
Automated Dynamic Maintenance of Composite
Services Based on Service Reputation

Domenico Bianculli1, Radu Jurca2, Walter Binder1,
Carlo Ghezzi3, and Boi Faltings2

1 Faculty of Informatics – University of Lugano
via G. Buffi 13 - CH-6900, Lugano, Switzerland

domenico.bianculli@lu.unisi.ch, walter.binder@unisi.ch
2 Artificial Intelligence Lab – Ecole Polytechnique Fédérale de Lausanne

Station 14 - CH-1015, Lausanne, Switzerland
radu.jurca@epfl.ch, boi.faltings@epfl.ch

3 Dipartimento di Elettronica e Informazione – Politecnico di Milano
Via Ponzio 34/5, I-20133, Milano, Italy

ghezzi@elet.polimi.it

Abstract. Service-oriented computing promotes the construction of ap-
plications by composing distributed services that are advertised in an
open service market. In such an environment, individual services may
change and evolve dynamically, requiring composite services to adapt to
such changes. The prevailing strategy is to react on failures and replace
the defective component of the composite service. However, this reactive
approach does not fully exploit the opportunities of a dynamic market
where older services may be replaced by better ones.

In this paper we promote a novel architecture for automated, dynamic,
pro-active, and transparent maintenance and improvement of composite
services. We leverage fine-grained client-side monitoring techniques to
generate information regarding functional and non-functional properties
of service behavior. A reputation manager is responsible for collecting
and aggregating this information, and provides economical incentives for
honest sharing of feedback. Composite services can thus use reliable rep-
utation information to pro-actively improve their aggregate performance.

1 Introduction

The need for businesses to integrate corporate resources in a flexible and efficient
way can be addressed by designing complex software solutions as collaboration of
contractually defined services. Building applications by integrating standardized
services promises to bring many benefits, such as reduced development effort and
cost, ease of maintenance, extensibility, and reuse of services. Service-oriented
architectures (SOAs) maximize decoupling between services and create well-
defined interoperation semantics based on standard protocols.

In the following we consider service-oriented applications built from web ser-
vices.1 The composition of individual services into an added-value, composite
1 In this paper, we use the terms web service and service interchangeably.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 449–455, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

450 D. Bianculli et al.

service is usually represented as a workflow. We assume that service compositions
are described in BPEL [1], the de-facto standard for web service orchestrations.

Web services support a dynamic architectural style where the binding among
components may change at runtime. New services may be developed and pub-
lished in registries, and then discovered by possible clients. Previously available
services may disappear or become unavailable. This situation has been charac-
terized by the term open-world software [2], describing a situation where applica-
tions are composed out of parts that may change unpredictably and dynamically.
It has been observed that open-world software introduces the requirement of con-
tinuous validation. Since a software architecture evolves dynamically, validation
must extend from development time to runtime.

In order to ensure that composite services are executing as expected, it is
necessary to monitor the interactions of individual services within a workflow.
Monitoring involves both service functional behavior and non-functional prop-
erties, such as Quality-of-Service (QoS) parameters. If services are advertised
by Service-Level Agreements (SLAs) that regulate service cost and QoS (e.g.,
maximum response time), monitoring delivered QoS allows clients to verify that
they actually receive the QoS they are expecting and paying for.

When clients executing workflows observe failures or SLA violations of individ-
ual services, they have to replace the failing or badly behaving services. However,
finding a replacement may take some time, resulting in reduced availability of
the composite service. Moreover, there are no guarantees that the replacement
will work better than the replaced service.

In this paper, we promote the sharing of service monitoring information
amongst clients in order to enable the pro-active replacement of misbehaving
services in workflows. The original contribution of the paper is an integrated
infrastructure for service monitoring and maintenance of composite services. We
promote novel techniques for monitoring composite services and introduce an
incentive-compatible Reputation Manager (RM) to share reliable service quality
information among clients. The RM is integrated with a UDDI service directory
and employs a publish/subscribe mechanism to disseminate reputation informa-
tion to clients.

RMs have emerged as efficient tools for service discovery and selection [3]. When
electronic contracts cannot be enforced, users can learn to trust good providers
by looking at their past behavior [4]. Maximilien and Singh [5] describe a concep-
tual model for reputation using which reputation information can be organized
and shared and service selection can be facilitated and automated. Lie et al. [6]
present a QoS-based selection model that takes into account the feedback from
users as well as other business related criteria. Both [7] and [8] propose concrete
frameworks for service selection based on the reputation of the service provider.

Several works (see [9] for a detailed comparison of the approaches) have inves-
tigated monitoring of service compositions. However, to the best of our knowl-
edge, this is the first attempt to use the result of observations deriving from
monitoring to build service reputations and make use of the latter to dynami-
cally maintain service compositions.

Automated Dynamic Maintenance of Composite Services 451

2 Architecture

In this section we focus on the interaction between clients and services, on the
collection of data about the behavior of services, and on the dissemination of in-
formation on service reputation from the registry to the clients. The architecture
illustrated in Fig. 1 describes a client workflow which monitors the behavior of
the invoked services and communicates the results of monitoring to the registry.
The registry comprises the following components:

– Reputation Manager (RM): its task is to collect feedback reports from the
clients, to aggregate them, and to compute an estimate of the reputation of
a service.

– Subscription Manager : this component handles dissemination of the infor-
mation provided by the RM. We choose to design the communication infras-
tructure of our architecture using a publish/subscribe mechanism. Services
may subscribe to two different kinds of events:

• Notification by the RM when the reputation of a given service falls under
a certain threshold;

• Notification that a better service has become available, having either the
same interface (exact-match) or a compatible interface (plugin-match)
w.r.t. a given service.

– Extended Service Directory: with respect to its standard counterpart, this
directory extends the registry by including information on the current esti-
mated reputation of each registered service, as conveyed by the RM. Further-
more, the directory service is in charge to notify the Subscription Manager
about the registration of new services.2 We have explored techniques for
efficient matchmaking in service directories in prior work [10].

Fig. 1. System architecture

2 Note that for a newly registered service, the RM will not publish an associated
reputation value before sufficient client feedback has been collected.

452 D. Bianculli et al.

Figure 1 illustrates a BPEL service, sketched in the figure as a workflow
containing two invoke activities, each one interacting with an external service,
ServiceA1 (assumed to implement interface A) and ServiceB1 (assumed to imple-
ment interface B). The architecture also shows three kinds of message exchanged
between the components:

– After each invocation of an external service, the BPEL service sends a feed-
back message back to the RM, which collects feedback from all the clients of
a certain service. This message is labelled “feedback on service-name” and
it is drawn in the figure by using a dashed line.

– Whenever the RM computes a new value of the reputation of a service, the
Subscription Manager notifies all the subscribed clients if the reputation of
the service dropped below the threshold set by each client. In our example,
we assume that the BPEL service has subscribed to the drop-down of the
reputation of the two used services and we show the case of A1’s reputation
drop-down. This message is labelled “service-name reputation drop-down”
and it is depicted in the figure by using a dotted line.

– A third type of message, labelled “new interface-name service available”,
notifies all interested clients that a new service implementing a certain
interface and with a better reputation became available. In the figure, a
dash/dotted line depicts a message that notifies the client that a service im-
plementing the interface B (in the example, ServiceB2), and having a better
reputation, has been published in the directory.

The frequency of both monitoring and feedback reporting to the RM can be
selected and tuned by the client. For simplicity, the architecture illustrated in
Fig. 1 ignores how the workflow can dynamically adapt to the changes in service
reputation through dynamic binding.

3 Monitoring

Some of the authors have previously explored the issue of monitoring web service
compositions [9]. Under the assumption that the local workflow is correct, the
hot spots where to place monitoring probes correspond to receive, invoke,
and pick activities, i.e., to activities which represent interactions with external
services.

Our specification language for monitoring, called Timed WSCoL, supports
both functional and non-functional properties. In this particular context, we
require each property to refer to only one service. This constraint guarantees that
a violation of the property can be immediately mapped to a violation/failure of
the service involved in the property.

Our monitoring infrastructure is based on an open-source BPEL engine, Ac-
tiveBPEL3. We have extended the engine using an aspect-oriented programming
(AOP) approach [11], by implementing all the monitoring logic using AspectJ.

3 http://www.activebpel.org

Automated Dynamic Maintenance of Composite Services 453

The architecture of the monitoring infrastructure includes (1) a data collector
and aggregator, which gathers sequences of timestamped messages from the in-
teractions with external services, and (2) a Timed WSCoL analyzer, which is
actually in charge of checking the validity of a property. The output of this an-
alyzer is binary, stating if the property has been violated or not. This output is
then sent to the RM, together with the identifier of the service being “evaluated”.

AOP is also used to instrument the engine to perform subscription to messages
delivered by the Subscription Manager, each time an instance of a BPEL process
is started. For each service x the BPEL service interacts with, it can make
two subscriptions: (1) notification upon drop-down of the reputation of service
x below a certain threshold τx, and (2) notification of the availability of new
services with an interface equal or compatible to the one of service x.

A third instrumentation is required to make the BPEL workflow respond to
reputation notifications. We achieve this by modifying how the engine behaves
when a new BPEL process is deployed into it. The basic requirement is that the
BPEL process should be able to bind dynamically a partner link to a new service,
either because of a misbehavior of the service it is currently bound to or because
a new service with a better reputation became available. Dynamic binding is
achieved by updating the end-point reference of a partner link. Our AOP-based
instrumentation of the engine modifies the BPEL process by inserting an event
handler in the global scope (or by modifying the handler, if it already exists)
for the two kinds of message that the Subscription Manager can send. Message
“new service available” triggers the handler to update the end-point reference
of the partner link representing the service to be replaced, whereas message
“reputation drop-down” triggers a query to the registry to retrieve a substitute
service with better reputation.

4 The Reputation Manager

The Reputation Manager is an important component of our framework, that
collects feedback from the clients, and output quality measurements for the web
services. Clients are required to submit a binary report: positive if the service
met the quality constraints set in the SLA, negative otherwise. The reports
submitted by the clients also contain the timestamp of the interaction with the
service.

We model the behavior of web services by a Hidden Markov Model with
two states: the good state describing the normal functioning mode when client
requests are successfully satisfied with the unknown probability pG, and the bad
state describing a failure mode where the quality of the service is very low. The
probability of transition from the good state into the bad state is assumed fixed
and known, characterizing the different hazards the service is subject to.

Given the sequence of N binary feedback reports, (ri)i=1...N , about the same
web service, the RM can (a) estimate the parameter pG of the web service, and
(b) output the probability Pr[B|(ri)] that the web service is in the bad state. pG

is computed by likelihood maximization, while the probability that the service

454 D. Bianculli et al.

is in the bad state can be computed using standard HMM tools like the Viterbi
algorithm [12]. As the quality can change in time, the RM only uses the most
recent N feedback reports. The estimates published by the RM can be used by
future clients to optimize their workflows, or to dynamically replace defective
services.

An important requirement for the reputation manager is to ensure honest
feedback. Since clients may tamper with the default monitoring code in order
to manipulate reputation information, special incentives must guarantee that
lying, even if technically feasible, is economically uninteresting. The RM pays
submitted reports an amount that depends on the feedback provided by other
clients about the same web service. The payments can be designed such that
truthful reporting maximizes the expected revenue (due to feedback payments)
of a client, and honesty thus becomes an equilibrium of the mechanism. The
budget for these payments can be raised by the RM from fixed participation fees
that service providers and/or clients have to pay.

For example, a report is being paid only if it has the same value as another
randomly chosen report. Intuitively, this simple mechanism encourages honest
reporting because the private experience of a client changes her belief regarding
the reputation of the service, and consequently, her expectation for the value
of the report used to compute her payment. If the experience is positive, the
client expects with slightly higher probability to be rewarded for a matching
positive report. Likewise, if the experience is negative, the client expects with
slightly higher probability to be rewarded for a matching negative report. This
asymmetry in beliefs can be used to scale the payments for matching positive
or negative reports so that honesty becomes optimal. The formal details and
algorithms for computing these reward mechanisms are given in [13]. In the
same time, measures can be taken to discourage collusion.

5 Conclusions

In this paper we have presented an architecture supporting automated, dynamic,
pro-active, and transparent maintenance and improvement of composite services.
Our architecture leverages monitoring techniques in order to generate feedback
on the quality of service (from both a functional and a non-functional point of
view) perceived by clients. This feedback is collected and aggregated by a reputa-
tion manager which computes services reputation; information on the reputation
is then transmitted to clients that can pro-actively maintain and improve their
composite services. Our reputation manager provides economical incentives for
honest sharing of feedback.

We are currently focusing on optimizing our registry for queries involving
functional properties (to support selecting plugin matches) and non-functional
properties (to support ranking according to a user-defined utility function involv-
ing QoS parameters, services cost, and service reputation). Future work includes
1) verification of the approach, in terms of measurements of improvement by
deployment and simulation; 2) the development of a new model that considers

Automated Dynamic Maintenance of Composite Services 455

more precise reports on QoS observations (e.g., a response time violated within
a 10% bound may concur in a minor way to a decrease of the service reputation);
3) investigation on behavioral reflection mechanisms for workflow languages so
as to better support dynamic re-binding within BPEL processes.

Acknowledgements. Part of this work has been supported by the EU project
“PLASTIC” (contract number IST 026995), and the EU project “Knowledge
Web” (FP6-507482).

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1 (2003)

2. Baresi, L., Di Nitto, E., Ghezzi, C.: Towards Open-World Software. IEEE Com-
puter 39, 36–43 (2006)

3. Singh, M.P., Huhns, M.N.: Service-Oriented Computing. Wiley, Chichester (2005)
4. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Ap-

plied Artificial Intelligence (14), 881–907 (2000)
5. Maximilien, E.M., Singh, M.P.: Conceptual model of web service reputation. SIG-

MOD Rec. 31(4), 36–41 (2002)
6. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web

service selection. In: WWW Alt. ’04. Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pp. 66–73. ACM Press,
New York, NY, USA (2004)

7. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection.
In: ICSOC ’04. Proceedings of the 2nd international conference on Service oriented
computing, pp. 212–221. ACM Press, New York, NY, USA (2004)

8. Alunkal, B., Veljkovic, I., Laszewski, G., Amin, K.: Reputation-Based Grid Re-
source Selection. In: Proceedings of AGridM (2003)

9. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: A timed extension
of WSCoL. In: ICWS 2007. Proceedings of the IEEE International Conference on
Web Services, pp. 663–670. IEEE Computer Society Press, Los Alamitos (2007)

10. Constantinescu, I., Binder, W., Faltings, B.: Flexible and efficient matchmaking
and ranking in service directories. In: ICWS 2005. Proceedings of the IEEE In-
ternational Conference on Web Services, pp. 5–12. IEEE Computer Society Press,
Los Alamitos (2005)

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

12. Forney, G.: The Viterbi algorithm. Proceedings IEEE 61, 268–278 (1973)
13. Jurca, R., Faltings, B., Binder, W.: Reliable QoS monitoring based on client feed-

back. In: WWW ’07. Proceedings of the 16th international conference on World
Wide Web, pp. 1003–1012. ACM Press, New York, NY, USA (2007)

	Automated Dynamic Maintenance of Composite Services Based on Service Reputation
	Introduction
	Architecture
	Monitoring
	The Reputation Manager
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

