels of organization, from subcellular to systemic. We also need
to understand the linkages between levels. First, what are the mechanisms
at a lower level that generate structures at a higher one? Second, of all the
possible structures that could be formed from the given constituents,
only some are in fact generated by the lower-level mechanisms. Are the
generated structures optimal, or favored over the other structures, with
respect to some property? If so, we may be able to describe the lower-level
mechanisms as implementing an organizing, or optimization, principle.
Third, can we account for such putative organizing principles in terms of
their adaptive value to the animal?

This review explores linkages between lower-level mechanisms and func-
tional architecture in the processing of sensory information. It brings
together two lines of study. The first of these is the investigation of how
lower-level mechanisms can generate the types of neural structures that are
found in the early processing stages of perceptual systems. This approach
involves modeling the formation and modification of neuronal connections
by simple rules (for example of Hebb type), expressing these rules as 
mathematical procedure or algorithm, and using computer simulations or
mathematical analysis to determine what structures the rules generate. The
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258 LINSKER

types of structures or patterns whose formation has been studied include
topographic maps, orientation-selective receptive fields, and ocular domi-
nance and orientation columns. The second line of study consists of a set
of general ideas about how data may be encoded and transformed in a
perceptual system, and the informational purposes that these trans-
formations may serve. I review both approaches, then discuss recent results
that suggest how the approaches may be unified--that is, how lower-
level mechanisms may be used to create perceptual processing stages that
implement certain types of optimal encoding principles.

FROM SALIENT EXPERIMENTAL FEATURES TO

MODELS OF SELF-ORGANIZATION

How do specific patterns of neural connectivity and functional architecture
develop, how may they be plastically altered, and how do these patterns
subserve perceptual functions? A great deal of experimental progress has
been made concerning these issues. Theoretical work in this area has
several purposes: to seek common rules and principles that may account
for a range of observations, to predict new features of neural organization
and cell response, and to provide a view of biological information pro-
cessing that integrates several levels of organization.

Experimental evidence indeed suggests that common rules and principles
may underlie important aspects of sensory processing. First, cortical
regions subserving different processing functions share similar intrinsic
structure (Mountcastle 1978). Second, by altering the character of the input
to a sensory processing region, one can induce patterns of organization and
response properties that differ from those normally found in that region,
but in an apparently lawful way (e.g. Constantine-Paton & Law 1978,
Kaas et al 1983, Merzenich et al 1984, M6tin & Frost 1989, Rauschecker
1987, Sur et al 1988).

The biological systems of interest exhibit immense complexity. The
models to be discussed are by comparison extremely simple. The purpose
of this simplicity is to allow us to gain understanding of how underlying
rules can generate structure and function, so that essential complexities
can then be added in an insightful way.

Types of Pattern-Generatin9 Models

When a structure or organized pattern is found in nature, various types
of patterning models may account for it. Two extreme types are patterning
by "explicit specification" and patterning by a process of so-called "self-
organization." In.the first type of model, the pattern is directly determined
or strongly influenced by a pre-existing pattern in an underlying substrate.
An example of this type is Sperry’s (1943, 1963) chemoaffinity model 
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PERCEPTUAL NEURAL ORGANIZATION 259

topographic map formation, in which each cell has a specific chemical
"address." When such a model is used, the problem of explaining the
original pattern’s emergence is replaced by the problem of explaining how
the underlying pattern of "addresses" itself arises from lower-level rules.
In some models, an explicit specification may determine the pattern in
detail; in others, it may determine only certain features of the pattern, such
as its overall orientation or its coarse-grained arrangement.

In a model of self-organization, on the other hand, the pattern develops
from an initially homogeneous structure as a result of processes that
incrementally change each element of the system according to a relatively
simple set of rules (Turing 1952). Typically such rules are local; that is,
each incremental change in one element depends only upon the state of a
few other elements. In the generation of certain properties such as topo-
graphic maps, both self-organization and a partial form of explicit speci-
fication appear to play a role (Udin & Fawcett 1988). This review focuses
mainly on the self-organizing aspects of patterning models.

Basic Structure of the Models

The models discussed here can all be understood with reference to a
common basic structure and set of patterning rules, although the details
vary and not all of the components are present in each model. The structure
consists of a "source" and a "target" layer of cells, with feedforward
connections from source to target and lateral connections between target
cells. Each connection is characterized by a number called its "strength."
The patterning process consists of repeatedly modifying the connection
strengths (and in some cases creating or destroying connections) according
to the rules until a final configuration develops.

Each connection strength is modified in a way that depends upon the
"state" of the connected cells. In "marker-based" models the state of a
cell is defined as the amount of a marker substance of some type (there
may be more than one type of marker). In "activity-dependent" models
the state is defined as a measure of neuronal signaling activity such as a
firing rate.

The patterning rules consist of three parts: (a) a "transmission" rule
that determines how each target cell’s state depends upon the states of the
source cells connected to it (the target cell’s state is typically related to an
average of the source cells’ states weighted by their connection strengths);
(b) a "lateral interaction" rule that describes how the states of nearby
target cells are modified by interactions within the target layer; (c) 
"update" rule that modifies each feedforward (and in some cases lateral)
connection according to the degree to which the states of the connected
cells are similar.
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260 LINSKER

In activity-dependent models, the update rule typically changes each
connection strength in a way that depends upon the presynaptic signaling
activity and the postsynaptic firing rate or depolarization potential. In this
case, the change usually depends upon the degree of correlation between
the pre- and postsynaptie quantities, with stronger correlation causing an
increase in strength. I refer to this type of neural activity-dependent rule
as "Hebb-like" (see Brown et al 1990 for review), while recognizing that
Hebb’s original proposal (Hebb 1949) referred to cell firing, not depolar-
ization, and that it provided no statement of the conditions under which
strengths could decrease (of. Stent 1973).

Note that both Hebb-like rules and marker-based rules play similar
roles in the patterning process, although the mechanisms to which they
refer are very different. In each case a connection is strengthened when
the pre- and postsynapti¢ cells are correlated with each other--either in
their signaling activity or in the possession of similar amounts of a
marker.

It is striking that many salient features of perceptual neural organization
emerge in models containing the basic elements described above: a positive
feedback process (whether marker-based or Hebb-like) in which large
connection strength causes the states of the connected source and target
cells to be more similar, and greater similarity tends further to increase
the connection strength; and a lateral interaction process that causes the
states of nearby target cells to tend to become either more or less similar
to each other, depending upon the interaction.

Models of neural self-organization developed since the early 1970s have
emphasized different aspects of these rules and invoked different con-
straints or assumptions concerning connectivity and input and output
signaling activity. They have been directed toward various goals such as
elucidating basic principles of pattern formation, showing how specific
features emerge, or modeling specific underlying mechanisms in greater
detail. The remainder of this section reviews some key ways in which these
models have increased our understanding of how simple rules lead to
complex structures that resemble those found biologically.

Self-Organizing Models of Topographic Map Formation

In a topographic map, source and target cells are connected in such a way
that positional ordering is preserved. Experimental results on topographic
map formation have been recently reviewed (Udin & Fawcett 1988). How
are the main features of topographic maps generated in self-organizing
models?

NEIGHBOR-PRESERVING MAPS For marker-based models, the essential idea
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PERCEPTUAL NEURAL ORGANIZATION 261

is described by the so-called "tea trade analogy" (vonder Malsburg 
Willshaw 1977, Willshaw & von der Malsburg 1979). In this model, one
assumes that the states of nearby source cells are similar. Each target cell
acquires a state that is the average of the source cells’ states weighted by
their connection strengths. The lateral interaction then "blends" the states
of nearby target cells so that these states become more similar to each
other. The update rule strengthens connections between source and target
cells having similar states. The result of this process is that nearby source
cells map to nearby target cells.

How can a topographic map arise in an activity-dependent model
(Willshaw &von der Malsburg 1976)? Start with initially random non-
negative feedforward connection strengths. (For simplicity, all pairs of
source and target cells can be assumed to be connected. A strength that
declines to and remains at zero corresponds to an absent connection in a
more realistic model.) Many patterns of signaling activity in the source
layer are presented to the network, one at a time. Each input presentation
consists simply of a localized region, or "spot," of activity against a quiet
background. If certain constraints (specific to the modcl) arc tact, each
such presentation will cause a localized group of target cells to be active.
(In particular, the lateral interactions are set up so that the active tar-
get cells tend to form a localized region, rather than being dispersed.)
The connections between pairs of active source and target cells are then
strengthened by a small amount (this is the Hebb-like rule), and compen-
sating reductions are made in the strengths of other connections. After
many such spot patterns are presented, the resulting pattern of connection
strengths will be topographic; that is, nearby source cells will make their
strongest connections to nearby target cells.

Kohonen (1982a,b) has described a related algorithm in which a simple
geometric computation is substituted for the more detailed properties of
the Hebb-like rule and lateral interactions, and a topographic map
emerges. For each presentation of an input activity "spot," this algorithm
finds the particular target cell that fires most strongly, and then changes
the target cells’ response properties so that the maximally responding
target cell and its neighbors will respond more strongly to a spot at the same
input location in the future. The algorithm also applies more generally to
cases in which the input patterns are ordered according to properties other
than spatial position.

In both marker-based and activity-dependent models, the degree of
selectivity of a target cell--that is, the range of different input patterns to
which the cell responds strongly--can depend upon (a) the update rule
(e.g. Bienenstock et al 1982); (b) constraints on total connection strength,
or on some other function of the strengths, for each source or target cell
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262 LINSKER

(Willshaw & yon der Malsburg 1976); and (c) the particular form of lateral
interaction (Grossberg 1976).

Let us consider several important experimental and theoretical questions
concerning topographic maps that go beyond the basic issue, of mapping
neighbors to neighbors, discussed above.

OVERALL MAY ORIENTATION The self-organizing model rules do not by
themselves favor one map orientation over another. In biological systems,
temporal or chemical mechanisms that favor certain regions to be con-
nected first, or preferentially, may induce an orientation bias. This roughly
corresponds to weakly biasing either the initial connection strengths
(Willshaw & yon tier Malsburg 1976, 1979) or the patterning rules (White-
law & Cowan 1981, Fraser 1985). Also, the shapes of the source and target
layers may favor a particular orientation, owing to boundary effects. More
generally, source and target layer boundary conditions can influence map
formation in significant ways that are not limited to overall orientation
(Schwartz 1977). Models having such biases can be thought of as hybrids
of self-organizing and explicit-specification models. Experimental manipu-
lations (reviewed by Udin & Fawcett 1988) are important for determining
the extent to which the biological mechanisms fit either type of model.

LOCALLY OPTIMAL MAPS THAT ARE NOT GLOBALLY OPTIMAL If separate
regions of the network independently become organized, the resulting
maps may be out of register along their boundaries or may have conflicting
orientations. To avoid this, one can start with a coarse topographic map
that is subsequently refined by a local process. As an example, a two-step
process in which the refinement stage is activity-dependent is found during
map regeneration in goldfish (Schmidt 1985). Alternatively, the lateral
interaction distance in the target layer can be made initially large, then
decreased during development (Kohonen 1982a,b). In a biological system,
growth of the target layer relative to the lateral interaction distance could
achieve a similar result. Yet another approach is to limit early map for-
mation to a single region of nucleation (Willshaw & yon der Malsburg
1976).

CONTINUOUS VS. DISCRETE MAPS Some self-organizing models generate
topographic maps in which the receptive fields of a sequence of target cells
either (a) shift in a continuous and overlapping manner, as described
above, or (b) form clusters with discontinuous jumps as one crosses from
one column-like target region to another (Takeuchi & Amari 1979). Dis-
continuous mappings also can emerge in models with more complex
dynamics (Pearson et al 1987).

MAP MAGNIFICATION FACTORS In certain models (Amari 1980, Kohoncn
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PERCEPTUAL NEURAL ORGANIZATION 263

1982a,b, Pearson et al 1987, Linsker 1988b), if one region of the source
layer is stimulated by an activity "spot" more often than another, that
source region is mapped onto a larger region of the target layer. From one
theoretical standpoint (see A ~’RINCn’LE or ~IAXX~rt~M PRESERVATION below)
it can be desirable for the magnification factor of each source region to be
proportional to the frequency of "spot" stimulation, so that each target
region of given size is activated an equal fraction of the time. Although
the Kohonen algorithm described above was originally thought to have
this property (Kohonen 1982a,b), it has since been shown not to (Ritter
& Schulten 1986, Kohonen 1988). A model that does generate maps having
this proportionality property is described by Linsker (1989b), and has been
generalized to cases in which the activity patterns are more complex
and the magnification factor does not depend simply upon frequency of
stimulation.

Ocular Dominance

Banded regions of ocular dominance are found in cat and monkey striate
cortex (LeVay et al 1975, Hubel & Wiesel 1977, Shatz & Stryker 1978)
and in frog tectum following implantation of a third eye (Constantine-
Paton & Law 1978). Their formation depends upon correlated electrical
activity (Stryker & Harris 1986, Reiter & Stryker 1988).

Two questions addressed by self-organizing models are:

1. How does the process of segregation into ocularity domains interact with
the process of topographic map formation?

2. Why do patterns ranging from regular stripes to less regular bands or
patches form, and what determines their characteristic dimensions?

The interaction between topographic map and ocularity domain for-
mation is studied in a marker-based model (vonder Malsburg 1979) having
three classes of markers: one for ocularity and one each for horizontal and
vertical position. The multiple-marker model is an extension of topographic
map models to a case in which similarities in properties other than position
affect the mapping. The overall "similarity" between the marker content
of two cells is defined as a combined measure of the similarities of the
markers in each class. The overall cffect is to map source to target in such
a way that the similarity between nearby target cells is maximized on
average. This type of mapping criterion is either explicitly introduced or
emergent in other self-organizing models, both marker-based and activity-
dependent, as well (see for example Kohonen 1982a,b, 1988, Linsker
1988b, Durbin & Mitchison 1988).

Models that incorporate a more detailed interaction between topog-
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264 LINSKER

raphy and ocularity in map formation include an activity-dependent
model (vonder Malsburg & Willshaw 1976) in which same-eye input
activities are locally correlated and opposite-eye activities are anti-
correlated, and a model (Fraser 1985) involving markers that mediate
an adhesive interaction, activity-dependent modification, and global
positional biasing effects.

Why do ocular dominance stripes and related patterns form? Suppose
we ignore visual field position, and simply distinguish between inputs from
the two eyes. Each target cell receives connections of initially random
strength from each eye. Now let the target cells interact, and their con-
nection strengths change incrementally, according to the following
assumed rule (Swindale 1980): Each cell’s ocularity preference changes 
be more nearly like the average preference of its near neighbors, and to be
more nearly opposite the average preference of its midrange neighbors.
The result is that regions of each ocularity preference form and segregate
into (a) locally parallel stripes (with forks and bends) if the lateral inter-
action rules are unbiased between the two eyes, or (b) islands of one
ocularity in a "sea" of the other if the rules favor the latter ocularity to a
sufficient degree. Stripes tend to run into the layer boundary at a right
angle, consistent with the observed perpendicularity of stripes at the area
17/18 border in, for example, macaque (Hubel & Wiesel 1977). In addition
to these simulation results, mathematical analysis of the onset of segre-
gation shows that as stripes start to form, their width has a particular
preferred value that depends upon the scale of the lateral interaction
(Swindale 1980). Stripe formation has also been analyzed and simulated
in a more detailed activity-dependent model in which each target cell
receives inputs from source cells lying in a fixed topographic arrangement
(Miller et al 1986, 1989).

Orientation-Selective Cells and Columns

Cells selectively responsive to edges or bars having a particular orientation,
and arranged in columns containing cells of similar orientation preference,
were discovered by Hubel & Wiesel in cat (Hubel & Wiesel 1962, 1963,
reviewed by Fr6gnac & Imbert 1984) and macaque (Hubel & Wiesel 1968,
1977). In macaque, they are present at birth (Wiesel & Hubel 1974) prior
to structured visual experience. Recent advances in optical imaging of
electrical activity (Blasdel & Salama 1986) have provided a more detailcd
picture of the columnar structure in macaque. The detailed mechanisms
that mediate orientation-selective response are still unclear (see review by
Ferster & Koch 1987).

The early experimental findings motivated attempts to explain how
orientation selectivity could be generated by activity-dependent self-organ-
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PERCEPTUAL NEURAL ORGANIZATION 265

izing models. To see what has been learned from these models, it is useful
to think of the problem in two parts.

1. When the input patterns presented to the network (during the con-
nection modification process) differ from one another with respect to
only one property, how does each target cell learn to respond selectively
to patterns having a particular value (or range of values) of that prop-
erty? That is, how does selectivity per se emerge when there is only one
pattern selection criterion?

2. When the input patterns differ from one another in many respects, what
determines the particular property, or combination of properties, to
which each target cell will learn to respond selectively? In particular,
how can orientation selectivity emerge in self-organizing models either
in the absence of structured visual experience, corresponding to the
prenatal development of well-formed selectivity in macaque, or under
the influence of realistic postnatal experience?

HOW DOES SELECTIVITY EMERGE? In the activity-dependent models of
topographic map formation discussed above, topographic ordering arises
when each input activity pattern consists of a localized spot. Two input
activity patterns are similar to each other if their spots are at similar
positions. The update rule, and in some models the lateral interactions,
cause each target cell to become selective for a subset of similar patterns,
and the lateral interactions cause nearby target cells to have similar
response properties.

In the first self-organizing models to address orientation selectivity (von
der Malsburg 1973, Bienenstock et al 1982), each input pattern consists of
an arbitrarily oriented bar of activity against a quiet background. (There
can be added random noise that does not affect the results.) The bar’s
shape and center position are the same for all the input patterns. The only
measure of pattern similarity is thus bar orientation similarity.

Von der Malsburg (1973) considers a layer of target cells with fixed
center-surround lateral connections. Each source cell is connected to each
target cell (topographic mapping is neither present initially nor does it
emerge). The result is that most of the target cells become selectively
responsive to bars lying at or near some orientation, and nearby target
cells tend to become selective for bars of similar orientation.

Bienenstock et al (1982) consider a single target cell whose synaptic
inputs can be thought of as forming a circular ring whose center is the
same as that of each bar pattern. A version of a Hebb-like rule is used in
which the change in strength depends upon the difference in value between
the postsynaptic activity and an adjustable threshold. This threshold is
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266 LINSKER

important in their model for ensuring that the target cell becomes selective
for one bar pattern or a subset of similar patterns.

Because of the simple centered-bar form chosen for the input patterns,
the emergence of orientation selectivity in both these models closely
parallels the emergence of positional selectivity in the formation of topo-
graphic maps. In fact, the activity pattern on a semicircular portion of
the ring of synapses in the latter model consists of an interval (or one-
dimensional "spot") of activity whose position is given by the bar orien-
tation. The development of orientation selectivity in this model thus cor-
responds exactly to the development of positional selectivity in a network
having a one-dimensional source "layer" (that has been "wrapped around"
so that its endpoints meet).

COLUMN FORMATION We have noted that von der Malsburg’s (1973)
model generates target cells whose orientation preferences are similar
within a region of the target layer; that is, the cells form orientation
"columns." In the model studied by Swindale (1982), each target cell 
labeled by a vector whose magnitude and direction are modified by lateral
interactions with the labels at other sites. The approach is the same as that
used for ocular dominance stripe formation (Swindale 1980), in which
each cell was labeled by its degree of left-eye and right-eye preference. The
same type of center-surround lateral interaction rule is used, so that each
label incrementally changes to become more nearly like its near neighbors
and unlike its midrange neighbors. The result is that irregularly banded
regions of similarly labeled cells emerge. In this model, the questions of
why orientation-selective receptive fields arise, and how the particular
lateral interaction between labels may arise, are not addressed.

By invoking a similar center-surround type of lateral interaction, von
der Malsburg & Cowan (1982) show that if one postulates that different
groups of target cells have, for example, horizontal and vertical orientation
preference, then the lateral interactions induce the formation of a sequence
of cells having the intermediate orientation preferences.

WHY ORIENTATION SELECTIVITY? Linsker (1986a-c) has analyzed the
development of a network in which random uncorrelated signaling activity
is preprocessed by a layer of cells having topographically arranged center-
surround receptive fields. The output from this "source" layer of cells is
in turn provided as input to a target layer via Hebb-modifiable connections.
Even in the absence of lateral connections, a layer of orientation-selective
target cells emerges under certain conditions. Since the architecture and
development rules possess no orientational bias, the emergence of orien-
tation selectivity is an example of a "symmetry-breaking" process (Linsker
1986b, 1988c). Under different conditions a layer of ccntcr-surround cells
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emerges. The two parameters that determine which cell type develops are
the radius of the source region that provides input to each target cell, and
the degree of correlation needed to cause strength increase via the Hebb-
like rule.

If the parameter values lie in a range that leads to orientation-selective
cell formation, then adding weak lateral connections of fixed strength to
the model causes orientation columns to form. In the model, feedforward
connections suffice to generate orientation-selective cells. The simulations
discussed do not address the question of the extent to which lateral inter-
actions can influence the formation of orientation-selective cells (as
opposed to their columnar organization).

The emergence of orientation-selective cells and columns in this model
is explained by analyzing how the Hebb-like rule creates geometric patterns
of connection strengths when the pairwise signal-activity correlations in
the source layer depend upon the relative positions of the source cells
(Linsker 1986b, 1987). These activity correlations arise because of the
center-surround preprocessing. Even if one uses a Hebb-like rule different
from the particular one used in this model, orientation-selective cells can
emerge (see for example Kammen & Yuille 1988). The mathematical
reason is that the orientation-selective solutions are formed from com-
binations of the first few eigenfunctions (those having the largest eigen-
values) of the covariance matrix of activity in the source layer (Linsker
1987).

Experimentally, one finds a series of several layers of cells having sub-
stantially center-surround receptive field properties in retina and LGN of
cat and macaque monkey, and layer IV of macaque striate cortex, followed
by the onset of well-tuned orientation selectivity. Although the feedforward
connections in the model can in general be of both excitatory and inhibitory
types, orientation selectivity emerges even when the connections from the
center-surround layer are constrained to be excitatory (Linsker 1987, and
unpublished results). This is of interest since the geniculocortical con-
nections which immediately precede the first well-tuned orientation-selec-
tive stage in cat are thought to be exclusively excitatory.

In Linsker’s model, the center-surround cells responsible for the pre-
processing themsclves emerge by a self-organizing process, given only
random input and topographically arranged connections to each cell from
a neighborhood of cells of the previous layer (Linsker 1986a). The means
by which the center-surround layer is generated--whether by an activity-
dependent self-organizing process as in the model, or by retinal interactions
mediated by anatomically complex connections--does not affect the
emergence of orientation selectivity in the later processing stage of the
model.
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The model as a whole shows that a sequence of feature-analyzing cell
types of progressive complexity can emerge via a Hebb-like rule in a
multistage feedforward network. Structured rather than random uncor-
related input can also be provided to the first layer, and the developmental
results studied (Linsker 1988a).

Models relating to orientation selectivity that are not self-organizing
models of cell formation are outside the scope of this review; two examples
are (a) a nonadaptive model of cell formation (Braitenberg 1985) and 
a demonstration, using a "learning by error correction" algorithm, that
orientation-selective elements perform useful intermediate processing
functions in a network computation of curvature in a scene (Lehky 
Sejnowski 1988).

NETWORK MODELS, OPTIMIZATION PRINCIPLES,
AND INFORMATION THEORY

The results of the preceding section provide a stimulus for investigating
why a Hebb-like rule, with or without lateral connections, generates a
sequence of feature-analyzing cell types in a layered network. This section
explores several senses in which the types of patterning rules studied
can create structures that are optimal from an information processing
standpoint.

What Does a Hebb-like Rule Optimize?

First consider a single cell with feedforward but no lateral connections.
To understand intuitively the effect of a Hebb-like rule, an analogy is
useful: Imagine a committee whose recommendation ("output activity")
on any issue is the weighted average of its members’ opinions ("input
activities"), each opinion being weighted according to the member’s voting
strength. A member who consistently agrees (disagrees) with the com-
mittee’s opinion receives an increase (decrease) in voting strength. The
operation of this Hebb-like rule transforms a committee of members
having random voting strengths, whose averaged output is rarely a strong
recommendation (either positive or negative), into a committee whose
members of high voting strength tend to agree more often, and whose
recommendations tend to be strong (in either direction) more of the time.

What does this result mean for a model cell (Linsker 1988a)? Consider
a cell whose output activity is a linear function of its input activities. A
histogram of the output values over a range of input presentations will
have a spread, or variance, that depends upon the connection strengths.
If the Hebb-like rule has a term that changes each strength by an amount
proportional to the product of (a) the input activity at that connection
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(minus its mean value) and (b) the cell’s output activity (minus its 
value), this term will tend to increase the cell’s output variance. Depending
upon the other terms in the update rule, the net result can be to maximize
the variance subject to some constraint, for example on the sum of the
strengths (Linsker 1986b, 1988a,c) or the sum of the squares of the strengths
(Amari 1977, Oja 1982). A cell with low output variance tends to 
nonselective--its responses to different input presentations are similar.
High variance tends to correspond to greater selectivity. Even when the
cell’s output variance is itself constrained (e.g. by a maximum allowed
firing rate), or when the cell’s response is nonlinear, a suitable Hebb-like
rule can act to maximize the cell’s responsiveness to statistical structure (or
"features") in the input presentations, and to minimize its responsiveness
to uncorrelated inputs or random processing noise (Linsker 1988a).

Under certain conditions, a Hebb-like rule generates cells that are opti-
mal in several ways. As we have seen, such a rule produces cells that
respond selectively to statistically significant properties of the input pre-
sentations. In particular, a suitably constructed rule (Oja 1982) produces
a cell that performs a standard computation in statistical feature extraction
called "principal component analysis." [Watanabe (1985) discusses 
detail the application of this and related statistical methods to pattern
recognition.] A cell produced by such a Hebb-like rule also has an "optimal
inference" property: The average error incurred when using the cell’s
output value to estimate its input values is less for such a cell than for any
other linear response cell. Finally, under certain conditions, the output
from such a cell conveys maximum information about its input activity
values, compared with cells having arbitrary connection strengths (Linsker
1988a).

The Role of Lateral Interactions

If a Hebb-like rule can cause individual target cells to develop so as to
optimize certain properties, can the addition of lateral interactions allow
an assembly, or an entire layer, of target cells to develop in an optimal or
near-optimal way with respect to some property that is important for
information processing?

When both feedforward and lateral connections are present, target cells
not only can develop feature analyzing properties by means of a Hebb-
like rule (as shown above), but can "cooperate" or "compete" with each
other in the formation of these properties (see, for example, vonder
Malsburg 1973, Grossberg 1976, Kohonen 1982a,b, Rumelhart & Zipser
1985, Linsker 1986c, 1988a,b, 1989b, Pearson et al 1987, Hinton 1989).
An optimization method (Durbin & Willshaw 1987) based on the "tea
trade" model (vonder Malsburg & Willshaw 1977) has been developed.
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In some of these models the process of modifying the connection strengths
corresponds closely to a statistical method for classifying or detecting
regularities in data sets (see Lippmann 1987 for review). For example, 
network algorithm for forming clusters of related input presentations,
developed in connection with the "adaptive resonance theory" (Carpenter
& Grossberg 1988), is related to the "sequential leader clustering" algo-
rithm in statistics. Kohonen’s (1982a,b) algorithm for "feature map" for-
mation, discussed above, is related to a version of the "k-means" algorithm
(MacQueen 1967) for partitioning a set of data points into a number 
groups such that the members of each group are similar to each other
according to a particular measure. This type of partitioning is useful
for extracting common features from raw data, and also for the data
compression problem of communicating an item of data, by stating which
group it belongs to, in such a way that the original datum can be inferred
with minimum error. [Cf. the "optimal inference" result of the previous
section, the literature on "vector quantization" (reviewed by Gray 1984),
and the work of Watanabe (1969, 1985) on feature extraction.] I discuss
the choice of "similarity" measure further in the next section.

Might some type of statistical algorithm be playing an important role
in the biological processing of sensory data? If so, what property if any is
being optimized, how can the optimization process be realized by a bio-
logical network, and of what value is the process to the animal? Although
these questions are necessarily speculative, I discuss here a concrete
approach to them, in which some basic ideas from information theory play
an important role (Linsker 1988a). To place recent connections between
information theory and perceptual network algorithms in perspective, it
is important to review the history, since the 1950s, of the idea that infor-
mation theory may relate to the organization of sensory and perceptual
processing. The relevant information-thcoretic ideas are discussed here in
an informal way. For the classic development of information theory see
Shannon (1949); a tutorial treatment of some of the ideas as they relate 
sensory processing is given in Linsker (1988a).

Information Theory and Perception

REDUNDANCY REDUCTION Sensory input, such as a time sequence of
visual scenes, is not random and uncorrelated, but contains structure and
regularities. Knowing certain aspects of the input allows us to infer other
aspects; the input is partially redundant. Attneave (1954, p. 189) proposed
that

A major function of the perceptual machinery is to strip away some of the redundancy
of stimulation, to describe or encode incoming information in a form more economical
than that in which it impinges on the receptors.
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The suggested approach is "equivalent to that of a communications engi-
neer" who exploits regularities in an input scene, in order to encode the
input signals so that they may be sent along an essentially noise-free
channel of limited capacity and reconstructed by the recipient with high
fidelity (low distortion). [For examples of how the computations performed
by cells during early visual processing can be analyzed from the stand-
points of data compression and reconstruction, see Daugman (1988) and
O~uzt6reli & Caelli (1986).]

Attneave’s recognition that encoding for redundancy reduction is related
to the identification of specific features such as edges or corners in a
scene, and that a redundancy-reducing strategy might be important for
perceptual processing, is an important insight. The idea is related to Craik’s
(1943) view of the brain as building a model of the external world that
incorporates the world’s lawful regularities and constraints. Attneave’s
idea of sensory processing as data compression, however, leaves some
crucial questions unanswered: What role if any is played by the "recipient"
in the communications analogy? If the original scene is never "recon-
structed" by the brain (and why should it be?), what is the meaning of the
fidelity criterion? That is, if not all input information can be preserved,
what criterion determines what to discard? Finally, how do biological
constraints and costs influence what types of encoding are "economical,"
and how does a biological system carry out the encoding?

In a series of papers, Barlow has studied several of the physiological
correlates of redundancy reduction as a perceptual processing strategy:

1. In a model having discrete (e.g., binary) inputs, with no processing
noise to induce coding or transmission errors, one can encode the input
"message" by removing correlations (a type of redundancy) and thus
produce an output that is more compact than the input, yet is able to
regenerate the input in a completely reversible way (Barlow 1959, 1961).
The compaction process can be driven by a constraint limiting the average
firing rate to a low value in later processing stages (Barlow’s principle of
"economy of impulses"). Note that as long as the code is fully reversible,
the question of what fidelity measure to use does not arise.

2. When the input signals are continuous-valued (or can take on a very
large number of values), it is important to treat processing elements having
limited resolution (Barlow 1969). This, however, leaves open the question
of when two stimuli should be considered "similar" enough not to be
resolved by the network, and of how "similarity" with respect to different
properties should be compared. The issue is related to the choice of appro-
priate fidelity measure (above), and recurs in connection with Mart’s work
(below).

3. Building on Hebb’s (1949) discussion of the importance ofidentifying
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correlated inputs, one can regard a Hebb-like rule as forming cells that
detect "suspicious coincidences" (Phillips et al 1984, Barlow 1985). These
"coincidences" are sets of events that signal the existence of structure (e.g.
coherent motion of an object), since they would not jointly occur in the
absence of such structure. Leg6ndy (1970, 1975) discusses a similar idea,
that of forming cells that respond selectively to "surprising" combinations
of stimuli, in the context of a suggestion that individual cells may possess
complex memory and processing capabilities to carry out the requisite
computations.

4. The existence of multiple cortical areas with different mappings
allows different types of regularities to be detected, if one assumes that a
constraint on connection length requires cells to be relatively close together
for correlations in their activity to be detected, and consequently for
redundancy to be reduced (Barlow 1986).

THE INFORMON MODEL An information-theoretic idea is explicitly used as
the motivation for a synaptic learning rule in the "informon" model of
Lrttley (1970, 1979). The "mutual information" (Shannon 1949) between
two messages is, informally, a measure of the information that either
message "conveys about" the other. For example, if two signals tend to
co-occur, their mutual information is high. If knowing one signal has
no effect on one’s expectation of what the other signal is, their mutual
information is zero. In Uttley’s model both variable and fixed strength
synapses provide input to a cell. Each variable strength is incrementally
adjusted so that the cell’s output becomes as nearly decorrelated with the
synaptic input as possible. The update rule is motivated by the idea of
minimizing the mutual information between input and output at each
synapse, although in practice a function different from the mutual infor-
mation is used. This learning rule is very similar to the Rescorla-Wagner
conditioning rule and to the Widrow-Hoff "LMS" algorithm for super-
vised learning (Widrow & Stearns 1985). The rule adjusts the strengths 
that the net effect of the inputs at the variable-strength synapses is to
cancel, as nearly as possible, the net reinforcement or "teacher" signal at
the fixed-strength synapses. The output of the "informon" cell is then
equal to the residual difference between the two sets of signals. This rule
differs from a Hebb-like rule, in which correlations between input and
output cause synaptic strength to increase. Nonetheless, the rule causes
the cell to detect structure among the inputs to the variable-strength
synapses, and to use such structure to match and cancel the "teacher"
signal most effectively. I return to the use of a mutual information criterion
below (Linsker 1988a) in a different context.

INFORMATION THEORY AND BIOLOGICAL UTILITY Marr’s (1970) discussion
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of redundancy reduction in sensory processing addresses an issue (intro-
duced above) that is crucial for any connection between information-
theoretic or statistical classification schemes and perception. To form
generalizations, a system must be able to decide when two events (input
presentations) are "similar"--that is, belong in the same class. This "lump-
ing process," however, discards information about the events. By what
criterion should this, rather than other, information be discarded? Marr
notes that system reliability offers one such criterion: If two events cor-
respond to sufficiently similar sets of signal activities, the events could be
confused by the network, and therefore should not be classified differently.
He does not, however, consider this a fundamental criterion.

Marr seeks to integrate information-theoretic ideas with biological util-
ity in the following way. His criterion for discarding information is that
the loss of that information should not impair the system’s ability to
diagnose whether the event possesses features of a certain type. The type
of feature that is favored is a feature whose presence or absence (in an
event) is not sensitive to small changes in the set of other, already-diag-
nosed features that are present (in the same event). Thus the presence of 
feature (or type of redundancy) as such is not sufficient ground for classi-
fication; the feature must tend to co-occur with a sufficiently large class
of other features (see the "Fundamental Hypothesis," Marr 1970, p. 182).

It is intuitively plausible that the detection of a feature is likely to have
greater biological utility if that feature tends to be associated with others.
Mart’s (1970) theory is developed substantially beyond this point to make
neurophysiologic predictions concerning the roles of various cell types.
Important questions that are left open include: Can the theory be used to
make specific predictions of feature-analyzing properties? If not, would
the incorporation of additional biological constraints of some type suffice
to allow one to make such predictions? Is the proposed feature classi-
fication criterion definite enough that it can be used, even in principle, to
construct a perceptual system (or the early stages of one) whose functioning
might be compared with what is biologically observed?

A PRINCIPLE OF MAXIMUM INFORMATION PRESERVATION Motivated by the
finding (discussed above) that a Hebb-like rule under certain conditions
generates a cell whose output conveys maximum information about its
input activities, Linsker (1988a) has proposed an information-theoretic
principle for the organization of a biological sensory processing stage
having source and target cell layers. This principle of "maximum infor-
mation preservation" states that the transformation of sensory signals
from source to target layer should be chosen such that the target cell
activities jointly convey maximum information about the source cell activi-
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ties. The quantity to be maximized is the average (over time) of the mutual
information between the two sets of activities.

The choice of transformation is subject to biological "hardware" con-
straints. These may include constraints on (a) the type of function each
cell can compute (e.g. a linear combination of inputs, or a sigmoid function
of the linear combination, or some more complicated function), (h) 
spatial extent of lateral connections, and (c) the reliability of signal trans-
mission and processing.

The concept of maximizing average mutual information between input
and output can be made more concrete by an analogy to a "guessing
game" (cf. Shannon 1949) such as "Twenty Questions." In that game, the
questioner’s proper strategy is to ask, at each stage, a question whose
answer will convey, on average, the maximum possible amount of infor-
mation (in that case, one bit of information) about the unknown object. 
this analogy, the "questioner" is the cell, the "question" is the computation
being performed by the cell upon its inputs (e.g. a center-surround cell
"asks" the "question": "What degree of contrast is present between the
central and peripheral regions of my receptive field?"), and the "answer"
is the output activity of the cell. An unreliable "answer" corresponds to
the effect of noise associated with the processing stage.

We want to know what set of processing functions, or computations,
emerges for an entire layer of cells, according to the principle of maximum
information preservation. This is analogous to asking: How should a set
of questioners, asking questions in parallel about the same object (the
input presentation), choose their questions optimally?

If the activity values could take on only discrete values, and if noise
could be ignored, the proposed principle would lead to data compression
with redundancy reduction along the lines discussed by Attneavc and
Barlow (above). Processing noise is unavoidable, however, and it has
important consequences. It helps to determine which types of information
about the input pattern are preserved or discarded, and how redundancy
is to be introduced--as well as removed--during processing. The latter
point is important if one is to account for the similar response properties
of nearby cells in the context of an "optimal encoding" principle.

The optimal choice of cell response properties, according to the principle
of maximum information preservation, depends upon the types of statisti-
cal regularities present in the set of input presentations, and on the pro-
cessing constraints. The principle has been applied to simple model net-
works under various conditions. It generates features that are qualitatively
similar to those found in biological systems. These features include topo-
graphic maps (Linsker 1988b, 1989b; also see MAC MAGNIFICATION FACTORS
above), center-surround cells and cells sensitive to temporal variations in
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input activity (Linsker 1989a), orientation-selective cells, and column-like
assemblies of cells having similar response properties (Linsker 1988a,b,
1989b). In each case the generic quantity being optimized the average
mutual information between source and target layer--is the same.

Note that the quantity being maximized is a function of the processing
being carried out by many target cells. This global optimization criterion
stands in contrast to other proposed criteria that refer only to an infor-
mation-theoretic quantity at a single connection (Utttey 1970, 1979) or cell
(Pearlmutter & Hinton 1986). A different global information-theoretic
quantity is optimized in the "Boltzmann machine" network discussed by
Hinton & Sejnowski (1983).

The idea of choosing system parameters so as to maximize an appro-
priately defined mutual information has been used in several nonbiological
contexts, including the choice or placement of sensors in physical systems
(e.g. Phua & Dillon 1977 and references therein, Luttrell 1985, Fraser 
Swinney 1986) and the choice of acoustic-processing models in speech
recognition (Bahl et al 1987), Much remains to be learned about the
patterns of information processing that can emerge from this type of
information-theoretic principle, particularly in nonlinear systems having
multiple processing stages. The potential value of cross-fertilization
between neuroscience and nonbiological fields, in advancing our under-
standing of these issues, is great.

Although the average mutual information between two layers of cells is
a global property having a complex mathematical form, a local algorithm
that implements the proposed principle has recently bccn developed for
certain types of model networks having feedforward and lateral con-
nections (Linsker 1989b). By a local algorithm we mean one that modifies
connection strengths in a way that depends only upon signals available at
that connection or cell.

This algorithm, or learning rule, was derived by asking: How should the
response properties of each cell be incrementally adjusted, so as to increase
the average mutual information between the source and target layer activi-
ties by the greatest amount? (It is an example of a "gradient ascent"
learning rule.) It is striking that the resulting rule (Linsker 1989b) exhibits
properties of Hebb-like modification and cooperative and competitive
learning, combined in a particular way, even though no assumptions were
made concerning the form of the learning rule or its component properties.

The principle of maximum information preservation has some theoreti-
cally attractive features (Linsker 1988a, 1989b), and the existence of local
algorithms increases our confidence that biological networks may be cap-
able of implementing it. It does not follow from this that nature in fact
makes use of the principle. It will be necessary to see what detailed pre-
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dictions the principle generates in biologically realistic situations, and to
subject these to experimental test.

The proposed principle may be usefully extended in various ways. For
example, the principle as stated uses processing noise as the criterion for
classifying two patterns as "similar." (That is, "similar" patterns are those
which cannot be reliably discriminated from each other.) It can be biologi-
cally useful to introduce a .different criterion of pattern "similarity." A
suitable choice of criterion can facilitate the learning of generalizations or
allow resolution to be varied as the focus of attention is shifted. The type
of local algorithm mentioned above can still be used to generate near-
optimal processing stages provided the "similarity" criterion satisfies cer-
tain conditions (Linsker 1989b). [For examples of how the choice of resolu-
tion or "similarity" measure is handled in other approaches to learning
and perception, see Carpenter & Grossberg’s (1988) use of an adjustable
"vigilance" parameter, and the "regularization" method for reconstructing
aspects of a scene from its image (Poggio & Koch 1985).]

SUMMARY AND FUTURE DIRECTIONS

This review has focussed on a set of ways in which experimental work,
modeling, and theory have interacted in advancing our understanding of
the organization of sensory processing systems. These interactions are
not of a rigid "bottom-up" or "top-down" type. They involve interplay
among rather than isolated study o~the "computational task," algo-
rithmic, and hardware levels of description (Marr 1982).

The path traced here comprises the following steps:

1. The finding of specific salient experimental features motivates the search
for models, especially self-organizing models, that can generate these
features.

2. Common elements of architecture and patterning rules are found to
underlie a variety of these models.

3. These elements are found, in certain cases, to be associated with opti-
mization principles that appear significant from an information-pro-
cessing standpoint. In essence, the models are treated as objects of study
in their own right, and are found to have properties that might have
been difficult or impossible to infer directly from observation of the
much more complex biological system. This study leads to links with
principles and methods in statistical analysis and information theory.

4. To be able to test whether these putative principles are biologically
relevant, it is necessary to develop biologically plausible algorithms
that can implement them, and to generate explicit predictions of cell
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properties and neural maps that can be compared with experiment.
This step has been taken for simple model cases. More work is required
to extend the principle and algorithms to networks and sets of input
presentations that are of biologically realistic complexity.

If some of the theoretical ideas discussed withstand future experimental
tests, it will become important to extend the work in two directions. First,
new experimental findings concerning neuronal dynamics (e.g. Gray 
Singer 1989) could allow "optimal encoding" strategies to be implemented
in new ways, Second, even if the principles discussed are found to describe
some of the main effects of feedforward and lateral interactions within a
processing stage of a sensory system, it will be important to understand
how these principles relate to higher levels of neural organization. The
study of attentional mechanisms, other effects of feedback from later
processing states, integration across sensory modalifies, and sensorimotor
integration are examples of such higher-level organizational issues to which
the type of approach explored here might be fruitfully extended.

More sophisticated experimental techniques (e.g. for recording and
analyzing complex spatial and temporal patterns of activity), increased
computational power, and refinement of theoretical ideas are likely to lead
to closer and more fruitful contact between experimental and theoretical
work. For the theorist, it is important to use experimental findings to (a)
constrain the essential features of biological models, (b) inspire and inform
the choice of key questions, and (c) enable comparisons with predicted
structure and behavior. For the experimentalist, model predictions may
suggest appropriate candidate stimuli for studying receptive field prop-
erties and neural maps, and may help to guide the analysis and interpret-
ation of complex activity data. Such guidance becomes valuable as increas-
ingly complex sets of response properties are found, and as the charac-
terization of a cell as a detector or analyzer of a well-defined "feature"
may become more difficult or untenable.

More generally, if we are to gain an understanding of how and why
neural systems are organized in particular ways, it is important to supple-
ment descriptive principles with a developing theoretical framework that
can be used to generate testable predictions and to relate structure and
function at a variety of organizational levels. Mulfifaceted interactions
among experiment, modeling, and theory will play an important role in
achieving these goals.
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