
HAL Id: hal-01314885
https://inria.hal.science/hal-01314885v1

Submitted on 12 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counterexamples from Proof Failures in SPARK
David Hauzar, Claude Marché, Yannick Moy

To cite this version:
David Hauzar, Claude Marché, Yannick Moy. Counterexamples from Proof Failures in SPARK. Soft-
ware Engineering and Formal Methods, Jul 2016, Vienna, Austria. �hal-01314885�

https://inria.hal.science/hal-01314885v1
https://hal.archives-ouvertes.fr

Counterexamples from Proof Failures in SPARK?

David Hauzar1,2,3, Claude Marché1,2, and Yannick Moy3

1 Inria, Université Paris-Saclay, F-91893 Palaiseau
2 LRI, CNRS & Univ. Paris-Sud, F-91405 Orsay

3 AdaCore, F-75009 Paris

Abstract. A major issue in the activity of deductive program verification is the
understanding of the reason why a proof fails. To help the user understand the
problem and decide what needs to be fixed in the code or the specification, it is
essential to provide means to investigate such a failure. We present our approach
for the design and the implementation of counterexample generation within the
SPARK 2014 environment, exhibiting values for the variables of the program
where a given part of the specification fails to be validated. To produce a coun-
terexample, we exploit the ability of SMT solvers to propose, when a proof of
a formula is not found, a counter-model. Turning such a counter-model into a
counterexample for the initial program is not trivial because of the many trans-
formations leading from a given code and specification to a verification condition.

1 Introduction

Deductive program verification is an activity that aims at checking that a given program
respects a given functional behavior. In this context, the expected behavior must be ex-
pressed formally by logical assertions, i.e. preconditions and postconditions, forming a
contract. Deductive program verification typically proceeds by generating, from both
the code and the formal specification, a set of logic formulas called verification condi-
tions (VCs). If one proves that all generated VCs are tautologies, then the program is
guaranteed to satisfy its specification. In recent program verification environments like
Dafny [20], OpenJML [12] and Why3 [7], VCs are discharged using automated theorem
provers, in particular those of the Satisfiability Modulo Theories (SMT) family such as
Alt-Ergo [5], CVC4 [2] and Z3 [22]. These theorem provers are used as black-boxes
that, given a VC, may produce three kinds of results:

1. The prover answers something meaning “yes, the VC is a tautology”
2. The prover answers anything else, meaning “I don’t know”, in order words the

prover is not able to prove the VC for any reason
3. The prover runs for a too long time (seemingly infinitely) or runs out of memory

The case where the prover runs for too long time is handled in practice by setting a
given time limit, so that the prover process is killed when exceeding this limit. The
cases 2 and 3 are the same from the user’s perspective: the VC is not proved. Note that

? Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007, http://
www.spark-2014.org/proofinuse) of the French national research organization

http://www.spark-2014.org/proofinuse
http://www.spark-2014.org/proofinuse

we do not distinguish a case where the prover would answer “no it is not a tautology”,
because the VCs typically involve undecidable logic features (e.g. non-linear integer
arithmetic, first-order quantification) so provers are in practice incomplete: there is no
way for them to be sure that a given VC is not provable.

A major issue in the activity of deductive verification is thus understanding the
reasons for a proof failure. There are various reasons why it may fail:

1. The property to prove is indeed invalid: the code is not correct with respect to the
given specification.

2. The property is in fact valid, but is not proved, again for two possible reasons:
– The prover is not able to obtain a proof (in the given time and memory limits):

this is the incompleteness of the proof search;
– The proof may need extra intermediate annotations, such as loop invariants, or

more complete contracts of the subprograms

For the user to be able to fix the code or the specification of their program, it is essen-
tial to understand into which of the two above cases any undischarged VC falls. The
solution we propose in this paper is to generate counterexamples, or more precisely po-
tential counterexamples. Such a counterexample should give values for the variables of
the program, demonstrating a particular case where a given annotation may not hold. To
produce a counterexample, we exploit an additional feature of SMT solvers: the abil-
ity to propose, when a proof of a formula is not found, a counter-model, exhibiting an
interpretation of the free variables where the formula cannot be proved true. Turning
such a counter-model into a counterexample for the initial program is not a trivial task
because of the many transformations that lead to a VC from a given code and specifica-
tion. For this work, our goal was to design and implement counterexample generation
within the SPARK 2014 [21] environment for the development of safety-critical Ada
programs. In this context, the initial program with annotations is first translated into the
intermediate language WhyML. The Why3 tool [7] processes WhyML to generate ver-
ification conditions using a weakest precondition calculus. These VCs are then passed
to SMT solvers after several possible transformations: simplifications and encoding of
features not natively supported by SMT-LIB. Then, to turn the counter-model into a
counterexample, one has to relate the model produced by the SMT solver back to the
original problem, taking into account the entire transformation chain.

In Section 2 we present the support for counterexamples in SPARK 2014, from a
user’s point of view, illustrated by simple examples. In Section 3 we go into the internals
of the tools, and explain how we designed our approach to generate counterexamples.
We discuss related work and future work in Section 4. More details can be found in a
technical report [16].

2 Counterexamples in SPARK

Ada 2012 is the latest version of the Ada language [1], a general purpose language,
traditionally used in embedded software development. This version adds new features
for specifying the behavior of programs, such as subprogram contracts and type in-
variants. SPARK is a subset of Ada targeted at formal verification [21]. Its restrictions

Fig. 1. A failed postcondition.

ensure that the behavior of a SPARK program is unambiguously defined. The SPARK
language and toolset for static verification has been applied for many years in on-board
aircraft systems, control systems, cryptographic systems, and rail systems [8]. SPARK
also provides dedicated features that are not part of Ada 2012: essential constructs for
deductive verification (e.g. loop invariants, ghost code) have been added. To formally
prove a SPARK 2014 program, GNATprove uses WhyML as an intermediate language.
The SPARK program is translated into an equivalent WhyML program which can then
be verified using the Why3 tool.

Figure 1 shows an example of a saturation procedure, ensuring that values stay in a
given range. In this example, the procedure should ensure that the output value is less or
equal to 255. More precisely, the postcondition requires that if the input value is in the
range, it is unmodified, and set to 255 otherwise. Note the attribute ’Old that refers to
the values that expressions had at procedure entry. The procedure is implemented using
bit-wise AND with mask 0xFF. As the message at the bottom shows, GNATprove does
not succeed in proving the postcondition.

The means for the user to investigate the possible reason of the failure are:

– Execute code and properties during tests, in a way that violations of the property
will stop execution with an exception. This depends of course on the availability
of tests that exercise the violation, but testing is a well-known software engineer-
ing discipline that engineers usually master, hence uncovering incorrect code and
properties is comparatively easier than investigating other reasons for proof failure.

– A focused manual review of the code and assertions can efficiently diagnose many
cases of missing annotations.

– The user can try to increase the proof power along different axes, in order to com-
bine the results of different provers and allocate more resources (in particular time)
for each proof attempt. In GNATprove, in addition to the lower level switches, there
are predefined proof levels between 0 and 4 that the user can increase to augment
the proof power: more time allocated, use more provers.

Fig. 2. Counterexample interleaved with code.

GNATprove also helps users by pinpointing the part of a larger assertion which is not
proved, and the execution path along which the proof fails. During interactions, the IDE
integration is of utmost importance to allow focusing the proof on a single subprogram
or even a single line of code. Yet, testing and manual review may not identify all errors
and missing annotations, and increasing the proof power may prove the property either.
The burden is then on the user to verify the unproved property by other means: more
tests, manual reviews, or using an interactive prover whose proof script is checked by
GNATprove.

Adding Counterexamples in SPARK. We describe now the new facilities to generate
counterexamples that is the purpose of this paper. There are multiple ways to integrate
counterexamples in a development environment, depending on the expected degree of
interactions with users. In SPARK, we have chosen to simplify the interactions to a min-
imum, so that users are directly presented with the most relevant information. GNAT-
prove displays the values of relevant variables in the message displayed to the user
for an unproved check. The message displayed by GNATprove on the example from
Figure 1 is:

medium: postcondition might fail (e.g. when Val’Old = 4096 and Val = 0)

This information alone might be sufficient to understand the problem. Otherwise,
GNATprove has pre-computed for every unproved check a counterexample trace that
can be displayed in the IDE. This trace consists of a sequence of program lines, anno-
tated with values of relevant variables.

For example, Figure 2 shows the trace computed by GNATprove and displayed in
GNAT Programming Studio on the example seen before. A variable is selected as rele-
vant in the summary message if it appears in the expression being checked. A variable
on any given line is selected as relevant in the trace if it is assigned a new value on
this line. As visible from Figure 2, the counterexample trace is displayed inside special

Fig. 3. Counterexample with a record type.

lines in the editor, that are not part of the code and cannot be edited manually (note the
absence of a line number). These lines are prefixed with the token -- that introduces
comments in Ada code to make it clear to users that they are not part of the code. The
lines in the program to which the trace applies (lines 3, 6 and 10) are emphasized in the
editor. The counterexample shows that the implementation is indeed not correct with
respect to the specification. Bitwise AND of 4096 and 0xFF is 0, while the specification
requires that the returned value of Val be 255.

Counterexamples with Records and Arrays. Counterexamples can contain values of
record types and array types. Their values are displayed in the usual Ada syntax as ag-
gregates, as illustrated in Figure 3. If the counterexample value of a field is not known,
it is displayed as question mark. If there is more than one such field, then these fields are
aggregated under the name others. On Figure 3, type Saturable_Value defined at line
5–8 contains a field Value representing the actual value and a field Upper_Bound being
an upper bound of the saturation range. The postcondition of the function Saturate

is analogous to the postcondition of the procedure Saturate from Figure 2. The field
Value of the returned record must contain the value of the field Value of the input record
if it is in the range, otherwise it must contain the upper bound of the range. The satura-
tion is now implemented using function Unsigned_16’Max. The counterexample shows
that if Val.Value is 16383 and Val.Upper_Bound is 49152, Saturate’Result.Val is
49152. Indeed, instead of the function Unsigned_16’Max, the function Unsigned_16’

Min should be used.
Similarly for records, the content of arrays is shown in Ada syntax for array ag-

gregates. For arrays with statically unknown ranges, the array range is also part of the
counterexample, shown again in Ada syntax using the attributes ’First and ’Last. See
the report [16] for a more detailed example.

WhyML programs

VC generator

Proof tasks Transformations

Printers

SMT solversTPTP provers Interactive provers

Fig. 4. Why3 architecture

3 Implementation of Counterexamples

3.1 Short Introduction to Why3

Why3 (http://why3.lri.fr) is an environment for deductive program verification,
providing the language WhyML for specification and programming [14]. WhyML is
used as an intermediate language for verification of SPARK programs as well as C and
Java programs [13], and can also be used as a primary programming language (it can
be compiled to Ocaml).

A schematic view of Why3’s components is shown in Figure 4. The specification
component of WhyML [6], used to write program annotations and background theo-
ries, is an extension of first-order logic. It features ML-style polymorphic types (prenex
polymorphism), algebraic datatypes (in particular records), abstract types, and func-
tions and predicates specified axiomatically. Why3 comes with a rich standard library
providing general-purpose theories useful for specifying programs [7]. This includes in-
teger and real arithmetic, arrays, and bit-vectors. The specification part of the language
serves as a common format for theorem proving problems, proof tasks in Why3’s jar-
gon. The programming part of WhyML is a dialect of ML with a number of restrictions
to make verification easier [14]. WhyML function definitions are annotated with pre-
conditions and postconditions both for normal and exceptional termination, and loops
are also annotated with invariants. Why3 generates proof tasks from user lemmas and
annotated programs (using a weakest precondition calculus), then dispatches them to
multiple provers. We detail below a few features of Why3 that are of particular interest
for the counterexamples feature.

Transformations. A Why3 transformation is any procedure taking a proof task as an
argument and producing another proof task, or more generally a set of proof tasks.
Transformations must be sound in the sense that validity of the resulting tasks must
imply the validity of the input task. The converse is generally true but not always.
A typical example is the split transformation: for a given proof task of the form
H1, . . . ,Hk ` ∀x.H→ (G1∧·· ·∧Gn), that is, if the goal ends with a conjunction, it pro-
duces the set of n tasks H1, . . . ,Hk ` ∀x.H→Gi for 1≤ i≤ n. As most of the provers do

http://why3.lri.fr

not support some of the language features, (e.g. pattern matching, polymorphic types,
recursion), Why3 applies a series of encoding transformations to eliminate unsupported
constructions before dispatching a proof task to provers. Other transformations can also
be imposed by the user in order to simplify the proof search: inlining of definitions,
simplification by computation, case analysis, application of inductive schemes, etc.

Labels. Why3 labels are arbitrary character strings, written between double quotes.
They can be attached to any logic formula or term, and also to any declaration. Their in-
terpretation is not fixed a priori; in some cases they are interpreted by specific transfor-
mations. For example, the asymmetric conjunction of Why3’s logic is a connective writ-
ten as &&. Internally, it is in fact the usual conjunction ∧ with the label "asym_split"
on the first argument. The split transformation interprets this label so that a goal of
the form f1 && f2 is split into the goals f1 and f1 → f2. Transformations that do not
interpret labels keep them attached to formulas and terms, if possible. For example,
a transformation may rename a variable, in that case it should propagate labels from
the original variable to the new one. Analogously, if a transformation rewrites a given
sub-term into another, it should also propagate labels of the old term to the new one.

Locations. To help traceability of errors from its various front-ends, WhyML has a
mechanism of source locations similar to the #line directive of C pre-processor. Instead
of being line-oriented, it is character-precise: any term or declaration can be given an
annotation of the form #file l b e# meaning that this term or declaration originates
from the source file file, at line l, from first character b to last character e. Similarly as
for labels, transformations should propagate locations.

The Weakest Precondition calculus. The VC generator, which implements a variant
of the weakest precondition calculus (WP for short), takes any WhyML function and
creates a proof task. If that proof task is a tautology then the input function satisfies
its contract. This formula is typically quite large, as it collects all the necessary checks
that need to hold for the function to be safe: postcondition, but also initialization and
preservation of loop invariants if any, any kind of runtime checks, etc. To present the
resulting formula to the user in a more friendly manner, a default application of the
split transformation is applied, so as to obtain a set of VCs that corresponds to the
various checks to perform on the original program. To make this more user-friendly,
Why3’s WP calculus is instrumented so that each of the sub-formulas that corresponds
to a program check is annotated with a label of the form "expl:text". The text is an
explanation of the VC, and is interpreted by the graphical interface. Regarding the coun-
terexample feature, an important aspect is that during the computation of the WP, for
each program statement that updates a program variable as a side-effect, a fresh logical
variable holding this new value is created. This is the case for assignment statements,
but also occurs in case of function calls and in presence of loops.

Metas. Why3’s metas provide a way to associate metadata to a proof task that, unlike
labels, are not attached to any particular sub-term or declaration, but are declared glob-
ally to the task. A meta is characterized by a name and a set of parameters that can
be nearly of any kind of object: a number, a boolean, a string, but also a reference to

another declaration: a type, a function symbol, an hypothesis. As for labels, metas can
be interpreted by transformations, but are usually kept unchanged. Unlike labels, the
name of metas, and the type of their arguments, must be declared first.

3.2 Model Features of SMT-LIB

An SMT solver takes as input a set of formulas, and checks whether this set is satisfiable
or not. To prove that a given proof task H ` G is a tautology, we query the solver
for the satisfiability of H and the negation of G: if the solver answers that this set is
unsatisfiable, it means that proof task is valid. If the solver terminates with any other
answer, the SMT solver may propose a potential model of H and ¬G describing why
H ` G cannot be proved. To get such a model, we use features of SMT-LIB [3], and
the solvers CVC4 and Z3. SMT-LIB defines commands get-model and get-value for
getting models. The command get-model returns a set of interpretations for all user-
declared function symbols in the input task. The command (get-value t1 · · · tn) returns
for each term ti a value term that is equivalent to ti in the potential model.

3.3 Counterexamples at Why3 Level

Our goal is to exploit the generation of models by SMT solvers to construct a potential
counterexample to the input Why3 program. This means that we need to add counterex-
ample generation to the Why3 architecture described in Figure 4: some feedback from
the bottom (prover results) to the top (input program) must be implemented. Because
the VC generation and the Why3 transformations can rename variables and introduce
fresh ones, re-interpreting the model returned by the solver into a counterexample of
the input source is a non-trivial process.

A first choice we have to make is on whether using the get-model or the get-value

command of SMT-LIB. The command get-model might seem easier to use at first be-
cause no argument needs to be given. However, from the large set of function symbols
and their values returned by get-model, it would be a hard task to extract which part
of it corresponds to the initial program, because we have no trace of the extra logical
variables and renamings made by WP and transformations. That’s why we decided to
use the get-value command instead. We provide the variables or terms to query as
arguments of this command by properly propagating traceability information along the
WP and the Why3 transformations. This is done using Why3 labels and metas instru-
menting the different processing steps as shown in Figure 5. This has to be performed
regarding different aspects that are detailed in the subsections below.

Marking variables to show in a counterexample. In a Why3 task, variables that should
be shown in a counterexample are marked with the label "model". When the task is
printed into SMT-LIB format, SMT-LIB terms corresponding to these variables are col-
lected and then passed as parameters of the get_value command. As an example, see
the following Why3 task:

constant x "model" :int

goal G : x+x > 0

WhyML program +
counterexample annotations

VC generator

Proof tasks +
counterexample annotations Transformations

SMT-LIB printer

output +
terms to query

mapping of these terms
to WhyML elements

CVC4

Values of SMT-LIB terms

Counterexample
at WhyML level

Fig. 5. Counterexamples at Why3 level.

When printing the task into SMT-LIB syntax, the SMT-LIB term corresponding to the
constant x will be collected and queried for counterexample value v. The counterexam-
ple will be displayed to the user in the form x = v and this equality will be associated
to the location of the goal G. For a Why3 task that is generated from WhyML or SPARK
program, we additionally need to annotate each variable with two things. First, with a
location in the original source code and second with the name of the variable in the
source language.

constant x "model" "model_trace:X" #file.adb 42 1 2#:int

goal G : x+x > 0

In such a case the counterexample will be displayed in the form X = v and associated
with location in file file.adb, line 42 (in practice inside a comment as in Figure 2).

Instrumenting WP calculus for counterexamples. The user expects that all successive
values of a variable, marked with label "model", appear in a counterexample. WP cre-
ates a fresh logical variable for every modification of a given variable. For variables
marked with label "model", counterexample labels are propagated to these fresh logical
variables. Moreover, each of these fresh variables is given the location of the expres-
sion that triggers its creation. As an example, let us consider the following WhyML
code implementing a simple loop:

let test_loop (x "model" "model_trace:X" : ref int): unit

requires { !x > 0 }

= while !x > 0 do (* counterexample: X = 1 *)

invariant { !x ≥ 0 }

x := !x - 2 (* counterexample: X = -1 *)

done

The variable x is marked with labels "model" and "model_trace" as counterexample
variable. The property preserving loop invariant is not proved, and a counterexample,
shown in comments, is generated. The formula encoding this property is shown in Fig-
ure 6. The variable x quantified at the top of the formula stands for the input value of
the variable x of the test_loop function. Then, WP creates another fresh variable x1

for the value of variable x at the beginning of some arbitrary loop iteration. Finally, WP
creates a fresh variable x2 for the value of variable x after the assignment statement.

forall x "model" "model_trace:X".

(x ≥ 2) →
(forall x1 "model" "model_trace:X@loop".

x1 ≥ 0 →
x1 > 0 →
(forall x2 "model" "model_trace:X@call".

(x2 = (x1 - 2)) → x2 ≥ 0)))

Fig. 6. Logical formula generated by WP.

As shown on Figure 6, the
"model" label on the variable x

of test_loop is propagated to
all those logical fresh variables
corresponding to x. A similar
propagation occurs with label "
model_trace" with some addi-
tional information (after the "@"

sign) to explain the origin of the
fresh variable. Source code loca-
tions are not displayed here for
readability.

let test_post

(x "model" "model_trace:X" : int)

(y "model" "model_trace:Y" :

ref int): unit

(* counterexample: X = 1 *)

ensures { "model_vc" !y ≥ x }

(* counterexample: Y = 0, X = 1 *)

= y := x - 1

(* counterexample: Y = 0 *)

Fig. 7. Counterexample located at postcondition
annotated with "model_vc"

Get values of variables from a given
assertion. In practice, it is useful for
the user to see values of counterexample
variables at the location of the assertion
that fails. As an example, see Figure 2.
Both initial and final value of variable
Val are displayed on line 6, which is the
location of the failed postcondition and
this information is also a part of the mes-
sage summarizing the unproved assertion
in the “messages” panel.

During WP, all modifications of vari-
ables relevant for counterexamples are
marked, and their values are displayed at
the respective locations that triggered the
modifications. However, the user expects
to see also, at the location of a failed check, the values of the variables involved in that
check. One way to display these variables at the location of a failed check would be
to retrieve the last point of modification of a variable and display this counterexam-

ple value at the location of a failed proof. However, this is quite complex to do when
multiple program paths are encoded in a VC.

That is why we preferred to explicitly mark variables that appear at the location of a
failed check. In WhyML programs, expressions that trigger generating a proof task are
marked with label "model_vc". These expressions can be asserts, preconditions, and
postconditions. We implemented a dedicated Why3 transformation that uses this label
to find the expression that triggers generating the current proof task. The transforma-
tion then marks all counterexample variables read in this expression as a part of the
counterexample at locations of the expression.

The example of Figure 7 shows a function with a postcondition marked with a label
"model_vc". This postcondition cannot be proved and a counterexample is generated.
At the location of the postcondition, the values of the variable x at the function start and
the variable y at exit are displayed.

type byte

function to_rep byte : int

predicate in_range (x : int) =

-128 ≤ x ≤ 127

axiom range_axiom : forall x:byte.

in_range (to_rep x)

meta "model_projection"

function to_rep

constant a "model_projected"

"model_trace:A" : byte

type r = {f : byte; g : bool}

function proj_f

"model_trace:.F" (x:r) : byte =

x.f

meta "model_projection"

function proj_f

function proj_g

"model_trace:.G" (x:r) : bool =

x.g

meta "model_projection"

function proj_g

constant b "model_projected"

"model_trace:B" : r

Fig. 8. Projections of abstract types and
records.

Projections in models. For some types,
SMT-LIB standard does not specify how val-
ues of these types should be displayed. Most
notably, this is the case for abstract types.
When an SMT solver is queried for values
of such a type, it usually returns just an in-
ternal reference. To display values of these
types in a counterexample, we decided to
project them to values of types that can be
displayed. To project values of a type T1 to
a type T2, a meta "model_projection" must
be declared taking as argument some func-
tion P1 from T1 to T2. If some element E of
type T1 is labeled with "model_projected",
then instead of querying for a value for E, the
solver is queried for a value of P1(E). Pro-
jections are applied transitively: if there is a
projection function P2 from T2 to T3, a value
of P2(P1(E)) is queried. Moreover, if there
are more than one projection for a projected
type, all of them are applied. Projecting val-
ues is implemented as a Why3 transforma-
tion intro_projections_cntexmp.

Figure 8 defines an abstract type
byte to represent integers from -128
to 127. Values of this type can be pro-
jected to integers using function to_rep.
This function is marked as a projec-
tion using meta "model_projection".
The variable a of type byte is marked with
the label "model_projected". This means that a will be queried in counterexamples
and will be projected from byte to int using to_rep.

Querying record values reuses projection mechanism to extract their fields. For each
field, a projection function is defined, marked using meta "model_projection", and
annotated with a "model_trace" label specifying the name of the field. When the trans-
formation intro_projections_cntexmp uses this function to project a record value to
the record field, it adds the name of the field to the content of "model_trace" label of
the record value. Remember that projections are applied transitively: if a field is of a
type with a defined projection, it is further projected. Figure 8 shows an example of
definition of record type r with fields f and g. Functions proj_f and proj_g project
a value of type r to field f and g and they are annotated with "model_trace" labels
capturing the names of the fields that will be displayed in a counterexample. The con-
stant b is marked to be queried for a counterexample with "model_projected" label
meaning that the value must be projected before being displayed and it is annotated
with "model_trace" label that captures the name of the variable that will be displayed
in a counterexample.

Arrays. SMT-LIB does not define how values of array types should be output in a
counterexample. To get values of array types, we rely on the form in which values of
array types are returned by the CVC4 solver: an array as a constant array and series of
store operations defining relevant indices. Here are two examples of array values that
CVC4 may return:

(store (store ((as const (Array Int Int)) 0) 1 2) 3 4)

((as const (Array Int (Array Int Int))) ((as const (Array Int Int)) 0))

The first array is a single-dimensional array with index 1 equal to 2, index 3 equal to
4, and other indices equal to 0. The second array is a two-dimensional array with all
indices equal to 0. The values stored in the array may be of abstract or record types
so we need to project them. The problem is that we cannot proceed as for records
by introducing projections for each array index because there are infinitely many of
them. To overcome this problem, for an array orig_arr that should be queried for a
counterexample and has values of an abstract type t_val, a projection function pf_val

from the abstract type t_val to concrete type t_val_c is defined. Then, new array
proj_arr with values of the type t_val_c is defined together with an axiom stating that
projections of values in the original array are equal to the values in the new array:

constant proj_arr: map int t_val_c

axiom proj_axiom : (forall i : int. proj_arr[i] = pf_val(orig_arr[i]))

Instead of querying the solver for the original array, the solver is queried for the new,
projected array.

3.4 Building Counterexamples for SPARK

A SPARK program is translated by the tool gnat2why into a WhyML program with
counterexample annotations. Why3 generates VCs and tries to prove each resulting
proof task with selected provers. If all fail, the task is split into smaller tasks. When a
task can be neither proved nor split, it is attempted to be proved in the counterexam-
ple mode described in Section 3.3. The generated counterexample is returned back to
gnat2why and post-processed, before being displayed to the user.

Generating WhyML code. gnat2why marks all WhyML elements corresponding to dec-
larations of SPARK variables or to declarations of arguments of SPARK functions to
be part of a counterexample using "model" or "model_projected" labels, generates
projection functions for abstract and record types generated by gnat2why and marks
WhyML elements that trigger generating of a VC by "model_vc" labels. gnat2why also
generates "model_trace" labels storing traceability information to corresponding ele-
ments in SPARK program. Instead of storing names, "model_trace" labels store unique
identifiers from SPARK internal representation (AST). gnat2why generates Why3 loca-
tion tags, which make it possible to explicitly specify source code locations of WhyML
elements.

Post-processing counterexamples. The counterexample returned from Why3 to
gnat2why is a map from locations in SPARK source code to lists of counterexample
elements at these locations. A counterexample element consists of an identifier and a
value. The identifier has the form x. f1 . . . fn (n ≥ 0) where x (resp. fi) is the internal
AST identifier of a variable (resp. field). Counterexample elements are post-processed
in the following way: identifiers are mapped back to names in the source code, elements
in the same source code line corresponding to same record are grouped together as an
aggregate (as in Figure 3). Values are converted to SPARK syntax.

3.5 Experimental Evaluation

Our implementation of counterexample generation is publicly available in Why3 0.87
and SPARK 16.0. On the full SPARK regression test-suite consisting in 1472 tests, en-
abling counterexample generation only induce a small slowdown if any on all supported
platforms.

Figure 9 presents the results on the section of the test-suite that was initially created
for the Riposte tool [25], which was used in the previous versions of SPARK to gen-
erate counterexamples. Overall, in most of the cases, counterexamples were obtained
and they were of a good quality. The main difficulty for counterexample generation
was the use of non-linear arithmetic (tests arithmetic, alpha_launch_examples, and
victor_divmod_rules) and the presence of arrays (tests array_aggregates, arrays,
simple_arrays, arrays_multidim, array_application, and complex_arrays). In the
case of arrays, this is likely caused by the additional projections and axioms that are
generated for arrays when generating counterexamples, as described in Section 3.3.

4 Conclusions and Perspectives

We added the generation of counterexamples to SPARK 2014, by exploiting the model
generation feature of SMT solvers, and appropriately instrumenting the process of gen-
erating VCs from a SPARK program, through the intermediate WhyML program, weak-
est precondition calculus and logic transformations. Instead of complex post-processing
of the complete model that would be returned by the SMT-LIB get-model command,
we instrumented the processing steps so that only the adequate terms are queried with

Test VCs Unproved Counterexamples Good Counterexamples
Number Percentage Number Percentage

basic 42 4 4 100% 4 100%
logic 46 11 11 100% 11 100%
enums 34 4 4 100% 4 100%
real_world 10 4 4 100% 4 100%
mixed 9 2 2 100% 2 100%
array_algorithms 44 2 2 100% 2 100%
records 115 19 18 95% 18 95%
alpha_launch_examples 17 8 6 75% 6 75%
array_aggregates 172 25 19 76% 19 76%
arrays 51 13 12 92% 8 62%
simple_arrays 109 50 50 100% 30 60%
usergroup_examples 15 4 2 50% 2 50%
victor_divmod_rules 58 9 4 44% 4 44%
arithmetic 126 24 10 42% 10 42%
arrays_multidim 20 13 10 77% 2 15%
array_applications 44 9 1 11% 1 11%
complex_arrays 39 10 10 100% 0 0%

All 951 211 169 80% 127 60%

Fig. 9. Results of counterexample generation on Riposte tests.

the get-value command, and then a simple mapping from the terms queried to the
initial program variables can be applied to build the counterexample.

Recent user training sessions showed a clear appeal of counterexamples to users,
which motivated our choice to enable them by default in SPARK (versions 16.0 and
later). Based on our initial feedback with the use of counterexamples inside SPARK,
counterexamples may be the most useful feature in SPARK for investigating unproved
properties, after the possibility to execute contracts and assertions in tests.

Related Work. The model returned by a SAT or SMT solver on a satisfiable problem is
exploited in several areas of program verification, a major case being the one of model
checking, as for example in the Alloy analyzer [26] or the CBMC model checker for C
programs [15]. In the case of deductive verification, generating counterexamples is not
as common. The Riposte tool based on answer set programming [25] was used in the
previous versions of SPARK to generate counterexamples, but only at the level of VCs
without source traceability. There is also the case of the NitPick tool inside the Isabelle
proof assistant [4].

In the more specific case of program verifiers using SMT solvers, the idea of in-
strumenting the generation of VCs originates from the old system ESC/Modula-3, that
generates VCs for the Simplify solver, adding specific labels to determine the source
location and the path of execution leading to the potential program error. The same
mechanism was reused in ESC/Java [19]. The potential counterexample proposed by
Simplify can be displayed to the user, but is very hard to understand because of the

various encodings from the input program to the VC. Only recently a way to reinter-
pret the counterexample in terms of variables of the source code was designed in the
OpenJML framework [12]. They use SMT-LIB command get-value to get counterex-
ample values for all sub-expressions in the original program, supporting values of scalar
types only, and also to get values of block predicates, which they use to determine the
control-flow path of the failed assertion [11]. In SPARK, it is possible to generate VCs
for individual control-flow paths and display control-flow path for such VCs if they
cannot be proved. In OpenJML, SMT-LIB VCs are generated directly, without using
intermediate representation. On one hand, this make it easier to maintain mapping be-
tween source-code variables and logical variables. On the other hand, using Why3 as
intermediate language makes it possible to use the power of Why3 transformations to
transform a proof task to forms well suited for different provers. Another deductive
program verification framework that makes use of SMT counter-models is the Boogie
Verifier Debugger [18]. Boogie is used as an intermediate language by Dafny [20] and
VCC [10]. Boogie also has its own way of reinterpreting the counter-model, generated
by its back-end prover Z3, in terms of the source code. Besides scalar values, Boogie
makes it possible to display the content of dynamically allocated data structures such as
objects. Unlike SPARK and OpenJML, Boogie encodes locations and source variable
names in the generated VC, uses SMT-LIB command get-model to get whole SMT-
LIB counterexample and then relies on reverse transformations to map the SMT-LIB
counterexample into the source code.

Both OpenJML and Boogie present the counterexample in a user-friendly manner,
in their respective graphical interfaces (Eclipse, Visual Studio). Their presentation is a
bit different from our way of presenting the counterexample, where we give values of
relevant variables inside comments at proper locations of the source code. We have no
evidence that our approach is better than these other approaches in terms of quality of
the generated counterexamples. We designed our approach so that it is the best fit for
SPARK users.

Another recent approach for helping users in debugging their specification and code
is to use some kind of symbolic execution, as is proposed by the Visual Studio dynamic
debugger [23] and the Verifast verifier [17].

Future Work. During this work, we encountered a few issues that could be addressed
by authors of SMT solvers.

First, SMT-LIB standard does not fix any rule for displaying model values. In par-
ticular, it is not standardized how values of array types and bit-vector types should be
displayed. This need for standardization is already known and it is likely to appear in
the near future. Related to this, we believe that the feature of projections that we in-
troduced could be handled by the solvers themselves as part of the standard to display
counterexamples. This would be particularly useful in the case of arrays: the solution we
proposed, involving the introduction of another array and an axiom, makes the problem
harder to prove because of the additional universal quantification.

A second issue concerns the validity of generated counterexamples. In principle, one
should query SMT solvers for models only if the answer was ’sat’. However, on a VC
generated by a program verification task, most of the time the answer is ’unknown’ or

the solver hits the time limit given. As expected, in this case the model is not guaranteed
to be a true model. However, there are some cases where the model returned is trivially
wrong because it is not even a model of the ground part of the goal. A suggestion
for improvement is as follows: since the main source of incompleteness comes from
the quantified hypotheses, there could be two different modes of operation, with two
corresponding time limits. A first time limit, say a “soft” one, gives the time during
which the solver is allowed to instantiate quantifiers as it wants. After this soft time
limit is reached, a “hard” time limit should give the solver extra time to continue its
search but in a specific mode where no new quantifier instantiation is performed. In this
second mode, it is likely that the solver would terminate its search, and if a model is
returned, it would be valid with respect to the ground part of the goal. If such modes
were implemented in SMT solvers, it would be of major interest for counterexample
generation.

Another technical issue is the ability to support model generation for all supported
theories. This is not always the case, for example CVC4 does not produce models when
non-linear arithmetic is selected. It is understandable since this logic is undecidable,
there is no way to be sure that the model returned would be a true one. However, a
similar degraded mode as described above could be implemented, for example in the
degraded mode non-linear parts of the formulas could be ignored.

To double-check that a counterexample produced by our technique is a true one, one
may consider turning it into a test case and run the program with the given values. This is
unfortunately not an easy task because of the procedure calls: a procedure has a concrete
semantics given by concrete execution and abstract semantics given by contracts. Since
only the abstract semantics is visible to a solver, it may happen that a counterexample
is true with respect to the abstract semantics, but false with respect to the concrete
semantics and moreover it can happen that there is a different counterexample, not
returned by the solver, true with respect to both semantics. Thus, properly combining
counterexamples generated by failed proof attempts and run-time verification needs to
investigated further. Recent work by Christakis et al. [9] and Petiot et al. [24] pursue
such a direction.

Acknowledgements. We would like to thank David Cok, Clément Fumex, Rustan Leino,
Andrei Paskevich, Florian Schanda, as well as the anonymous reviewers for their useful
comments. We are pleased that a reviewer specifically agreed with us on “the suggested
improvement to SMT solvers regarding hard and soft limits” and another confirmed that
“the insights discussed as future work are very interesting”.

References
1. Barnes, J.: Programming in Ada 2012. Cambridge University Press (2014)
2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,

Tinelli, C.: CVC4. In: Computer Aided Verification. pp. 171–177. Springer (2011)
3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: 8th Int. Workshop

on Satisfiability Modulo Theories (2010)
4. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic

based on a relational model finder. In: Interactive Theorem Proving. LNCS, vol. 6172, pp.
131–146. Springer (2010)

5. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.: The Alt-
Ergo automated theorem prover (2008), http://alt-ergo.lri.fr/

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers.
In: Int. Workshop on Intermediate Verification Languages. pp. 53–64. Wrocław, Poland
(2011)

7. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3. International
Journal on Software Tools for Technology Transfer 17(6), 709–727 (2015)

8. Chapman, R., Schanda, F.: Are we there yet? 20 years of industrial theorem proving with
SPARK. In: Interactive Theorem Proving. LNCS, vol. 8558, pp. 17–26. Springer (2014)

9. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated environment for diag-
nosing verification errors. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer (2016)

10. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Theorem Proving in
Higher Order Logics. LNCS, vol. 5674. Springer (2009)

11. Cok, D.R.: Improved usability and performance of SMT solvers for debugging specifications.
Int. Journal on Software Tools for Technology Transfer 12(6), 467–481 (2010)

12. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse. In:
Formal Integrated Development Environments. Elec. Proc. Theoretical Computer Science,
vol. 149, pp. 79–92 (2014)

13. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program ver-
ification. In: Computer Aided Verification. LNCS, vol. 4590, pp. 173–177. Springer (2007)

14. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: European Sympo-
sium on Programming. LNCS, vol. 7792, pp. 125–128. Springer (2013)

15. Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with explain. In: Com-
puter Aided Verification. LNCS, vol. 3114, pp. 453–456. Springer (2004)

16. Hauzar, D., Marché, C., Moy, Y.: Counterexamples from proof failures in the SPARK pro-
gram verifier. Research Report 8854, Inria (2016), https://hal.inria.fr/hal-01271174

17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: A
powerful, sound, predictable, fast verifier for C and Java. In: NASA Formal Methods. LNCS,
vol. 6617, pp. 41–55. Springer (2011)

18. Le Goues, C., Leino, K.R.M., Moskal, M.: The Boogie Verification Debugger. In: Software
Engineering and Formal Methods. LNCS, vol. 7041, pp. 407–414. Springer (2011)

19. Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating error traces from verification-condition
counterexamples. Science of Computer Programming 55(1–3), 209 – 226 (2005)

20. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In: Formal
Integrated Development Environments. Elec. Proc. Theoretical Computer Science, vol. 149,
pp. 3–15 (2014)

21. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with SPARK. Cam-
bridge University Press (2015)

22. de Moura, L., Bjørner, N.: Z3, an efficient SMT solver. In: Tools and Algorithms for the
Construction and Analysis of Systems. LNCS, vol. 4963, pp. 337–340. Springer (2008)

23. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification attempts. In:
Formal Methods. LNCS, vol. 6664, pp. 73–87. Springer (2011)

24. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails? testing
helps to find the reason (2015), http://arxiv.org/abs/1508.01691

25. Schanda, F., Brain, M.: Using Answer Set Programming in the Development of Verified Soft-
ware. In: Technical Communications of the 28th Int. Conf. on Logic Programming. LIPIcs,
vol. 17, pp. 72–85. Leibniz-Zentrum fuer Informatik (2012)

26. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS. pp. 632–647 (2007)

http://alt-ergo.lri.fr/
https://hal.inria.fr/hal-01271174
http://arxiv.org/abs/1508.01691

	Counterexamples from Proof Failures in SPARK

