
HAL Id: hal-01519053
https://inria.hal.science/hal-01519053v1

Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Qualitative Method for Mining Open Source Software
Repositories

John Noll, Dominik Seichter, Sarah Beecham

To cite this version:
John Noll, Dominik Seichter, Sarah Beecham. A Qualitative Method for Mining Open Source Software
Repositories. 8th International Conference on Open Source Systems (OSS), Sep 2012, Hammamet,
Tunisia. pp.256-261, �10.1007/978-3-642-33442-9_18�. �hal-01519053�

https://inria.hal.science/hal-01519053v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Qualitative Method for Mining Open Source
Software Repositories

John Noll, Sarah Beecham, and Dominik Seichter

Lero, the Irish Software Engineering Centre,
Department of Computer Science and Information Systems,

University of Limerick, Limerick, Ireland
{john.noll,sarah.beecham,dominik.seichter}@lero.ie

Abstract. The volume of data archived in open source software project reposi-
tories makes automated, quantitative techniques attractive for extracting and an-
alyzing information from these archives. However, many kinds of archival data
include blocks of natural language text that are difficult to analyze automatically.
This paper introduces a qualitative analysis method that is transparent and re-
peatable, leads to objective findings when dealing with qualitative data, and is
efficient enough to be applied to large archives.
The method was applied in a case study of developer and user forum discussions
of an open source electronic medical record project. The study demonstrates
that the qualitative repository mining method can be employed to derive useful
results quickly yet accurately. These results would not be possible using a strictly
automated approach.

Key words: Open Source Software, Electronic Medical Record, Qualitative Research

1 Introduction

The sheer volume of data archived in open source software project repositories makes
automated, quantitative techniques attractive for extracting and analyzing information
from these archives.

However, some kinds of archival data - bug reports, commit log entries, email
messages, and forum postings - include large blocks of natural language text that are
difficult to analyze automatically. Software development is a human-intensive activity;
these qualitative data convey important information about a project that cannot be ex-
plained by numbers alone. For example, analyzing project discussion forum postings
can help to explain how users are supported, who is reporting and fixing bugs, who
actually commits enhancements, and how requirements are elicited.

While qualitative techniques employing human interpretation are necessary to an-
alyze such data, qualitative analysis is a labor-intensive activity; as such, the amount
of data that can be analyzed is limited by the capabilities of human researchers.

This paper introduces a hybrid data-mining technique that combines automated
data extraction with human qualitative analysis. The approach is transparent and re-
peatable, produces objective results from qualitative data, and is suitable for a reason-
ably large project archive.

2 John Noll, Sarah Beecham, and Dominik Seichter

At the core of the technique is a classification scheme for classifying natural lan-
guage fragments such as mailing list messages An iterative process is employed to
develop a set of categories to classify natural language text, such as discussion forum
posts. Inter-rater agreement measures are used to refine the list until a high degree of
agreement among researchers is achieved. The resulting categories are then used to
classify a representative sample of text artifacts. The results can then be aggregated to
provide a quantitative summary of qualitative data.

We describe the method in the next section, including use of inter-rater agreement
analysis to refine the coding scheme. The last two sections present related work and
conclusions.

2 Method

The method proposed by this study employs content analysis Krippendorff [10], a clas-
sification technique that is frequently applied to interviews and focus group data. The
objective of content analysis is to ask quantitative questions about qualitative data. The
approach is similar to the grounded theory method, but differs from grounded theory
in that the results are quantitative rather than qualitative: content analysis produces re-
sults such as, “49% of messages submitted to project mailing lists were sent by core
developers.”

Our method is adapted from Burnard [2] and comprises the following specific
steps:

Develop Initial Code Set. The first step is to create an initial set of codes by analyzing
a small, representative sample of text fragments. Typically these would be elements in
the project repository, such as bug reports, discussion forum posts, commit log entries,
etc.

This is an inductive step: the researcher reads a fragment and invents a code (word
or phrase) that captures the meaning of the fragment. During this step, the list of codes
grows and evolves as more fragments are read and the research becomes familiar with
the content; the resulting list may be large and therefore require consolidation.

Coalesce Codes into Themes. A good coding scheme has a small set of codes, with
clear definitions, so that the scheme is easy to apply and can be performed quickly.
As such, the next step is iteratively coalesce codes with similar meaning into a single
category, and assign a new code to the category. When the list has coalesced into a
handful of categories with distinct meanings, the process ends and the category codes
become the codes that are assigned to text fragments during the content analysis phase.

Create Checklist. A checklist describing how to categorize a given text fragment is
developed from the set of disjoint codes from the previous step. This checklist guides
the coding process, providing a step-by-step decision list for the researcher to use to
code the data.

A Qualitative Method for Mining Open Source Software Repositories 3

Refine Codes and Checklist. The set of codes and associated checklist are evaluated
and refined using a series of trials involving two or more researchers. The goal is to
achieve a high degree of agreement among researchers about which code should be
assigned to a given text fragment. This is achieved by having two researchers apply
the checklist to a small sample of text fragments independently. The results are then
compared using crosstabulation to see how they agree; disagreements are discussed
to determine how the checklist or set of codes could be refined to make the choice
of correct code more clear, and the process is repeated until an acceptable level of
agreement is achieved.

Table 1. Crosstabulation table comparing coding of two researchers.

Sarah

John fix impl issue other prop Total

fix 3 0 0 3 0 6
impl 0 2 0 2 0 4
issue 1 1 15 0 0 17
other 1 1 2 21 2 27
prop 0 0 0 2 3 5

Total 5 4 17 28 5 59

Table 1 is an example of a crosstabulation created from a trial coding exercise used
to refine the coding scheme and checklist for the case study described in [14]. Both
the rows and columns are labelled with codes from the coding scheme. The cells show
the number of messages coded with the row label by the first researcher (John) that
were coded with the column label by the second researcher (Sarah). The diagonal,
therefore, represents agreement. The table shows that both John and Sarah assigned
seventeen issue codes; of these, fifteen were assigned by both researchers to the same
text fragments. This table makes clear where disagreements lie: prop has only 40%
agreement (frac25), impl has 50% (24), and fix has 60% (35), while both issue (1517) and
other (2127) have more than 75% agreement.

Assess Inter-rater Agreement. Cohen’s kappa [1, 3] is a statistic that attempts to assess
the degree of agreement between the codes assigned by two researchers working in-
dependently on the same sample. Cohen’s kappa accounts for the reality that a certain
level of agreement would be achieved even if codes were assigned at random; as such,
it is more conservative than simply calculating the percentage of agreement between
two researchers, which does not account for randomness.

Cohen’s kappa produces values between 0 and 1, where 0 indicates poor agree-
ment, and 1 perfect agreement. Landis and Koch [11] proposed an assessment scheme
for determining strength of agreement from Cohen’s kappa values: less than .2 repre-
sents “slight” agreement; a value between .4 and .6 represents “moderate” agreement;
a kappa statistic above .8 is considered a sign of “almost perfect” agreement. Re-
searchers have to balance agreement against the effort required to refine the checklist

4 John Noll, Sarah Beecham, and Dominik Seichter

and coding scheme in order to achieve high agreement. If “good” agreement has been
achieved (kappa value between .6 and .8), and successive refinement attempts produce
incremental or no improvement, it may be best to move on to actual coding.

Code the Data. In this phase, several researchers apply the coding checklist to code a
large sample extracted from the project archives.

Analyze Coded Data. For example, the case presented in [14], coded discussion fo-
rum posts were combined with author IDs extracted from the discussion forums and
commit logs, to create a picture of what kinds of activities different groups of project
participants were involved in.

2.1 Validation

The method was applied to a case study of an open source software project [14]. The
case study results show that useful conclusions can be drawn from minimally struc-
tured natural language data that are not easily analyzed using an automated approach.
Also, the method for iteratively developing a classification scheme using inter-rater
agreement analysis proved to be an effective approach for developing a repeatable yet
efficient coding scheme. Finally, we found that qualitative analysis techniques can be
employed to derive results quickly and accurately through careful transparent and val-
idated analysis, and dividing the work among several researchers.

3 Related Work

Testing inter-rater reliability is not a new concept, and has been used in software engi-
neering qualitative research.

For example, Henningsson and Wohlin [9], used Cohen’s kappa statistic to mea-
sure whether eight people could agree on how to classify faults independently. Other
researchers used the same method to test the reliability of their fault classifications,
with mixed results. However, in contrast to the approach described in this paper, both
Henningsson and Wohlin [9], and Hall et al. [8], used the interrater measure to test
agreement post hoc, and not as a tool to resolve problems with the coding scheme.
However, El Emam and Wieczorek [4] were able to use poor kappa values to go back
to look at specific fault types that were causing low repeatability of code defect classi-
fications.

Researchers studying software process assessment have used Cohen kappa statistic
to test the external reliability of interrater agreement [5–7, 12, 15]. As software process
assessment can be subjective, researchers identify the need to check the reliability of
the results. Kohen’s kappa has also been applied in fuzzy systems [16], and in the
subjective evolvability evaluation of object-oriented software [13]. Also, Vilbergsdttir
et al. [17] used kappa statistics over several iterations to revise their scheme defining
usability attribute values.

To our knowledge this process has not been used in classifying data mined from
software repositories, and therefore as we identify this to be an area that is potentially

A Qualitative Method for Mining Open Source Software Repositories 5

high in subjectivity, we think the community can benefit from assessing the quality of
classifications prior to making any judgements about what the data are telling us.

4 Conclusions

This paper presented an approach to software repository data mining based on qualita-
tive content analysis, a data analysis technique that is appropriate for situations where
data cannot be easily quantified by automated data mining techniques. The approach
was successfully applied in a case study of an open source software project.

The results of the case study show that useful conclusions can be drawn from mini-
mally structured natural language data that are not easily analyzed using an automated
approach. Further, the application of inter-rater agreement analysis in the case study
demonstrates how an effective coding scheme can be created that is transparent, repeat-
able, and consistent. This allows several researchers to work independently on content
analysis, while still producing results that can be reliably aggregated. Finally, our ex-
perience shows the method is efficient as well as effective: researchers were able to
code more than 60 messages per hour, meaning we were able to complete the coding
and analysis in a week working part-time.

5 Acknowledgments

This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303 1
to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

References

[1] R. Bakeman. Behavioral observation and coding. In H. T. Reis and C. M. Judge,
editors, Handbook of research methods in social and personality psychology,
pages 138–159. Cambridge University Press, 2000.

[2] P. Burnard. A method of analysing interview transcripts in qualitative research.
Nurse Education Today, 11:461–466, 1991.

[3] M. E. Dewey. Coefficients of agreement. British Journal of Psychiatry, 143:
487–489, 1983.

[4] K. El Emam and I. Wieczorek. The repeatability of code defect classifications. In
Proceedings, Ninth International Symposium on Software Reliability Engineer-
ing, Nov. 1998.

[5] K. El Emam, D. Goldenson, L. Briand, and P. Marshall. Interrater agreement
in SPICE-based assessments: some preliminary results. In Proceedings, Fourth
International Conference on the Software Process, Dec. 1996.

[6] K. El Emam, J.-M. Simon, S. Rousseau, and E. Jacquet. Cost implications of
interrater agreement for software process assessments. In Proceedings, Fifth In-
ternational Software Metrics Symposium, Nov. 1998.

6 John Noll, Sarah Beecham, and Dominik Seichter

[7] P. Fusaro, K. El Emam, and B. Smith. Evaluating the interrater agreement of
process capability ratings. In Proceedings, Fourth International Software Metrics
Symposium, Nov. 1997.

[8] T. Hall, D. Bowes, G. Leibchen, and P. Wernick. Evaluating three approaches to
extracting fault data from software change repositories. In M. A. Babar, M. Vieri-
maa, and M. Oivo, editors, Product-Focused Software Process Improvement, vol-
ume 6156 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2010.

[9] K. Henningsson and C. Wohlin. Assuring fault classification agreement - an
empirical evaluation. In International Symposium on Empirical Software Engi-
neering (ISESE ’04), Aug. 2004.

[10] K. Krippendorff. Content Analysis: An Introduction to Its Methodology. Sage
Publications, 2nd edition, 2004.

[11] J. R. Landis and G. G. Koch. An application of hierarchical kappa-type statistics
in the assessment of majority agreement among multiple observers. Biometrics,
33(2):363–374, June 1977.

[12] H.-Y. Lee, H.-W. Jung, C.-S. Chung, J. M. Lee, K. W. Lee, and H. J. Jeong.
Analysis of interrater agreement in ISO/IEC 15504-based software process as-
sessment. In Proceedings Second Asia-Pacific Conference on Quality Software,
2001.

[13] M. V. Mantyla. An experiment on subjective evolvability evaluation of object-
oriented software: explaining factors and interrater agreement. In International
Symposium on Empirical Software Engineering, Nov. 2005.

[14] J. Noll, S. Beecham, and D. Seichter. A qualitative study of open source soft-
ware development: the OpenEMR project. In 5th International Symposium on
Empirical Software Engineering and Measurement (ESEM ’11), Banff, Alberta,
Canada, Sept. 2011.

[15] H.-M. Park and H.-W. Jung. Evaluating interrater agreement with intraclass cor-
relation coefficient in SPICE-based software process assessment. In Proceedings,
Third International Conference on Quality Software, Nov. 2003.

[16] S. Vieira, U. Kaymak, and J. Sousa. Cohen’s kappa coefficient as a performance
measure for feature selection. In 2010 IEEE International Conference on Fuzzy
Systems (FUZZ), July 2010.

[17] S. G. Vilbergsdttir, E. T. Hvannberg, and L.-C. Law. Classification of usability
problems (CUP) scheme. In Proceedings of the 4th Nordic conference on Human-
computer interaction (NordiCHI ’06), 2003.

