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Introduction 

Most engineering problems concerning structural concrete have to do with bond, whose 

understanding and modeling is instrumental in treating such phenomena as tension–stiffening 

and cracking at the serviceability limit state, and structural ductility at the ultimate limit state 

(where the development of plastic strains in the reinforcement plays a major role). 

The need for an analytical description of bond in the post–yield range of the reinforcement has 

led to the development of several theoretical models like that by Shima et al. (1987b, 1987c). 

More recently, a theory based on a rigid–plastic bond law has been proposed by Marti et al. 

(1998), and many models and test data have been presented and discussed in FIB Bulletin 10 

(2000). Within this context, this paper summarizes the research activity of the authors. 

As it is well known, bond mechanics in a uniaxial, axisymmetric problem can be modeled by 

means of a single second–order differential equation that has been written in different forms, 

in terms of bar slip or bar stress. However, the closed–form integration is possible only in a 

limited number of cases. In this paper a new approach to the problem is proposed on the basis 

of some reasonable assumptions that lead to the description of bond mechanics in long bonded 

members by means of a first–order differential equation. This equation can be easily 

integrated for any bond law, with reference to a wide range of practical applications. 

Two bond–slip laws are considered in this study. The corresponding analytical expressions 

describing the strain and slip distributions for long pull–out specimens and tension ties include 

the pre– and post–yield behavior of the reinforcement. The resulting laws are simple enough 

to be used in practical cases, and satisfactorily fit the available test data. 
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Local bond stress law 

This section describes the local response of bond considering two cases. In the first one, the 

slip along the axis of the bar is assumed to be constant (short bonded–length bars) while in the 

second case the slip is a function of the local coordinate (long bonded–length bars). Reference 

is made to an axisymmetric concrete cylinder reinforced with a single deformed bar, that is 

assumed to be well confined. Thus, cover splitting is neglected and consequently the theory 

developed can be applied to specimens where the ratio between the concrete cover and the bar 

diameter is larger than 3 (Schenkel 1998). Also, size effect is neglected (Bamonte et al. 2004). 

When the bonded length of an embedded bar is relatively small (L<5φs) and a force F is 

applied at one of its ends, the relative steel–concrete slip can be considered constant in the 

longitudinal direction. The bar behaves like a rigid body with a similar response regardless of 

the type of bond test performed (pull–out or push–in test). The response, see figure 1 (a), is 

characterized by an ascending branch up to a certain relative slip where the force reaches its 

maximum, followed by a softening branch. 

The similarity of the behavior in pull–out and push–in tests can be explained by the relatively 

low stresses and strains in the bar. Consequently, the response of the system is mainly 

controlled by the strength of the surrounding concrete, as well as by the geometry of the ribs. 

A one–to–one relationship can be formulated between the average bond stress and the relative 

slip:  

 L
F

s
s ⋅⋅

=
φπ

δδτ )()(  (1) 

where δ is the relative bar slip. 

However, when the bonded length is relatively large (typically L>10φs), the steel strains 

cannot be neglected and the slip between the bar and the concrete block cannot be considered 
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constant. This is a very typical situation in reinforced concrete, since many codes specify 

minimum values for L/φs larger than 10. 

In this case, the local response of bond is affected at each point by the longitudinal strain state 

of the bar (εs). For instance, see figure 1 (b), for large tensile strains in the bar, bond efficiency 

is decreased by the lateral contraction of the bar, while for large negative strains it is increased 

by the lateral expansion of the bar, which improves the wedging effect of the ribs (known as 

Hoyer’s effect). In order to include this phenomenon in the local bond stress–slip law, it is 

proposed to introduce a bond coefficient (Kb) which locally corrects the previously–defined 

bond stress for short specimens:  

 )()(),( sbss K εδτεδτ ⋅=  (2) 

However, the bond stress in long anchored bars cannot be fully developed in certain cases, as 

–for instance– when the ribs cause a local punching shear failure, because of the development 

of conical microcracks (see figure 1 (c)), that propagate up to the free surface of the concrete. 

This case is typical of some structural members like for instance tension ties close to their 

ends or close to intermediate cracks (this effect depends on the load level of the bar and on the 

size of the member). For other test set–ups (for instance pull–out tests) this mechanism of 

local punching cannot be developed because of the compressive stresses introduced by the 

bearing plate (see figure 1 (a)). 

To introduce this effect in the local bond model, it is proposed to adopt an “effectiveness” 

parameter λ(x/φs) that reduces the local bond stress in the following way:  

 )/()()(),,( ssbss xKx φλεδτεδτ ⋅⋅=  (3) 

where x is the distance from the loaded end (see figure 1c) and λ(x/φs) is ≤ 1. If λ(x/φs) is 

smaller than 1, then the local punching of the ribs plays a major role, whereas this effect can 

be neglected when λ is equal to 1. 
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Affinity of the slip distribution in long anchored bars 

Bond differential equation 

With reference to a unidimensional system consisting of a bar and a concrete prism or 

cylinder, the differential equation governing bond response can be obtained from the 

equilibrium of an infinitesimal element as shown in figure 2. If the sum of the forces acting on 

the bar is performed, the following relationship is obtained:  

 
s

s
sss dx

d
dxd

φ
τσ

φπτσφπ ⋅
−=→⋅⋅⋅−=⋅⋅

4
4

2
 (4) 

For any given constitutive law of the steel (σs=σs(εs)), equation (4) can be rewritten as:  

 
s

ss
dx

d
φ

τεσ ⋅
−=

4))((
 (5) 

In order to easily integrate equation (5) in fully anchored bars, an assumption can be made on 

the shape of the δ(x) curves.  

Affinity of the δ(x) curves 

The qualitative slip distribution along the axis of an anchored bar is shown in figure 3, with 

reference to two load steps. The slip distribution in the second load step (maximum slip δj) is 

assumed to be the same as in the first load step for ξ in (0; xi). This implies that there is a 

unique δ(ξ) law for the whole bar, regardless of the load level. As a consequence, δ can be 

seen solely as a function of the length of the zone where bond is active, and so δ = δ(x). The 

relative slip can be calculated in a general way at x as follows:  

 )())()((
0

xdc

x

s δξξεξεδ =−= ∫  (6) 

By neglecting the concrete strains (much smaller than the steel strains) and by deriving both 

sides, the following equation is obtained:  
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 (7) 

Since δ(x) and εs(x) are both functions of x, then it can be stated that δ = δ(εs). Based on this 

statement, the local τs(δ) law can be formulated in terms of εs:  

 )()( sss ετδτ =  (8) 

By introducing this relationship into equation (3), equation (5) can be formulated in the 

following way:  

 dx
xK

d

sssbss

ss
φφλεετ

εσ 4
)/()()(

))((
−=

⋅⋅  (9) 

leading to the following first–order differential equation:  

 dx
x

d
K s

s
s

sbss

ss
φ

φλ
ε

εετ
εσ )/(4

)()(
)( ⋅

−=
⋅

′
 (10) 

Applicability of the affinity hypothesis 

The previous assumption on affinity among the δ(x) curves is in principle satisfied only by 

fully–anchored bars. Deviations from this assumption occur in other cases as shown in figure 

4c for a pull–out specimen (left side of the figure) and a tension tie (right side of the figure). 

However, the deviations for these members are usually limited as it will be shown later. 

If the affinity hypothesis is satisfied, the local τs(δ) law (which neglects the strains in the bar 

and the effects of local punching) can be obtained for any given τs(εs) law and vice versa, by 

adopting Kb = λ = 1. To do this, equation (10) has to be integrated obtaining εs(x); the relative 

slip δ(x) is worked out by integrating εs(x):  

 ξξεδ d
x

s )(
0
∫=  (11) 
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Finally, by eliminating x from the previous expressions, the δ(εs) law is obtained and the bond 

stress can be expressed as a function of the slip: τs(δ). For instance, it can be easily 

demonstrated that a function of the type τs = k1εs
1/ α is generated by τs = k2δ 1/(2α −  1). Within 

this approach, various analytical laws can be proposed. Because of their simplicity and good 

agreement with experimental results, two laws are presented in the following (corresponding 

to α = 2, square–root model, and α → ∞, rigid–plastic model), as shown in figure 5. 

Square–Root Model 

Starting from a third–root relationship between τs and δ ( 3/1δτ ∝s which can be considered 

rather realistic as discussed by Laurencet, 1999) and using the hypothesis of affinity among 

the δ(x) curves, the corresponding τs(εs) law is obtained:  

 srefss ετετ =)(  (12) 

A good agreement of the analytical model with experimental results is obtained using 

ybref εττ max,=  (where τb,max = fc
2/3). To introduce the influence of the longitudinal strains 

of the bar, the following bond coefficient is adopted:  

 ⎪
⎩

⎪
⎨

⎧

=>

≤
−
−

=≤<

0)(

1)(0

sbbus

s

y

ybu

sbu
sbbus

K

K

εεε
ε
ε

εε
εε

εεε
 (13) 

where the parameter εbu is mainly influenced by the rib height and by the hardening modulus 

of the bar. A good correlation with experimental results has been found by adopting 

εbu = 4a/φs (the usual range is from 0.07 to 0.12), where a is the rib height. By adopting the 

aforementioned formulation for the bond coefficient Kb and by introducing the effect of the 

local punching of the ribs, the relationship between τs, εs, and x can be finalized as follows:  
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Rigid–Plastic Model 

A simplified model, based on a rigid–plastic bond–slip law is also studied in this paper. The 

corresponding bond stress–bar strain law is rigid–plastic as well (τs = τ0). The following 

expression is adopted for the bond coefficient:  

 [ ])(exp syb AK εε −⋅=  (15) 

The parameter A depends on rib geometry and on steel–hardening properties; however, a 

reasonable agreement with the experimental data is found for A = 10. With this value, by 

introducing the reduction due to local punching, the bond strain law can be expressed as 

follows:  

 [ ]⎪⎩

⎪
⎨
⎧

⋅−⋅⋅=>
⋅=≤<

)/()(exp
)/(0

0

0

ssyys

sys

xA
x

φλεεττεε
φλττεε

 (16) 

For τ0 the value 0.6 fc
2/3 has been adopted, as proposed by Marti et al. (1998). 

 

Pull–out tests on long anchored bars 

In this section, the proposed analytical model is applied to long anchored bars, whose pull–out 

response is studied on the basis of the affinity hypothesis. 

In order to model a long bar subjected to pull–out, the previous bond laws are used, and a 

bilinear formulation with constant strain hardening for the reinforcing bar is adopted, as 

sketched in figure 6. The local punching of concrete is not considered in this test set–up 

(λ = 1), as previously discussed. 
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Analytical results 

The proposed approach is used to study two different cases, the first with a fully–elastic bar 

and the second with a partially–yielded bar. 

Bar in the elastic domain (εs<εy) 

The strain and the slip can be expressed as a function of the distance x from the loaded end (as 

sketched qualitatively in figure 7). The Square–Root model and the Rigid–Plastic model lead 

to the following expressions for εs and δ:  
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Bar in the elasto–plastic domain 

For any load larger than that causing the yielding at the loaded end, the bar is partly in the 

plastic domain (lp; εs > εy) and partly in the elastic domain (l – lp; εs ≤ εy), see the qualitative 

sketch of figure 8. 

The elastic strains (εs,e) are evaluated by using the equations (17) and (18) respectively, where 

ε0  = εy. As for the plastic zone, the differential equation is integrated again to obtain the 

plastic strains in the bar (εp,e). 

Square–Root Model:  
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Rigid–Plastic Model:  
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Experimental results 

In this section, the analytical results are compared with tests performed on long anchored bars 

by various researchers. 

Elastic behavior of the bar 

To study the response of a long anchored bar in the elastic domain, Shima et al. (1987a) 

performed a series of pull–out tests on steel and aluminum bars embedded in ordinary 

concrete (fc = 34 MPa). All bars had a diameter of 17.7 mm and the bonded length was equal 

to 40φs. The material properties were Es = 190 GPa and fy,s = 480 MPa for the steel, and 

Ea = 70 GPa and fy,a = 450 MPa for the aluminum. 
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The results were presented in terms of τ(δ) curves. With the proposed approach, this 

relationship can be obtained by eliminating x from equations (17) and (18). The Square–Root 

Model leads to the following expression for τ:  
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whereas in the case of the Rigid–Plastic Model τ is constant: τ  = τ0. 

In figure 9, the results of the analytical model are compared with those by Shima et al. The 

Square–Root Model correctly reproduces the evolution of the bond stress for the different 

values of the elastic modulus of the bar. The Rigid–Plastic Model provides a reasonable 

estimate of the mean value of the bond stress, but does not describe the actual bond–stress 

distribution. 

Elasto–plastic behavior of the bar 

Shima et al. (1987b) performed several tests on long anchored bars, to study the effects of the 

post–yield behavior of the reinforcing bars. Figure 10 shows Shima’s results, as well as those 

obtained by means of the analytical model. Reference is made to specimen SD70 (where for 

the proposed model it has been considered: φs = 19.5 mm; τb,max = 8 MPa and εbu = 0.07). On 

the whole, the agreement is satisfactory, but certain differences are found in the strains at the 

loaded end of the bar (where the analytical models predict shorter plasticized zones).  

Bigaj (1995) also performed several tests on long anchored bars to study the post–yield 

response of a reinforcing bar. The plots of the steel strains along the axis of the bar (figure 11) 

show a good agreement among the tests and the analytical models (φs = 16 mm; τb,max = 10 

MPa and εbu = 0.12). 
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Tension tie 

As previously discussed with reference to the coefficient λ, the formation of roughly conical 

cracks radiating from the ribs closest to the end sections leads to a local loss of bond stiffness 

and strength. The same phenomenon occurs in reinforced–concrete beams, since conical 

cracks radiate from the ribs of the tension bars, close to the flexural cracks. 

Analytical model 

The phenomenon of local punching is now taken into account by introducing the parameter 

λ(x/φs). Since the influence of this coefficient on the global response of a tie is rather small 

and any more or less complex formulation can hardly take into account the load level and the 

size of the specimen, a simplified formulation is adopted here:  

 ⎥
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Furthermore, as long as the bar remains in the elastic domain, the influence of this 

phenomenon can be neglected, since cracking at the end sections is very limited. On the 

contrary, bond loss at the ends of a tie cannot be neglected after the yielding of the bar. In the 

plastic case, the differential equation can be integrated as seen earlier, and the following 

expressions are obtained: 

Square–Root Model:  
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Rigid–Plastic Model:  
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Experimental results 

A few experimental results concerning tension ties and tension chords in beams loaded in 

bending are considered here to make comparisons with the proposed analytical model. Both 

the elastic and the plastic cases are considered. 

Elastic behavior of the bar 

The results obtained by means of the proposed model in the elastic domain are compared with 

those obtained on 25–mm cold–worked ribbed bars (Es = 200 GPa, concrete cube strength 

fcw = 50 MPa) by Kankam (1997). The distribution of the strains along one half of the tie is 

shown in figure 12. The Square–Root Model fits quite well the test results, while the Rigid–

Plastic Model tends to underestimate the steel strain at small slip values. In figure 12 (c) the 

bar maximum stress is plotted versus the mean strain, and the response of a naked bar is also 

shown to visualize tension–stiffening effects, that are is well reproduced by the square–root 

model and satisfactorily approximated by the rigid–plastic model. 

Elasto–plastic behavior of the bar 

Kenel and Marti (2001) carried out a series of tests on five reinforced– and prestressed–

concrete beams where the strains were measured by means of Bragg grating sensors. These 

beams were loaded in four–point bending and presented a pure–bending zone between the 

supports. The post–yield behavior of the reinforcement was studied (Kenel 2002), in order to 

make comparisons with several theoretical models (Shima et al. 1987c; CEB 1993; Alvarez 

1998). 
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Figure 13 refers to three load steps of specimen B4 (φs = 10 mm; τb,max = 8 MPa and 

εbu = 0.10). The bond stress decreases at the ends as indicated by the decreasing slope of the 

steel–strain diagrams. In general, the Square–Root Model yields better results than the Rigid–

Plastic Model. 

Shima et al. (1987c) carried out an experimental campaign on reinforced ties to study their 

post–yield response. In figure 14, the results obtained with the proposed approach for 

P/Pyield = 1.08 are shown to fit quite well the test results (specimen No. 4; φs = 19.5 mm; 

τb,max = 7 MPa and εbu = 0.07). 

 

Conclusions 

This paper is aimed at the analytical modeling of bond in long anchored bars and tension ties, 

with reference to the pre– and post–yield behaviors of the steel. A new approach is proposed, 

on the assumption that:  

(a)  bond is locally influenced by the lateral expansion/contraction of the bar.  

(b)  bond strength and stiffness are locally controlled by the development of conical cracks 

close to the loaded end of an anchored bar, to both ends in a tension tie and to the 

flexural cracks in the tension chord of a reinforced–concrete beam subjected to bending.  

(c)  affinity controls the distribution of the bar–concrete slip at different load levels for 

fully–anchored members.  

These assumptions make it possible to downsize the problem, since the integration of the 

second–order differential equation of bond (where the unknown is the steel stress) is replaced 

by the integration of a first–order differential equation (where the unknown is the steel strain). 

This equation can be integrated in a closed form in several cases, and the response of the 

anchored bar is described by simple analytical expressions. 
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Because of the affinity between the bond stress and the bar slip, and between the bond stress 

and the steel strain, the equation can be integrated for any given bond–stress/slip law. In this 

paper, starting from two bond–stress/bar slip laws, two bond–stress/steel strain relations are 

obtained (named Square–Root Model and Rigid–Plastic Model). 

Finally, the simplicity of the proposed approach allows to perform a detailed study of the pre– 

and post–yield behavior of bond in anchored bars and tension ties, with the advantage over 

finite element modeling that the role of the various mechanical and geometrical parameters 

can be clearly assessed. The proposed approach can thus be adopted in practical cases, at the 

service limit state (where tension–stiffening effects are properly reproduced) as well as at the 

ultimate limit state, where the ductility and post–yield response of a reinforced member is also 

rather well reproduced. 

 

Notation 

The following symbols are used in this paper: 

a = rib height 

Ea = elastic modulus of an aluminum rebar 

Es = elastic modulus of any rebar, and specifically of a steel rebar 

Eh = hardening modulus of the steel 

F = force 

fc = concrete cylindrical compressive strength 

fy = steel strength at yielding 

Kb = bond coefficient 
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L = bonded length 

lp = plasticized length of a bonded bar 

δ = relative bar–concrete slip 

δe = relative slip prior to bar yielding 

δp = relative slip past bar yielding 

δy = relative slip at the onset of bar yielding 

εs = strain in a rebar 

εs,e = elastic strain in a rebar 

εs,p = plastic strain in a rebar 

εy = steel strain at yielding 

εbu = bond ultimate strain 

φs = bar diameter 

λ = local punching coefficient 

σs = stress in a steel bar 

τ = bond stress 

τ0 = reference bond stress in the rigid–plastic model 

τs = bond stress in short anchored bars 

τb,max = maximum bond stress 
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Figure captions 

Figure 1: Local bond law: (a) response of a short anchored bar; (b) influence of the 

longitudinal strain of the bar (εs) and coefficient Kb; and (c) local punching of outer ribs and 

coefficient λ for a long anchored bar. 

Figure 2: Equilibrium of a reinforcing bar: (a) actual forces (Fs,A > Fs,B); and (b) simplified 

state of stress. 

Figure 3: Relative slip along the axis of a bar at different load levels. 

Figure 4: Applicability of the affinity hypothesis: (a) pull–out specimen and tension tie; (b) 

slip evolution according to the affinity hypothesis; and (c) actual behavior. 

Figure 5: Bond laws and bond coefficients for fc = 30 MPa, Es = 210 GPa and fy = 500 MPa: 

(a) τ(δ) laws; (b) bond coefficient; and (c) τ(εs) laws. 

Figure 6: Simplified stress–strain law for a steel bar. 

Figure 7: Strain and slip distributions along the axis of a long anchored bar in the elastic 

domain. 

Figure 8: Plastic length (lp), and strain and slip distributions along the axis of a long anchored 

bar in the elasto–plastic domain. 

Figure 9: Tests by Shima et al. (1987a): (a) test set–up; (b) steel bar (Es = 190 GPa); and (c) 

aluminum bar (Ea = 70 GPa). 
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Figure 10: Fitting of the test results by Shima et al. (1987b, test SD70): (a) test set–up; (b) 

stress, strain and slip distributions along the axis of the bar at the last load step 

(P/Pyield = 1.05); and (c) plots of the bond stress, slip and axial strain. 

Figure 11: Fitting of the test results by Bigaj (1995, test 16.16.1): (a) test set–up; (b) plots at 

different load levels (εy = 0.26 % in the authors’ model); and (c) detail of the plasticized zone 

at increasing load levels. 

Figure 12: Fitting of the test results by Kankam (1997): (a) test set–up; (b) plots at different 

load levels; and (c) tension–stiffening effect in the tie. 

Figure 13: Fitting of the test results by Kenel and Marti (2001, test B4): (a) test set–up; (b) 

plots of the steel strain for various load levels; and (c) τ - εs - δ diagrams. 

Figure 14: Plots of the strains in the rebar of specimen No. 4 by Shima et al. (1987c) at 

P/Pyield = 1.08: (a) test set–up; (b) square–root model; and (c) rigid–plastic model. 
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