On Accelerating Interpolants

Hossein Hojjat!, Radu Tosif?,

Filip Koneény?>*, Viktor Kuncak!, and Philipp Riimmer

3
! Swiss Federal Institute of Technology Lausanne (EPFL)
2 Verimag, Grenoble, France
3 Uppsala University, Sweden
4 Brno University of Technology, Czech Republic

Abstract. We present Counterexample-Guided Accelerated Abstraction Refine-
ment (CEGAAR), a new algorithm for verifying infinite-state transition systems.
CEGAAR combines interpolation-based predicate discovery in counterexample-
guided predicate abstraction with acceleration technique for computing the tran-
sitive closure of loops. CEGAAR applies acceleration to dynamically discovered
looping patterns in the unfolding of the transition system, and combines over-
approximation with underapproximation. It constructs inductive invariants that
rule out an infinite family of spurious counterexamples, alleviating the prob-
lem of divergence in predicate abstraction without losing its adaptive nature.
We present theoretical and experimental justification for the effectiveness of CE-
GAAR, showing that inductive interpolants can be computed from classical Craig
interpolants and transitive closures of loops. We present an implementation of
CEGAAR that verifies integer transition systems. We show that the resulting im-
plementation robustly handles a number of difficult transition systems that cannot
be handled using interpolation-based predicate abstraction or acceleration alone.

1 Introduction

This paper contributes to the fundamental problem of precise reachability analysis for
infinite-state systems. Predicate abstraction using interpolation has emerged as an effec-
tive technique in this domain. The underlying idea is to verify a program by reasoning
about its abstraction that is easier to analyse, and is defined with respect to a set of
predicates [21]. The set of predicates is refined to achieve the precision needed to prove
the absence or the presence of errors [2]. A key difficulty in this approach is to automat-
ically find predicates to make the abstraction sufficiently precise [3]. A breakthrough
technique is to generate predicates based on Craig interpolants [15] derived from the
proof of unfeasibility of a spurious trace [22].

While empirically successful on a variety of domains, abstraction refinement us-
ing interpolants suffers from the unpredictability of interpolants computed by provers,
which can cause the verification process to diverge and never discover a sufficient set
of predicates (even in case such predicates exist). The failure of such a refinement ap-
proach manifests in a sequence of predicates that rule out longer and longer counterex-
amples, but still fail to discover inductive invariants.

2 Hojjat, losif, Konecny, Kuncak, Riimmer

Following another direction, researchers have been making continuous progress on
techniques for computing the transitive closure of useful classes of relations on inte-
gers [8,10, 12, 17]. These acceleration techniques can compute closed form representa-
tion of certain classes of loops using Presburger arithmetic.

A key contribution of this paper is an algorithmic solution to apply these specialized
analyses for particular classes of loops to rule out an infinite family of counterexamples
during predicate abstraction refinement. An essential ingredient of this approach are
interpolants that not only rule out one path, but are also inductive with respect to loops
along this path. We observe that we can start from any interpolant for a path that goes
through a loop in the control-flow graph, and apply a postcondition (or, equivalently a
weakest precondition) with respect to the transitive closure of the loop (computed using
acceleration) to generalize the interpolant and make it inductive. Unlike previous the-
oretical proposals [14], our method treats interpolant generation and transitive closure
computation as black boxes: we can start from any interpolants and strengthen it using
any loop acceleration. We call the resulting technique Counterexample-Guided Accel-
erated Abstraction Refinement, or CEGAAR for short. Our experience indicates that
CEGAAR works well in practice.

Motivating Example To illustrate the power of the technique that we propose, consider
the example in Figure 1. The example is smaller than the examples we consider in our
evaluation (Section 6), but already illustrates the difficulty of applying existing methods.

int x,y;
x = 1000; y = 0; X =1000Ay =0
while (x > 0){
X——: x>0AX =x—1
while () {
y = 2#(x +y); : /
} Y —y+2 Y=2(x+y) Ax'=x
y=y+ 2
} (x> 0)A-(y#47Ax=0)

assert(y != 47 && x == 0);
(a) (®)

Fig. 1. Example Program and its Control Flow Graph with Large Block Encoding

Note that the innermost loop requires a very expressive logic to describe its closed
form, so that standard techniques for computing exact transitive closure of loops do not
apply. In particular, the acceleration technique does not apply to the innermost loop,
and the presence of the innermost loop prevents the application of acceleration to the
outer loop. On the other hand, predicate abstraction with interpolation refinement also
fails to solve this example. Namely, it enters a very long refinement loop, considering
increasingly longer spurious paths with CFG node sequences of the form 0(12)'1e, for
0 <i < 1000. The crux of the problem is that the refinement eliminates each of these
paths one by one, constructing too specific interpolants.

Accelerating Interpolants 3

Our combined CEGAAR approach succeeds in proving the assertion of this pro-
gram by deriving the loop invariant y%2 == 0 Ax > 0. Namely, once predicate ab-
straction considers a path where the CFG node 1 repeats (such as 0121e), it applies
acceleration to this path. CEGAAR then uses the accelerated path to construct an in-
ductive interpolant, which eliminates an infinite family of spurious paths. This provides
predicate abstraction with a crucial predicate y%?2 = 0, which enables further progress,
leading to the discovery of the predicate x > 0. Together, these predicates allow pred-
icate abstraction to construct the invariant that proves program safety. Note that this
particular example focuses on proving the absence of errors, but our experience sug-
gests that CEGAAR can, in many cases, find long counterexamples faster than standard
predicate abstraction.

Related Work Predicate abstraction has proved is a rich and fruitful direction in au-
tomated verification of detailed properties of infinite-state systems [2,21,22]. The pio-
neering work in [4] is, to the best of our knowledge, the first to propose a solution to the
divergence problem in predicate abstraction. More recently, sufficient conditions to en-
force convergence of refinement in predicate abstraction are given in [3], but it remains
difficult to enforce them in practice. A promising direction for ensuring completeness
with respect to a language of invariants is parameterizing the syntactic complexity of
predicates discovered by an interpolating split prover [23]. Because it has the flavor of
invariant enumeration, the feasibility of this approach in practice remains to be further
understood.

To alleviate relatively weak guarantees of refinement in predicate abstraction in
practice, researchers introduced path invariants [6] that rule out a family of counterex-
amples at once using constraint-based analysis. Our CEGAAR approach is similar in the
spirit, but uses acceleration [8,10,12,17] instead of constraint-based analysis, and there-
fore has complementary strengths. Acceleration naturally generates precise disjunctive
invariants, needed in many practical examples, while constraint-based invariant gen-
eration [6] resorts to an ad-hoc unfolding of the path program to generate disjunctive
invariants. Acceleration can also infer expressive predicates, in particular modulo con-
straints, which are relevant for purposes such as proving memory address alignment.

The method that is probably closest to CEGAAR is proposed in [14]. In this work
the authors define inductive interpolants and prove the existence of effectivelly com-
putable inductive interpolants for a class of affine loops, called poly-bounded. The ap-
proach is, however, limited to programs with one poly-bounded affine loop, for which
initial and error states are specified. We only consider loops that are more restricted
than the poly-bounded ones, namely loops for which transitive closures are Presburger
definable. On the other hand, our method is more general in that it does not restrict
the number of loops occurring in the path program, and benefits from regarding both
interpolation and transitive closure computation as black boxes.

The ability to compute closed forms of certain loops is also exploited in alge-
braic approaches [7]. These approaches can naturally be generalized to perform use-
ful over-approximation [1] and under-approximation. This insight is also helpful in our
approach, where we first attempt to perform exact acceleration for the particular sub-
space of the transition system. If this fails, we resort to over-approximation, and finally

4 Hojjat, losif, Konecny, Kuncak, Riimmer

to under-approximation, which, in the worst-case, reduces to standard predicate refine-
ment that can exclude as few as one spurious path.

2 Preliminaries

Let x = {x1,...,x,} be a set of variables ranging over integer numbers, and x’ be the
set {x],...,x,}. A predicate is a first-order arithmetic formula P. By FV(P) we de-
note the set of free variables in P, i.e. variables not bound by a quantifier. By writ-
ing P(x) we intend that FV(P) C x. We write L and T for the boolean constants
false and true. A linear term t over a set of variables in X is a linear combination
of the form ag + Y}, a;x;, where ag,ay,...,a, € Z. An atomic proposition is a pred-
icate of the form ¢ < 0, where ¢ is a linear term. Presburger arithmetic is the first-
order logic over propositions ¢ < (; Presburger arithmetic has quantifier elimination
and is decidable [29]. For simplicity we consider only formulas in Presburger arith-
metic in this paper. A valuation of x is a function v : x—Z. If v is a valuation of x,
we denote by v |= P the fact that the formula obtained by replacing each occurrence
of x; with v(x;) is valid. Similarly, an arithmetic formula R(x,x’) defining a relation
R C 7" x Z" is evaluated referring to two valuations v{,Vy; the satisfaction relation is
denoted Vi,V |= R. The composition of two relations Rj,R, € Z" x Z" is denoted by
RioRy={(u,v) €Z"xZ"|3teZ" . (u,t) € Ry and (t,v) € Ry }. Let € be the iden-
tity relation {(u,u) | u € Z" x Z"}. We define R® = € and R’ = R""' o R, for any i > 0.
With these notations, R™ = [JI R denotes the transitive closure of R, and R* = R* Ue
denotes the reflexive and transitive closure of R. We sometimes use the same symbols
to denote a relation and its defining formula. For a set of n-tuples S C Z" and a rela-
tion R C Z" x 7", let post(S,R) ={veZ" | Jue S. (u,v) € R} denote the strongest
postcondition of S via R, and wpre(S,R) = {u € Z" | Vv . (u,v) € R — v € S} denote
the weakest precondition of S with respect to R. We use post and wpre for sets and
relations, as well as for logical formulae defining them.

We represent programs as control flow graphs. A control flow graph (CFG) is a
tuple G = (x,Q,—,I,E) where x = {x1,...,x,} is a set of variables, Q is a set of control
states, — is a set of edges of the form qiq’ , labeled with arithmetic formulae defining
relations R(x,X'), and I, E C Q are sets of initial and error states, respectively. A path in
Gis asequence 0: g —>g2—>q3 ... qn_1 bqn, where q1,q2,...,q, € Q and qiﬁ)qiﬂ
is an edge in G, for each i = 1,...,n — 1. We assume without loss of generality that all
variables in x Ux’ appear free in each relation labeling an edge of G°. We denote the
relation RjoRy0...0R,_1 by p(0) and assume that the set of free variables of p(0)
is xUx'. The path 0 is said to be a cycle if g1 = gy, and a trace if q; € I. The path 0
is said to be feasible if and only if there exist valuations vy,...,V, : X — Z such that
Vi,Viy1 ER;, foralli=1,...,n— 1. A control state is said to be reachable in G if it
occurs on a feasible trace.

Acceleration The goal of acceleration is, given a relation R in a fragment of integer
arithmetic, to compute its reflexive and transitive closure, R*. In general, defining R* in

5 For variables that are not modified by a transition, this can be achieved by introducing an
explicit update x’ = x.

Accelerating Interpolants 5

a decidable fragment of integer arithmetic is not possible, even when R is definable in a
decidable fragment such as, e.g. Presburger arithmetic. We next present two fragments
of arithmetic in which transitive closures of relations are Presburger definable.

Definition 1. Let U(x) = {£x+y | x,y € X} be the set of octagonal terms over x. A
Sformula 0(X) is an octagonal constraint if it is equivalent to a finite conjunction of
atomic propositions of the form u < ¢, where u € U(x) and ¢ € Z.

An octagonal relation is a relation defined by an octagonal constraint R(x,x’). The
transitive closure of an octagonal relation is Presburger definable and effectively com-
putable [10, 12].

Definition 2. A linear affine relation is a relation of the form R (x,x') =Cx>d A X' =
AX+Db, where A € 7", C € ZP*" are matrices and b € 7", d € ZP. R_is said to have
the finite monoid property if and only if the set {A' | i > 0} is finite.

Notice that linear affine relations are deterministic, unlike the octagonal relations con-
sidered in the previous. It is known that the finite monoid condition is decidable [8],
and moreover that the transitive closure of a finite monoid affine relation is Presburger
definable and effectively computable [8, 17].

Predicate Abstraction Informally, predicate abstraction computes an overapproxima-
tion of the transition system generated by a program and verifies whether an error state
is reachable in the abstract system. If no error occurs in the abstract system, the al-
gorithm reports that the original system is safe. Otherwise, if a path to an error state
(counterexample) has been found in the abstract system, the corresponding concrete
path is checked. If this latter path corresponds to a real execution of the system, then a
real error has been found. Otherwise, the abstraction is refined in order to exclude the
counterexample, and the procedure continues.

Given a CFG G = (x,Q,—,I,E), and a (possibly infinite) set of predicates P, an
abstract reachability tree (ART) for G is a tuple T = (S, 7, r,e) where § C Q x 27\{1}
is a set of nodes (notice that for no node (g, ®P) in T we may have L €), t: Q0 — 27
is a mapping associating control states with sets of predicates, i € I x {T} is the root
node, e C § x S is a tree-structured edge relation:

— all nodes in S are reachable from the root r
- foralln,m,p €S, e(n,p) Ne(m,p) =>n=m
R
- e({(q1,®1),{(q2,P2)) = q1—q2 and P = {P € t(q2) | post(AP1,R) — P}

We say that an ART node (g1, ®,) is subsumed by another node (g,,®,) if and only if
q1 = q» and AP — A ;. It is usually considered that no node in an ART is subsumed
by another node, from the same ART.

It can be easily checked that each path 6 : r = {q1,D1),{q2,D2), ..., (qk, Px), start-
ing from the root in 7', can be mapped into a trace 0 : g ﬁ>c]2 e Gl qu of G, such
that post(T,p(0)) — A\ Pr. We say that 0 is a concretization of G, or that ¢ concretizes
to 6. A path in an ART is said to be spurious if none of its concretizations is feasible.

6 Hojjat, losif, Konecny, Kuncak, Riimmer

3 Interpolation-Based Abstraction Refinement

By refinement we understand the process of enriching the predicate mapping © of an
ART T = (S, m, r,e) with new predicates. The goal of refinement is to prevent spurious
counterexamples (paths to an error state) from appearing in the ART. To this end, an
effective technique used in many predicate abstraction tools is that of interpolation.

Given an unsatisfiable conjunction A A B, an interpolant / is a formula using the
common variables of A and B, such that A — [is valid and I A B is unsatisfiable. Intu-
itively, I is the explanation behind the unsatisfiability of A A B. Below we introduce a
slightly more general definition of a trace interpolant.

Definition 3 ([24]). Let G = (x,Q,—,1,E) be a CFG and
R Ry Ry—1
0:91—q2—q3...qn-1—qn

be an infeasible trace of G. An interpolant for 0 is a sequence of predicates (I, b, ..., I,)
with free variables in X, such that: L = T, I, = 1, and for all i =1,...,n—1,
pOS[(],',R,') — Ii+1.

Interpolants exist for many theories, including all theories with quantifier elimination,
and thus for Presburger arithmetic. Moreover, a trace is infeasible if and only if it has an
interpolant (Lemma 10, Appendix A). Including any interpolant of an infeasible trace
into the predicate mapping of an ART suffices to eliminate any abstraction of the trace
from the ART. We can thus refine the ART and exclude an infeasible trace by including
the interpolant that proves the infeasibility of the trace (Lemma 11, Appendix A).
Note that the refinement technique using Definition 3 only guarantees that one spu-
rious counterexample is eliminated from the ART with each refinement step. This fact
hinders the efficiency of predicate abstraction tools, which must rely on the ability of
theorem provers to produce interpolants that are general enough to eliminate more than
one spurious counterexample at the time. The following is a stronger notion of an inter-
polant, which ensures generality with respect to an infinite family of counterexamples.

Definition 4 ([14], Def. 2.4). Given a CFG G, a trace scheme in G is a sequence of
the form:

~

1 Lp—1

Ly
[0} 2% On— ~ On ~ On
E:qo=5 @i~ = Guil =D Gn —oqu 1)

where qo € I and:
- Q; = p(6;), for some non-cyclic paths 0; of G, from q;_1 to gq;
- L= \/];’:1 p(Aij), for some cycles ;; of G, from g to q;
Intuitivelly, a trace scheme represents an infinite regular set of traces in G. The trace
scheme is said to be feasible if and only if at least one trace of G of the form
015 A5, ...7»1,-/.1 302550, A, - '7"“'/‘,, ;0,11 is feasible.
The trace scheme is said to be bounded if k; = 1, for all i = 1,2,...,n. A bounded®

trace scheme is a regular language of traces, of the form 6 -Aj-...-G,-Aj; - 0,41, where
o; are acyclic paths, and A; are cycles of G.

6 This term is used in analogy with the notion of bounded languages [20].

Accelerating Interpolants 7

Definition 5 ([14], Def. 2.5). Let G = (x,Q,—,1,E) be a CFG and & be an infea-
sible trace scheme of the form (1). An interpolant for & is a sequence of predicates
(o, 11, Ip,. .., 1y, I,11), with free variables in X, such that:

1. [0 =T cde,H_l =1
2. post(l;,Qir1) = liy1, foralli=0,1,...,n
3. post(l;,L;) = I, foralli=1,2,....n

The main difference with Definition 3 is the third requirement, namely that each inter-
polant predicate (except for the first and the last one) must be inductive with respect to
the corresponding loop relation. It is easy to see that each of the two sequences:

(T, post(T,Q10LY), ..., post(T,Q10LjoQr0...0,0L)) 2)
(wpre(L,Q10LioQs0...QuoLY), ..., wpre(1,Q,0L}), 1) 3)

are interpolants for &, provided that § is infeasible (Lemma 2.6 in [14]). Just as for
finite trace interpolants, the existence of an inductive interpolant suffices to prove the
infeasibility of the entire trace scheme.

Lemma 6. Let G = (x,0,—,1,E) be a CFG and & be an infeasible trace scheme of G
of the form (1). If T = (S,®,r,e) is an ART for G, such that there exists an interpolant

(I € m(qi)) =y for &, then no path in T concretizes to a trace in &,

4 Counterexample-Guided Accelerated Abstraction Refinement

This section presents the CEGAAR algorithm for predicate abstraction with interpolant-
based accelerated abstraction refinement. Since computing the interpolant of a trace
scheme is typically more expensive than computing the interpolant of a finite coun-
terexample, we apply acceleration in a demand-driven fashion. The main idea of the
algorithm is to accelerate only those counterexamples in which some cycle repeats a
certain number of times. For example, if the abstract state exploration has already ruled
out the spurious counterexamples G-T, 6-A-T and 6-A-A-T, when it sees next the
spurious counterexample G- A-A- A - T, it will accelerate it into 6 - A* - T, and rule out all
traces which comply to this scheme. The maximum number of cycles that are allowed
to occur in the acyclic part of an error trace, before computing the transitive closure, is
called the delay, and is a parameter of the algorithm (here the delay was 2). A smaller
delay results in a more aggressive acceleration strategy, whereas setting the delay to
infinity is equivalent to performing predicate abstraction without acceleration.

The main procedure is CONSTRUCTART which builds an ART for a given CFG,
and an abstraction of the set of initial values (Fig. 2). CONSTRUCTART is a worklist
algorithm that expands the ART according to a certain exploration strategy (depth-first,
breadth-first, etc.) determined by the type of the structure used as a worklist. We assume
without loss of generality that the CFG has exactly one initial vertex Init. The CON-
STRUCTART procedure starts with Init and expands the tree according to the definition
of the ART (lines 10 and 11). New ART nodes are constructed using NEWARTNODE,
which receives a CFG state and a set of predicates as arguments. The algorithm back-
tracks from expanding the ART when either the current node contains _L in its set of

8 Hojjat, losif, Konecny, Kuncak, Riimmer

input CFG G = (x,0,—, {Init},E)
output ART T = (S, 1, Root ,e)
WorkList < []
S, me+—0
Root < nil

1: function CONSTRUCTART (Init, initialAbstraction)

2 node < NEWARTNODE((Init, initialAbstraction)

3 if Root = nil then

4: Root < node

5: end if

6 WorkList.add((Init,node))

7 while !WorkList.empty() do

8 (nextCFGvertex, nextARTnode) <— WorkList.remove()

9: for child < children(nextCFGVertex) do
10: Let R be such that nextCFGvertex-schild in G
11: ® = {p € n(child) | POST(/\ nextART node.abstraction,R) + p}
12: if L€ @ or (Jan ART node (child,¥) . A® + V) then
13: continue
14: end if
15: node <~ NEWARTNODE(child, D)
16: S« SU{node}
17: e +— eU{(nextART node,node)}
18: if child € E and CHECKREFINEERROR (node) then
19: report “ERROR”
20: end if
21: WorkList.add({child,node))
22: WorkList.removeAll(nodes from WorkList subsumed by node)
23: end for

24: end while
25: end function

Fig. 2. The CEGAAR algorithm (a) - High-Level Structure

predicates, or it is subsumed by another node in the ART (line 12). In the algorithm
(Fig. 2), we denote logical entailment by ¢ - y in order to avoid confusion.

The refinement step is performed by the CHECKREFINEERROR function (Fig. 3).
This function returns true if and only if a feasible error trace has been detected; oth-
erwise, further predicates are generated to refine the abstraction. First, a minimal in-
feasible ART path to node is determined (line 4). This path is generalized into a trace
scheme (line 5). The generalization function FOLD takes Path and the delay parame-
ter & as input and produces a trace scheme which contains Path. The trace scheme is
obtained by traversing the path and recording the control states encountered in a list.
When we encounter a control state which is already in the list, we identified an elemen-
tary cycle A. If the current trace scheme ends with at least 8 occurrences of A, then A
is added as a loop to the trace scheme, provided that its transitive closure can be ef-
fectivelly computed. The latter condition can be ensured by verifying that the relation

Accelerating Interpolants 9

: function CHECKREFINEERROR(node)

traceScheme <+ []

while the ART path Root— - - - —node is spurious do

let Path < (q1,P1)— ... —(qn, Pn) be the (unique)

minimal ART path with pivor < (g1, ®;) and {(g,,®,) = node
such that the CFG path g; — - - - —q, is infeasible

S newScheme < FOLD(Path,delay)

6: if ISBOUNDED (newScheme) then

7

8

o e

absScheme < CONCAT(OVERAPPROX (newScheme),traceScheme)
: if INTERPOLATEREFINE (absScheme, pivor) then
9: return false

10: else

11: newScheme < UNDERAPPROX (newScheme, Path)
12: end if

13: end if

14: traceScheme < CONCAT(newScheme, traceScheme)
15: if INTERPOLATEREFINE(traceScheme, pivot) then
16: return false

17: end if

18: node < Path.head|)

19: end while

20: return true

21: end function

Fig. 3. The CEGAAR algorithm (b) - Accelerated Refinement

labeling A is syntactically compliant’ to either Definition 1 or 2. For space reasons, the
pseudo-code of the FOLD functions are given in Appendix B. Once the folded trace
scheme is obtained, there are three possibilities:

1. If the trace scheme is not bounded (the test on line 6 passes), we compute a bounded
overapproximation of it, in an attempt to prove its infeasibility (line 7). If the test
on line 8 succeeds, the original trace scheme is proved to be infeasible and the ART
is refined using the interpolants for the overapproximated trace scheme.

2. Else, if the overapproximation was found to be feasible, it could be the case that
the abstraction of the scheme introduced a spurious error trace. In this case, we
compute a bounded underapproximation of the trace scheme, which contains the
initial infeasible path, and replace the current trace scheme with it (line 11). The
only requirement we impose on the UNDERAPPROX function is that the returned
bounded trace scheme contains Path, and is a subset of newScheme.

3. Finally, if the trace scheme is bounded (either because the test on line 6 failed, or
because the folded path was replaced by a bounded underapproximation on line
11) and also infeasible (the test on line 15 passes) then the ART is refined with the
interpolants computed for the scheme. If, on the other hand, the scheme is feasible,

7 Notice that a relation can be definable by an octagonal constraint even if it is not a conjunction
of the form given in Definition 1 — it may contain redundant atomic propositions which are not
of this form. Our check is a sufficient, but not necessary condition.

10 Hojjat, losif, Konecny, Kuncak, Riimmer

PerR Pr%s
q1 — q2 — 41 q1 — q2 — q2 — 41
P 1L R P 1L R
q1 q1

Fig. 4. Underapproximation of unbounded trace schemes. € stands for the identity relation.

we continue searching for an infeasible trace scheme starting from the head of Path
upwards (line 18).

Example Let 9 : qliqz %qz ﬁqliqggql be a path. The result of applying FOLD
to this path is the trace scheme & shown in the left half of Fig. 4. Notice that this path
scheme is not bounded, due to the presence of two loops starting and ending with g5. A
possible bounded underapproximation of &, containing the original path 0, is shown in
the right half of Fig. 4. a

The iteration stops either when a refinement is possible (lines 9, 16), in which case
CHECKREFINEERROR returns false, or when the search reaches the root of the ART
and the trace scheme is feasible, in which case CHECKREFINEERROR returns true (line
20) and the main algorithm in Figure 2 reports a true counterexample. Notice that, since
we update node to the head of Path (line 18), the position of node is moved upwards
in the ART. Since this cannot happen indefinitely, the main loop (lines 3-19) of the
CHECKREFINEERROR is bound to terminate.

The INTERPOLATEREFINE function is used to compute the interpolant of the trace
scheme, update the predicate mapping 7 of the ART, and reconstruct the subtree of the
ART whose root is the first node on Path (this is usually called the pivot node). For
space reasons, the INTERPOLATEREFINE function is shown in Appendix B.

It can be observed that our procedure is sound, in the sense that whenever function
CONSTRUCTART terminates with a non-error result, the input program does not con-
tain any reachable error states. Vice versa, if a program contains a reachable error state,
CONSTRUCTART is guaranteed to eventually discover a feasible path to this state, since
the use of a work list ensures fairness when exploring ARTs.

5 Computing Accelerated Interpolants

This section describes a method of refining an ART by excluding an infinite family of
infeasible traces at once. Our method combines interpolation with acceleration in a way
which is oblivious of the particular method used to compute interpolants. For instance,
it is possible to combine proof-based [27] or constraint-based [31] interpolation with
acceleration, whenever computing the precise transitive closure of a loop is possible.
In cases when the precise computation fails, we may resort to both over- and under-
approximation of the transitive closure. In both cases, the accelerated interpolants are at
least as general (and many times more general) than the classical interpolants extracted
from a finite counterexample trace.

Accelerating Interpolants 11

5.1 Precise Acceleration of Bounded Trace Schemes

We consider first the case of bounded trace schemes of the form (1), where the control
states ¢q1,...,g, belong to some cycles labeled with relations Ly,...,L,. Under some
restrictions on the syntax of the relations labeling the cycles L;, the reflexive transitive
closures L are effectively computable using acceleration algorithms [8,11,17]. Among
the known classes of relations for which acceleration is possible we consider: octagonal
relations (Definition 1) and finite monoid affine transformations (Definition 2). These
are all conjunctive linear relations. We consider in the following that all cycle relations
L; belong to one of these classes. Under this restriction, any infeasible bounded trace
scheme has an effectivelly computable interpolant of one of the forms (2),(3).

However, there are two problems with applying definitions (2),(3) in order to obtain
interpolants of trace schemes. On one hand, relational composition typically requires
expensive quantifier eliminations. The standard proof-based interpolation techniques
(e.g. [27]) overcome this problem by extracting the interpolants directly from the proof
of infeasibility of the trace. Alternatively, constraint-based interpolation [31] reduce the
interpolant computation to a Linear Programming problem, which can be solved by
efficient algorithms [32]. Both methods apply, however, only to finite traces, and not
to infinite sets of traces defined as trace schemes. Another, more important, problem is
related to the sizes of the interpolant predicates from (2), (3) compared to the sizes of
interpolant predicates obtained by proof-theoretic methods (e.g. [26]), as the following
example shows.

Example Let R(x,y,x',y') : ¥ =x+1Ay =y+1and ¢(x,y,...), ¥(x,y,...) be some
complex Presburger arithmetic formulae. The trace scheme:

A
=0A=200 © 7Zrt2/\R =5 Ay
go———— q1 ——q2 4)

is infeasible, because z remains even, so it cannot become equal 5. One simple inter-
polant for this trace scheme has at program point ¢; the formula z%?2 = 0. On the other
hand, the strongest interpolant has (z=0AZ7 =xA)o (7 =z+2AR)* at g1, which is
typically a much larger formula, because of the complex formula ¢. Note however that
0 and R do not mention z, so they are irrelevant. a

To construct useful interpolants instead of the strongest or the weakest ones, we
therefore proceed as follows. Let & be a bounded trace scheme of the form (1). For each

control loop g;—»¢; of &, we define the corresponding meta-transition q;—q/ labeled
with the reflexive and transitive closure of R;. Intuitively, firing the meta-transition has
the same effect as iterating the loop an arbitrary number of times. We first replace each
loop of & by the corresponding meta-transition. The result is the mera-trace:
nQ On 11 Ontl

B 002t i Logh ..) 1 2 g 2 g)
Since we supposed that & is an infeasible trace scheme, the (equivalent) finite meta-
trace & is infeasible as well, and it has an interpolant Ir= (T.n,1{, 0,0 ,....1,,I, 1)
in the sense of Definition 3. This interpolant is not an interpolant of the trace scheme
€, in the sense of Definition 5. In particular, none of 1,1/ is guaranteed to be inductive

12 Hojjat, losif, Konecny, Kuncak, Riimmer

with respect to the loop relations L;. To define compact inductive interpolants based on
IE and the transitive closures L}, we consider the following sequences:

o = (T, post(I},L;), post(I5, L), ..., post (I, L), L)

g
17 = (T wpre(l] Lj), wpre(I}. L3).wpre(I!..L}), 1)

The following lemma proves the correctness of this approach.

Lemma 7. Let G = (x,0,—,1,E) be a CFG and § be an infeasible trace scheme of the
form (1). Then Ié’ > and lgp " are interpolants for &, and moreover Ig pre Ié’_ >t for
alli=1,2,....n

Notice that computing Ié’ " and IgV P’ requires n relational compositions, which is,
in principle, just as expensive as computing directly one of the extremal interpolants
(2),(3). However, by re-using the meta-trace interpolants, one potentially avoids the
worst-case combinatorial explosion in the size of the formulae, which occurs when
using (2), (3) directly.

Example Let us consider again the trace scheme (4). The corresponding unfeasible
finite trace § is:

z=0A7=zA0 , Fk>0 . 7 =z4+2k A X'=x+k N Y'=y+k ;; z=5 y
q1 q1 q2

A possible interpolant for this trace is (T,z = 0,3k > 0 . z = 2k, L). An inductive
interpolant for the trace scheme, derived from it, is Ié’ st — (T,post(z=0,3k > 0.7 =

24+ 2kAX =x+kANY =y+k), L) =(T, z2%2=0, L). O

5.2 Bounded Overapproximations of Trace Schemes

Consider a trace scheme (1), not necessarily bounded, where the transitive closures of
the relations L; labeling the loops are not computable by any available acceleration
method [8, 11, 17]. One alternative is to find abstractions L? of the loop relations, i.e.

relations L? < L;, for which transitive closures are computable. If the new abstract trace
remains infeasible, it is possible to compute an interpolant for it, which is an interpolant
for the original trace scheme. However, replacing the relations L; with their abstractions
L? may turn an infeasible trace scheme into a feasible one, where the traces introduced
by abstraction are spurious. In this case, we give up the overapproximation, and turn to
the underapproximation technique described in the next section.

The overapproximation method computes an interpolant for a trace scheme & of the
form (1) under the assumption that the abstract trace scheme:

L L L
0 0 0 o, 0,
E g0 i 2 2 g S G g ()

is infeasible. In this case one can effectivelly compute the interpolants Igw and Igp ",
since the transitive closures of the abstract relations labeling the loops are computable
by acceleration. The following lemma proves that, under certain conditions, computing

an interpolant for the abstraction of a trace scheme is sound.

Accelerating Interpolants 13

Lemma 8. Let G be a CFG and & be a trace scheme (1) such that the abstract trace
scheme ¥ (6) is infeasible. Then the interpolants Ig:ml and Igp " for &' are also inter-
polants for €,

To compute abstractions of relations that are guaranteed to have Presburger-
definable transitive closures, we can use octagonal relations (Definition 1) and com-
pute the integer octagonal hull of a relation L. This is the strongest conjunction
L} = MNMu<c|ueU(xUx), L — u<c} In practice, if for instance, L is a union
of convex polyhedra, one can use Integer Linear Programming [32] to compute L? effi-
ciently.

5.3 Bounded Underapproximations of Trace Schemes

Let & be a trace scheme of the form (1), where each relation L; labeling a loop is a
disjunction L;j; V...V Ly, of relations for which the transitive closures are effectively
computable and Presburger definable. A bounded underapproximation scheme of a trace

scheme & is obtained by replacing each loop qiiqi in & by a bounded trace scheme of
the form:

L Lp Lik;
% a% 3

1 & 2¢ ki

49 = 9q;i —---4;

where € denotes the identity relation. Let us denote® the result of this replacement by
&, Tt is manifest that the set of traces & is included in &,

Since we assumed that the reflexive and transitive closures L;; are effectivelly com-

putable and Presburger definable, the feasibility of &’ is a decidable problem. If &’ is
found to be feasible, this points to a real error trace in the system. On the other hand, if

&’ is found to be infeasible, let Iy = (T,1,... ,I{q Y A I’ 1) be an interpolant

Y A (L8
for &. A refinement scheme using this interpolant associates the predicates {I},... ,Iik "
with the control state g; from the original CFG. As the following lemma shows, this
guarantees that any trace that follows the pattern of &b is excluded from the ART, en-
suring that a refinement of the ART using a suitable underapproximation (that includes
a spurious counterexample) is guaranteed to make progress.

Lemma9. Ler G = (x,0,—,1,E) be a CFG, £ be an infeasible trace scheme of G (1)
and & a bounded underapproximation of &. If T = (S,m,r,e) is an ART for G, such that

{r,... ,Il.k"} C 7(g;), then no path in T concretizes to a trace in £.

Notice that a refinement scheme based on underapproximation guarantees the ex-
clusion of those traces from the chosen underapproximation trace scheme, and not of all
traces from the original trace scheme. Since a trace scheme is typically obtained from
a finite counterexample, an underapproximation-based refinement still guarantees that
the particular counterexample is excluded from further searches. In other words, using
underapproximation is still better than the classical refinement method, since it can po-
tentially exclude an entire family of counterexamples (including the one generating the
underapproximation) at once.

8 The choice of the name depends on the ordering of particular paths L;;,Lj,...,Ly,, however
we shall denote any such choice in the same way, in order to keep the notation simple.

14 Hojjat, losif, Konecny, Kuncak, Riimmer

6 Experimental Results

We have implemented CEGAAR by building on the predicate abstraction engine Eldar-
ica®, the FLATA verifier'? based on acceleration, and the Princess interpolating theo-
rem prover [13,30]. Tables in Figure 5 compares the performance of the Flata, Eldarica,
static acceleration and CEGAAR on a number of benchmarks.

The benchmarks are all in the Numerical Transition Systems format!'! (NTS). We
have considered seven sets of examples, extracted automatically from different sources:
(a) C programs with arrays provided as examples of divergence in predicate abstrac-
tion [25], (b) verification conditions for programs with arrays, expressed in the SIL
logic of [11] and translated to NTS, (c) small C programs with challenging loops, (d)
NTS extracted from programs with singly-linked lists by the L2CA tool [9], (e) C pro-
grams provided as benchmarks in the NECLA static analysis suite, (f) C programs with
asynchronous procedure calls translated into NTS using the approach of [19] (the ex-
amples with extension .optim are obtained via an optimized translation method [18]),
and (g) models extracted from VHDL models of circuits following the method of [33].
The benchmarks are available from the home page of our tool.

The results on this benchmark set suggest that we have arrived at a fully automated
verifier that is robust in verifying automatically generated integer programs with a va-
riety of looping control structure patterns.

An important question we explored is the importance of dynamic application of
acceleration, as well as of overapproximation and underapproximation. We therefore
also implemented static acceleration [14], a lightweight acceleration technique gener-
alizing large block encoding (LBE) [5] with transitive closures. It simplifies the control
flow graph prior to predicate abstraction. In some cases, such as mergesort from the (d)
benchmarks and rotation_ vc.2 from (b) benchmarks, the acceleration overhead does not
pay off. The problem is that static acceleration tries to accelerate every loop in the CFG
rather than accelerating the loops occurring on spurious paths leading to error. Acceler-
ation of inessential loops generates large formulas as the result of combining loops and
composition of paths during large block encoding.

The CEGAAR algorithm outperforms other approaches in most cases. In the veri-
fication of benchmarks totally 11 times the acceleration was exact, 30 times the over-
approximation of the loops was successful and in 15 cases over-approximation fails so
the tool had to use the under-approximation tactic. This suggests that all techniques that
we presented are essential to obtain an effective verifier.

7 Conclusions

We have presented CEGAAR, a new automated verification algorithm for integer pro-
grams. The algorithm combines two cutting-edge analysis techniques: interpolation-
based abstraction refinement and acceleration of loops. We have implemented CE-
GAAR and presented experimental results, showing that CEGAAR handles robustly

9 http://lara.epfl.ch/w/eldarica
0 nttp://www-verimag. imag. fr/FLATA. html
Wyttp://richmodels.epfl.ch/ntscomp_ntslib

Accelerating Interpolants

15

Model TR g b, Mode UL g p Mod T s b
(a) Examples from [25] (c) Examples from [28] (f) Examples from [19]
anubhav (C) 0.6 1.5 1.8 1.5 boustrophedon (C) - 122 hl(E) 6.3 6.7 6.0
copyl (E) 1.7 81 1.2 3.5 gopan(C) 0.5 - 6.7 hl.optim (E) 07 12 23 13
cousot (C) 05 - - 4.3 halbwachs (C) - 1.6 82 hlh2(E) 19.8 20.3 18.7
loop1 (C) 0.4 2.1 09 2.1 ratelimiter (C) 7.2 27 7.1 hlh2.optim (E) 1.1 42 46 42
loop (C) 0403 090.3 (d)Examples from L2CA [9] simple (E) - - 6.1 6.1
scan (E) 24 - 1029 bubblesort (E) 13.1 25 3.0 2.5 simpleoptim(E) 0.7 13 23 13
string_concatl (E) 4.4 - 3.2 5.0 insdel (E) 0.1 02 08 0.2 test0(C) - 29.7 28.9 28.3
string_concat (E) 4.1 - 2542 insertsort (E) 1.9 07 14 0.7 testO.optim (C) 02 51 16 5.1
string_copy (E) 37 - 153.6 listcounter (C) 0.3 - 0.5 34 testO(E) - 56 59 58
substring1 (E) 03 1.6 239 1.5 listcounter (E) 03 03 05 03 test0.optim (E) 0.6 1.3 2.1 13
substring (E) 1.8 0.6 1.6 0.6 Ilistreversal (C) 48 06 1.7 0.6 testl.optim (C) 0.7 83 94 10.1
(b) Verification conditions listreversal (E) 0.6 06 48 0.6 testlopim(E) 14 69 7.6 69
for array programs [11] mergesort (E) 1.1 1.5237.6 1.5 test2_loptim(E) 14 47 38 47
rotation_vc.1 (C) 0.7 2.0 6.3 1.9 selectionsort (E) 14 13 44 13 tes22.optim(E) 2.5 47 38 47
rotation_vc.2 (C) 1.3 2.1 202.2 2.1 (e) NECLA benchmarks test2.optim (C) 6.2 79.5 72.7 65.5
rotation_ve.3 (C) 1.2 0.3 181.5 0.3 'infl (E) 01 03 03 03 wrpcmanual(C) 05 1.2 1.3 12
rotation_vc.1 (E) 1.1 1.4 149 14 inf4 (E) 08 05 05 0.5 wrpc(E) 10.8 11.2 10.7
split_vc.1 (C) 4227 - 27 inf6 (C) 01 03 03 03 wrpc.optim (E) 3.0 54 3.0
split_vc.2 (C) 2.8 2.1 - 2.1 inf8 (C) 03 06 0.6 0.6 (g VHDL models from [33]
split_ve.3 (C) 2.9 0.5 -0.5 counter (C) 0.1 1.6 16 1.6
split_ve.1 (E) 30.6 2.0 -20 register (C) 02 12 12 12
synlifo (C) 170 72 73 7.2

Fig. 5. Benchmarks for Flata, Eldarica without acceleration, Eldarica with acceleration of loops
at the CFG level (Static) and CEGAAR (Dynamic acceleration). The letter after the model name
distinguishes Correct from models with a reachable Error state. Items with “-” led to a timeout
for the respective approach.

a number of examples that cannot be handled by predicate abstraction or acceleration
alone. Because many classes of systems translate into integer programs, our advance
contributes to automated verification of infinite-state systems in general.

References

1.

2.

E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in Static Cost
Analysis. Journal of Automated Reasoning, 46(2), February 2011.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of
C programs. In ACM SIGPLAN PLDI, 2001.

. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction refinement

for software model checking. In TACAS 02, volume 2280 of LNCS, page 158, 2002.

. S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Form. Methods Syst.

Des., 15(1):75-92, July 1999.

. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software model

checking via large-block encoding. In FMCAD, pages 25-32, 2009.

. D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path invariants. In PLDI,

pages 300-309, 2007.

. R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovacs. ABC: Algebraic bound computation

for loops. In LPAR (Dakar), pages 103—118, 2010.

. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces, volume PhD Thesis, Vol.

189. Collection des Publications de 1’Université de Liege, 1999.

. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists

are counter automata. In CAV, pages 517-531, 2006.

16

10

11.

13.

14.

15.

16.

18.
19.

20.

21.

22.

23.

24.

25.
26.
217.
28.
29.
30.
31.

32.
33.

A

Hojjat, losif, Konecny, Kuncak, Riimmer

M. Bozga, C. Girlea, and R. losif. Iterating octagons. In TACAS 09, pages 337-351.
Springer, 2009.

M. Bozga, P. Habermehl, R. Iosif, F. Kone¢ny, and T. Vojnar. Automatic verification of
integer array programs. In CAV, pages 157-172, 2009.

. M. Bozga, R. Iosif, and F. Kone¢ny. Fast acceleration of ultimately periodic relations. In

CAV, pages 227-242, 2010.

A. Brillout, D. Kroening, P. Riimmer, and T. Wahl. An interpolating sequent calculus for
quantifier-free Presburger arithmetic. In IJCAR, LNCS. Springer, 2010.

N. Caniart, E. Fleury, J. Leroux, and M. Zeitoun. Accelerating interpolation-based model-
checking. In TACAS’08, pages 428-442, 2008.

W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. The Journal of
Symbolic Logic, 22(3):250-268, September 1957.

J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with craig interpolation and
symbolic pushdown systems. JSAT, 5(1-4):27-56, 2008.

. A. Finkel and J. Leroux. How to compose presburger-accelerations: Applications to broad-

cast protocols. In FST TCS ’02, pages 145-156. Springer, 2002.

P. Ganty. Personal communication.

P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. CoRR,
abs/1011.0551, 2010.

S. Ginsburg and E. Spanier. Bounded algol-like languages. Trans. of the AMS, 113(2):333—
368, 1964.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV, pages 72-83,
1997.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In
31st POPL, 2004.

R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In
TACAS, 2006.

R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In
H. Hermanns and J. Palsberg, editors, TACAS, volume 3920 of Lecture Notes in Computer
Science, pages 459—473. Springer, 2006.

R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In
TACAS, pages 459473, 2006.

D. Kroening, J. Leroux, and P. Riimmer. Interpolating quantifier-free Presburger arithmetic.
In Proceedings, LPAR, volume 6397 of LNCS, pages 489-503. Springer, 2010.

K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1), 2005.

D. Monniaux. Personal Communication.

M. Presburger. Uber die Vollstandigkeit eines gewissen Systems der Arithmetik. Comptes
rendus du I Congrés des Pays Slaves, Warsaw 1929.

P. Riimmer. A constraint sequent calculus for first-order logic with linear integer arithmetic.
In LPAR, volume 5330 of LNCS, pages 274-289. Springer, 2008.

A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. In Pro-
ceedings, VM CAI, volume 4349 of LNCS, pages 346-362. Springer, 2007.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

A. Smrcka and T. Vojnar. Verifying parametrised hardware designs via counter automata. In
Haifa Verification Conference, pages 51-68, 2007.

Proofs

R
Lemma 10 ([16]). A trace 6 : qu—1>qu—2>q3 . .q,,_l—l)qn is infeasible if and only
if it has an interpolant. In this case, both sequences (post(T,Rio...oR;_1))’ | and

Accelerating Interpolants 17
n—1

(wpre(L,Rjo...R,_1))}_, are interpolants, andfor any znterpolant (I)!=, we have
post(T,Rio...oR;_1) = I; > wpre(L,Rjo...R,_1) fori=1,..

Rll— .
Lemma 11. Let G = (x,0,—,1,E) be a CFG and 6 : q; R—I>Q2 e Gn1 =5, be an in-
feasible trace of G. If T = (S,m,r,e) is an ART for G such that there exists an interpolant
(I; € m(g;))1_, for ©, then no path in T concretizes to 6.

Proof. By contradiction, suppose that there exists a path

G : <CI17¢1>3<‘]2,¢’2>7~-,<6]naq)n>

in T, that concretizes to 0. We show by induction on i, that [; € ®&;, foralli=1,...,n. By
the definition of 7', I} = T € &, always. For the induction step, assume that /;_; € ®;_1,
for some i > 1. By the definition of 7 we have ®; = {P € t(q;) | post (A ®;—1,R;) — P}.
Since post(I;_1,R;) — I;, by Definition 3 and I;_; € ®;_;, we have AP;_; — I;_;, and
by monotonicity of the post operator, post(A\®;_1,R;) — I;. But I; € n(g;) which im-
plies I; € ®;, by the definition of 7. Consequently 7, = 1 € ®,,, which is in contradiction
with the fact that no node in 7" may contain _L in its second component. ad

Proof of Lemma 6: By contradiction, suppose that there exists a path G:

(90,%0), (q11,P11),---,(q1i - P1iy)s -5 (@n1,Pa1) s (Gnins Prin) s (Gnr1,Prt1))

in T which concretizes to a trace in &. In analogy with the proof of Lemma 11, one
shows that:

- lIedy
- L ePyj,forallk=1,...,nand j=1,... i
= Iyt1 € Pppy

The third condition of Definition 5 is needed for the proof of the second point above.
Since 1,41 = L, this contradicts the fact that no node in 7" may contain L in its second
component. O

Ji post

Proof of Lemma 7: To prove that : is an interpolant for &, we show the three

points of Definition 5. The first point holds by the construction of Ié’ ' For the second
point, we have:
post(Il,LY) — I . since ¢ is an interpolant for &
post(post(I!,LY),Qir1) — post(I,Qit1) , since post is monotone
post(If Qi) = I, , since [z is an interpolant for §

We must show next that I | — Ig Tl’ For this, we compute:

post(Ij, L}, ,) = 3z . I}, | (2) AL}, (z,%)
=Jz. IH—I()AVi= 0L1+1(Z Xi

7\/1{ 0EIZ 1+1() 1+l(
=31, (z)Ne V Vi 3z I, (2) ALY (2,X)

18 Hojjat, losif, Konecny, Kuncak, Riimmer

We have that 3z . I | (z) A€ is equivalent to I7, ;, which concludes the second point.
For the third point, we compute:

1
= Jz3t. I/(t) AL} (t,z) A Li(2,X)
= 3t. I[(t) AL] (t,x)
— 3t. I[(t) AL (t,x)

= post(I!,L}) = Ig(m

post([éosr,Li) = 3z. post(I!,L)(z) A Li(z,%)

The proof for the Igw P’ interpolant is symmetric, using the fact that post and wpre form
a Galois connection. Finally, we have wpre(I/',L}) — Il — post(I,L) which proves
the last statement. O

Proof of Lemma 8: We show that I/, meets the three conditions of Definition 5.
The first condition is trivially true, while the proof of the second condition is essentially
the same as in the proof of Lemma 7. For the third point, since L; — L’f, we have:

post(Igos’,L,') = post(post(l{,L?*),L,-)
— post(post(li’,L?*),L?)
= post(Il,L]") — 11"

The proof for Igp " is symmetrical. O

Proof of Lemma 9: By contradiction, suppose that there exists a path in 7 which
concretizes to a trace in &b, and let

K k;
<qi’q>ill>7 RN <Qi7q)ill,-11>7"'7<qi7q)i1>’ ceey <qi’q>i£i.ki>

ha Lik;

. (%
ai qgi

be the fragment of the path which corresponds to the unfolding of the sub-trace:

Ly Lip Lik;
N € Ny g Y%
qi — qi —-.. qi
One can show, among the lines of the proof of Lemma 7, that Iij S <I>{), Tor all j =
1,....,kiand £ =1,...,¢; ;. In this way, we obtain that the last set ® contains L, which
contradicts the definition of the ART. O

B Algorithms

The FOLD function (Fig. 6) creates a trace scheme of the form (1) out of the spurious
path given as argument. The spurious path is traversed and control states are recorded
in a list. When we encounter a control state which is already in the list, we identified an

Accelerating Interpolants 19

elementary cycle A. If the current trace scheme ends with at least 8 occurrences of A (line
9), where 8 € N, is the delay parameter, then A is added as a loop to the trace scheme,
provided that its transitive closure can be effectivelly computed. For efficiency reasons,
the ISACCELERABLE function is implemented as a sufficient syntactic check of the
relation on the loop, namely it is checked whether the relation is syntactically compliant
to Definition 1. Notice that a relation can be definable by an octagonal constraint even
if it is not a conjunction of the form given in Definition 1 — it may contain redundant
atomic propositions which are not of this form.

1: function FOLD(path, delay)
2 Scheme, List < []
3 for g < path do
4 if ¢ & List then
5: List.add(q)
6 else
7 Scheme.addPath(List.prefixUntil(q))
8: loop < List.suffixUntil(q)
9: if Scheme.endsWith(loop?®'®) and 1S ACCELERABLE (loop) then
10: Scheme.remove(loop?®'®)
11: Scheme.addLoop(loop)
12: else
13: Scheme.addPath(loop).
14: end if
15: List + [q]
16: end if
17: end for
18: return Scheme

19: end function

Fig. 6. The Folding Function

The INTERPOLATEREFINE (Fig. 7) function returns true if and only if its argu-
ment represents an infeasible trace scheme. In this case, new predicates, obtained from
the interpolant of the trace scheme, are added to the nodes of the ART. This function
uses internally the TRANSITIVECLOSURE procedure (line 2) in order to generate the
meta-trace scheme (5). The ACCELERATEINTERPOLANT function (line 7) computes
the interpolant for the trace scheme, from the resulting meta-trace scheme. Notice that
the refinement algorithm is recursive, as CONSTRUCTART calls CHECKREFINEER-
ROR (line 15), which in turn calls INTERPOLATEREFINE (lines 5,8,12), which calls
back CONSTRUCTART (line 12).

20

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

Hojjat, losif, Konecny, Kuncak, Riimmer

function INTERPOLATEREFINE(traceScheme, Pivot)

Let metaTrace < TRANSITIVECLOSURE(traceScheme)
Let interpolant < INTERPOLATINGPROVERCALL (metaTrace)
if interpolant = (then
return false
end if
Let I + ACCELERATEINTERPOLANT (interpolant)
for y < I do
Let v be the CFG vertex corresponding to y
T+ [y + (n(v) Uwy)]
end for
CONSTRUCTART (Pivot, Pivot.abstraction)
return true

14: end function

Fig.7. The Interpolation Function

