
HAL Id: hal-01528377
https://inria.hal.science/hal-01528377v1

Submitted on 29 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse Rational Univariate Representation
Angelos Mantzaflaris, Éric Schost, Elias Tsigaridas

To cite this version:
Angelos Mantzaflaris, Éric Schost, Elias Tsigaridas. Sparse Rational Univariate Representation. IS-
SAC 2017 - International Symposium on Symbolic and Algebraic Computation, Jul 2017, Kaiser-
slautern, Germany. pp.8, �10.1145/3087604.3087653�. �hal-01528377�

https://inria.hal.science/hal-01528377v1
https://hal.archives-ouvertes.fr


Sparse Rational Univariate Representation

Angelos Mantzaflaris
RICAM, Austrian Academy of

Sciences
Altenberger Str. 69, 4040

Linz, Austria
angelos.mantzaflaris@oeaw.ac.at

Éric Schost
Computer Science

Department
University of Waterloo

eschost@uwaterloo.ca

Elias Tsigaridas
Sorbonne Universités, UPMC
Univ Paris 06, CNRS, INRIA,
Laboratoire d’Informatique de
Paris 6 (LIP6), Équipe POLSYS,
4 place Jussieu, 75252 Paris

Cedex 05, France
elias.tsigaridas@inria.fr

ABSTRACT
We present explicit worst case degree and height bounds for the
rational univariate representation of the isolated roots of polynomial
systems based on mixed volume. We base our estimations on height
bounds of resultants and we consider the case of 0-dimensional,
positive dimensional, and parametric polynomial systems.
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1. INTRODUCTION
The algorithms for solving polynomial systems are in the heart of

algebraic algorithms. An important question in this context is how
to represent the solutions of 0-dimensional systems. A common rep-
resentation consists in expressing each coordinate of the solutions
as a rational function evaluated at the roots of a univariate polyno-
mial. We find this representation and its variants with many different
names in literature. For example, it appears as Kronecker repre-
sentation, since Kronecker initiated it, as rational parametrization,
or Geometric Resolution [28], see also [32, 38], rational univariate
representation (RUR) [35], see also [1], or primitive element [10].

In this representation it is essential to estimate precise bounds for
both the degree and the height of the involved (univariate) polynomi-
als; especially in the case where the input polynomials have integer
coefficients. Such bounds are important both from the theoretical
and the practical point of view. On the theoretical side, we use them
to estimate the arithmetic and Boolean complexity of the various
algorithms for solving polynomial systems. From the practical point
of view they are important because they affect the realization and
the performance of multi-modular algorithms.

The existing estimates on the degree and the height of the poly-
nomial involved in the representation are based on total degree or
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Bézout bounds, on the height theory of varieties and on the theory
of Chow forms, [1, 15, 35]. This representation is related to the
arithmetic Nullstellensätz [18, 30, 39, 40], see also [33] for the
most recent approach, and the separation bounds of the polynomial
systems [21]. There are also dedicated estimates for the special
cases of bivariate [8, 34], bilinear [23], and multi-homogeneous
[36] polynomial systems. Our references represent only the tip of
the iceberg of the existing ones on the subject. We encourage the
reader to refer to the references of the cited bibliography.

We follow a more elementary approach. We deduce the repre-
sentation of the roots using resultant computations. This allows us
to deduce precise degree and height (or bitsize) of the polynomials
in the representation using the maximum bitsize of the coefficients
of the input polynomials and the mixed volume of the system. The
latter depends on the Newton polytopes, and thus on the sparsity of
the input polynomials. This characteristic makes the bounds output
sensitive, and to the best of our knowledge, these are the first bounds
with this property. Moreover, our bounds encapsulate and generalize
all the previous ones. Because of the use of mixed volume, which is
closely connected with sparse resultants, we call the representation
Sparse Rational Univariate Representation (SRUR).

The simplicity of our approach allows us to go further. We bound
the SRUR for the isolated zeros of positive dimensional polynomial
systems. Furthermore, we treat an even more generic case; we
estimate bounds for the SRUR of the isolated zeros of parametric
polynomial systems. We also study the complexity of computing
SRUR, when resultant computations for polynomial systems are
available. We give an example by studying the complexity of solv-
ing tensor-structured polynomial systems. For such systems there is
matrix formula for the resultant, which we use for the resultant com-
putation that SRUR needs. Other approaches rely on Gröbner basis
computations. Our algorithms are of Monte Carlo type. The com-
putation principle of our technique applies uniformly to all cases:
0-dimensional, positive dimensional, parametric polynomial sys-
tems.

1.1 Organization of the paper
The rest of the paper is organized as follows: In the next section

we present the notation that we use throughout the paper and some
results that we need for mixed volume of polynomial systems. In
Sec. 2 we derive the SRUR of the roots of a 0-dimensional polyno-
mial system using resultant computations, we present an algorithm
to compute it (Sec. 2.2), and we estimate explicit degree and height
bounds (Sec. 2.4). In Sec. 3 we use the bounds of SRUR to deduce
the bit complexity of solving tensor-product polynomial systems.
Finally, in Sec. 4 we consider the SRUR for positive dimensional
systems and in Sec. 5 the SRUR for parametric polynomial systems.
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1.2 Notation and preliminaries
O, resp. OB , means bit, resp. arithmetic, complexity and ÕB ,

resp. Õ, means we are ignoring logarithmic factors. For a poly-
nomial f ∈ Z[x1, . . . , xn], where n ≥ 1, deg(f) denotes its total
degree, while degxi(f) denotes its degree with respect to xi. More-
over, lc(f) stands for the the leading coeffcient wrt a total degree
ordering. By H(f) we denote the height, that is the maximum mag-
nitude of the coefficients, of f and by h(f) we denote the maximum
bitsize of the coefficients of f (including a bit for the sign), i.e.,
the number of bits to write them as binary integers. For a ∈ Q,
h(a) ≥ 1 is the maximum bitsize of the numerator and denominator.
We use [D] to denote the set {1, . . . , D}.

Let n > 1 be the number of variables. Let xa denote the
monomial xa11 · · ·xann , with a = (a1, . . . , an) ∈ Zn. In the
multivariate case, the input is a system of Laurent polynomials
f1, . . . , fn ∈ K[x±1 , . . . , x

±
n ] = K[x,x−1], where K ⊂ C is the

coefficient field. Since it is possible to multiply Laurent polynomials
by monomials without affecting their nonzero roots, in the sequel
we assume there are no negative exponents. Let the polynomials be

fi =
∑mi

j=1
ci,jx

ai,j , 1 ≤ i ≤ n. (1)

Let the total degree of fi be di and d = max1≤i≤d di. The set
{ai,1, . . . ,ai,mi} ⊂ Zn is the support of fi; the Newton polytope
Qi is the convex hull of the support. Let MV(Q1, . . . , Qn) > 0 be
the mixed volume of convex polytopes Q1, . . . , Qn ⊂ Rn.

We consider the well-constrained polynomial system

(Σ) : f1(x) = f2(x) = · · · = fn(x) = 0, (2)

where fi ∈ Z[x]. In Sec. 2 we assume that the corresponding variety
is zero-dimensional and does not have any positive-dimensional
components even at infinity. We will drop this assumption in Sec. 4.
We are interested in the system’s toric roots, which lie in (C∗)n.

Let Q0 be the unit standard simplex. Let #Qi denote the number
of lattice points in the closed polytope Qi and
Mi = MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn).

Wlog, assume dim
∑n
i=0Qi = n and dim

∑
i∈I Qi ≥ j for any

I ⊂ {0, . . . , n} with |I| = j, in other words the system is essential;
otherwise, its roots would be defined by a smaller system [42].

We consider the sparse (or toric) resultant of a system of n+ 1
polynomial equations in n variables, assuming we have fixed the
n + 1 supports. It provides a condition on the coefficients for the
solvability of the system, and generalizes the classical resultant of
n homogeneous polynomials, by taking into account the supports
of the polynomials. A standard way to study a well-constrained
system (Σ) through resultants is to add a linear polynomial f0 and
consider the u−resultant of the overconstrained system; the latter is
denoted by (Σ0). The overconstrained system has Newton polytopes
Q0, Q1, . . . , Qn. The following well-known theorem relates the
number of isolated toric solutions with the mixed volume.

THEOREM 1.1. [5, 14, 27] For f1, . . . fn ∈ C[x,x−1] with
Newton polytopes Q1, . . . , Qn, the number of common isolated
solutions in (C∗)n, multiplicities counted, does not exceed M0 =
MV(Q1, . . ., Qn), independently of the corresponding variety’s
dimension.

LetD be the the number of distinct roots∈ (C∗)n of (Σ), soD ≤
M0. For fi ∈ Z[x±1], let h(fi) = τi ≤ τ , 1 ≤ i ≤ n. Let vol(·)
stand for Euclidean volume, and #Qi for the number of lattice
points in Qi; the inequality connecting #Qi and polytope volume
in Table 1 is in [6]. Table 1 summarizes some important notation
and states certain immediate properties. We provide straightforward
upper bounds for the various quantities using the total degrees of

D ≤M0 ≤
n∏
i=1

di ≤ dn, B ≤ (n− 2)

(
D

2

)
≤ n

n∏
i=1

d2i ≤ nd2n,

Mi ≤
∏

1≤j≤n
j 6=i

dj ,≤ dn−1
∑n

i=1
Mi ≤ ndn−1,

#Qi ≤ n! vol(Qi) + n ≤ dni + n ≤ 2dni ,

C =

n∏
i=1

‖fi‖Mi
∞ ≤ 2τ

∑n
i=1 Mi ≤ 2nτd

n−1

,

% =

n∏
i=0

(#Qi)
Mi ≤ 22n

∑n
i=0 Mi lg(di) ≤ (2dn)d

n

Table 1: Notation and inequalities needed for various bounds.

the input polynomials. We can use these rough estimates to obtain
simpler, albeit less accurate, bounds for SRUR.

2. THE SRUR IN THE 0-DIM CASE
Assume that (Σ), as in Eq. (2), is a 0-dimensional polynomial

system. Since our goal is to derive worst case bounds, we further
assume that the system has the maximum number of roots, that is
M0. Following the technique of u-resultant, we add an equation to
(Σ) to obtain the system:

(Σ0) : f0(x) = f1(x) = · · · = fn(x) = 0, (3)

where f0 = t− g0(x), (4)

t is a new variable, and g0 =
∑n
i=1 ci xi +

∑
j bjx

aj is a polyno-
mial of degree d0 containing a linear form in the variables xi and it
is separating; that is ifα and β are two different roots of the system,
then g0(α) 6= g0(β). We assume that g0 has integer coefficients.

The polynomial g0, besides the separating property, should also
have some other genericity properties that help us compute a repre-
sentation of the roots of the system. These properties imply some
restrictions on the coefficients of g0 and eventually determine their
height. We detail these conditions in the sequel.

Let αi = (αi,1, . . . , αi,n) ∈ Cn for i ∈ [D], with D ≤ M0,
be the number of distinct roots of the system. We denote by
mult((Σ),αi) the multiplicity of αi as a root of the system (Σ),
or the mult(αi) if the system we are referring to is clear from the
context. Notice that

∑D
i=1 mult(αi) = M0.

We consider the resultant of (Σ0) that eliminates x. Then

R1 = res(f0, f1, . . . , fn) = lc(R1)

D∏
i=1

(t− g0(αi))
mult(αi),

the square-free part of which, considering it as a polynomial in t, is

R(t) = SquareFree(R1) = lc(R)
∏D

i=1
(t− g0(αi)). (5)

For an recent and extensive discussion on the leading coefficient of
R1 we refer the reader to [19]. The derivative of R w.r.t. t is

R′(t) =
∂

∂t
R = lc(R)

D∑
i=1

∏
j 6=i

(t− g0(αi)). (6)

Now we consider a different f0. Let f0(x) = t− g0(x)− s g1(x),
where s is a new variable, g0(x) is the same polynomial as before,
and g1(x) is a new polynomial, to be specified in the sequel. In this



case, when we eliminate x from the system we obtain

G1(t, s) = res(t− g0(x)− s g1(x), f1, . . . , fn)

= lc(G1)

D∏
i=1

(t− g0(αi)− s g1(αi))
mult(αi).

The square-free part of G1, as a polynomial in t, is

G2(t, s) = SquareFree(G1) = lc(G2)

D∏
i=1

(t−g0(αi)−s g1(αi)).

We consider the derivative of G2 with respect to s, then

∂

∂s
G2(t, s) = −lc(G2)

D∑
i=1

g1(αi)
∏
j 6=i

(t− g0(αj)− s g1(αj)),

which by specializing s = 0 becomes,

G(t) =
∂

∂s
G2(t, s)|s=0 = −lc(G2)

D∑
i=1

g1(αi)
∏
j 6=i

(t−g0(αj)).

(7)
The roots of R are the evaluations g0(αi) ∈ C for i ∈ [D].

Moreover, for any root α ∈ Cn of (Σ) it holds

R′(g0(α)) = lc(R)
∏
β 6=α

(g0(α)− g0(β))

and G(g0(α)) = −lc(G2) g1(α)
∏
β 6=α

(g0(α)− g0(β)).

Therefore,

g1(α) = − lc(R)

lc(G2)

G(g0(α))

R′(g0(α))
(8)

where g0(α) ∈ C is a root of R. Consequently, if we choose
g1(x) = xi, then we can recover the i-th coordinate of every root
α. If we make this specific choice for g1, then we use Pi, instead of
G, to make clear the coordinate we are referring to.

2.1 Height bounds
To this end we have restated known results for the parametrization

of the roots, see for example [1, 15]. However, we use resultant
computations and especially the Poisson formula for the resultant to
express the various quantities. Therefore we can use bounds on the
height of the resultant to bound the height of the polynomials that
appear in the parametrization of the roots.

Following the proof of the DMM bound in [21], the resultant R1 is
a univariate polynomial in t, with coefficients homogeneous polyno-
mials in the coefficients of the polynomials in (Σ0):

R1(t) = · · ·+ %k t
k cM0−k

0,k cM1
1,kc

M2
2,k · · · c

Mn
n,k + . . . , (9)

where %k ∈ Z, cMj

j,k denotes a monomial in coefficients of fj with
total degree Mj , and cM0−k

0,k denotes a monomial in the coefficients
of f0 of total degree M0 − k. The degree of R1, with respect to t, is
M0 and corresponds to the number of solutions of the system. It is
nonzero because we have assumed that the system has only isolated
solutions, even at infinity. It holds that∣∣∣cM1

1,k c
M2
2,k . . . c

Mn
n,k

∣∣∣ ≤ C =
∏n

i=1
‖fi‖Mi

∞ = 2
∑n

i=1 τiMi .

This bound already appeared in [21], see also [17, Lemma 3.10]
[33] for more recent results. Moreover, cM0−k

0,k ≤ H(g0)M0−k and
%k ≤ %. As,

H(R1) ≤ % H(g0)M0C,

we deduce that % =
∏n
i=0 (#Qi)

Mi ≤ (2dn)d
n−1

, or the more
accurately lg(%) ≤ 2n

∑n
i=0 Mi lg(di), where #Qi is the number

of lattice points in the Newton polytope of the polynomial fi; see
also Table 1 and the discussion in Sec. 1.2.

As R is a divisor of R1, using Mignotte’s bound, we have

H(R) ≤ 2D+lg(M0+1) % H(g0)M0C (10)

and consequently

H(R′) ≤ 2D+3 lgM0 % H(g0)M0C. (11)

Moreover, deg(R) = D.
Using the same arguments we bound the coefficients of G, and so

H(G1) ≤ % H(g0)M0H(g1)M0C,

H(G) ≤ 2D+3 lgM0 % H(g0)M0H(g1)M0C. (12)

2.2 The computation of SRUR
To compute SRUR we follow [23] that generalizes the method

of Canny [10]. The general idea is to use resultant computations
to obtain a representation of the roots of (Σ) using the primitive
element, and then to convert this representation to the one of Eq. (8).
We assume that we have a black-box that computes resultants. We
also assume that g0 contains a linear form in x; therefore takes the
form g0(x) = c1x1 + · · · cnxn+gr(x), where gr is polynomial of
degree d. The polynomial gr has at most

(
d+n
n

)
−nmonomials, and

so at most that many coefficients. We denote all these coefficients
by b and we write gr(b,x).

Let αm = (αm,1, . . . , αm,n) ∈ Cn for m ∈ [D] be the roots of
the system. Following Eq. (5), the square-free part of the resultant
is a product of factors of the form t− ζm where

ζm =
∑n

i=1
ciαm,i + gr(b,αm). (13)

We have to choose n constants ci and at most
(
d+n
n

)
−n constants

for b. To indicate this choice of constants we denote the (square-
free) part of the resultant by R(t) = R(−t, c1, . . . , cn, b). Using
this notation, we have R(t) = lc(R)

∏
m(t− ζm), where m runs

over all the distinct roots of R, and

R′(t) = lc(R)
∑

1≤m≤D

∏
1≤ν≤D,ν 6=m

(t− ζν). (14)

We also need the polynomials Â+
k (t) and Â−k (t) where

Â±k (t) = R(−t, c1, . . . , (ck ± 1), . . . , cn, b) (15)

for 1 ≤ k ≤ n. Let A±k (t) = square_free(Â±k ). The separating
conditions on g0 imply that the degree of A±k is D. The roots of
A±k are ζm ± αm,k which induces the factorization

A±k (t) = lc(A±k )
∏

1≤m≤D

(t− ζm ∓ αm,k).

Keeping k fixed, in the rest of this paragraph, we will simplify our
formulas by writing rm = ζm + αm,k and sm = ζm − αm,k, for
m = 1, . . . , D.

Given the three polynomials R,A+
k , A

−
k , we now show how to

recover a parametrization that expresses αm,k as a rational function
of ζm. We will do it under the following assumption: for any `,m, ν
in {1, . . . , D}, the equality

2ζ` = (ζm + αm,k) + (ζν − αν,k) (16)

holds if and only if ` = m = ν (remark that this equality holds
trivially when ` = m = ν). This condition holds generically.
However, it implies certain restrictions on the coefficients of g0. We



detail on these restrictions in Sec. 2.3. Our goal is to compute the
polynomial

Tk =
∑

1≤m≤D

αm,k
∏

1≤m′≤D,m′ 6=m

(t− ζm′).

Indeed, then R/lc(R) and (T1, . . . , Tn) form the univariate repre-
sentation we wish to compute. In the sequel we present an algorithm,
with arithmetic cost softly linear in D2, to compute Tk.

First, consider the polynomial S of degree D2 defined as

S(t) =
∏

1≤m,ν≤D
(t− rm − sν); (17)

it is known as the composed sum of A+
k and A−k , as its roots are

all the sums of a root of A+
k with a root of A−k [7]. That reference

shows that given A+
k and A−k , we can compute S in Õ(D2) base

field operations. We will first recall the basics of this algorithm, as
we will need to elaborate on it.

For i ≥ 0, define τ+i as the ith power sum of A+
k , that is, τ+i =∑

1≤m≤D r
i
m; we define τ−i as the analogue for A−k . Writing

Q = C[t, θ]/〈A+
k (t), A−k (θ)〉, for any P ∈ C[t, θ], we define as

well τQ(P ) =
∑

1≤m,ν≤D P (rm, sν); this is also known as the
trace of P inQ. The algorithm that computes S uses one family of
traces, namely ui = τQ((t + θ)i), for 0 ≤ i ≤ D2. To compute
Tk, we will also need vi = τQ((t − θ)(t + θ)i) = v′i + v′′i , with
v′i = τQ(t(t + θ)i) and v′′i = τQ(τ(t + θ)i), for 0 ≤ i < D2.
Equivalently, we have

ui =
∑

1≤m,ν≤D
(rm + sν)i

and vi =
∑

1≤m,ν≤D
(rm − sν)(rm + sν)i.

We start by showing how to obtain these quantities. We first com-
pute τ+0 , . . . , τ

+
D2 , and τ−0 , . . . , τ

−
D2 ; this takes Õ(D2) base field

operations [37]. Then, following [7], we use the equality between
exponential generating series in Q[[z]],∑

i≥0

1

i!
uiz

i =
∑
i≥0

1

i!
τ+i z

i ·
∑
i≥0

1

i!
τ−i z

i;

this allows us to compute u0, . . . , uD2 for the cost of one polyno-
mial multiplication in degree D2, plus O(D2) other operations,
for a total of Õ(D2) base field operations. In order to obtain
v0, . . . , vD2−1, we show here how to compute v′0, . . . , v′D2−1; by
symmetry, the same idea will apply to v′′0 , . . . , v′′D2−1, from which
v0, . . . , vD2−1 will follow. To compute v′0, . . . , v′D2−1, we now
use the generating series equality∑

i≥0

1

i!
v′iz

i =
∑
i≥0

1

i!
τ+i+1z

i ·
∑
i≥0

1

i!
τ−i z

i,

which was already used for similar purposes in [26]. Hence, know-
ing τ+0 , . . . , τ

+
D2 and τ−0 , . . . , τ

−
D2 , we get v0, . . . , vD2−1 using

Õ(D2) base field operations.
We now know u0, . . . , uD2 , which are the first D2 power sums

of S; as a result, S can be recovered in time Õ(D2), by a fast
algorithm based on Newton’s identities (see [7]). To compute Tk,
we use fact that the ordinary generating series

∑
i≥0 viz

i is equal∑
1≤m,ν≤D(rm − sν)

∏
(m′,ν′)6=(m,ν)(1− (rm′ + sν′)z)∏

1≤m,ν≤D(1− (rm + sν)z)
;

this follows readily from the expression giving vi. The denominator
in this expression is simply the reverse polynomial of S. Since S is

known, from the first D2 values of vi, we can recover the numerator
in the above expression by means of one polynomial multiplication
in degree D2. Taking the reverse polynomial, we then finally obtain

Uk =
∑

1≤m,ν≤D

(rm − sν)
∏

(m′,ν′)6=(m,ν)

(z − (rm′ + sν′)).

To continue, let us write the factorization of S into two terms,
corresponding to the diagonal, resp. off-diagonal terms in (17):
S = SdiagSoff, with

Sdiag =
∏

1≤m≤D

(z − (rm + sm)) =
∏

1≤m≤D

(z − 2ζm)

and Soff =
∏

1≤m,ν≤D,m 6=ν(z−(rm+sν)). Using the assumption
in (16), we deduce that Sdiag and Soff are coprime. Let as also remark
that Sdiag can be deduced from R by a simple rescaling, and Soff by
a division.

Now, for m 6= ν, the summand (rm − sν)
∏

(m′,ν′)6=(m,ν)(z −
(rm′ + sν′)) in Uk admits Sdiag as a factor. On the other hand, for
m = ν, rm − sν is simply equal to 2αm,k, and that summand
becomes

2αm,k Soff

∏
1≤m′≤D,m′ 6=m

(z − 2ζm′).

As a result, the polynomial Uk/Soff mod Sdiag is equal to

2
∑

1≤m≤D

αm,k
∏

1≤m′≤D,m′ 6=m

(z − 2ζm′).

After rescaling, we obtain the polynomial Tk we are looking for.
Knowing Uk, all these last steps take quasi-linear time Õ(D2).

All the calculation can be performed modulo a prime p, using only
divisions by 1, . . . , D2. Thm. 2.2 provides bounds on the height of
Pk. Therefore, we perform all the computation using this number
of bits. The degree of the polynomials involved is ≤ D, which is
the number of roots of (Σ), if we work mod R(t).

LEMMA 2.1. Assuming an oracle for computing resultant, the
arithmetic complexity of computing SRUR is Õ(nD2).

2.3 Bounds on the height of g0
To bound the height of the polynomials in the SRUR represen-

tation of the roots of (Σ) we need to bound the height of g0. If
it is a linear form, that is, if g0 =

∑n
i=1 cixi, where ci are suit-

able generic coefficients that guarantee that g0 is a separating lin-
ear form, then H(g0) ≤ B(n−1) [21]. However, there are cases
where g0 is not linear. For example this is the case when we solve
systems of bilinear polynomials using resultant matrices [23] or
tensor-product polynomial systems, see Sec. 3. We bound the
height of g0 for the general case where it is a polynomial of de-
gree d0. We always assume that g0 contains a linear form in x, that
is g0(x) = c1x1 + · · · cnxn + gr(x), where deg(gr) = d0 > 1.
This assumption allows us to recover the coordinates of the roots
(cf. Sec. 2.2).

As g0 is of degree d0, it has at most
(
d0+n
n

)
≤ (d0 + 1)n mono-

mials. Let i run over all these monomials, then we can write g0 as
g0(x) =

∑
i g

(i)xai . Since g0 is a separating polynomial, then for
(any) two roots, α,β ∈ Cn, such that α 6= β, it holds∑

i
g(i)αai 6=

∑
i
g(i)βai ⇒

∑
i
g(i)(αai − βai) 6= 0

where g(i) are the coefficients of g0. If we set g(i) = ti for some
variable t, then the condition becomes

∑
i t
i(αai − βai) 6= 0. In

other words a univariate polynomial in t of degree at most (d0 +1)n



should not vanish. Therefore, t should not be one of its roots, there
are at most (d0 + 1)n. Hence, we can choose as t at least one of the
integers in the interval [0 .. (d0 + 1)n].

There are at most
(
D
2

)
≤ D2 pairs of roots (α,β) of the system.

Thus, we can construct at most D2 univariate polynomials in t, each
of degree at most (d0 + 1)n. Multiplying these polynomials results
a polynomial degree (d0 + 1)nD2 in t.

There are also bad values for the constants ci and b that induce
Eq. (16) to vanish for different indices m, l, and ν. To bound the
number of these values we change somewhat Eq. (13) to

ζm =
∑

i
g(i)αai

m , 1 ≤ m ≤ D . (18)

The polynomial on the right hand side has at most (d0 + 1)n terms.
We set g(i) = ti. In this way ζm, ζ`, and ζν become polynomials
in t and Eq. (16) becomes a polynomial in t of degree at most
(d0 + 1)n. For each k there are

(
D
3

)
possible triplets, hence, overall

we obtain
(
D
3

)
n polynomials in t. The product of all of them results

in a polynomial of degree at most n (d0 + 1)nD3.
If we choose a value of t that is not a root of this polynomial

then we are sure that Eq. (16) does not vanish for different indices
m, `, and ν. Multiplying all the polynomials together we obtain a
polynomial of degree (d0 + 1)nD2 + n(d0 + 1)nD3 ≤ 2n(d0 +
1)nD3 in t. Consequently, there is at least one integer in the interval
[0 .. 2n(d0 + 1)nD3] that we can choose t from to ensure that the
polynomial

∑
i t
ixai is suitable candidate for g0.

In the way that we parametrize the roots of (Σ) there are values
for the coefficients of g0 that allow the roots of (Σ), in (some)
projective space, to annihilate the resultant. This is a consequence
of the Poisson formula for the resultant; we refer to [19] for details.
As there exist at most M0 isolated roots, we can assume that a
polynomial of degree M0 in t encodes these bad values. Therefore,
to cope with this case as well we choose t as one integer in the
interval [0 .. 3n(d0 + 1)nD2M0]. This results in the upper bound

H(g0) ≤ (D2M0)d
n
0 d

3ndn0
0 . (19)

As D ≤ M0 we can replace D with M0 in the previous inequality.

2.4 Bounds on the representation
Using the bounds from Eq. (10), (11), (12), and (19) we bound

the degree and the height of the polynomials in the SRUR of the
roots of (Σ) using the mixed volume.

THEOREM 2.2. There is a representation of the coordinates of
roots of (Σ), using an f0 as in Eq. (4), for i ∈ [n], as

xi = Pi(θ)/R
′(θ), where θ is such that R(θ) = 0.

The univariate polynomials R, R′, and Pi are as in Eq. (5), (6), (7),
respectively, and Pi indicates that we choose g1(x) = xi. Their
degrees are deg(R), deg(R′),deg(Pi) ≤ D, and their bitsizes are
bounded as

h(R) ≤ D + lg(M0 + 1) + 3ndn0M0 lg(dn0M0) + lg(%C),

h(R′), h(Pi) ≤ D + 3 lg(M0) + 3ndn0M0 lg(dn0M0) + lg(%C).

If g0 is a linear form and the bitsize of all the polynomials fi is
bounded by τ , using the bounds from DMM [21] we obtain

h(Pi) ≤ D + 6(1 + M0) lg(M0) + (τ + 2n)

n∑
i=1

Mi lg(2 #Qi).

(20)
Assuming that we have an oracle that performs resultant com-

putations, we need to use it 2n + 1 times to compute R and Â±k .

Then we perform 2n square-free and GCD computations and finally
within Õ(D2) arithmetic operations we compute SRUR. In total we
perform Õ(nM2

0 + nD2) arithmetic operations.
From Thm. 2.2 we deduce that we need to compute with integers

of bitsize η = Õ(M0d
n
0 lg(M0d

n
0 ) +

∑n
i=1(2n lg #Qi + τi)Mi).

Therefore the total bit complexity is ÕB((nM2
0 + nD2)η). Using

the inequality D ≤ M0 we have the following:

LEMMA 2.3. Assuming that there is an oracle for resultant com-
putations, we can compute the SRUR of a 0-dim system in

ÕB(nM3
0d
n
0 lg(M0d

n
0 ) + nM2

0

∑n

i=1
(n lg #Qi + τi)Mi).

3. USING RESULTANT MATRICES AND SRUR

The bounds on SRUR of Thm. 2.2 lead directly to an algorithm
and complexity bounds for solving polynomial systems. In this
section we assume that there exists a matrix, say M , of size E × E
which we construct using the coefficients of the polynomials in (Σ0)
such that R1 is a multiple of its determinant. Usually, c · R1 =
det(M), where c is a constant; for example this is the case for the
classical Macaulay resultant, the sparse resultant, etc. However,
there are many cases where we have an exact determinantal repre-
sentation for the resultant, for example the bilinear case [23], or the
tensor-product polynomial systems that we consider next.

Under genericity assumptions that guarantee c 6= 0, we can
compute R1, and thus R, using determinant computations. The
complexity is ÕB(E3M0τ), if we assume that the bitsize of the
input polynomials is bounded by τ . For example, for sparse resul-
tants E is the number of lattice points of the Minkowski sum of
the Newton polytopes of the input polynomials. We can also opt
for a complexity of ÕB(EωM0τ), if we use the techniques for fast
determinant computation [41], where ω is the exponent of matrix
multiplication. We also refer to [9] for a recent result on the bit
complexity of solving polynomial systems that exploits this compu-
tation. For sparse resultant matrix constructions, E stands for the
number of lattice points of the polytope that is the Minkowski sum
of the Newton polytopes of the input polynomials, e.g. [12]. We can
bound E using the volume of the Newton polytopes.

Tensor-product systems
As a concrete example we consider the complexity of solving tensor-
product polynomial systems. This interesting class of systems ad-
mits a determinantal formula for their resultant. Their polynomials
are members of a tensor-product space of univariate polynomial
rings. In particular, every polynomial in Eq. (3) contains all mono-
mials up to a given degree di ∈ N, with respect to the variable xi.
Therefore, the (common) support of all equations is characterized
by the tuple (d1, . . . , dn) ∈ Nn which corresponds to a Newton
polytope that is an n-hypercube. To obtain a non-trivial resultant
matrix with certainty, we assume that the monomials corresponding
to the vertices of this hypercube (that is, the “extreme monomials”)
are non-zero. In particular for f0, which is going to play the role
of the separating form, we assume non-zero coefficients for the
extreme monomials, these correspond to the monomials of g0(x),
as well as for the linear terms, cf. (4).

For any 0 ≤ i ≤ n, the mixed volume Mi of the system
(Σ0) \ {fi}, that is the number of solutions in

(
P1
)×n, equals

M := M0 = n!
∏n

i=1
di.

The resultant, R, is a polynomial of total degree degR = (n+1)M
in the coefficients of (Σ0). Furthermore, R is homogeneous of
degree exactly M with respect to the coefficients of each fj , j =



0, . . . , n. To obtain the resultant matrix we consider degree vectors
(m1, . . . ,mn) ∈ Nn that satisfy

n∏
i=1

(mi + 1) = (n+ 1)M and
n∏
i=1

(mi − di + 1) = M . (21)

Each solution of the Diophantine equation (21) gives rise to a
Sylvester-type matrix, the determinant of which expresses the resul-
tant of the system. Solutions to the above equations first appeared
in [43], see also [22].

EXAMPLE 3.1. Let n = 3 and (d1, d2, d3) = (1, 2, 3). The
mixed volume is M = 36. We check that (m1,m2,m3) = (3, 5, 5)
satisfies (21). Therefore the resultant is given as the determinant of
a 144× 144 matrix. This matrix expresses the Sylvester map

S : P(2, 3, 2)4 → P(3, 5, 5)

with S(g0, g1, g2, g3) =
∑3

j=0
gjfj .

Here P(m1,m2,m3) stands for the space of tensor-product poly-
nomials of multidegree (m1,m2,m3). We can check that the above
map is generically surjective. Moreover, dimP(2, 3, 2) = M and
dimP(3, 5, 5) = degR = 4M.

From the above example it is clear that the matrix is square of
dimension (n+ 1)M× (n+ 1)M. It consists of n+ 1 blocks; each
has size M× (n+ 1)M and it is quasi-Toeplitz, i.e. it expresses the
multiplication by a polynomial fj of Σ0. Under our assumption that
the coefficients of the monomials 1, xdii , xdii x

dj
j , . . . , xd11 · · ·xdnn

are non-zero in all polynomials, the above Sylvester-type matrix is
generically non-singular. Moreover, it is always equal to the (sparse)
resultant of the system, that is, it vanishes whenever the system has
a common root in the toric variety

(
P1
)×n. The bounds of Thm. 2.2

are tight for this class of systems.
We can compute the determinant of such matrices in Õ(nM2)

arithmetic operations by exploiting the algorithms for multivariate
polynomial multiplication using Wiedemann’s method e.g. [13, 23].
Taking into account the height bounds of SRUR, the bit complexity
for computing the R is ÕB(n2M4τ). Alternatively, we can use
[41], see also [9], to compute the determinant in ÕB((nM)ω+1τ).

If we assume that h(fi) ≤ τ for i ∈ [n], and we notice that
Mi = M, then following Thm. 2.3 we compute the SRUR in
ÕB(n2M3(dn lg(Mdn) + n3 + nτ)), where d = maxi di. The
SRUR representation involves polynomials of maximum coefficient
bitsize Õ(M(dn lg(Mdn) + n3 + nτ)).

At this point we have computed the SRUR representation of zeros.
If we also want to obtain approximations of the actual coordinates,
then we have to approximate the roots of R(θ), refine them up to
the separation bound of the system, and perform interval arithmetic
with the rational function until we obtain disjoint hyperboxes; one
for each zero of the system. We refer the reader to [23] for a more
detailed description of this method.

4. POSITIVE DIMENSIONAL CASE
Assume that (Σ0) has solutions at infinity, or it is positive dimen-

sional, or that the coefficients of the polynomials are not generic
enough and they cause the determinant of the resultant matrix to
be identically zero. How do we compute the SRUR for the isolated
roots in these cases? We use the technique of the toric generalized
characteristic polynomial [11, 16]. The idea is to perturb the ini-
tial system, using a new parameter, say s, and, as in the previous
section, we add a separating polynomial f0 that introduces a new

variable t. In the worst case we perturb all the coefficients of all the
polynomials. The resultant of the system, say Q, is a bivariate poly-
nomial in s and t. To recover the SRUR of the isolated roots of the
system we need to obtain the polynomial corresponding to the first
non-vanishing coefficient of Q, say k, considered as a polynomial
in s. This is a univariate polynomial in t and is the R1 polynomial
of the previous section. Now R1 encodes the isolated roots of the
system, as well as points from the irreducible components of the
variety defined by the zero set of the polynomials fi.

More formally, we perturb (Σ0) in (3) and we obtain:

(Σ̃0)

{
f̃0 = f0 = 0,

f̃i = fi + pi = 0, 1 ≤ i ≤ n,

where pi =
∑

a∈Di
sωi(a)xa, ωi(·) are positive-valued linear

forms, s a new parameter, and Di is the subset of vertices in Qi. In
the worst case,Di contains all vertices of Qi. The perturbation does
not alter the Newton polytopes of the fi’s. The correctness of the
approach is due to the following theorem from [16, Theorem 3.6],
see also [11, Theorem 3.2].

THEOREM 4.1. Consider fi ∈ C[t, u1, . . . , uν ][x] where i ∈
[n + 1] and their zero set V = V(f0, f1, . . . , fn) ⊂ Cm × T
where T is the toric variety associated to the Newton polytopes of
fi, and let W be a proper component of V of dimension ν. Let
C(t,u)(s) be the generalized toric characteristic polynomial of
the fi, as polynomials in the xj . Arranging the polynomial in
powers of s, let Ck(t,u) be its coefficient of lowest degree. If
πt : C× Cν × T → C× Cν denotes the projection on the (t,u)-
coordinates, then Ck(πt(q)) = 0 for all q ∈W .

The (terms of the) resultant of the system is as in Eq. (9). To
obtain the bounds, we consider the worst case scenario where all
the coefficients are perturbed. We assume that the coefficients of
all the polynomials in (Σ̃0) are integers of maximum bitsize τ , and
the degree of all the polynomials in bounded by d. We need the
following result on multivariate polynomial multiplication.

CLAIM 4.2 (POLYNOMIAL MULTIPLICATION). Consider two
multivariate polynomials, f1 and f2, in ν variables of total degrees
δ and bitsize τ1 and τ2 respectively. Then their product is of degree
2δ and bitsize τ1 + τ2 + 2 ν lg(δ).

We can prove using induction that the product of m polyno-
mials,

∏m
i=1 fi of degree δi, results in a polynomial of total de-

gree
∑m
i=1 δi and bitsize

∑m
i=1 τi + 12 ν m lg(m) lg(

∑m
i=1 δi).

If we are interested in the m-th power of a polynomial, then a
somewhat better bound on the bitsize could be computed, that is
mτ + 12νm lg(δ)

It is an overestimation to assume that every factor of each term of
the resultant of (Σ̃0), see Eq. (9), corresponding to the polynomial
f̃i is of the form (ci,j +s)Mi , where ci,j is a coefficient of fi having
the biggest magnitude. Then h((ci,j + s)Mi) ≤ (τ + 12)Mi. The
bitsize of the factor corresponding to all polynomials fi is bounded
by (τ+12)

∑n
i=0 Mi+12(n+1) lg(n+1) lg

∑n
i=0 Mi. Recall that

lg(%) ≤ 2n

n∑
i=0

Mi lg(di) ≤ 2n lg d

n∑
i=0

Mi,

We have deg(R1) ≤ M0 and h(R1) ≤ η, where

η = (τ + 2n lg d+ 12)

n∑
i=0

Mi + 12(n+ 1) lg(n+ 1) lg

n∑
i=0

Mi.

This leads to the bounds deg(R) ≤ M0, h(R) ≤ η+M0+lgM0+1,
and h(R′), h(Pi) ≤ η + M0 + 2 lgM0 + 1.



THEOREM 4.3. Let (Σ) be an non-necessarily 0-dimensional,
polynomial system with polynomials of maximum degree d and
maximum coefficient bitsize τ . There is a representation of the
isolated roots using an f0 as in Eq. (4), for i ∈ [n], as

xi = Pi(θ)/R
′(θ), where θ is such that R(θ) = 0,

where deg(R), deg(R′), deg(Pi) ≤ M0, and their bitsizes are
bounded as h(R) ≤ η + M0 + lgM0 + 1, h(R′), h(Pi) ≤ η +
M0 + 2 lgM0 + 1, and η = (τ + 2n lg d+ 12)

∑n
i=0 Mi + 12(n+

1) lg(n+ 1) lg
∑n
i=0 Mi.

If we assume an oracle for performing resultant computations,
then we can compute SRUR, even in the positive dimensional case
in Õ(nM2

0) arithmetic operations, using the algorithm of Sec. 2.2
that supports Lem. 2.1. Therefore, the bit complexity is

ÕB(nM2
0(n+ τ)

∑n

i=0
Mi).

Regarding g0 the bounds of Eq. (19) hold in this case as well. There-
fore, if h(fi) ≤ τ for i ∈ [n], then it suffices to replace, for the
purpose of estimating the bit complexity, τ with τ + dn0 lg(M0). To
summarize, we have the following lemma

LEMMA 4.4. Assuming that there is an oracle to perform re-
sultant computations, we can compute the SRUR of the isolated
roots of a, not necessarily 0-dimensional, polynomial system in
ÕB(nM2

0(n+ τ + dn0 lg(M0))
∑n
i=0 Mi).

We should note that the oracle supporting Lem. 4.4 is more pow-
erful than the one that supports Lem. 2.3.

We present a straightforward algorithm for computing the resul-
tantR1, when there is a determinantal representation of the resultant
of the system of size ncM0 × ncM0, where c is a (small) constant.
The determinant of the resultant matrix is a bivariate polynomial in
s and t. It has M2

0 terms, thus using interpolation we can recover it
in ÕB(n2cM4

0 η). This bound is roughly ÕB(n2cM5
0 τ), under the

assumption on the size of the matrix. If this is not the case, that is,
if no exact resultant matrix is available, then we can always use the
sparse resultant matrix or its variants, but the bounds become more
cumbersome as they involve the number of the lattice points in the
Minkowski sum of the Newton polytopes. The complexity bound
of computing the resultant dominates the bound of Lem. 4.4 and
determines the complexity of the whole solving procedure. We refer
the reader to [24, 25] for some further details.

We would have liked to have a dedicated algorithm to compute
the determinant of a matrix with polynomial entries mod sk with
complexity proportional to lg k. There is an efficient randomized
procedure to estimate the value of k, that is the index of the first
non-vanishing coefficient of Q, when we consider it as a univariate
polynomial in s. Assuming that there is an oracle that answers
whether a specific value of k is the correct one, we use exponential
search. We test if k is 0, 2, 4, . . . , and after, if we identify a suitable
interval, we perform binary search in this interval. We need to
perform this test O(lg k) times. As soon as we know the value k,
we can compute the determinant of the resultant matrix mod sk+1.
It remains to provide a realization for the oracle. We notice that
for l ≤ k, it holds Q mod sl = 0. Therefore, if we specialize
s = p for some random values p, then Q = 0 mod pl for l ≤ k
and Q 6= 0 mod pl for l > k.

To find suitable values p we follow [29] that provides optimal
certificates for linear algebra operations and we proceed as follows:
The resultant has coefficients of bitsize 2η . There are at mostO(lg η)
primes that divide each of the coefficients and there are at most(
M0
2

)
≤ M2

0 coefficients. If we choose a prime p uniformly at

random from a set of O(mM2
0 lg(η)) primes, then with probability

1− 1/m the prime p does not divide any of the coefficients of the
resultant.

Therefore, we obtain the correct value of k in ÕB(M3
0τ). Whether

we can obtain R within the same complexity bound or in ÕB(M4
0τ)

is an interesting open problem. In this direction, one should also
exploit the recent results on linear algebra certificates [20].

5. PARAMETRIC SYSTEMS
The power of exploiting resultant computations for computing

height bounds for the SRUR of the isolated roots is that we can
consider coefficients in any field. For example we can consider
polynomials with coefficients other multivariate polynomials. This
allows us to obtain precise degree and height bounds for the SRUR
of parametric polynomial systems. We refer the reader to [2, 4] for
the details of a complete algorithm that exploits such an approach.
For an algorithm based on geometric resolution we refer to [38].

In this section we assume that the coefficients of the polynomials
in (Σ) are in Z[u1, . . . , uν ] = Z[u], where u1, . . . , uν are parame-
ters. First, we assume that the system is 0-dimensional for (almost)
any specialization of the parameters and does not have any solutions
at infinity. If this is not the case we can resort to Sec. 4. We add a
suitable polynomial f0 to the system and we consider the Macaulay
matrix, which we denote by M .

There is an algorithm that produces a constructible setA such that
the rank of M is maximal for any specialization of the parameters
taken form the setA. The constructible set is defined by polynomials
in Z[u] of degree at most Nδ and maximum coefficient bitsize Nτ
where N is the size of the Macaulay matrix [2, 3, 4]. The theory
behind this construction is due to Lazard [31, Theorem 4.1, 5.1, and
7.1]; he proved that the system is 0-dimensional if the Macaulay
matrix is of full rank. Then we apply a parametric version of Gauss
algorithm, e.g. [2, Sec. 2.4.1], to compute constructible sets of
interest. The complexity of these algorithms is singly exponential
with respect to the number of variables, but we do not elaborate
further. We emphasize that we are not focusing on algorithm(s) to
compute these constructible sets, but rather on computing explicit
bounds on the degree and the height of the involved polynomials. It
is enough for our purposes to assume that there exists an algorithm
that constructs these sets. If the parameters lie in a connected
component of these constructible sets, then the representation of
the roots does not change. For each such constructible set the
resultant of the system R1(t,u) is a homogeneous polynomial in
the coefficients of the input polynomials and its terms are as in
Eq. (9).

We consider R1 as a univariate polynomial in t. To do so we
consider the expansion of each of the terms of R1 as univariate
polynomials in t. We consider the partition of each term to n + 1
factors, as Eq. (9) indicates, and we bound each factor separately.

We assume that the maximum bitsize of the coefficients in the
polynomials fi is τ , that is h(fi) ≤ τ for i ∈ [n]. Following
Eq. (9) each cMi

i,k corresponds to products of polynomials in Z[u] of
total degree Mi. To derive an upper bound we consider the worst
case where cMi

i,k corresponds to the Mi-th power of a polynomial in
Z[u]; the latter has total degree δ and maximum coefficient bitsize
τ . From Claim. 4.2 the expansion results in a polynomial in Z[u] of
total degree δMi and bitsize Miτ + 12νMi lg(δ). Moreover cM0

0,k

is an integer of bitsize ≤ h(g0)M0 . Hence, each coefficient of t in
R1 is a polynomial in Z[u] of degree δ

∑
i=0 Mi and it has bitsize

bounded by

(τ+12ν lg(δ))

n∑
i=1

Mi+12νn lg(n) lg(δ

n∑
i=1

Mi)+M0h(g0)+h(%).



Moreover,

lg(%C) + M0h(g0) + 12ν(lg(δ)

n∑
i=1

Mi + lg(n) lg(δ

n∑
i=1

Mi))

and so

h(R) ≤ M0 + lg(M0 + 1) + lg(%C) + M0h(g0)+

12ν(lg(δ)
∑n

i=1
Mi + lg(n) lg(δ

∑n

i=1
Mi)).

where h(%) ≤ 2n
∑n
i=0 Mi lg(di) accounts for the lattice points in

the corresponding Newton polytopes.
Using the height bounds on the resultant we can modify accord-

ingly the approach of Sec. 2 to deduce bounds for the SRUR of
parametric systems. We arrive at the following theorem

THEOREM 5.1. There is a representation of the coordinates of
the isolated zeros of the parametric polynomial system (Σ), using
an f0 as in Eq. (4), for i ∈ [n], as

xi =
Pi(θ,u)

R′(θ,u)
, where θ is such that R(θ,u) = 0,

where deg(R), deg(Pi) ≤ M0 and

h(R), h(Pi) ≤ M0 + 3 lg(M0) + lg(%C) + M0h(g0)+

12ν(lg(δ)

n∑
i=1

Mi + lg(n) lg(δ

n∑
i=1

Mi)).

We can combine the bounds of Thm. 5.1 with Thm. 4.1 to obtain
bounds on the representation of the isolated roots even when the
system becomes positive dimensional for certain values of the pa-
rameters. It suffices to perturb symbolically all the coefficients. The
asymptotic behavior of the bounds remains the same. Following the
approach of Sec. 2.2, see also Lem. 2.1, under the assumption that
the corresponding resultants are provided, we can compute SRUR
in Õ(nM2

0) multiplications of multivariate polynomials in ν vari-
ables and degree δMi. The precise bit complexity bounds are rather
cumbersome and we omit their presentation.

The most general case is to consider systems with polynomials
in (Z[α1, . . . , αµ][u1, . . . , uν ])[x1, . . . , xn], where u1, . . . , uν are
parameters and αi is an algebraic number of degree mi, for i ∈ [µ].
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