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Abstract—In contrast with conventional networks, mobile ad hoc networks usually do not provide online access to trusted authorities

or to centralized servers, and they exhibit frequent partitioning due to link and node failures and to node mobility. For these reasons,

traditional security solutions that require online trusted authorities or certificate repositories are not well-suited for securing ad hoc

networks. In this paper, we propose a fully self-organized public-key management system that allows users to generate their public-

private key pairs, to issue certificates, and to perform authentication regardless of the network partitions and without any centralized

services. Furthermore, our approach does not require any trusted authority, not even in the system initialization phase.
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1 INTRODUCTION

BY definition, a mobile ad hoc network [1], [2], [3] does
not rely on any fixed infrastructure; instead, all

networking functions (e.g., routing, mobility management,
etc.) are performed by the nodes themselves in a self-
organizing manner. For this reason, securing mobile ad hoc
networks is challenging and, as we show in this paper, in
some applications this requires a shift in paradigms with
respect to the traditional security solutions for wireline
networks. Meanwhile, we still rely on traditional crypto-
graphic primitives.

In our view, there are two extreme ways to introduce
security in mobile ad hoc networks: 1) through a single

authority domain, where certificates and/or keys are issued
by a single authority, typically, in the system setup phase or

2) through full self-organization, where security does not

rely on any trusted authority or fixed server, not even in the
initialization phase.

In this paper, we take the second approach and we

propose a self-organizing public-key management system that

allows users to create, store, distribute, and revoke their
public keys without the help of any trusted authority or

fixed server. Moreover, in our solution, we do not assign
specific missions to a subset of nodes (i.e., all the nodes

have the same role). Our main motivation for taking this

approach comes from the self-organized nature of mobile
ad hoc networks and from the need to allow users to fully

control the security settings of the system. As such, our

approach is developed mainly for “open” networks, in

which users can join and leave the network without any

centralized control.
The main problem of any public-key based security

system is to make each user’s public key available to others

in such a way that its authenticity is verifiable. In mobile ad

hoc networks, this problem becomes even more difficult to

solve because of the absence of centralized services and

possible network partitions. More precisely, two users

willing to authenticate each other are likely to have access

only to a subset of nodes of the network (possibly those in

their geographic neighborhood). The best known approach

to the public-key management problem is based on public-

key certificates [4]. A public-key certificate is a data

structure in which a public key is bound to an identity

(and possibly to some other attributes) by the digital

signature of the issuer of the certificate.
In our system, like in PGP [5], users’ public and private

keys are created by the users themselves. For simplicity, we

assume that each honest user owns a single mobile node.

Hence, we will use the same identifier for the user and her

node (i.e., both user u and her node will be denoted by u).

Unlike in PGP, where certificates are mainly stored in

centralized certificate repositories, certificates in our system

are stored and distributed by the nodes in a fully self-

organized manner. Each certificate is issued with a limited

validity period and therefore contains its issuing and

expiration times. Before a certificate expires, its issuer

issues an updated version of the same certificate, which

contains an extended expiration time. We call this updated

version the certificate update. Each node periodically issues

certificate updates, as long as its owner considers that the

user-key bindings contained in these certificates are correct.
In our system, key authentication is performed via chains

of public-key certificates in the following way: When a user

u wants to obtain the public key of another user v, she

acquires a chain of valid public-key certificates such that:
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1. The first certificate of the chain can be directly
verified by u, by using a public key that u holds and
trusts (e.g., her own public key).

2. Each remaining certificate can be verified using the
public key contained in the previous certificate of the
chain.

3. The last certificate contains the public key of the
target user v.

To correctly perform authentication via a certificate
chain, a node needs to check that: 1) all the certificates on
the chain are valid (i.e., have not been revoked) and 2) all the
certificates on the chain are correct (i.e., not false; the
certificates contain correct user-key bindings). To find
appropriate certificate chains to other users, each node
maintains two local certificate repositories: the nonupdated

certificate repository and the updated certificate repository. The
nonupdated certificate repository of a node contains
expired certificates that the node does not keep updated.
The reason for collecting and not updating expired
certificates is that most of the certificates will permanently
be renewed by their issuers and only a few will be revoked.
Therefore, the nonupdated repositories provide the nodes
with a very good estimate of the certificate graph. As we
show later in Section 3, this information helps nodes to
perform authentication. The updated certificate repository
of a node contains a subset of certificates that the node
keeps updated. This means that the node requests the
updates for the certificates contained in its updated
repository from their issuers, when or before they expire.
The selection of certificates into the node’s updated
repository is performed according to an appropriate
algorithm.

When a user u wants to authenticate a public key Kv of
another user v, both nodes merge their updated certificate
repositories and u tries to find a certificate chain to v in the
merged repository. If found, this chain contains only
updated certificates because it is constructed in the updated
repositories. To authenticate Kv, u then further checks
whether the certificates on the chain have been revoked
(since the last update) and the user-key bindings in the
certificates are correct. As we describe in Sections 3.4 and
3.5, u performs both validity and correctness checks locally.
In Section 4.5, we present an algorithm for the construction
of users’ updated repositories that we call Maximum
Degree. As we show through simulations, with this
algorithm, there is a high probability of finding certificate
chains between the users in their merged updated
repositories even if the size of the users’ updated
repositories is small.

If the authentication of Kv through the updated
certificate repositories fails, node u tries to find certificate
chains to v in its (us) joint updated and nonupdated
repositories. If u finds a chain to v, this chain will likely
contain some expired certificates because it is constructed in
the updated and nonupdated repositories. To complete the
authentication, u requests, from their issuers, the updates of
the expired certificates that lay on the chain and checks
their correctness. If the certificates are both valid and
correct, u authenticates Kv. Here again, u performs the

certificate correctness check locally. If node u cannot find
any certificate chain to Kv, it aborts the authentication.

In our system, certificate revocation is an important
mechanism. We enable two types of certificate revocation:
explicit and implicit. The issuer explicitly revokes a
certificate by issuing a revocation statement and by sending
it to the nodes who stored the certificate in question. The
implicit revocation relies on the expiration time contained
in the certificates. Every certificate whose expiration time
passes is implicitly revoked; this second mechanism is
straightforward, but requires some loose time synchroniza-
tion of the nodes.

The paper is organized as follows: In Section 2, we
present an overview of the existing proposals for public-key
management in mobile ad hoc networks. In Section 3, we
describe the basic self-organized public-key management
scheme. In Section 4, we present simulation results of the
performance of our system. In Section 5, we present an
analysis of some properties of the local repository construc-
tion algorithms. In Section 6, we conclude and we give some
remarks on our future work.

2 STATE OF THE ART

Solutions to the problem of public-key management in
mobile ad hoc networks have already been proposed; they
are briefly summarized in this section.

In [6], the authors propose a distributed public-key
management service for ad hoc networks. The service, as a
whole, has a public/private key pair K=k that is used to
verify/sign public-key certificates of the network nodes. It is
assumed that all nodes in the system know the public-keyK
and trust any certificates signed using the corresponding
private key k. The private key k is divided into n shares using
an ðn; tþ 1Þ threshold cryptography scheme, and the shares are
assigned to n arbitrarily chosen nodes, called servers. For the
service to sign a certificate, each server generates a partial
signature for the certificate using its private key share and
submits the partial signature to a combiner that computes
the signature from the partial signatures. The application of
threshold cryptography ensures that the system can tolerate
a certain number t < n of compromised servers in the sense
that at least tþ 1 partial signatures are needed to compute a
correct signature. Besides threshold signatures, the pro-
posed key management service also employs proactive share
refreshing in order to tolerate mobile adversaries and to adapt
its configuration to changes in the network. This proposal,
however, assumes that there is an authority that initially
empowers the servers and that some of the nodes must
behave as servers.

A more recent proposal [7] describes a similar approach,
but it provides a more fair distribution of the burden by
allowing any node to carry a share of the private key of the
service. The advantage is increased availability since now
any tþ 1 nodes in the local neighborhood of the requesting
node can issue or renew a certificate. Another novelty is
that any node not yet possessing a share can obtain a share
from any group of at least tþ 1 nodes already possessing a
share. However, just like in [6], the first tþ 1 nodes must be
initialized by a trusted authority. In addition to this
drawback, there are two problems with this proposal: First,
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the number t must be a trade off between availability and
robustness; but, it is not clear how the value of t can be
changed when the overall number of nodes significantly
increases (or decreases). Second, the system seems to be
vulnerable to the Sybil attack [8]: An attacker can take as
many identities as necessary to collect enough shares and
reconstruct the system’s private key.

Two other approaches, both originally designed for the
address ownership problem in Mobile IPv6, are described
in [9] and [10]. The main idea behind these approaches is to
avoid certificates altogether and bind the name (IP address)
of a node to its public key by deriving the former from the
latter in a cryptographically verifiable way: First, the public
key is hashed with a cryptographic hash function, and then
(part of) the hash value is used as part of the IP address of
the node. This approach makes sense at the network layer,
where names (IP addresses) are handled by machines. But,
it does not seem to be applicable at the application layer,
where names often refer to and are processed by people,
and cannot thus be computed by hashing a public key. In
addition, if the public key of a node is compromised, then
its revocation requires the node to change its name, which
could be impractical in some applications.

The work described in this paper is part of the
Terminodes project [11], [12]. Several results related to
security have already been published, for key management
[13], [14] and for cooperation among the nodes [15].

More work in the area of ad hoc network security and
mobile device security has been reported in [16], [17], [18],
[19], [20], [21], [22], [23], [24], but these papers are only
loosely related to the security problems addressed in this
paper.

3 BASIC OPERATIONS OF OUR SOLUTION

In what follows, it will be useful to think of our scheme in
terms of an abstract model. In this model, the public keys
and the certificates of the system are represented as a
directed graph GðV ;EÞ, where V and E stand for the set of
vertices and the set of edges, respectively.1 We call this
graph the certificate graph. The vertices of the certificate
graph represent public keys and the edges represent
certificates. More precisely, there is a directed edge from
vertexKu to vertexKw if there is a certficate signed with the
private key of u that binds Kw to an identity. A certificate
chain from a public key Ku to another public-key Kv is
represented by a directed path from vertex Ku to vertex Kv

in G. Thus, the existence of a certificate chain from Ku to Kv

means that vertex Kv is reachable from vertex Ku in G

(denoted in the sequel Ku !G Kv). In the rest of the paper,
the certificate graph G designates the graph comprising
only the valid (not expired) certificates of the whole
network. In our model, we represent the updated and the
nonupdated certificate repositories of user u by the
certificate graphs Gu and GN

u , respectively. Therefore, for
any u, Gu is a subgraph of G, but GN

u is not necessarily a

subgraph of G, as it may also contain some implicitly
revoked certificates.

Now, we briefly describe the unfolding of the basic
operations of our scheme; they will be described in more
detail in the sections that follow. As shown in Fig. 1, the
initial phase of our scheme is executed in four steps: the
creation of public/private key pairs, the issuing of
certificates, the certificate exchange, and the creation of
nodes’ updated certificate repositories. In Step 0, the user
creates her own public/private key pair. In Step 1, she
issues public-key certificates based on her knowledge about
other users’ public keys. Note that the issuing of public-key
certificates also continues when the system is fully opera-
tional (i.e., when the updated and nonupdated repositories
are already constructed) as users get more information
about other users’ public keys. During this process, the
certificate graph G is created. The speed of the creation of a
usable (i.e., sufficiently connected) certificate graph heavily
depends on the motivation of the users to issue certificates.
In Step 2, the node performs the certificate exchange.
During this step, the node collects certificates and thus
creates its nonupdated certificate repository. Along with the
creation of new certificates, the certificate exchange also
continues even when the system is fully operational. This
means that nodes’ nonupdated repositories will be con-
tinuously upgraded with new certificates. As we show later
through simulations, nodes’ mobility determines the speed
at which certificates are accumulated by the nodes
themselves. In Step 3, the node constructs its updated
certificate repository. The node can perform this operation
in two ways, either by communicating with its certificate
graph neighbors (Step 3a), or by applying the repository
construction algorithm (described in Section 4.5) on the
nonupdated certificate repository (Step 3b). When the node
constructed its updated certificate repository, it is ready to
perform authentication.

In our solution, the authentication is performed in the
following way: As already mentioned in the introduction,
when a user u wants to verify the authenticity of the public-
key Kv of another user v, u tries to find a directed path from
Ku to Kv in Gu [Gv. The certificates on this path are then
used by u to authenticate Kv. An example of a certificate
graph with updated local repositories of the users is shown
on Fig. 2.

If there is no path from Ku to Kv in Gu [Gv, u tries to
find a path from Ku to Kv in Gu [GN

u . If such a path is
found, u updates the expired certificates, checks their
correctness and performs authentication. If there is no path
from Ku to Kv in Gu [GN

u , u fails to authenticate Kv. We
will now provide a detailed description of each operation.

3.1 Creation of Public Keys and Public-Key
Certificates

The public key and the corresponding private key of each
user is created locally by the user herself. Public-key
certificates are issued by the users. If a user u believes that
a given public key Kv belongs to a given user v, then u can
issue a public-key certificate in which Kv is bound to v by
the signature of u. Certificates are issued with a limited
validity period TV , and each certificate contains its issuing
and expiration times. Here, for simplicity, we assume that
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all certificates are issued with the same validity period.
When a certificate expires and its issuer believes that the
user-key binding certified by that certificate is still valid, the
node issues a new updated version of the same certificate.
The updated certificate contains the same user-key binding
as the old certificate, but has a new issuing time and an
expiration time that is extended by TV .

There may be several reasons for u to believe that Kv

belongs to v. For example, u and v may have exchanged
their keys through a side channel (e.g., over an infrared
channel at the time of a physical encounter). The dynamic
nature of ad hoc networks enables users to gather more
experience about other users, issue a higher number of
certificates, and better evaluate their confidence in the
certificates they issue.

The characteristics of the certificate graphs created in
mobile ad hoc networks will depend on the applications
for which the networks are used. A useful example of the
possible characteristics of the certificate graphs is the
PGP certificate graph, as this graph is the only known
example of a certificate graph created in a self-organized
manner. In our previous work [14], we analyzed the
characteristics of the PGP certificate graph. In that work,
we showed that the PGP certificate graph exhibits the
small-world phenomenon [25], [26], [27] (i.e., this graph
has 1) a small average shortest path length that scales
logarithmically with its size and 2) clustered vertices).
The results of the analysis of the PGP certificate graph are
in line with our expectations. Clearly, the PGP certificate
graph reflects the existing social relationships between the

users. In a way, these certificates can be seen as an

indication of the users’ existing personal relationships.

We argue that the small-world phenomenon naturally

emerges in self-organized security systems such as ad hoc

networks, as well because of social relationships. How-

ever, certificate graphs in mobile ad hoc networks will be

different from the PGP certificate graph in a sense that

they will be enriched by a number of certificates that will

be issued as a result of the mobility of the nodes. More

precisely, mobile nodes will enable users to exchange

their public keys whenever they meet, provided that they

can establish communication over some short range

(possibly secure) channel. This will lead to the creation

of a small-world graph which is better connected than the

PGP certificate graph. In [14], we also presented a model

for the creation of PGP-like small-world graphs. This

model allows for the generation of certificate graphs of

arbitrary size in a random manner for simulation

purposes.
In our public-key management scheme, issuing and

revoking certificates are the only operations performed

consciously by the users. All the other operations, including

authentication, are performed automatically by the nodes,

without direct user involvement.

3.2 Certificate Exchange

The certificate exchange mechanism is an important and low-

cost mechanism that allows nodes to share and distribute

certificates that they issue and hold.
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In an initial phase of the system, each user holds in her

local repository only the certificates that she issued and the

certificates that other users issued to her. Here, we assume

that each time a user u issues a certificate that binds another

user v to her public-key Kv, u sends the certificate to v. In

this way, each certificate is stored at least twice: by its issuer

and by the user to whom it is issued.
The certificate exchange mechanism consists of the

periodic exchange of certificates between neighboring

nodes. Each node has a local time counter and periodically

polls its physical neighbors for certificates. For each node,

there is a predefined frequency at which it performs the

certificate exchange with its neighbors. This frequency is

defined in terms of the exchange period TE as 1=TE . For

simplicity, we assume that each node exchanges certificates

with the same exchange period TE . We also note that the

nodes do not run the exchange synchronously. The

certificate exchange is performed in the following way.

Each node u multicasts its subgraphs Gu and GN
u to its

physical neighbors. In this message, u does not send actual

certificates but only appropriate unique identifiers (e.g.,

their hash values). The neighbors of node u that receive the

message from u reply with the hash values of the certificates

in their updated and nonupdated repositories. Node u then

crosschecks the received values with the certificates that it

holds and requests from its neighbors only the certificates

that it does not hold. Here, it is important to note that when

performing the certificate exchange, nodes do not attempt

to gather the updates of the certificates that they already

hold. The nodes will gather only certificates with different

user-key bindings or signatories than those that they

already stored. For this, certificates are hashed without

their issuing and expiration times.
Only if the local storage of the node becomes too small to

store additional certificates, will the node remove expired

certificates based on their expiration time (i.e., certificates
with the earliest expiration time will be deleted first).

By the certificate exchange mechanism, nodes accumu-
late certificates in their nonupdated certificate repositories
at a low communication cost because the exchanges are
performed locally in one hop. As we show later in
Section 4.6, after a very short convergence time, the
nonupdated certificate repositories of the nodes contain
almost the whole certificate graph G. This naturally
happens in systems in which certificates are exchanged at
a rate higher than certificate creation. After the initial
convergence phase, where all certificates are stored by all
users, nodes exchange only newly created certificates, but
not the updates of the previously stored certificates. An
important measure of the certificate exchange is its
convergence time TCE , that is the expected time after
which, when issued, a certificate reaches all the nodes in the
network.

3.3 Constructing Updated Certificate Repositories

The certificate exchange described in the previous section
provides the nodes with an incomplete view of the
certificate graph and enables them to create their
nonupdated certificate repositories. Here, we describe
the mechanism by which nodes construct their updated
certificate repositories.

Constructing an updated certificate repository of node u
means, in terms of our model, selecting a subgraph Gu of
the certificate graph G. We assume that each node uses the
same local repository construction algorithm to construct its
subgraph. When the algorithm is executed on G by node u,
it results in a subgraph Gu.

The updated local repository of node u can be con-
structed in two ways. In the first approach, node u applies
the algorithm A on GN

u , which results in Gu. While
executing the algorithm, u checks, by communicating with
its issuers, the validity of each certificate that it stores in Gu.
In the second approach, node u constructs its updated
repository by communicating with its certificate graph
neighbors. Typically, these algorithms run in steps where in
each step the node decides which certificates to store and
how to proceed with the exploration of the certificate graph.
In the second approach, nodes construct their updated
repositories by exploring only a part of the certificate graph
G. As we will see from the example shown in Section 4.5,
the nodes do so at a minimal communication cost.

3.4 Certificate Revocation

Each user can revoke a certificate that she issued if she
believes that the user-key binding expressed in that
certificate is no longer valid. Moreover, if a user believes
that her own private key is compromised, she can revoke its
corresponding public key. We propose two certificate
revocation schemes: explicit and implicit.

In the explicit revocation scheme, to revoke a certificate
that she issued, the user issues an explicit revocation
statement. Due to the way the nodes construct their
updated repositories, each node has a list of nodes that
request updates for the certificates that it issued. Therefore,
when the user revokes a certificate, it does not need to send
the revocation to all nodes, but only to the nodes that
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regularly update it. Thanks to the certificate exchange
scheme, this certificate revocation will reach other nodes as
well, but with a delay of the certificate exchange conver-
gence time TCE .

The implicit revocation scheme is based on the expira-
tion time of the certificates. Specifically, each certificate is
implicitly revoked after its expiration time. As we already
described, each certificate contains its issuing time and a
validity period TV . After this period elapses, the certificate
is not considered valid anymore. For this reason, it is very
important to correctly assign the length of TV . We assume
that a node is able to establish communication with any
certificate issuer at some time within a certificate validity
period. If this assumption is true, this guarantees that
certificate updates will be exchanged regularly. A typical
example of a certificate validity period is several days. We
suppose that within this period, nodes will be able to
update their certificate repositories. If within the given
period a node is not able to update some of the certificates
in its updated local repository, the node can reconstruct it
by using only the certificates available for update. It is
important to note that although TCE depends on the
network properties, the value for TV can be flexibly
assigned. The value of TV needs to be chosen carefully to
allow nodes to update their repositories.

The described revocation schemes enable nodes to know
the status of the certificates in their updated certificate
repositories and to be informed, with some delay, of the
revocation of other certificates. Furthermore, these schemes
allow each user to react to any detected misbehavior by
issuing a revocation statement. In addition, key revocation
enables users to perform authentication with a higher
confidence in the validity of the certificates, but also in the
correctness of the user-key bindings contained in the
certificates because of their limited validity period.

Key revocation is based on the same scheme as for
certificate revocation: If a user believes that her private key
has been compromised, she revokes its corresponding
public key by notifying the users that issued certificates to
her. These users will then use the certificate revocation
mechanisms to revoke the certificates that contain the
public key in question.

We should also note that the users have strong incentives
to maintain their updated certificate repositories, in order to
provide sufficient proof of the authenticity of their public
keys to other users and to be able to correctly authenticate
other keys.

3.5 Coping with Misbehaving Users

Adishonest usermay try to trick other users into believing in
a false user-key binding by issuing false certificates. She may
issue several types of false certificates. First, she may issue a
certificate that binds a keyKv to a user f instead of to user v.
In this way, a dishonest user may trick other users to believe
thatKv is the public key of user f , when it is really the public
key of user v. Second, she may issue a certificate that binds
user v to a false keyK0

v, which may then cause other users to
believe thatK0

v is indeed the key of user v. Third, a malicious
user can invent a number of user names and public keys and
bind them by appropriate certificates [8]. The malicious user
can then use these public keys to issue false certificates and
try to convince a given user that the certificates are correct, as

they were signed by many other users. As we will see, our
solution prevents these attacks by allowing nodes to detect
inconsistent certificates and to determine which user-key
bindings are correct.

The certificate exchange mechanism allows nodes to
gather virtually all certificates from G. This enables nodes to
cross-check user-key bindings in certificates that they hold
and to detect any inconsistencies (i.e., conflicting certifi-
cates). Two certificates are considered to be conflicting if
they contain inconsistent user-key bindings (i.e., if both
certificates contain the same username but different public-
keys, or if they contain the same public-key, but are bound
to different usernames).

If a certificate received by a node u contains a user-key
binding ðv;KvÞ not contained in any certificate in the
updated and nonupdated certificate repositories of u, then
ðv;KvÞ and the certificates that certify it are labeled by u as
unspecified. A certificate labeled unspecified means that the
node does not have enough information to assess whether
the user-key binding in the certificate is correct. From the
moment that ðv;KvÞ is received, u waits for a predefined
period TP . If within this period u does not receive any
conflicting certificates regarding ðv;KvÞ, the status of this
binding and of the certificate that certifies it changes to
nonconflicting. Here, we note that TP needs to be longer than
the expected certificate exchange convergence time TCE . If
indeed TP > TCE , nodes will detect inconsistent certificates
for all users that exist in the network. For this, each node
initially issues a self-signed certificate and exchanges it with
other nodes by the certificate exchange mechanism. Thus,
the waiting period TP is actually the expected time for any
self-signed certificate to reach all the nodes in the network.
However, this mechanism does not prevent users from
creating virtual identities or from stealing the identity of
people that do not participate in the network.

If a certificate received by a node u contains a user-key
binding ðv;KvÞ that conflicts with a user-key binding ðv;K0

vÞ
contained in another certificate held by u, both bindings
ðv;KvÞ and ðv;K0

vÞ and the certificates that certified them are
labeled conflicting. When a node u detects a conflict, it
checks the validity of the conflicting certificates with their
issuers and, if they are still valid, tries to resolve the conflict.
To resolve the conflict, u tries to find chains of nonconflict-
ing and valid certificates to public-keys Kv and K0

v. Based
on the characteristics of the certificate paths (i.e., their
number and length), two confidence values that show the
user’s confidence in the correctness of the two bindings are
computed. The two values are then compared and one user-
key binding is labeled nonconflicting and the other is
labeled false. If, based on the computed confidence values,
no decision can be made with respect to the user-key
bindings in question, these bindings are labeled as conflict-
ing and the node waits until more information is gathered
so that the conflict can be resolved (e.g., if the node receives
an additional set of certificates that resolve the conflict, or if
two users meet physically, which guarantees that the
conflict will be resolved). As discussed in [28], there are
several approaches for computing the confidence in the
authenticity of a given key. In this paper, we do not detail
these approaches, but we simply point out that these values
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can be computed and compared automatically by the
devices without conscious user involvement.

The presented conflict resolution mechanism can be
further used to evaluate the trust in users to issue correct
certificates and to detect malicious users.

3.6 Authentication with Helper Nodes

In the introduction, we already described how the key
authentication mechanism works. Here, we propose a
natural extension to this mechanism. As we already
described, when two users want to perform authentication,
they merge only their updated certificate repositories. In
order to facilitate authentication, a simple extension to the
proposed key authentication scheme is for the node u that
performs authentication, to take advantage of the certifi-
cates from the updated local repositories of the nodes in its
physical neighborhood. In this case, we refer to the nodes in
the one-hop physical neighborhood of u as the helper nodes.
The benefits of this extension will be shown in the results of
our simulations.

3.7 Load Balancing

We described earlier that, in order to update their certificate
repositories, nodes contact the issuers of the certificates that
they stored. This approach is not efficient, as the number of
nodes that require an update can be high for a given
certificate issuer to handle. Even if each node could handle
a large number of certificate update requests, it would
always not be available to provide the certificates that other
nodes need.

Here, we propose a simple load-balancing scheme and
we later demonstrate by simulations that this scheme
significantly improves the distribution of the communica-
tion load among nodes.

Our scheme works as follows: Each node u provides the
updates directly to up to s other nodes, and any additional
node that needs certificate updates from u gets them from
the nodes that get the updates directly from u. Here, s is the
size of u’s updated local repository. The first s nodes2 that
request updates from u get them directly from u. Each
following node that requests a certificate or its update from
u receives a list of nodes that get the updates directly from
u. Each time that an indirectly updated node requires a
certificate update from u, it randomly selects a node from
u’s list of directly updated nodes and requests an update
from that node.

This scheme does not guarantee a perfectly balanced
communication load, but shows a simple way to enable
nodes to distribute their load to other nodes. In addition,
this scheme makes the distribution of certificate updates
more robust to node failures and network partitioning.

Unequal load balancing is a consequence of the
repository construction algorithm and the characteristics
of the certificate graph. More precisely, if the repository
construction algorithm is designed such that many nodes
keep updated copies of the certificates issued by a single
node u, this will increase u’s communication load. Such a
high communication load of a single node can be due to the

specific topology of the certificate graph. In Section 5, we
formalize these observations and we explore the mutual
dependence of the algorithm performance and the commu-
nication load of the node.

More sophisticated solutions can be proposed to solve
the load-balancing problem. We do not explore these as
load balancing is not the main focus of our work.

4 SIMULATION RESULTS

The purpose of our simulations is to show, among others,
the performance of the certificate repository construction
algorithms and the communication cost of the proposed
scheme. In this section, we will define several figures of
merit, describe the simulation scenarios, and provide the
simulation results.

4.1 Algorithm Performance

We define two values that we use to evaluate the
performance of our local repository construction algorithms:
the basic performance and the shortest path performance.

We define the basic performance pbðA; s;GÞ of the local
repository construction algorithm A with updated reposi-
tory size s on the certificate graph G as the ratio between the
number of key pairs ðKu;KvÞ for which there is a directed
path from Ku to Kv in their merged subgraphs, and the
number of key pairs ðKu;KvÞ for which there is a directed
path from Ku to Kv in the certificate graph G. Formally, the
basic performance is defined as follows:

pbðA; s;GÞ ¼ jfðKu;KvÞ 2 V � V : Ku !Gu [ Gv
Kvgj

jfðKu;KvÞ 2 V � V : Ku !G Kvgj
:

Therefore, pbðA; s;GÞ expresses the fraction of existing
directed paths in G that can be reconstructed if only
subgraphs Gu and Gv are available.

In a similar way, we define the shortest path performance:

pspðA; s;GÞ ¼ 1

jW 0j
X

ðKu;KvÞ2W

spðKu;Kv;GÞ
spðKu;Kv;Gu [GvÞ

; ð1Þ

where

W 0 ¼ fðKu;KvÞ 2 V � V : Ku !Gu[Gv
Kvg;

and spðKu;Kv;GÞ is the length of the shortest path between
Ku and Kv in G, respectively. In our analysis, we assume
that all the subgraphs (updated local repositories) have the
same size s.

If the performance values are close to one, it means that
our scheme provides essentially the same service as if the
whole certificate graph were available to each node.

If authentication is performed with helper nodes
(Section 3.6), we denote the performance values by
phb ðA; s;GÞ and phspðA; s;GÞ, respectively, where h is the
number of helper nodes.

4.2 Key Usage

The usage UG;AðKvÞ of a given key Kv is defined as:

UG;AðKvÞ ¼ jfKu 2 V : Kv 2 V ðGuÞgj; ð2Þ

where V ðGuÞ denotes the set of vertices of the subgraph Gu

of u.
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2. As a reasonable design decision, we have set the size s of the updated
repository of a node to be equal to the number of the nodes to which the
node will directly send certificate updates.



The key usage of a user is the number of times that her
key appears in the updated certificate repositories of other
users. This value indicates how many times the user’s key
could be used for authentication (i.e., could be on the
certificate chain that is used for authentication). This value
is also a good estimate of the number of times that the
certificates issued by a given user are stored by other users
in their updated certificate repositories. In both our
analytical and simulation results, we show the relation
between key usage and performance.

4.3 Communication Cost

The communication cost of our public-key management
scheme consists of two parts: the cost of maintaining the
updated local repositories and the key authentication cost.
These two costs are the consequence of the certificate update
and key authentication mechanisms described in Section 3.

The communication cost of the local repository update is
directly proportional to the number s of certificates in the
local repositories. Upon each update, each node sends
s certificate update requests and receives as many re-
sponses. The total communication cost of updating the local
repositories for all nodes is then

X

u2V
ðcert size � su þ cert req size � suÞ � avg num hops;

where cert size is the size in bytes of a certificate, cert req size
is the size of the certificate query, su is the size of the local
repository of node u, and avg num hops is the average
number of hops between the nodes in the network.

The cost of updating the local repositories is not equally
distributed over the nodes. Clearly, the nodes whose
certificates are stored by many nodes will receive a large
number of certificate requests and will send the certificate
updates to many nodes. We compute the maximum cost of
updating the local repositories for a single node as the sum
of the cost of sending its own update requests and the cost
of responding to update requests of other nodes:

max
u2V

½cert req size � su þ cert size � LðKuÞ�;

where LðKuÞ is the load of the owner of Ku, meaning the
number of certificates (or certificate updates) requested by
other nodes from u. We should note here that a perfectly
balanced load means that LðKuÞ ¼ su ¼ s, 8u 2 V . In our
simulations, we observe the maximum load Lmax ¼
maxu2V LðKuÞ of a node.

The authentication of Kv by u requires the following
message exchange. Node u initiates authentication and
requests from v the list of hashes of certificates located in
the updated local repository of v. When v replies with the
list, u requests the certificates that it needs to complete the
authentication; node u requests from v only those certifi-
cates that it needs to reconstruct the shortest certificate
chain to Kv in Gu [Gv. In our simulations, we therefore
observe, over all pairs of nodes, the average number A of
certificates that one node needs to obtain from another node
to successfully authenticate its public key.

4.4 Convergence of Certificate Exchange

Here, we observe the benefits of the certificate exchange
mechanism (described in Section 3.2) for authentication. For

this purpose, we observe two values: certificate exchange
convergence CEðtÞ and user reachability URðtÞ. CEðtÞ is the
average (over all users) fraction of certificates from G
contained in the nonupdated repository of a user at time t.
This value shows how quickly certificates are exchanged
between nodes and the time needed for all certificates from
G to become a part of the nonupdated repositories of users.
URðtÞ is the average (over all users) fraction of keys to
which a user can find a path within her updated and
nonupdated repositories at time t. The user reachability
shows the usefulness of the certificate exchange scheme for
the authentication through the nonupdated repositories.
Both values depend on the mobility of the nodes and on the
certificate exchange period TCE .

4.5 Simulation Scenario

We now describe the simulation scenario where we observe
our public-key management scheme. We use the Maximum
Degree construction algorithm for the construction of the
updated repositories. The algorithm is described below. We
test its performance on PGP, and on random and artificial
certificate graphs (created according to the model proposed
in [14]). The mobility model is the random waypoint model
(described hereafter). All simulations were performed with
a simulator implemented in C/C++ with LEDA (Library of
Efficient Data Types and Algorithms) [29].

4.5.1 Maximum Degree Algorithm

The Maximum Degree algorithm selects a subgraph that
consists of two logically distinct parts: an out-bound and an
in-bound subgraph. More precisely, the subgraph consists of
several vertex-disjoint out-bound and vertex-disjoint in-
bound paths (the subgraph that is built resembles a star).
When starting from a vertex Ku, Maximum Degree builds
eout ¼ minðdegout; cÞ vertex-disjoint out-bound and ein ¼
minðdegin; cÞ vertex-disjoint in-bound paths where degout
and degin denote the number of Ku’s outgoing and
incoming edges, respectively, and c is a predefined constant
that represents the desired number of paths to be built. The
lengths ‘in and ‘out of in-bound and out-bound paths are
computed as ds=2eine and ds=2eoute, respectively, where s is
an input of the algorithm, representing the required number
of vertices of the resulting subgraph.

The algorithm runs in multiple rounds. In the first
round, the algorithm starts from the selected vertex Ku (the
public key of the user constructing the subgraph) and
includes in its out-bound subgraph eout outgoing edges
(with its terminating vertices) that originate from Ku. We
denote the set of the destination vertices of those edges by
Dout. In each following step, eout edges (and their terminat-
ing vertices) are selected so that they originate from the
vertices in the set Dout, but in a way that no two edges have
the same originating vertex or lead to the same destination
vertex (this ensures that the paths are disjoint). In each step,
the vertices in Dout are replaced with the last set of
terminating vertices. In practice, this means that node u
must ask the nodes belonging to the vertices in Dout for the
list of their outgoing edges. This list can easily be provided
because each node stores its outgoing edges (the certificates
that it issued).
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The construction of the in-bound subgraph of u is

similar: The algorithm starts from vertex Ku, and in the

first round, ein incoming edges (with their originating

vertices) that terminate in Ku are selected into the in-bound

subgraph. The originating vertices are stored in the list Din.

In each following step, ein edges are added to the subgraph

that have destinations in Din, so that no two edges have

common originating or common destination vertices. Din is

then updated with the set of the originating vertices of the

edges that are selected by the algorithm. In order to ensure

that the in-bound subgraphs can be built, each user must

know both its outgoing and its incoming edges. For this

reason, our algorithm requires that each user is notified

whenever another user issues her a certificate.
The selection of the edges and their terminating or

originating vertices, in each round of the algorithm, is based

on their degree. More precisely, in each step, vertices that

have the highest degree are selected. Therefore, only local

knowledge (the neighbors degrees) is necessary for the

nodes to perform the Maximum Degree algorithm. An

example of an out-bound subgraph constructed with the

Maximum Degree algorithm is shown in Fig. 3.

4.5.2 Random Waypoint Mobility Model

In the random waypoint mobility model [30], a mobile node
moves on a finite continuous plane from its current position
to a new location by randomly choosing its destination
coordinates, its speed of movement, and the time that it will
pause when it reaches the destination. After the pause time,
the node chooses a new destination, speed, and pause time.
This is repeated for each node, until the end of the
simulation time.

4.5.3 Certificate Graphs

In our simulations, we use PGP graphs, random graphs,
and artificial certificate graphs. PGP graphs are extracted
from the PGP database at http://pgp.dtype.org. This
database contains the information about public-keys and
public-key certificates issued and revoked since the launch
of the PGP project in the early 1990’s until today. Artificial
certificate graphs are created based on the model that we
defined in [14]. These graphs are designed in such a way
that they exhibit characteristics similar to PGP certificate
graphs, notably small-world characteristics. In all three
cases, for our simulations, we use either the full graph if it is
strongly connected, or its largest strongly connected
component, otherwise.

4.6 Results

In this section, we present the main simulation results. In the
following figures, the number of vertices and the number of
edges of a graph are denoted by n ¼ jV j and m ¼ jEj,
respectively. Fig. 4 shows the performance of the Maximum
Degree algorithm on random, PGP, and artificial certificate
graphs of various sizes. We observe that on all types of
graphs, Maximum Degree exhibits high performance, even
if the size of the updated local repository is small compared
to the number of users and the total number of certificates in
the certificate graph. Fig. 5 shows that the basic performance
can be further increased by using the updated certificate
repositories of the helper nodes. This high performance
demonstrates that even with a simple algorithm such as
Maximum Degree, the users have a high probability of
performing authentication by using only their updated local
repositories and the repositories of their physical neighbors.
Thus, even in a very small network partition where a node
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Fig. 3. An example of out-bound subgraph of vertex Ku (represented in

dashed lines), constructed with the Maximum Degree algorithm with

c ¼ 2 and s ¼ 6.

Fig. 4. Basic performance of the Maximum Degree algorithm (three paths) on random, PGP, and artificial certificate graphs for various sizes of the
updated certificate repositories.



can communicate with four helper nodes only, there is still a
high probability that authentication is possible.

Table 1 shows that the average shortest path in the
merged updated certificate repositories is small, which
implies a small authentication cost because only a few
certificates need to be exchanged between the nodes. From
the shortest path performance, we observe that the lengths
of the shortest paths in the merged updated repositories are
not significantly longer than those in the whole certificate
graph. The communication load results show that our load-
balancing scheme efficiently limits the nodes’ maximum
load to the size of their updated certificate repositories.

On Fig. 6, we introduce mobility in order to observe the
certificate exchange convergence and the user reachability.
We see that, on average, each node collects most of the
certificates from the certificate graph after a very short
time. This enables nodes to efficiently detect conflicting
certificates. This result also provides a good basis for
estimating the necessary values of TP and TCE . Further-
more, user reachability shows that after a short time,
nodes have collected enough certificates to find a path to
most of the other users through their nonupdated
certificate repositories. This shows that even if authentica-

tion through updated local repositories fails, there is a

very high probability that the node will still be able to

perform authentication by finding certificate paths in its

nonupdated repository and requesting an update of the

necessary certificates.

5 ANALYTICAL RESULTS

In this section, we analyze two important problems: 1) Find

an efficient repository construction algorithm that mini-

mizes the size of the updated certificate repositories and

achieves a predefined basic performance. 2) Find an

efficient repository construction algorithm that minimizes

the size of the updated certificate repositories, achieves a

predefined basic performance and achieves a balanced key

usage. We note that, as we discussed earlier in Section 4.3,

by minimizing the size of the updated certificate reposi-

tories, we minimize the overall communication cost of the

public-key management system.
More formally, given a certificate graph GðV ;EÞ, and

U0 2 IN, p0 2 ½0; 1�, we consider the following two problems:
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Fig. 5. Basic performance of the Maximum Degree algorithm with helper nodes on random certificate graphs. The results are displayed with the 95%
confidence interval.

TABLE 1
Average Shortest Paths Lengths, Shortest Path Performance psp, Node’s Maximum Communication Load Lmax,
and the Average Number A of Certificates Transferred per Authentication, for Random (n = 500, m = 3,000)

and PGP 1996 (n = 1,345, m = 7,025) Certificate Graphs with the Maximum Degree Algorithm

Note that, with helper nodes, the number of transferred certificates includes the certificates obtained from the helpers and some certificates obtained
from the other nodes.



. Problem 1: Find a local repository construction
algorithm A thatminimizes the size s of the updated
certificate repository, such that pðA; s;GÞ � p0.

. Problem 2: Find a local repository construction
algorithm A thatminimizes the size s of the updated
certificate repository, such that pðA; s;GÞ � p0 and
maxvUG;AðKvÞ � U0, where UG;AðKvÞ is the usage of
Kv.

5.1 Problem 1: Minimize the Size of the Updated
Certificate Repositories

If p0 ¼ 1, this problem can be stated in the following way:

Find a set fGv : Kv 2 V g of subgraphs such that for each

pair of vertices ðKu;KvÞ, there exists a path fromKu toKv in

Gu [Gv, and the size of the largest local repository is

minimized.
We obtain an upper bound on theminimal repository size

smin by constructing the subgraphGv of each vertexKv as the

union of the shortest path from Kv to Kx and the shortest

path from Kx to Kv, where Kx is the vertex that has the

smallest maximal distance to and from all the vertices in V .

Thus, the minimal local repository size smin is bounded by

smin � min
Kx2V

max
Kv2V ;Kv 6¼Kx

ðdðKx;KvÞ þ dðKv;KxÞÞ; ð3Þ

where dðKv;KxÞ is the length of the shortest path between

Kv and Kx in G.
The reasoning behind this construction is that it is easy to

show that the sizes of local repositories increase if the users

store the shortest paths to (and from) more than one vertex.
This construction shows that it is possible to achieve,

with a simple repository construction algorithm, a very

high performance with small updated certificate reposi-

tories and therefore at a low communication cost. This

conclusion is based on the characteristics of the certificate

graphs. For the PGP, small-world, and random graphs, the

average shortest paths are � log jV j. This shows that for the

majority of the users, the size of the updated certificate

repositories in these certificate graphs will be � log jV j.

5.2 Problem 2: Minimize the Size of the Local
Repositories and the Key Usage

Now, we turn our attention to the problem of minimizing

the size of the updated certificate repositories if we limit the

maximum key usage. Here, we show that under certain

conditions, it is possible to compute a lower bound on the

size of the certificate repositories.
In the following, we will assume that the subgraph

construction algorithm A generates a subgraph Gu for u,

which consists of an in-bound subgraph and an out-bound

subgraph that we denote by Gin
u and Gout

u , respectively, with

the following properties:

. For all Kv 2 V ðGin
u Þ, there exists a path from Kv to

Ku in Gin
u , and

. For all Kv 2 V ðGout
u Þ, there exists a path from Ku to

Kv in Gout
u ,

where V ðGin
u Þ and V ðGout

u Þ denote the set of vertices of Gin
u

and Gout
u , respectively. Note that V ðGin

u Þ and V ðGout
u Þ are not

necessarily disjunct.
The following theorem states that if 1) the desired

algorithm performance is 1, 2) each key should have the

same usage, and 3) the subgraphs of the users have the

same number of vertices, then the size of the local certificate

repositories of the users (the number of certificates stored)

cannot be smaller than
ffiffiffiffiffiffiffi
jV j

p
� 1, where jV j is the total

number of users in the system.

Theorem 1. Let us consider a certificate graph GðV ;EÞ and a

subgraph construction algorithm A which selects an in-

bound and an out-bound subgraph for each user as described

above. If 1) pðA; s;GÞ ¼ 1, 2) UG;AðKuÞ ¼ UG;AðKvÞ for all

Ku; Kv 2 V , and 3) jV ðGuÞj ¼ s for each Ku 2 V , then

s �
ffiffiffiffiffiffiffi
jV j

p
� 1.

Proof. Let us consider an arbitrary vertex Kw of the

certificate graph. Let us denote the set of users (vertices)

that stored Kw in their in-bound subgraph by S1.

Formally, S1 is defined as follows:

S1 ¼ fKz 2 V : Kw 2 V ðGin
z Þg: ð4Þ
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Fig. 6. Certificate exchange convergence CEðtÞ and user reachability URðtÞ with random waypoint model (max. speed = 20m/s, max. pause =20s,
certificate exchange period TCE ¼ 60s, power range =120m) on random and PGP certificate graphs.



Furthermore, let us denote by S2 the set of users
(vertices) that stored the vertices in V ðGout

w Þ in their in-
bound subgraphs. Formally:

S2 ¼ fKz 2 V : 9Kz0 2 V ðGout
w Þ : Kz0 2 V ðGin

z Þg: ð5Þ

Since pðA; s;GÞ ¼ 1, there must be a path from Kw to Kz

in Gw [Gz for every Kz 2 V . This means that Kz is either
in S1, or in V ðGout

w Þ, or in S2. In other words, the
following must hold:

S1 [ V ðGout
w Þ [ S2 ¼ V n fKwg: ð6Þ

Since jV ðGuÞj ¼ s for allKu 2 V , it trivially follows that
jV ðGout

w Þj � s. In addition, since UG;AðKuÞ ¼ UG;AðKvÞ for
allKu; Kv 2 V , and jV ðGuÞj ¼ s for allKu 2 V , it is easy to
see that UG;AðKuÞ ¼ s must hold for all Ku 2 V . This
means that jS1j � s and jS2j � s2 must hold. Now, we get
the following:

jV j � 1 ¼ jV n fKwgj
¼ jS1 [ V ðGout

w Þ [ S2j
� jS1j þ jV ðGout

w Þj þ jS2j
� s2 þ 2s:

From this, the statement of the theorem follows
directly. tu
We do not know how sharp this lower bound is, as we

were not able to find any construction that satisfies the
conditions of Theorem 1 and achieves strict equality. We
found a construction that satisfies the conditions of
Theorem 1 and achieves a subgraph size of 2 � ð

ffiffiffiffiffiffiffi
jV j

p
� 1Þ,

assuming that Gout
w ¼ Gin

v , 8Kw;Kv 2 V , but for lack of
space, we will present it in our future reports.

Theorem 1 shows that the requirement of an equal key
usage is a severe design criterion, meaning that if it is
respected, then the size of the updated certificate
repositories, and therefore the communication costs, must
be high. On the other hand, the log jV j bound on the
minimal updated repository size shows that the commu-
nication cost can be very low if a balanced key usage is
not an issue. As we have shown earlier, a simple load-
balancing scheme can alleviate the problem of high key
usage and provide the nodes with high performance at a
low and balanced communication cost.

6 CONCLUSION

In this paper, we addressed the difficult problem of key
management in mobile ad hoc networks. We proposed a
fully self-organized public-key management scheme that
does not rely on any trusted authority or fixed server, not
even in the initialization phase. To the best of our knowl-
edge, our proposal is the first in which public-key manage-
ment is fully self-organized. In our approach, each user is
her own authority and issues public-key certificates to other
users. Certificates are stored and distributed by the nodes
and each node maintains a local certificate repository that
contains a limited number of certificates selected by the
node according to an appropriate algorithm. Key authenti-
cation is performed via chains of certificates. When user u
wants to verify the authenticity of the public key of another

user v, they merge their local certificate repositories and u
evaluates the authenticity of Kv based on the certificates
contained in the merged repository. The detection of false
certificates is enabled through the certificate exchange
scheme that allows nodes to detect any conflicting
certificates.

The main contributions of this work can be summarized
as follows:

1. We proposed a fully self-organized public-key
management system for mobile ad hoc networks.

2. We showed that two users in a mobile ad hoc
network can perform key authentication based only
on their local information, even if security is
performed in a self-organized way.

3. We showed that with a simple local repository
construction algorithm and a small communication
overhead, our system achieves high performance on
a wide range of certificate graphs.

4. We demonstrated that nodes can exploit mobility to
facilitate authentication and to detect inconsistent
and false certificates.

This public-key management scheme is designed pri-
marily for use in mobile ad hoc networks. For this reason,
our repository construction algorithm assumes only partial
knowledge of the certificate graph and is designed with the
communication overhead in mind. An important feature of
this scheme is that key authentication is still possible even
when the network is partitioned and nodes can commu-
nicate with only a subset of other nodes. It is also important
to note that the proposed solution requires users’ conscious
involvement only when their public/private key pairs are
created and for issuing and revoking certificates; all other
operations (including certificate exchange and construction
of certificate repositories) are fully automatic.

Our future work includes further exploration of mechan-
isms for the detection and the resolution of inconsistent
certificates, improvement of the certificate graph models,
and exploration of more sophisticated load-balancing/data
management schemes (e.g., [31]) for public-key manage-
ment in mobile ad hoc networks.
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