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Abstract. We commonly use the experience of others when taking de-
cisions. Reputation mechanisms aggregate in a formal way the feedback
collected from peers and compute the reputation of products, services,
or providers. The success of reputation mechanisms is however condi-
tioned on obtaining true feedback. Side-payments (i.e. agents get paid
for submitting feedback) can make honest reporting rational (i.e. Nash
equilibrium). Unfortunately, known schemes also have other Nash equi-
libria that imply lying. In this paper we analyze the equilibria of two
incentive-compatible reputation mechanisms and investigate how unde-
sired equilibrium points can be eliminated by using trusted reports.

1 Introduction

In a world that offers an ever increasing number of choices, we commonly use
the experience of our peers when making decisions. The feedback coming from
previous users can be aggregated into the reputation of a product, service or
manufacturer, and accounts for the data that cannot be directly observed before
the purchase: e.g. reliability, technical support, etc.

As reputation mechanisms become more and more popular in online mar-
kets, it is important to ensure that selfish agents have the right incentives to
report honest feedback (i.e. the mechanism is incentive compatible). One way
to elicit truthful information is to pay the reports according to their estimated
truthfulness. Since objective verification is usually impossible, the truthfulness
of a report is assessed by comparing it with other reports coming from peers.
When the observations of different clients are sufficiently correlated, there exist
payment rules that make truthful reporting be Nash Equilibrium (NEQ): i.e.
rational agents report the truth given that all other agents report the truth. [9]
and [6] describe concrete mechanisms.

Unfortunately, such mechanisms also have other NEQ points where agents lie.
The existence of multiple equilibria is a serious problem when engineering real
reputation mechanisms: nothing can guarantee that the desired (i.e. truthful)
equilibrium strategy is selected. Moreover, the payoff generated by the truthful
equilibrium is often dominated by the payoff in a non-truthful equilibrium. Thus,
the selection of the truthful strategy becomes even more problematic.



In this paper we propose a method of enforcing the selection of the truthful
strategy based on trusted reports (i.e. verifiable reports coming from special-
ized reporters). Such reports can constitute a true reference base against which
other feedback can be evaluated. When enough trusted reports are available, the
incentive compatible NEQ becomes unique.

Efficiency, however, dictates that the number of trusted reports required be
kept as small as possible. We therefore investigate the reputation mechanisms
described in [9] and [6], and derive analytical and numerical solutions for the
minimum percentage of trusted reports required to enforce the truthful strate-
gies. Besides the results for the two specific mechanisms, the paper introduces
a general methodology for eliminating undesired equilibrium points, and offers
insights into the dynamics of feedback reporting mechanisms. Sections 2 and
3 briefly introduce the two reputation mechanisms. Section 4 analyzes the set
of Nash equilibrium points and analytically shows how trusted reports can be
used to eliminate the undesired equilibria. Numerical results are presented and
interpreted in Section 5, followed by related work and a conclusion.

2 The MRZ Incentive Compatible Reputation
Mechanism

In [9], Miller, Resnick and Zeckhauser (henceforth referred to as MRZ) consider
that a number of clients sequentially experience the same product whose type®
is drawn from a set of possible types T'.2

The real type of the product is unknown to clients and does not change during
the experiment. After every interaction, the client observes one signal s (from
a set of possible signals, S, of cardinality M) about the type of the product.
The observed signals are independently identically distributed conditioned on
the real type t of the product. f(s;|t) denotes the probability that the signal s;
is observed when the product is of type t. >°, ¢ f(si[t) =1 forallt € T.

After every interaction, the client is asked to submit feedback about the signal
she has observed. A reputation mechanism collects the reports, and updates the
probability distribution over the possible types of the product. Let p characterize
the current belief of the reputation mechanism (and therefore of all agents that
can access the reputation information) about the probability distribution over
types. p(t) is the probability that the product is of type ¢, and >, . p(t) = 1.
When the reputation mechanism receives a report r» € S, the posterior belief is
updated using Bayes’ Law:

i) — L0l p(0),
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! The type of a product defines the totality of relevant characteristics of that product.
e.q. quality, reliability, etc.

2 The set of possible types is the combination of all values of the attributes that define
the type. While this definition generates an infinite-size set of types, in most practical
situations, approximations make the set of possible types countable. For example,
the set of possible types could have only two elements: good and bad.



where Pr(r] =3, f(r[t) - p(t) is the probability of observing the signal r.

Every feedback is paid according to a payment rule that takes into account
the current belief, the value of the report and the value of another future report
submitted by some other client (called the rater). When this payment is defined
by a proper scoring rule?, MRZ show that every agent has the incentive to submit
the true feedback given that the rater also reports honestly. The mechanism thus
has an incentive-compatible NEQ.

One possible payment rule is:

R(p().7.7,) = log(Prlr, . p()]) = log (3 p(tlr) - £10)):
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where p(-) is the prior belief of the agent (and of the reputation mechanism),
r € S is the report of the agent, r,. € S is the future report of the designated
rater, and Pr[r,|r] is the posterior probability that the signal r,. will be observed
by the rater given that r was observed by the current reporter. When denoting
the payment received by an agent, we will frequently ignore the dependence
on the belief and have R(s;,s;) represent the payment received by an agent
reporting s; when the rater reports s;.

3 The JF Incentive-Compatible Reputation Mechanism

Jurca and Faltings (henceforth referred to as JF) describe in [6] an incentive
compatible reputation mechanism in a setting where the binary signal observed
by the clients is influenced not only by the type of the service, but also by time.
The probability distribution of the observed signal is thus modeled by a Markov
chain of variable length.

The side-payment for reports follows a very simple rule, and does not depend
on the beliefs of the agent or those of the reputation mechanism. A report is paid
only if the next report submitted by some other client about the same service
has the same value. The amount of the payment is dynamically scaled such that
the mechanism is budget-balanced.

The Markov model for the observable signals is very appropriate for services
offered by software agents, where failures are correlated. If we take the example
from the previous section, and consider that the product is actually a service
provided by a webservice, it is very unlikely that individual signals follow an
independent distribution. A service failure due to a software or hardware prob-
lem is likely to attract other service failures in the immediate future. Likewise,
a present successful invocation signals that everything works well with the in-
frastructure, and is probably going to be followed by other successful service
invocations.

While the MRZ mechanism can also be adapted for Markov models of be-
havior, it requires that the model be common knowledge among the agents: i.e.
all agents must agree on the length of the model and on the fact that there is

3 see [4] for an introduction to the scoring rules



a unique set of parameters characterizing that model. MRZ argue that private
information can be accommodated by requiring the agents to first submit their
private information, and than report the feedback. The computation of the pay-
ment will take into account the reported private information, and will make it
rational for the agents to truthfully submit feedback afterwards.

However, reporting private information and feedback introduces additional
cheating opportunities. Although no agent can obtain an expected payoff greater
than the one rewarded by the truthful strategy, malicious reporters can bias
the declared private information in order to make any desired report (weakly)
optimal: e.g. an agent willing to bad-mouth a provider, can do so without being
penalized by submitting appropriately modified private information.

Having side-payments that do not depend on the beliefs of the agents, the
JF mechanism allows the agents to have private beliefs about the model of the
webservice, as long as these beliefs satisfy some general constraints. Of course,
the freedom of having private beliefs is paid by the constraints that limit the
contexts in which incentive-compatibility is guaranteed.

4 Equilibrium Strategies

Formally, a reporting strategy of an agent a is a mapping o from the set of
signals S to the set AS containing all probabilistic combinations of signals from
S.o(s;))=>. jes aj» s; denotes that an agent a following reporting strategy o, will
report s; with probability aé given that the signal observed was s;. Z;Vil a;» =1
for all i € {1,..., M }. The set of all reporting strategies is denoted as S.

Let o* be the incentive-compatible strategy, i.e. 0*(s;) = s; for all s; € S. By
an abuse of notation we also use s; to denote the “constant” reporting strategy
(i.e.sj(s;) = sj forall s; € S) and AS to denote the set of all reporting strategies.

When a uses reporting strategy o and her rater (i.e. a,) uses the reporting
strategy o’ = (ﬁ§)7 the expected payment of a when observing the signal s; is:

M

M M
Elo,0',si] = Zaé (; Prlsi|si] - (; B - R(sj,sl))>; (1)

j=1

where Pr(si|s;] is the probability that the rater observes the signal s; given
that a has observed s;, and the function R(sj,s;) gives the payment made by
the reputation mechanism to a when a reports the signal s; and a, reports s;.
For the MRZ mechanism the function R(s;, s;) is given by one scoring rule. For
the JF mechanism, the function R(s;,s;) is 1 if s; = s; and 0 otherwise.

Definition 1. A reporting strategy o is a NEQ of the reputation mechanism iff
YV s; € S, no agent deviates from o, as long as her rater reports according to o.
Formally, o satisfies: E[o,0,s;] > Elo’,0,s;],Vs; € S,0' # 0.

Definition 1 restricts possible reporting strategies to symmetric ones. Gen-
eral N-player feedback reporting games might have asymmetric Nash equilibria
as well (i.e. every agent uses a different reporting strategy). However, online



markets usually assume an infinite number of anonymous clients providing feed-
back. In this case, all reporting equilibria are symmetric. To prove that, assume
an asymmetric equilibrium, and two agents, a; and a; using different report-
ing strategies: o; # o0;. For both a; and a; the rater will be drown from the
same (infinite) set of future reporters. Therefore, for both a; and a;, the rater’s
strategy will be the same strategy o, computed as a mix of the strategies of
all future reporters. Then, E[o;,0,| > Eloj,0,] as o; is optimal for a; and
Eloj,0,| > Elo;,0,] as 0; is optimal for a;. Consequently, o; = o, and by
induction all clients use the same strategy in equilibrium (i.e. the equilibrium
reporting strategy is symmetric).

Both the MRZ and the JF mechanisms have many NEQ strategies. In gen-
eral, finding all NEQ points of a game is a difficult problem [3]. However, for the
special case of binary reputation mechanisms, Proposition 1 completely charac-
terizes the set of equilibrium strategies.

Proposition 1. Given a binary incentive-compatible reputation mechanism, al-
ways reporting positive feedback and always reporting negative feedback are Nash
equilibria. At least one of these equilibria gemerates a higher payoff than the
truthful equilibrium.

Proof. Let “+” and “—” denote the positive and respectively the negative qual-
ity signals. The mechanism is incentive-compatible, so E[o*,o*,+] > E[—, 0%, +]
and E[o*,0*,—] > E[—,0*,—]. Expanding EJ-,-,-] and taking into account
that Pr[+|+] > Pr[+|—] (easy verifiable by applying Bayes law) we obtain:
R(+,+) > R(—,+) and R(—,—) > R(+,—). Therefore, E[+,+, ] > E[—,+,]
and E[—, —, ] > E[+, —, ], and thus, according to Definition 1, the strategies +
and — (i.e. always reporting positive, respectively negative feedback) are NEQ.
Let p = max(R(—i—, +), R(—, —)) Then,

E[O'*, o, +] = PT[+‘+]R(+7 +) + Pr[_‘+]R(+7 _)
< Prl+[+R(+,4) + Pr=[+]R(—, —) < p;

Similarly, E[c*,c*,4] < p, therefore, at least one of the constant reporting
NEQ strategies generates a higher expected payoff than the truthful equilibrium.
a

The results of Proposition 1 are valid for all binary incentive-compatible
reputation mechanisms, and prove that honesty is always dominated by at least
one of the constant reporting strategies. We conjecture the existence of a similar
result for all IC reputation mechanisms.

4.1 The influence of trusted reports

For all incentive compatible reputation mechanisms, the truthful reporting strat-
egy o*, is a strict Nash equilibrium. When the report submitted by the rater is
always trusted (i.e. true), the expected payment received by a, given that she has
observed the signal s; and uses the reporting strategy o, is E[o,c*,s;]. As the



rater’s strategy is fixed, the only Nash equilibrium strategy of a is the truthful
reporting strategy o*. Any other reporting strategy will generate a strictly lower
payoff (Definition 1).

Since trusted reports are expensive, it is interesting to see if undesired Nash
equilibrium points can be eliminated by using only a probabilistic rating against
a trusted report: i.e. a report is rated with probability ¢ against a trusted report
and with probability 1 — ¢ against a normal report. The expected payoff to a
from the equilibrium strategy o, given that she has observed the signal s; is
then:

E,l0,0,8;] =¢q- Elo,0",s;]+ (1 —q) - Elo,0,s]

The strategy o continues to be a Nash equilibrium strategy if and only if
for all other reporting strategies o', Eqlo’, 0,s;] < E4[o,0,s;], for all signals s;.
Finding the minimum probability ¢ such that the incentive-compatible reporting
strategy remains the only Nash equilibrium strategy of the mechanism involves
solving the following problem:

Problem 1. Find the minimum ¢* € [0, 1] such that for all ¢, ¢* < ¢ < 1, for all
reporting strategies o # o*, there is a signal s; and a strategy ¢’ # o such that
E,lo,0,5] < E4lo’,0,s].

Problem 1 is hard to solve in the general case, and its result are very restric-
tive. A relaxation would be to eliminate only those equilibrium strategies that
generate a higher payoff than the incentive compatible strategy. The practical
justification for this relaxation is that rational agents always choose from a set of
possible equilibrium strategies the one that generates the highest payoff. Given
that truthful reporting yields the highest payoff, we argue that it is not necessary
from a practical perspective to eliminate all other Nash equilibrium points.

Finding the minimum probability, ¢*, such that the incentive-compatible re-
porting strategy generates the highest payoff implies solving the following prob-
lem:

Problem 2. Find ¢* = min(q), s.t. f(¢*) =0, where f(q) = max, s, E4[0, 0, ;] —
Elo*,0*,s;] s.t. 0 is a NEQ: i.e. Eyo,0,s;] > Eq[s;,0,si] for all s;, s, € S.

Problem 2 contains two nested optimizations: (1) finding the Nash equilib-
rium strategy that generates the highest payoff, and (2) finding the minimum
value of ¢ (i.e. ¢*) for which the highest Nash equilibrium payoff corresponds
to the incentive-compatible reporting strategy. Finding the highest Nash equi-
librium payoff is a NP-hard problem [3]. The function f(g), on the other hand,
is decreasing in ¢ and therefore a binary search can be used to find the mini-
mum value of q. Please note that the solutions to problem 2 also represent lower
bounds for the solutions of problem 1.

The solution ¢* of Problem 2 does not necessarily represent the overall per-
centage of trusted reports needed by the reputation mechanism. For example,
the MRZ mechanism allows to reuse trusted reports. The same trusted report
can be used to assess the honesty of more than one feedback. In extremis, one



could imagine that the same trusted report is used to assess all other reports
collected by the reputation mechanism. The actual percentage of trusted reports
needed by the mechanism is hence very low, and equal to the value of ¢* divided
by the total number of reports that are rated against the same trusted report.

Using the same trusted report poses, however, some problems. First, all feed-
back has to be rated in the same time, i.e. after all reports have been submitted.
This delays the side-payments to clients, and weakens the monetary incentives
to report. Second, the trusted report can become outdated. In a dynamic system
(service providers change their type by updating for example their infrastruc-
ture), the validity of any report is limited to a certain time window. Third, it
leaves the mechanism vulnerable to mistakes of the trusted reporters.

In practice, a periodically updated set of trusted reports can be used to rate
normal feedback. For any report, one trusted report can be randomly chosen
from this set. Thus, a compromise can be reached between cost and stronger
incentives to report the truth.

The JF mechanism, on the other hand, requires a fresh rater for every sub-
mitted report (i.e. the report of the next agent is always used to rate the present
feedback). Therefore, the threshold value ¢* that a report is rated against a
trusted report becomes the overall percentage of trusted reports needed by the
reputation mechanism.

Our analysis also offers an interesting insight for influencing the behavior
of incentive compatible reputation mechanisms. From a dynamic perspective,
the reputation mechanism can shift from one Nash reporting equilibrium to
another. A mechanism operator will therefore be interested to know how easy it
is to switch the reporting strategy from lying to truth-telling.

For example, let us take a reputation mechanism currently coordinated on
an equilibrium . Assuming that the operator can observe o, he can shift the
reporting equilibrium to the truthful one by publicly committing to rate every
Elo,0,s;]—E[c™,0",5;]
Elo,0,s;|—FElo,0%,s;] *
Note that ¢ < ¢*, with equality holding when o is the reporting NEQ yielding
the highest payoff. Thus, in particular, the operator can drive the reputation
mechanism to the truthful equilibrium in the beginning.

Once the agents have coordinated on the truthful strategy (by some external
coercion or natural initiative), the operator can stop using trusted reports. It
will take a significant proportion of deviators (i.e. at least 1 — ¢*) coordinated
on a different payoff equilibrium in order to make it rational for the other agents
to also switch to this non-truthful equilibrium. Since ¢* is often quite low, this
can be very useful in practice. This observation opens new research and design
opportunities for practical reputation mechanisms where external intervention
(e.g. trusted reports) is only periodically needed in order to (re)coordinate a
sufficient proportion of agents on the desired strategy.

report against a trusted report with probability § = max;,

5 Numerical Analysis

For the JF mechanism the incentive-compatible equilibrium dominates all other
equilibria only when feedback is rated against a trusted report with probability



* 1=Pr[=|=] 1=Pr[+[4]
greater than ¢* = max( Pr=1=T * Pr+14]

), where Pr[+|+] and Pr[—|—]

are the probabilities of observing a positive (respectively negative) signal in
the next round given a positive (respectively negative) signal observed in the
present. Both Pr[—|—] and Pr[+|+] vary in the interval [0.5, 1] (smaller values for
Pr[—|—] or Pr[+|+] are not allowed by the assumptions of the JF mechanism),
therefore ¢* can take any value between 0 and 1. For example, a webservice
modeled by a Markov chain with transition probabilities Pr[+|+] = 0.95 and
Pr[—|-] = 0.9 requires ¢* = 1/9. The greater the correlation between the
behavior of the webservice in successive transactions, the lower the threshold
value, ¢*. In such cases, there is little uncertainty about the signal observed by
the rater, and therefore the incentive-compatible strategy of the JF mechanism
yields payoffs that approach the maximum possible payoff.

For the MRZ mechanism we numerically investigate settings with N possible
product types and N observable signals. Each signal characterizes one type, and
uniform noise “scrambles” the observation of clients. The conditional probability
distribution of signals is defined as f(s;|t;) =1 — 0 when s; = s; and f(s;[t;) =
5 when s; # s;. 6 = 10% is the “level” of noise.

For N = 2, Figure 1 plots the threshold value ¢* against the set of possible
beliefs of the clients (characterized by the prior probability assigned to the good
type). The values of ¢* range between 0.6 and 0.8. The gaps at both ends of
the interval are explained by the “activation” of previously inefficient reporting
strategies. When one type is very probable (e.g. the good type), the constant
reporting strategy “—” is very inefficient. Pr[—|—] is very small, therefore the
payoff generated by always reporting negative feedback is lower than the payoff
rewarded to the truthful strategy. As soon as the prior probability of the bad
type becomes big enough, both constant reporting strategies are more profitable
than the truthful strategy, hence more trusted reports are needed to enforce
truth-telling.

For N = 3 the space of possible beliefs is two dimensional: two probabili-
ties entirely characterizes the prior distribution over the three types. Figure 2
presents three slices through the 3-dimensional graph for three different proba-
bilities of the type t1: p(t1) = 0.1, p(t1) = 0.3 and p(t1) = 0.5. The threshold
value ¢* varies between 0.5 and 0.8.

For higher number of types, the graphical representation of the space of
beliefs becomes impossible. Moreover, solving the optimization problem for an
increasing number of types (and therefore signals) becomes exponentially more
difficult. However, the solution for N = 4,5,6 types and beliefs normally dis-
tributed around every type does not bring any surprises. As in the previous
cases, the values of ¢* range from 0.5 to 0.8, with higher values for more focused
beliefs, and lower values for increased ambiguity in beliefs.

4 Pr[+]+] is the probability of successful service at time t+1 given a successful service
at time ¢; similarly Pr[—|—] is the probability of service failure at time ¢ + 1 given
a failure at time ¢
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Fig. 1. Threshold value ¢* for the MRZ Fig. 2. Threshold value ¢* for the MRZ
mechanism, when N = 2 and § = 10%. mechanism, when N = 3, and § = 10%.

6 Related work

In their seminal papers, Kreps, Wilson, Milgrom and Roberts [8] prove that
cooperative equilibria can exist in finitely repeated games due to the reputation
effect. Since then, numerous computational reputation mechanisms have been
described, ranging from mechanisms based on direct interactions [2] to complex
social networks [11] where agents ask and give recommendations to their peers.
Centralized implementations as well as completely decentralized [1] have been
investigated.

Besides the two mechanisms treated in this paper, a number of other mecha-
nisms address the problem of eliciting honest feedback from self interested par-
ticipants. For e-Bay-like auctions, the Goodwill Hunting mechanism [5] provides
a way to make the sellers indifferent between lying or truthfully declaring the
quality of the good offered for sale. Momentary gains or losses obtained from mis-
representing the good’s quality are later compensated by the mechanism which
has the power to modify the announcement of the seller.

Jurca and Faltings [7] take a different approach and achieve in equilibrium
truthful reporting by comparing the two reports coming from the buyer and the
seller involved in the same transaction. Using the same idea, Papaioannou and
Stamoulis [10] describe a mechanism suitable for P2P environments.

This paper also relates to the vast literature concerned with computing Nash
equilibrium strategies [3] and with the ongoing efforts of the networking com-
munity to design routing algorithms that have a unique Nash equilibrium point
with the desired properties.

7 Conclusion

Obtaining true feedback is of vital importance to the success of online reputa-
tion mechanisms. When objective verification is not available, economic measures
must exist to ensure that self interested agents truthfully report their observa-
tions. Unfortunately, existing incentive compatible schemes have multiple Nash



equilibria. Moreover, lying equilibrium strategies usually yield higher payoffs
than the truthful strategy.

In this paper we analyze the influence of trusted reports on the set of Nash
equilibria of two existing incentive-compatible reputation mechanisms. We em-
phasize the existence of lying Nash equilibria, and investigate how such undesired
equilibrium points can be eliminated. By having a fraction of trusted reports it
is possible to have a mechanism where the truthful strategy is the only (or the
most attractive) strategy to be followed.

Besides the numerical analysis of the two reputation mechanisms we also
provide a general methodology for eliminating undesired equilibrium points from
incentive compatible reputation mechanisms.

References

1. K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information Sys-
tem. In Proceedings of the Ninth International Conference on Information and
Knowledge Management (CIKM), 2001.

2. A. Birk. Learning to Trust. In R. Falcone, M. Singh, and Y.-H. Tan, editors, Trust
in Cyber-societies, volume LNAI 2246, pages 133—144. Springer-Verlag, Berlin Hei-
delberg, 2001.

3. V. Conitzer and T. Sandholm. Complexity Results about Nash Equilibria. In
Proceedings of the IJCAI, Acapulco, Mexico, 2003.

4. R. Cooke. Ezxperts in Uncertainity: Opinion and Subjective Probability in Science.
Oxford University Press: New York, 1991.

5. C. Dellarocas. Goodwill Hunting: An Economically Efficient Online Feedback. In
J. Padget and et al., editors, Agent-Mediated Electronic Commerce IV. Designing
Mechanisms and Systems, volume LNCS 2531, pages 238-252. Springer Verlag,
2002.

6. R. Jurca and B. Faltings. An Incentive-Compatible Reputation Mechanism. In
Proceedings of the IEEE Conference on E-Commerce, Newport Beach, CA, USA,
2003.

7. R. Jurca and B. Faltings. “CONFESS”. An Incentive Compatible Reputation
Mechanism for the Online Hotel Booking Industry. In Proceedings of the IEEE
Conference on E-Commerce, San Diego, CA, USA, 2004.

8. D. M. Kreps, P. Milgrom, J. Roberts, and R. Wilson. Rational Cooperation in the
Finitely Repeated Pisoner’s Dilemma. Journal of Economic Theory, 27:245-252,
1982.

9. N. Miller, P. Resnick, and R. Zeckhauser. Eliciting Informative Feedback: The
Peer-Prediction Method. Forthcoming in Management Science, 2005.

10. T. G. Papaioannou and G. D. Stamoulis. An Incentives’ Mechanism Promoting
Truthful Feedback in Peer-to-Peer Systems. In Proceedings of IEEE/ACM CC-
GRID 2005, 2005.

11. B. Yu and M. Singh. Detecting Deception in Reputation Management. In Pro-
ceedings of the AAMAS, Melbourne, Australia, 2003.



