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Abstract—Today, debugging failed software upgrades is a long
and tedious activity, as developers may have to consider large
sections of code to locate the bug. We argue that failed upgrade
debugging can be simplified by exploiting the characteristics of
upgrade problems to prioritize the set of routines to consider. In
particular, previous work has shown that differences between the
computing environment in the developer’s and users’ sites cause
most upgrade problems. Based on this observation, we design
and implement Sahara, a system that identifies the aspects of the
environment that are most likely the culprits of the misbehavior,
finds the subset of routines that relate to those aspects, and selects
an even smaller subset of routines to debug first. To achieve its
goals, Sahara leverages feedback from a large number of user
sites, machine learning, and static and dynamic source analyses.
We evaluate Sahara for three real upgrade problems with the
OpenSSH suite, one synthetic problem with the SQLite database,
and one synthetic problem with the uServer Web server. Our
results show that the system produces accurate recommendations
comprising only a small number of routines.

I. INTRODUCTION

Modern software systems are complex and comprise many

interacting and dependent components. Frequent upgrades

are required for some or all components to fix bugs, patch

security vulnerabilities, add or remove features, and other

critical tasks. Unfortunately, many of the upgrades either fail

or produce unwanted behavior. A survey conducted by Crameri

et al. [9] showed that 90% of system administrators perform
upgrades at least once a month, and that 5–10% of them

is problematic. Interestingly, they also found that the most

common source of upgrade problems is the difference between

the environment (i.e., version of operating system and libraries,

configuration settings, environment variables, hardware, etc)

at the developer’s site and the users’ sites. Such problems

are difficult (or maybe impossible) to prevent because the

developer cannot foresee, much less test her software for, every

possible environment in which the software might be used.

When upgrades misbehave at some user sites, the devel-

opers receive bug reports and complaints. In some cases, the

developers may also receive logs of failed executions and/or

core dumps. Developers often undergo several exchanges with

the users to gather all the pertinent information. Thereafter,

the developers examine the information to locate the likely

causes of the misbehavior. This process is long and tedious,

as developers may have to consider large chunks of code to

locate the root cause of the misbehavior.

In this paper, we propose Sahara, a system that simplifies the

debugging of environment-related upgrade problems by pin-

pointing the subset of routines and variables that is most likely
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the source of misbehavior. Sahara’s design was motivated by

two observations: (1) since the problem was caused by one or

more aspects of the user environment, it is critical to identify

these suspect aspects and their effects throughout the code;

and (2) since the previous version of the software behaved

properly, it is critical to identify the behavioral differences

between the previous and upgraded versions.

Given these observations, the root cause of an upgrade

problem is most likely to be in the code that is both (1)

affected by the suspect aspects of the environment and (2)

whose behavior has deviated after the upgrade. To isolate

this code, Sahara combines information collected from many

users of the software, machine learning techniques, static and

dynamic source analyses. The machine learning and the static

analysis run at the developer’s site, whereas the data collection

and dynamic analysis run at the users’ sites (for those users

who are willing to run Sahara). Sahara targets C applications

written for Unix-like operating systems.

In more detail, Sahara applies feature selection [35] on the

environment and upgrade success/failure information received

from users to rank the aspects of the environment that are most

likely to be the source of the misbehavior. Then, it uses def-

use static analysis [1] to identify the set of variables whose

values derive directly or indirectly from the suspect aspects.

The routines in which these variables are used become the

first set of potential culprits. At this point, Sahara deploys

instrumented versions of the current and upgraded version of

the code to the user sites that reported misbehaviors. It then

runs the instrumented versions automatically (and with the

same inputs) to collect information about all routine calls and

returns. Using this information, it uses value spectra [36] to

identify the set of routines that caused the behavior to deviate

from one execution to the other at each misbehaving site.

These sets of routines are also considered suspects. Finally,

Sahara intersects the sets of suspect routines resulting from the

static and dynamic analyses; those in the intersection should

be debugged first.

To evaluate Sahara, we study three real upgrade problems

with the OpenSSH suite, one synthetic problem in the SQLite

database engine, and one synthetic problem with the uServer

Web server. Our results demonstrate that Sahara produces

recommendations that always include the routines responsible

for the bugs. The exact number of recommended routines

depends on the characteristics of the information received from

users. In experiments where we varied these characteristics

widely, Sahara recommends 2–21 suspect routines that should

be debugged first. These numbers can be 20x smaller than

the number of routines affected by the upgrades. Compared to

static and dynamic analyses alone, Sahara reduces the numbers



1. int env2 = 0, glob = 3;

2.

3. int checklength(int len) {

4. if (len <= 9) % Upgrade changes sign to <

5. return len;

6. else

7. return -1;

8. }

9. int secondfunction(float a) {

10. int ai = ceil(a);

11. if ((glob + ai) < 5)

12. return 100;

13. else

14. return 10;

15. }

16. int main() {

17. char uname[80];

18. strcpy(uname, getenv("SHELL"));

19. env2 = strlen(uname);

20. int retval1 = checklength(env2);

21. if (retval1 > 0)

22. printf("Out1:%d",secondfunction(2.2));

23. else

24. printf("Out2:%d",secondfunction(5.1));

25. return 0;

26. }

Fig. 1. Example.

of suspect routines by 1.4x–6x and 14x–40x, respectively.

Given its accuracy and these large reductions, we expect that

Sahara can significantly reduce debugging time in practice.

II. SAHARA: PRIORITIZING UPGRADE DEBUGGING

A. A Motivating Example

To make our exposition more concrete, let us look at a

simple example in Fig 1. The example takes the name of

an environment variable as input using a call to getenv()
(line 18). It then checks if the length of the string is smaller

than or equal to 9 (line 4). Depending on the outcome of the
comparison, a different output is produced (lines 21–24).

Let us assume that the upgrade simply changes the sign

in line 4 from “<=” to “<”. This upgrade will fail at user

sites where the $SHELL variable is set to /bin/bash or

/bin/tcsh, but not /bin/csh or /bin/ksh, for instance.

More generally, the upgrade will fail where the length of

the value of the $SHELL environment variable is exactly 9.
However, the program ran successfully at these sites before the

upgrade. This upgrade failure is similar to the ProxyCommand

bug [28] that we detail in Section III-A.

The failure has two interesting characteristics. First, the

upgrade fails only at a subset of user sites, which may have

been the reason the bug went undetected during development.

Second, despite the fact that the two versions of the code

are input-compatible, the execution behavior changes with the

upgrade both in terms of the path executed and the output.

Given these characteristics, identifying the aspects of the

environment that correlate with the failure is a necessary first

step for efficiently diagnosing the failure. In this simple exam-

ple, the name of the shell is the aspect of the environment that

triggers the failure. It is also important to identify the variables

and routines in the code that are directly or indirectly affected

by the environment. Note that the name of the shell is initially

assigned to the uname array; only later does variable env2

become related to the environment. Thus, variables uname

and env2, as well as routines main and checklength are

suspect. However, identifying these suspects is not sufficient,

Fig. 2. Overview of Sahara.

because the program behaved correctly before the upgrade was

applied in the same environment. We also need to determine

how the upgraded version of the program has deviated in

behavior from the current version. This analysis would then

show that routine checklength and secondfunction

behave differently in the two versions, meaning that they are

also suspects. The root cause of the failure is most likely

to be contained in the code that is affected by both the

suspect environment and whose behavior has changed after the

upgrade, i.e. routine checklength. This routine is exactly

where the bug is.

B. Design and Implementation

Overview. Figure 2 illustrates the steps involved in Sahara.

First, Sahara deploys the upgrade to any users that request it

(step 1). As the software executes at each user’s site, Sahara

collects information about the environment and inputs used

(step 2). At the end of the execution, Sahara obscures and then

transfers the collected environment information (the inputs

are never transferred on the network) to the developer’s site,

along with a success/failure flag provided by the user (step

3). (Obviously, some users may decide not to allow any sort

of information to be collected or provided to Sahara.) The

information about the environment includes the version of the

operating system, the version of the libraries, the configuration

settings, the name and version of the other software packages

installed, and a description of the hardware. A failure flag may

mean that (a) the upgrade could not be properly installed or

executed, (b) the upgrade caused incorrect behavior or a crash,

or (c) the upgrade caused another software to misbehave [9].
Now suppose that the upgrade misbehaved at one user site at

least. With the environment and success/failure information at

the developer’s site, Sahara runs a machine learning algorithm

to determine the aspects of the environment that are most likely

to have caused the misbehavior (step 4). Next, based on def-

use static analysis, Sahara isolates the variables in the code that

derive directly or indirectly from those aspects; the routines

that use these variables are considered suspect (step 5).
Sahara then deploys instrumented versions of the current

and upgraded code to the user sites that reported failures (step



6). At each of those sites, Sahara executes both versions with

the inputs collected in step 2 and collects dynamic routine

call/return information (step 7). Sahara then compares the

logs from the two executions to determine the routines that

exhibited different dynamic behavior (step 8). This step is

done at the failed user sites to avoid transferring the potentially

large execution logs back to the developer’s site. Sahara then

transfers the list of routines that deviated at each failed user

site back to the developer’s site (step 9); the routines on these

lists are considered suspect as well.

Finally, Sahara intersects the suspects from the static and

dynamic analyses (step 10). It reports the intersection to the

developer as the routines to debug first. If the problem is not

found in this set, other suspect routines should be considered.

Next, we detail the implementation of these steps.

Upgrade deployment, tracing, and user feedback (steps

1–3). Upgrade deployment in Sahara is trivial. The upgraded

code is available via a Web interface and can be downloaded

as a package/patch by any user that wants it.

Sahara uses the Mirage tracing infrastructure, which has

been detailed in [3], [9]. Thus, next we only describe the

most important aspects of it. The infrastructure identifies the

“environmental resources” an application depends on and then

fingerprints (i.e., derives a compact representation for) them.

The following resources are considered as an application’s

environment: a) all files accessed read-only (such as config-

uration files) by the application; b) all files of a certain type

(such as libraries); c) all files in the package being upgraded.

Furthermore, Sahara provides an API that allows the developer

to include or exclude files or directories. In addition to the

data accessed during application execution, Sahara collects

information about the hardware and software installed.

Again as in Mirage, Sahara provides parsers to compute

a concise representation (fingerprint) for each environmental

resource. The parsers know how to extract relevant information

from a file based on its type and hash its content at a specific

granularity. For instance, the parsers for binary files generate

fingerprints at a coarser granularity than the parsers for a

configuration file. We use SHA-1 to compute fingerprints of

the resources. In each fingerprint, the name of the resource

serves as a key and the hash of its contents as the value.

For the users who choose to participate, Sahara sends the

tracing infrastructure and the parsers to their sites. During

the first several executions of the upgraded software (the

number of executions can be defined by the developer), Sahara

collects the environment resource information and produces

the fingerprints. After each of these executions, Sahara also

queries the user about whether the upgrade has succeeded or

failed. We ask for this success/failure flag, because it may be

difficult to determine failure in some cases. For example, a

software misbehavior is considered a failure, even if it does

not cause a crash or any other OS-visible event. In addition,

the upgrade may cause another software to misbehave [9].

When the user provides a succeed/fail flag, Sahara sends this

information, along with the environment resource fingerprints,

back to the developer’s site. This data represents the profile of

the corresponding user site. After the first several executions,

Sahara turns its data collection off to minimize overheads.

User profiles from all sites serve as the input to the feature

selection step. Section III systematically studies the impact of

user profiles with various characteristics.

Feature selection (step 4). Based on the information received

from the user sites, this step selects environment resources

(called features) with the strongest correlation to the observed

upgrade failures. The fingerprints are never “unhashed” during

feature selection (or after it); it is enough for Sahara to know

how many different fingerprints there are for each feature.

Sahara uses the decision tree algorithm with feature ranking

from the WEKA tool [www.cs.waikato.ac.nz/ml/weka/] for

selection. The algorithm builds a decision tree by first selecting

a feature to place at the root node, and creating a tree branch

for each possible value of the feature. This splits up the dataset

into subsets, one for each value of the feature. The choice of

the root feature is based on Gain Ratio [30], a measure of a

feature’s ability to create subsets with homogeneous classes.

In Sahara, there are only two classes: success or failure. The

Gain Ratio is higher for the features that create subsets with

mostly success or mostly failure user profiles. For instance, in

the example of Fig 1, the root feature would be the SHELL

environment variable. The subsets that include SHELL strings

of length different than 9 are successes, whereas those that

have strings of exactly 9 characters are failures.

After selecting the root feature, the process is repeated

recursively for each branch, using only those profiles that

actually reach the branch. When all the profiles at a node have

the same classification, the algorithm has completed that part

of the tree. The output of the algorithm is a set of features,

their Gain Ratios, and their ranks.

To validate the feature selection, Sahara uses 10-fold cross-

validation [16] to compute the standard deviation of the ranks

of each feature. When the standard deviations of the top-

ranked features are high, Sahara warns the developer that its

results are not to be trusted, i.e. the reason for the failures is

unlikely to be the environment. When this condition is not met,

Sahara considers all the features that have Gain Ratios within

30% of the highest ranked feature as Suspect Environment

Resources (SERs). These SERs serve as input to the static

analysis step. We assess the impact of the accuracy of the

feature selection step in Section III.

Static analysis and suspect routines (step 5). Sahara analyzes

the upgraded software using the C Intermediate Language

(CIL) [24]. Specifically, it implements two CIL modules, the

call-graph module and the def-use module. As the name

suggests, the call-graph module computes a whole-program

static call graph by traversing all the source files, a routine

at a time. Every node in the call graph is a routine, and its

children nodes are the routines it calls. The root of the call

graph is always the main() routine.

The def-use module creates def-use chains [1] for each SER.

A def-use chain links all the variables that derive directly

or indirectly from one SER. Each array is handled as a

single variable, whereas struct and union fields are handled

separately. Figure 3 shows the def-use chain (thin arrows) for

our example program.



Fig. 3. Def-use chain, suspect variables and routines for our simple example.

To find suspect routines, Sahara traverses all the routines in

the order they appear in the call graph, starting with the root.

During the course of the traversal, Sahara maintains three lists:

(1) a list of global suspect variables (SuspectVars); (2) a list

of per-routine suspect variables (LsuspectVars); and (3) a list

of routines that are suspect (SuspectRoutines). SuspectVars is

initialized with the variables corresponding to SERs.

Sahara analyzes each routine statement-by-statement, start-

ing with the root routine. For every variable access, it checks

whether the variable is a suspect or depends on any suspect, ei-

ther directly or indirectly. If so, the accessed variable becomes

a suspect. If it is a local variable, it is added to LsuspectVars

of the routine where the access appears; otherwise, it is added

to SuspectVars. The routine containing the access is added

to SuspectRoutines. In addition, if a routine calls another

with a suspect variable as a parameter, the caller is added

to SuspectRoutines and the corresponding formal parameter is

added to the LsuspectVars of the callee. The callee becomes

a suspect if the suspect parameter is used in the function, and

not otherwise. Furthermore, a routine becomes suspect if the

return value of any of its callees is suspect, and it is used in the

routine. Similarly, a routine becomes suspect if any parameter

passed by reference to one of its callees becomes suspect, and

it is used in the routine. This step outputs SuspectRoutines

(SRs), after the entire graph has been traversed.

This step produces a set of routines that are highly corre-

lated with the failures. For the example in Fig 1, main and

checklength are the two suspect routines. The block arrows

in Figure 3 show why these routines were included as suspects.

Creating and distributing instrumented versions (step 6).

After the SRs are identified, Sahara generates the instrumented

versions of the current and upgraded versions of the software.

Sahara uses CIL to automatically instrument the application.

The instrumentation is introduced by two new CIL modules,

instrument-calls and ptr-analysis. The instrument-calls module

inserts calls to our C runtime library to log routine signatures

for all the routines executed in a particular run. A routine’s

signature consists of the number, name, and values of its pa-

rameters, its return value, and any global state that is accessed

by the routine. The global state comprises the number, name,

and values of all the global variables accessed by the routine.

This module works well for logging parameters of basic data

types. However, in order to correctly log pointer variables and

1. Function main numArgs 0

2. Globals at ENTRY: 0

3. Function checklength numArgs 0

4. Globals at ENTRY: 1

5. Global: env2 Size: 4 Type: int Value: 9

6. Globals at EXIT: 1

7. Global: env2 Size: 4 Type: int Value: 9

8orig. Return: retVal Size: 4 Type: int Value: 9

8upg. Return: retVal Size: 4 Type: int Value: -1

9.

10. Function secondfunction numArgs 1

11. Globals at ENTRY: 1

12. Global: glob Size: 4 Type: int Value: 3

13orig. Param: a Size: 4 Type: float Value: 2.2

13upg. Param: a Size: 4 Type: float Value: 5.1

14. Globals at EXIT: 1

15. Global: glob Size: 4 Type: int Value: 3

16. Return: retVal Size: 4 Type: int Value: 10

17. Globals at EXIT: 0

18. Return: retVal Size: 4 Type: int Value: 0

Fig. 4. Execution log of two versions.

variables of complex data types, we have implemented the ptr-

analysis module. This module inserts additional calls to our C

library to track all heap allocations and deallocations.

Re-execution, value spectra analysis, and deviated routines

(steps 7-9). As we do not want to transfer inputs or large logs

across the network, these steps are performed at the failed

users’ sites themselves. To do so, Sahara first deploys infras-

tructure to those sites that is responsible for re-execution and

dynamic analysis. It then transfers the instrumented binaries

of the current and upgraded versions.

Sahara leverages Mirage’s re-execution infrastructure,

which has been detailed in [9]. This infrastructure executes the

instrumented binaries of both versions at the failed user sites,

feeding them the same inputs that had caused the upgrade to

fail. These inputs were collected in the logs recorded during

step 2. To allow for some level of non-determinism during re-

execution, Sahara maps the recorded inputs to the appropriate

input operations (identified by their system calls and thread

ids), even if they are executed in a different order in the log.

As the instrumented versions execute, their dynamic routine

call/return information is collected. Fig 4 shows the log for the

two versions. Since the logs of the two versions are mostly

same (except for lines 8 and 15), only the lines that are
different between the two versions are duplicated.

With these logs, Sahara determines the set of routines, called

DeviatedRoutines (DRs), whose behavior has deviated after the

upgrade. Specifically, we implement fDiff, a tool that converts

each of log into a sequence of routine signatures, and uses

the longest common subsequence algorithm to compute the

difference between the sequences. FDiff is similar to Unix’s

diff, but produces more concise output as it understands the

call/return structure of our logs. A routine has deviated, if the

following differs between the two versions: (1) its number of

arguments; (2) the value of any of its arguments; (3) its return

value; (4) the number of global variables it accesses; or (5) the

value of one or more global variables it accesses. This notion

of deviation is similar to that of value spectra [36]. Wilde and

Scully [34] also compare execution logs.

In Fig 4, two routines have deviated: checklength has

deviated in its return value (line 8), whereas secondfuncti-

on has deviated in its argument (line 13).

Sahara transfers the DRs list to the developer’s site.



Intersection and list of primary suspects (step 10). Finally,

Sahara computes the union of the DRs from the failed user

sites. It then intersects this larger set with the SRs, thereby

eliminating benign deviations that have nothing to do with

the failure. The intersection forms the set of Prime Suspect

Routines (PSRs), i.e. the routines most likely to contain the

root cause of the failure. For the example, checklength is

the prime suspect, despite the fact that all 3 routines have

some relationship to the users’ environment. The root cause

is indeed checklength.

C. Discussion

Sahara and other systems. Sahara simplifies the debugging

of upgrades that fail due to the user environment. As such,

Sahara is less comprehensive than systems that seek to identify

more classes of software bugs (e.g., [32]). However, Sahara

takes advantage of its narrower scope to guide failed upgrade

debugging more directly towards environment-related bugs

(which are the most common in practice [9]).

In essence, we see Sahara as complementary to other

systems. In fact, an example combination of systems is the

following. Steps 1–4 of Sahara would be executed first. If

the user environment is likely the culprit (as determined by

the output of step 4), the other steps are executed. Otherwise,

another system is activated.

Dealing with multiple bugs. The feature selection algorithm

is the only part of Sahara that could be negatively affected

by an upgrade with multiple bugs. The other components

of Sahara are unaffected because (1) information about each

execution (the resource fingerprints and a success/failure flag)

represents at most one bug, (2) static analysis is independent of

the number of bugs, (3) each dynamic analysis finds deviations

associated with a single bug, and (4) the union+intersection

step is independent of the number of bugs.

Sahara is effective when faced with multiple bugs, even

when feature selection does not produce the ideal results. To

understand this, consider the two possible scenarios: (1) all

bugs are environment-related; and (2) one or more bugs are

unrelated to the environment.

When all bugs are environment-related and involve the same

environment resources, feature selection works correctly and

Sahara easily produces the prime suspects for all bugs. If

different bugs relate to different sets of environment resources,

feature selection could misbehave. In particular, if there is not

enough information about all bugs, feature selection could mis-

rank the environment resources that are relevant to the less

frequent bugs to the point that they do not become SERs.

This would cause the remaining steps to eventually produce

the prime suspects for the more frequent bugs only. After

those bugs are removed, Sahara can be run again to tackle the

less frequent bugs. This second time, feature selection would

rank the environment resources of the remaining bugs more

highly. Other systems rely on similar multi-round approaches

for dealing with multiple bugs, e.g. [12].

When one or more bugs are not related to the environment,

feature selection could again misbehave if there is not enough

information about the bugs that are environment-related. This

scenario would most likely cause feature selection to low-

rank all environment resources. In this case, the best approach

is to resort to a different system, as discussed above. In

contrast, if there is enough information about the environment-

related bugs, feature selection would select the proper SERs.

Despite this good behavior, the dynamic analysis at some

failed sites would identify DRs corresponding to bugs that are

not related to the environment. However, those routines would

not intersect with those from the static analysis, leading to the

proper prime suspect results.

Limitations of Sahara’s current implementation. Sahara

currently implements simple versions of its components. As

a proof-of-concept, the goal of this initial implementation is

simply to demonstrate how to combine different techniques in

a useful and novel way. However, as we discuss below, more

sophisticated components can easily replace the existing ones.

Sahara limits the user information transferred to the de-

veloper’s site to the resource fingerprints. In our current

implementation, the fingerprints are transferred in hashed form

(SHA-1), which does not provide foolproof privacy guarantees.

However, Sahara can easily use more sophisticated schemes

for these transfers. Regardless of the privacy scheme, the

bandwidth required by these transfers (and that of the DRs)

should be negligible. Sahara requires more bandwidth for

transferring the re-execution and value spectra infrastructures,

but only for failed user sites.

Sahara employs static and dynamic analyses to narrow the

set of routines that are likely to contain the root cause of

the failure. However, under certain conditions, these analyses

may be unable to do so. In the worst case, all routines may

be affected by the SERs, making static analysis ineffective.

Similarly, all routines could be found to deviate from their

original behaviors. Fortunately, these worst-case scenarios are

extremely unlikely in a single upgrade.

Execution replay at the failed sites is currently performed

without virtualization. Using virtual machines would enable us

to automatically handle applications that have side-effects, but

at the cost of becoming more intrusive and transferring more

data to the failed sites. Sahara can be extended to use replay

virtualization. On the positive side, Sahara performs a single

replay at a failed site, which is significantly more efficient than

the many replays of techniques such as delta debugging [39].

Our current approach for handling replay non-determinism

is very simple: Sahara tries to match the recorded inputs to

their original system calls when re-executing each version of

the application. Internal non-determinism (e.g., due to random

numbers or race conditions) is currently not handled and may

mislead the dynamic analysis if it changes: the number or

value of the arguments passed to any routines, the number

or value of the global variables they touch, or their return

values. Sahara can be combined with existing deterministic

replay systems to eliminate these problems.

Finally, Sahara guides the debugging process by pinpointing

a set of routines to debug first. Pinpointing a single routine

or a single line causing the failure may not even be possible,

since the root cause of the failure may span multiple lines and

routines. Moreover, the systems that attempt such pinpointing



(e.g., [17], [32], [39]) often incur substantial overhead at the

users’ sites, such as running instrumented code all the time,

checkpointing state at regular intervals, and multiple replays.

III. EVALUATION

In this section, we describe our methodology and evaluate

Sahara by analyzing three real bugs in OpenSSH, a synthetic

bug in SQLite, and a synthetic bug in uServer.

We chose OpenSSH because it is widely deployed in diverse

user environments. Its upgrades are fairly frequent, typically

once every 3–6 months [26]. OpenSSH comprises many

components: (1) sshd, the daemon that listens for connections

coming from clients; (2) ssh, the client that logs and executes

commands on a remote machine; (3) scp, the program to copy

files between hosts; (4) sftp, an interactive file transfer program

atop the SSH transport; and (5) utilities such as ssh-add, ssh-

agent, ssh-keysign, ssh-keyscan, ssh-keygen, and sftp-server. In

all, OpenSSH has around 400 distinct files and 50–70K lines

of code (LOC).

SQLite is the most widely deployed SQL database [31]. It

implements a serverless, transactional SQL engine. SQLite has

67K LOC spread across 4 files. uServer [7] is an open-source,

event-driven Web server sometimes used for performance

studies. It has 37K LOC spread across 161 files.

A. Methodology

OpenSSH: Port forwarding bug. Port forwarding is com-

monly used to create a SSH tunnel. To setup a tunnel, one

forwards a specified local port to a port on the remote machine.

SSH tunnels provide a means to bypass firewalls, so long as the

site allows outgoing connections. The bug [5] was a regression

bug in OpenSSH version 4.7. When using SSH port forwarding

for large transfers, the transfer aborts. Some users observed the

following buffer error:

buffer_get_string_ret: bad string length 557056

buffer_get_string: buffer error

These transfers executed successfully until version 4.6, but

the behavior changed after upgrading to version 4.7. The

failure was observed at a small subset of user sites. The abort

was not reproducible at the developer’s site, so the developer

needed volunteer users to reproduce the bug and test its fix.

A correct and complete fix was submitted and tested by the

users on the second attempt after almost three months from

the time it was submitted [5].

The failure was caused by the following issues: (a) the

users had enabled port forwarding in the ssh configuration

file; (b) change in default window size from 128KB to 2MB

in the ssh client code in version 4.7; (c) port forwarding code

advertising the default window size as the default packet size;

and (d) the maximum packet size set to 256KB in sshd. Given

these characteristics, when users issued large transfers through

the ssh tunnel, some of the packets had size larger than the

daemon’s maximum, resulting in the buffer error after the

upgrade. The port forwarding code using the default window

size as the default packet size was not an issue before the

upgrade, as the size was always below the maximum.

OpenSSH: X11 forwarding bug. This bug [4] manifested

when users upgraded to OpenSSH version 4.2p1 from 4.1p1

and tried to start X11 forwarding. The following error was

observed at the sites that had SSH forwarding support enabled

and the command was executed in the background:

xterm Xt error: Can’t open display: localhost:10.0

In version 4.2p1, developers modified the X11 forwarding

code to fix some X11 channel leaks, including destroying the

X11 sessions whose session has ended. As a result, when the

X11 forwarding process is started in the background, the child

(and the channel) starting it would exit immediately. It took

the developers more than two weeks to fix this bug [4].

OpenSSH: ProxyCommand bug. The ProxyCommand op-

tion specifies the command that will be used by the SSH client

to connect to the remote server. The bug [28] was a regression

in OpenSSH version 4.9; ssh with ProxyCommand would fail

for some users with a "No such file" error.

Until version 4.7, ProxyCommand would use /bin/sh to

execute the command. However, in version 4.9, the code

changed to use the $SHELL environment variable, causing the

command to fail at user sites where $SHELL was set to an

empty string. The developers fixed this bug in one week, after

one user had already done a large amount of debugging [28].

SQLite and uServer bugs. To demonstrate Sahara’s general-

ity, we synthetically created one buggy upgrade for SQLite

version 3.6.14.2 and one for uServer version 0.6.0. Note
that these two bugs are trivial and could be identified by

simpler tools than Sahara. However, our goal is simply to

demonstrate that Sahara works without modification for a

variety of applications.

Before the upgrade of SQLite, the option echo on caused

its shell to output each command before executing it. After

our synthetic upgrade, it does not output the command when

executing in interactive mode. The bug we inject into the

upgrade of uServer is not environment-related. The bug is a

typo in the function that parses user input causing dropped

requests and occasional crashes.

We do not present complete results for the ProxyCommand,

SQLite, or uServer bugs due to space limitations. However, we

do include a summary of their results in the next subsection.

Upgrade deployment. To simulate a real-world deployment of

a software upgrade to users with varied environment settings,

we collected environment data from 87 machines at our site

across two clusters. The settings of the machines within a

cluster are similar, but differ across clusters.

We used the methodology described in Section II-B to

identify the environmental resources in OpenSSH, SQLite, and

uServer. Sahara uses the following parsers to parse and finger-

print the environmental resources: CHUNKS and CHUNKS2

chunk and fingerprint the binary files, such as the kernel

symbols; KEYVAL parses and chunks any file in the key-

delimiter-value format, such as shell environment or cpu data;

LIBS chunks and fingerprints all the libraries; LINES parses

and fingerprints a file one line at a time, such as the file

containing the list of kernel modules; and SSH and SSHD

are application-specific parsers to parse and fingerprint the

ssh config and sshd config configuration files, respectively.



It took us only 8 person-hours to implement these parsers.

SQLite and uServer did not require any application-specific

parsers. The environmental resources of a single machine,

parsed/chunked and fingerprinted, along with the success/fail-

ure flag constitute a single user profile.
By default, our experiments assume that 20 profiles include

environment settings that can activate a bug, whereas 67 of

them do not. We study the impact of this parameter below.

User site environments. To evaluate Sahara’s behavior in the

face of the uncertainties that may occur in practice, we per-

form six types of experiments: random perfect (rand p), two

random imperfect (rand i60 and rand i20), real configuration

perfect (real p), and two real configuration imperfect (real i60

and real i20). In the rand p experiment, the values of all the

environment resources related to the application are chosen at

random, except for the resources that relate directly to the bug.

Moreover, the 20 profiles with environment settings that can

activate the bug are classified as failed profiles, whereas the

other 67 are classified as successful ones. As a result, there

is 100% correlation between those resources and the failure.

This is the best case for feature selection in Sahara, as it finds

the minimum set of SERs.

In the two rand i cases, the environment settings are the

same as in the rand p case. However, not all profiles with

environment settings that cause the failure are labeled as

failures. In particular, only 60% of these profiles are labeled

failures in the rand i60 case, and only 20% in the rand i20

case. These imperfect experiments mimic the situation where

some users simply have not activated the bug yet, possibly

because they have not exercised the part of the code that uses

the problematic settings. These scenarios may lead feature

selection to pick more SERs than in the rand p case.

In the three types of experiments above, the application-

related environment includes random values. For more realistic

scenarios, we downloaded eight different complete OpenSSH

configuration files from the Web. For each of the bugs, we

modify three of these files to include the settings that activate

the bug. One of these eight configuration files (three with

problematic settings and five with only good settings) is

assigned to each of the 87 user profiles randomly, but in the

same proportion as before: 20 users should get problematic

settings and 67 should not. In the real p case, all the 20

profiles with problematic settings are labeled as failures,

whereas the 67 others are labeled as successful. In the real i60

and real i20 experiments, only 60% and 20% of the profiles

with these settings are labeled as failures, respectively. The

real configurations are likely to lead to more SERs than the

random ones. We do not study real configurations for SQLite

and uServer because we inject synthetic bugs into them.
In all of our experiments, we consider the features ranked

within 30% of the highest ranked feature as suspects. In

addition, we use inputs that we know will activate the bugs.

B. Results

OpenSSH: Port forwarding bug. Recall that this bug was

introduced in the ssh code by version 4.7. This version has

58K LOC and 1529 routines (729 routines in ssh). The diff

between versions 4.6 and 4.7 comprises approximately 400

Bug Experiment diff SERs SRs DRs PSRs

Port

rand p 65 1 12 124 6
rand i60 65 1 12 124 6
rand i20 65 1 12 124 6
real p 65 3 22 124 7
real i60 65 3 22 124 7
real i20 65 3 22 124 7

X11

rand p 137 1 18 157 6
rand i60 137 1 18 157 6
rand i20 137 1 18 157 6
real p 137 3 21 157 7
real i60 137 3 20 157 6
real i20 137 3 20 157 6

TABLE I
OPENSSH BUG RESULTS. SERS = SUSPECT ENVIRONMENT

RESOURCES; SRS = SUSPECTROUTINES; DRS = DEVIATEDROUTINES;
PSRS = PRIME SUSPECT ROUTINES.

LOC and 65 routines. Sahara identified 101 environmental

resources, including the parameters in the configuration files,

the operating system and library dependencies, hardware data,

and other relevant files. Many of these resources, such as

library files, are split into smaller chunks; for others, such

as configuration files, each parameter is considered a separate

feature. Overall, there are 325 features, forming the input to

the feature selection step.

Table I shows the results for each of the analyses in

Sahara and all techniques combined for every experiment. The

feature selection step results in merely 1 feature chosen as

suspect in the rand p, rand i60, and rand i20 cases. In these

experiments, the environment resource that is actually determi-

nant in the failures, configuration parameter Tunnel, was the

only suspect because the other environmental resources were

assigned random values in all user profiles. This resulted in

a very high correlation between the failure and this resource,

even in the random imperfect cases. Tunnel corresponds to 4

suspect variables in ssh.

In contrast, in the real p, real i60 and real i20 experiments,

3 features are selected: configuration parameters Tunnel,

BatchMode, and RSAAuthentication. Features BatchMode

and RSAAuthentication have 3 possible values: yes, no, or

missing. In the real configurations we collected, it so happened

that RSAAuthentication was set to yes, and BatchMode to

no in two of the three failed profiles, causing them to be

highly correlated with the failure. Recall that we did not assign

these values; we retrieved the configurations from the Web and

changed only the setting of the Tunnel parameter. These three

parameters correspond to 8 suspect variables in ssh.

The static analysis results in 12 suspect routines in the

random cases, and 22 in the real cases. The 12 routines

comprise those that (1) read the configuration file and initialize

the environment of the ssh client; (2) create, enable, or disable

a tunnel; (3) place the tunnel data into a buffer or a packet;

and (4) enable the port forwarding over this tunnel and create

a channel for it. Routine channel new from the latter group

contains the root cause of this failure.

In the real cases, the same 12 routines are suspect, in

addition to those affected by RSAAuthentication. BatchMode

is used only during the initialization in ssh, so it does not

produce other suspects.



The dynamic analysis identifies 124 routines whose behav-

ior has deviated when going from version 4.6 to 4.7. Note

that the number of deviations is higher than the number of

routines that actually changed. The reason is that the command

succeeds before the upgrade and many more routines are

invoked, as compared to after the upgrade when the command

fails. In our fDiff implementation, the routines that were not

called after the upgrade are considered deviations.

The intersection of SRs and DRs is only 6 routines in

the random cases and 7 routines in the real cases. In the

random cases, the four routines pertaining to reading the

configuration file and setting up the environment, and two

routines pertaining to enabling or disabling the tunnel, were

pruned out after intersection; their behavior did not change

after the upgrade. In the real perfect case, confirm was the

additional routine identified as primary suspect. The 6 or 7

primary suspects reported by Sahara include the actual culprit

(routine channel new).

From the top six rows in Table I, we can see that the number

of primary suspects output by Sahara is 2x–3x lower than

that by static analysis, 17x–20x lower than that by dynamic

analysis, and 9x–10x lower than the number of routines that

were modified in the upgrade. Furthermore, we can see that

Sahara is resilient to users that do not report their upgrades

to have failed despite having problematic settings for the

environment resources that cause the failure.

OpenSSH: X11 forwarding bug. Recall that the X11 for-

warding bug affected the sshd program of OpenSSH version

4.2. This version has 52K LOC and 1439 routines (856

routines in sshd). The diff between versions 4.1 and 4.2

is approximately 900 LOC and 137 routines. Sahara identified

123 environmental resources, resulting in 354 features.

The bottom-half of Table I presents the results. The feature

selection step again results in 1 feature chosen as suspect in the

rand p, rand i60, and rand i20 cases. This feature is exactly

the environment resource that is directly related to the bug:

configuration parameter X11Forwarding. It corresponds to 3

variables in the sshd code.

In the real p experiment, Sahara selects 3 features: configu-

ration parameters X11Forwarding, AuthorizedKeysFile,

and ChallengeResponseAuthentication. In the real i60

and real i20 cases, Sahara also selects 3 features: configu-

ration parameters X11Forwarding, AuthorizedKeysFile,

and PidFile. AuthorizedKeysFile and PidFile were assigned

the default value in two out of the three failed real user

profiles, whereas ChallengeResponseAuthentication was set to

no value in two of them. These 4 features correspond to 7

actual variables in sshd.

The static analysis results in 18 suspect routines in the

rand p and rand i cases, 21 in real p, and 20 in the real i

cases. The 18 routines comprise those that: (1) read the

configuration file and initialize the environment of sshd; (2)

authenticate the incoming client connection with the options

specified and setup the connection; (3) start a packet for

X11 forwarding; and (4) setup X11 forwarding, create the

channel, process X11 requests, and do the cleanup. Routine

session setup x11fwd from the latter group is the culprit.

In the real configuration cases, all the 18 routines mentioned

above are suspect, in addition to those affected by Autho-

rizedKeysFile and ChallengeResponseAuthentication. PidFile

did not result in additional suspect routines, because it is used

once in the initialization to store the pid of sshd, and never

again. As a result, the real p case has 1 more routine reported

as suspect than the two real i cases.

The dynamic analysis identifies 157 routines whose behav-

ior has deviated when going from version 4.1 to 4.2. Again, the

number of deviations is higher than the number of modified

routines, because the upgraded code fails much earlier than

the original one.

The intersection of the two analyses results in only 6

routines in the random case, and 7 in the real configuration

cases. 3 of the 6 (or 7) primary suspect routines are key to

understanding the failure. However, the single modification

in the upgrade that directly causes the failure is in the

session setup x11fwd routine.

From these results, we can see that the number of primary

suspects found by Sahara is at least 3x lower than when

using static analysis alone, at least 20x lower than when

using dynamic analysis alone, and 15x lower than the number

of routines that were actually modified. Again, these results

illustrate Sahara’s ability to focus the debugging of failed

upgrades on a small number of routines, even when many

users do not experience failures despite having environment

resources that could trigger bugs in the upgrade.

Impact of number of profiles with failure-inducing set-

tings. So far, we have studied the impact of imperfections in

the categorization of success/failure of the upgrades on the

behavior of Sahara. Another key factor for the effectiveness

of feature selection is the percentage of user profiles that

actually include the environment resource settings that cause

the upgrade failures. On one hand, the lower this percentage,

the less information we have about the failures and, thus, the

worse the feature selection results should be. On the other

hand, lowering this percentage reduces noise (i.e., supporting

evidence for resources that are not related to the failures)

in the dataset and may lead to better selection results. To

confirm these observations, we performed some experiments in

which we varied the number of such profiles. In particular, we

considered cases in which 30 or 10 profiles (out of 87) had the

failure-inducing settings. Recall that our default results above

assumed 20 such profiles.

Table II presents the “perfect” results from these experi-

ments. The default results (rand p and real p) and the dynamic

analysis results are included for clarity. As expected, the

number of SERs (as well as suspect routines and primary

suspects) tends to increase when we lower the number of

profiles with failure-inducing settings. Interestingly, the real

configuration results for the X11 forwarding bug show that

lowering noise (going from real p to real 10) can indeed

improve results as well.

Impact of feature selection accuracy. Our longer technical

report [3] also includes a study of the impact of feature

selection accuracy on Sahara. In short, these results illustrate

the behavior we expected: the less accurate feature selection



Bug Experiment SERs SRs DRs PSRs

Port

rand p 30 1 12 124 6
rand p 1 12 124 6
rand 10 1 12 124 6
real 30 1 12 124 6
real p 3 22 124 7
real 10 3 22 124 7

X11

rand p 30 1 18 157 6
rand p 1 18 157 6
rand 10 1 18 157 6
real 30 1 18 157 6
real p 3 21 157 7
real 10 2 20 157 6

TABLE II
IMPACT OF #PROFILES WITH FAILURE-INDUCING SETTINGS. SERS
= SUSPECT ENVIRONMENT RESOURCES; SRS = SUSPECTROUTINES; DRS

= DEVIATEDROUTINES; PSRS = PRIME SUSPECT ROUTINES.

is, the more prime suspects Sahara finds. Defining a few more

SERs than necessary does not increase the number of prime

suspects excessively (roughly by 2x at most, in comparison to

our default results). However, adding too many unnecessary

SERs can increase the number of PSRs by 6x–7x.

OpenSSH: ProxyCommand bug. This bug affected ssh in

version 4.9, which comprises 58K LOC and 1535 routines

(712 routines in ssh). The upgrade to this version modified

122 routines. We performed the same 10 experiments with

this upgrade as above. Depending on the type of experiment,

feature selection produces 2–5 SERs and static analysis pro-

duces 10–29 suspect routines. Dynamic analysis produces 284

deviated routines. In contrast, Sahara outputs 7 or 11 PSRs in

all but one experiment (real 10, for which it recommends 21

routines). Overall, Sahara improves on static analysis by 1.4x

and on dynamic analysis by 14x–40x for this bug.

SQLite bug. We injected this bug in SQLite version 3.6.14.2,
which comprises 67K LOC and 1338 routines. The upgrade

modified two routines. We ran only the random family of

experiments, since this was not a real upgrade bug. These

results show that feature selection identified 2–3 SERs, static

analysis produced 12–13 SRs, and dynamic analysis identified

14 DRs. Sahara outputs 2 PSRs in each of the three random

cases (exactly the routines that were modified); one of the

PSRs is the root cause of the failure. Again, although trivial,

these experiments illustrate that Sahara can be used without

modification for a variety of applications.

uServer bug. We injected this bug in uServer version 0.6.0,
which comprises 37K LOC and 404 routines. The upgrade

modified 10 routines. Again, we ran only the random family

of experiments, since this was not a real upgrade bug. The

experiments stopped at the feature selection step, since the

ranks of the top-ranked features consistently exhibit high

standard deviations. Thus, feature selection properly flags this

bug as unrelated to the environment.

Summary. The Sahara results for the five bugs and the

different imperfections we studied suggest that our system may

significantly reduce the time and effort required to diagnose

the root cause of upgrade failures.

IV. RELATEDWORK

A. Upgrade Deployment and Testing

A few studies [9], [21], [22] have proposed automated

upgrade deployment and testing techniques. McCamant and

Ernst [21], [22] automatically identify incompatibilities when

upgrading a component in a multi-component system. How-

ever, they did not attempt to isolate the root cause of the

incompatibilities. Similarly, Crameri et al. [9] did not seek

to determine the root cause of upgrade failures.

B. Automated Debugging

Troubleshooting misconfigurations. PeerPressure [33],

Snitch [23], and ConfAid [2] seek to identify the root cause

of software misconfigurations. These systems assume that the

software is correct, but was misconfigured by users. Sahara is

fundamentally different; it helps find upgrade bugs triggered

by proper configurations and environments. Moreover, Sahara

goes well beyond finding the environment resources most

likely to be related to a bug (i.e., feature selection).

Qin et al. [29] observe that many bugs are correlated with

the “execution environment” (which they define to include

configurations and the behavior of the operating and runtime

systems). Based on this observation, they propose Rx, a system

that tries to survive bugs at run time by dynamically changing

the execution environment. A follow-up to Rx, Triage [32]

goes further by dynamically changing the execution environ-

ment while attempting to diagnose failures at users’ sites.

Sahara focuses on upgrade bugs or misbehavior, rather than

software bugs in general as Rx and Triage do. For this reason,

Sahara can be much more specific about which variables

and routines should be considered first during debugging.

Moreover, Sahara can handle bugs due to aspects of the

environment that would be difficult (or impossible) to change

without semantic knowledge of the application. Finally, Rx

and Triage do not leverage data from many users, machine

learning, or static analysis. Using any of these features could

speed up Triage’s diagnosis. In fact, as we argue in Section

II-C, Sahara is complementary to systems like Triage.

Statistical debugging with user site feedback. Several pre-

vious papers [8], [12], [18], [19], [20], [27], [39] rely on low-

overhead, privacy-preserving instrumentation infrastructures to

provide user execution data back to developers. These works

do not consider the users’ environment, and require users to

constantly run instrumented code and send feedback back to

the developers, both of which have overheads.

Sahara also relies on information gathered at user sites, but

the data collection only lasts temporarily to lower overheads.

In addition, Sahara restricts its statistical analysis (feature

selection) to the aspects of the environment that may have

caused an upgrade to misbehave. Finally, Sahara goes further

by relating the results of the analysis to the variables and

routines that most likely caused the misbehavior.

Delta debugging. Delta debugging aims to resolve regression

faults automatically and effectively. Several studies [8], [15],

[39] have focused on comparing program states of failed and

successful runs to identify the space of variables or rank

program statements that are correlated with the failure.



Sahara’s dynamic analysis also considers the difference

between two runs of a program. However, our approach is

driven by environment resources and combines information

from a collection of users, machine learning, static analysis,

and dynamic analysis. Furthermore, unlike delta debugging,

Sahara requires neither instrumenting the production code nor

replaying the execution multiple times at the users’ sites.

Dynamic behavior deviations. Xie and Notkin [36] proposed

program spectra to compare versions and get insights into

their internal behavior. Harrold et al. [14] found that the

deviations between spectra of two versions frequently correlate

with regression faults.

Sahara uses value spectra to compare the execution call

traces from before and after the upgrade is applied. However,

merely identifying the deviations in the upgraded version

leads to a large number of candidates for exploration, as

our experiments demonstrate. The same is likely to occur

for most large applications or major upgrades. Sahara further

narrows down the deviation sources by cross-referencing them

with suspect routines found through information from users,

machine learning, and static analysis.

In [25], [38], the authors propose a search algorithm to

isolate the fault-inducing change after a regression test fails

at the developer’s site. In contrast, Sahara assumes that the

upgrade has been tested thoroughly at the developer’s site

and is deployed after all tests have passed. Sahara helps

isolate the fault-inducing code that is affected by specific user

environments. These failures are not easily reproducible at the

developer’s site because of environmental differences.

Other approaches. Researchers have actively been consider-

ing other approaches to automated debugging, e.g. [6], [10],

[11], [13], [37]. Sahara is not closely related to any of these

approaches, except peripherally for its use of static (def-use) or

dynamic analysis. However, Sahara’s use of static and dynamic

analyses differs in a major way from most other approaches: it

does not use them to find the bugs themselves; rather, it uses

them to constrain the set of routines of interest.

V. CONCLUSION

In this paper, we sought to reduce the effort developers

must spend to debug failed upgrades. We proposed Sahara,

a system that prioritizes the set of routines to consider when

debugging. Driven by the fact that most upgrade failures

result from differences between the developers’ and users’

environments, Sahara combines information from user site

executions and environments, machine learning, and static

and dynamic analyses. We evaluated our system for five

bugs in three widely used applications. Our results showed

that Sahara produces accurate recommendations with only a

small set of routines. Importantly, the set of recommended

routines remains small and accurate, even when the user site

information is misleading or limited.
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