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Abstract—The advent of 6G requires efficient management of
heterogeneous networks and computational resources to achieve
the targeted End-to-End network automation, in which slice
orchestration is a key feature. Despite the opportunities offered
by the recent advances in network virtualization and distributed
cloud infrastructure, these developments introduce complexities
in the context of multi-domain networks. This paper presents
a distributed horizontal scaling method that leverages deep
reinforcement learning (DRL) to enhance network function
orchestration (NFO) with intelligent scaling decisions, facilitating
seamless cross-domain information exchange. First, we develop
a DRL agent designed to handle fluctuating traffic loads and
generate scaling actions tailored for the considered network
function (NF). This trained DRL agent is then integrated into a
multi-domain message exchange scaling framework with traffic
prediction capabilities. Moreover, we develop a simulation testbed
to manipulate multi-domain topologies, customize network slices,
and enable precise per-slice and per-domain scaling decisions.
Our DRL-based solution outperforms the Horizontal Pod Au-
toscaling heuristic used by Kubernetes, improving resource
utilization and reducing data rate losses.

Index Terms—Mutli-Domain Orchestration, Distributed Scal-
ing, 6G Network, Deep Reinforcement Learning.

I. INTRODUCTION

6G networks mark a significant evolution in mobile net-
work infrastructure, with a focus on virtualization, cloud and
distributed computing [1]. Initiatives such as UNEXT [2]
are driving this evolution with an architectural framework
that incorporates multi-cloud/multi-domain integration as a
fundamental aspect of such an E2E 6G network. This approach
aims to unify resources and improve network performance.
The progression towards predictive auto-scaling orchestration
for cloud-native telecom services underscores the importance
of dynamic resource management in enhancing network agility
and efficiency [3].

Meeting the challenges posed by these advances requires the
adoption of cutting-edge technologies such as distributed deep
reinforcement learning (D-DRL) and more generally machine
learning. These technologies enable collaboration between op-
erational entities and domains, resulting in improved network
performance, reduced latency and improved efficiency.

Multi-Domain Orchestration (MDO) is a crucial research
area in 6G networking, facilitating service management across
heterogeneous resources owned by various providers [4]. It

relies on effective management of various network domains
with the objective to coordinate them seamlessly while guar-
anteeing high scalability and fault tolerance. Different orches-
tration strategies have been applied throughout the literature,
including hierarchical orchestration [5], [6], federation-based
orchestration [7], and distributed orchestration [8]. Recent
advancements in MDO research leverage Multi-Agent Deep
Reinforcement Learning (MADRL) for sophisticated resource
allocation and orchestration. Innovations include inter-slice
cooperative DRL for enhanced resource efficiency in multi-
layer MEC environments [9], and novel MADRL algorithms
for 5G V2V communications in the absence of base station
coverage, improving packet reception in congested scenarios
[10]. Furthermore, distributed DRL approaches for network
slicing and cooperative resource allocation among non-cellular
networks highlight the move towards decentralized execution
with centralized learning [11], [12].

This paper explores a novel approach that leverages
DRL agents and communication-driven information exchange
within a distributed orchestration framework to address the
challenges of NF scaling in 6G. This approach aims to achieve
the benefits of distributed orchestration while mitigating its
shortcomings through effective communication and intelligent
decision-making mechanisms. By facilitating seamless com-
munication and information exchange, this communication-
driven approach paves the way for efficient resource utilization
and improved network performance in the dynamic environ-
ment of the envisioned 6G networks. The main contributions
of our paper are summarized bellow:

• We propose a formulation of the multi-domain NF scaling
problem, including models for both resource consumption
and traffic generation.

• We formulate the scaling problem within a single domain
as a Markov Decision Process (MDP), allowing the
development of DRL algorithms to NF scaling problems.

• We develop a novel distributed DRL algorithmintegrated
into a scaling framework with efficient message exchange
and traffic forecasting capabilities.

• We evaluate our proposed solution through simulations,
benchmarking its performance against the Horizontal Pod
Scaling (HPA) algorithm [13].



The rest of this paper is organized as follows. In sec-
tion II, we detail our approach to formulating the multi-domain
Network Function scaling problem, along with models for
resource consumption and traffic generation. In section III, we
introduce Deep Reinforcement Learning and detail the MDP
formulation for the single-domain DRL scaling agent. Building
on this, section IV describes the design and implementation of
our distributed scaling framework, including the integration of
the DRL algorithm. In section V, we discuss the experimental
setup and results, with a comparison to the HPA heuristic.
Finally, section VI concludes our paper.

II. PROBLEM FORMULATION

A. Distributed Network Function Scaling Problem

We consider a network system consisting of a set of
K := {1, . . .K} independent domains, where we deploy a set
of S := {1, . . . , S} end-to-end slice. Each slice s in domain
k is composed of a set N ′ := {1, . . . , N ′

k,s} of Network
Function (NF), and L′ := {1, . . . , L′

k,s} Virtual Link (VL)
deployed on Nk nodes and Lk links. Each network function
n

′

k,s requests various types of resources denoted by a vector
hn′

k,s
= [hn′

k,s,0
, . . . , hn′

k,s,DNF ] where DNF is the number of
resource type of network functions. The same thing applies
for virtual links, where each l

′

k,s request a set of resources
denoted by a vector fl′k,s

= [fl′k,s,0
, . . . , fl′k,s,DVL ] and DVL

is the resource type number for virtual links. Together, the
resource definitions of all composing NFs and VLs define the
pre-defined resource requirements, denoted as Ξk,s, for slice
s in domain k.

In this work we focus on the scaling in and out of NFs based
on one resource type which is the CPU consumption. Each
network function n′

k,s has an actual CPU consumption CPUcur,
a max CPU consumption CPUmax and higher thresholds αn′

k,s

where :
CPUcur < CPUmax × αn′

k,s
(1)

To guarantee the continuity of the service in the system, each
NF n′ in slice s and domain k must respect the following
constraint :

1 ≤ Φ
n′
k,s

cur < Φ
n′
k,s

max (2)

Such that Φ
n′
k,s

max is the maximum number of instance of n′

in slice s and domain k.

B. Traffic Generation and Resource Modeling

To ensure the study’s relevance and credibility, a sophisti-
cated traffic generation model that reflects real-world scenarios
is employed within the testbed. The traffic flow within a
5G/6G networks is simulated, incorporating source and des-
tination modules representing the User Equipment (UE) and
the Data Network (DN), respectively. This setup facilitate a
close examination of the interaction between traffic generation
and network function performance across different 5G/6G
E2E domains. The generated traffic, is formulated following
the equation (3) as the sum of sub-sinusoidal functions with
varying periods and amplitudes, inspired by the work in [14]:

Y (t, Ti) = a0,i +

k∑
1

ak sin

[
2π

t− tk
Ti

]
+ ϵt (3)

Where a0,i represents the base amplitude varying by week-
day, ak denotes the amplitudes of constituent functions, ϵt is
random noise, and Ti is the traffic period.

Throughout the paper, data rate refers to the amount of data
generated per unit time, measured in bytes per second (B/s).
For each data packet, a fixed data length is configured, and
the number of packets generated per second is determined
based on the data rate produced by the traffic generation
equation. This calculation involves inter-packet production
time, following a Poisson process with parameter λ.

On the other hand, resource consumption is modeled by
calculating the CPU usage of each network function based
on the incoming data received (in Byte) and a function-
specific CPU Consumption Per Byte (CPB) parameter. This
relationship is expressed by the following equation:

cpucons =
dataReceived× cpucpb

∆t
(4)

Where, cpucons is the CPU consumption in a time unit ∆t
and cpucpb is the CPU consumption per byte.

III. SCALING NETWORK FUNCTIONS WITH DRL

A. Deep Reinforcement Learning overview

Reinforcement Learning (RL) is a method for solving
complex control problems through sequential decision-making
within an environment E. An agent learns by taking actions
at at time t. It receives rewards rt based on action quality,
aiming to maximize the expected cumulative discounted return
Rt defined as Rt = E [

∑
t γ

trt], where γ < 1 is the
discount factor ensuring the series convergence. This process
is formulated as a Markov Decision Process (MDP) with State
space S, Action space A, Reward function R(st, at), and
Transition probability P (st+1|st, at).

Built on RL’s fundamentals, Deep Reinforcement Learning
uses Deep Neural Networks (DNNs) to represent complex
policies and value functions, offering significant advantages
in environments with large state and action spaces, typical of
network function scaling challenges. A key development in
DRL is Actor-Critic methods, where an Actor learns policy
functions by mapping states to actions, and a Critic evaluates
these state or state-action pair values, steering the Actor toward
better policies. For this work, we choose the Deep Determinis-
tic Policy Gradient (DDPG) algorithm [15], a renowned actor-
critic approach that employs DNNs for both Actor and Critic
models. DDPG merges Q-learning and off-policy learning,
ideal for handling continuous action spaces, making it well-
suited for dynamic and efficient network function scaling.

B. Formulation of the Markov Decision Process

To appy the DDPG algorithm to horizontal scaling problem,
we first formulate it as an MDP, defining state, action, and
reward accordingly:



• State : we propose a state vector reflecting key network
aspects to capture traffic dynamics and resource consump-
tion influences. At time step t, it is defined as:[

cpumax − cpucur

cpumax
,
Φ

n′
k,s

cur

Φ
n′
k,s

max

,∆drt ×
drt

drt−1

]
(5)

The first component measures the gap between current
and maximum CPU consumption, aiming for optimal
resource efficiency. The second quantifies the current
versus maximum allowed Network Function (NF) in-
stance replicas, with Φn′k,s

max set higher for training. The
third component tracks data rate change over time, with
∆drt = drt−drt−1; t > 0 indicating the direction of this
change.

• Action : To allow the DRL agent to make precise scaling
decisions, the action space is continuous, where any
action at falls within [−β, β], with β defining the action
space boundary. The continuous action at is then rounded
to the nearest integer ãt.

• Reward : The goal is to maximize CPU resource ef-
ficiency for Network Functions while avoiding service
degradation or over-scaling. We divide the reward into
two parts

Rglobal = Reff +Rpenal (6)

With the Reff we aim to encourages the agent to approach
cpumax × αn′

k,s
, penalizing deviation from this target

value:

Reff = clip(
−|cpucur−cpumax×αn′

k,s
|

cpumax
,−1, 0)×Rmax (7)

With the Rpenal, we aim at penalizing the agent from
taking dangerous action. For our case, the most dangerous
action is the deletion of slice by deleting all its NFs, for
that, we penalize the agent based on its deviation from
the minimum instance number (which should be one).
Additionally, to avoid create an infinite number of NFs
replicas in the system, a threshold, Φn′k,smax, is set as
the maximum allowable number of NF instances. Actions
leading to NF instances exceeding this limit result in
penalties for the agent.

Rpenal =


clip(Φ

n′
k,s

cur +at

Φ
n′
k,s

cur

,−1, 0)×Rmax, Φ
n′
k,s

cur + at ≤ 0

−1×Rmax, Φ
n′
k,s

cur + at > Φ
n′
k,s

max

0, else
(8)

Here, Rmax bounds the reward to prevent excessive penal-
ties. The agent’s maximum reward is zero, motivating
proximity to target values while respecting slice require-
ments, and assuring service continuity by keeping the
slice active.

This MDP formulation is well-suited for continuous action
space, off-policy algorithms such as DDPG. In our design,
the agent is not confined to a set of discrete actions but can
take any scaling step, providing a broader range of actions

Fig. 1: Distributed Scaling Framework & Orchestrator Com-
ponents.

compared to discrete action DRL agents. For each NF in slice
s within domain k, a specific Actor Network is trained to take
actions in a distributed, multi-domain environment.

IV. DISTRIBUTED DRL SCALING ALGORITHM

To assess the performance of our scaling algorithms, we
have developed a distributed scaling framework integrated with
a specifically designed testbed. The testbed was developed
based on OMNeT++ [16] and aimed at examining the im-
pact of inter-domain communication and information sharing
among autonomous orchestrators on scaling decision quality.
At the heart of this setup is the orchestrator, depicted in
Figure 1, which includes a sequence of components including
a Data Collector, the Forecasting Model, a Controller, and
the Environment Handler. These components work in concert
to gather metrics, forecast network behavior, make scaling
decisions, and execute these decisions, ensuring a synchro-
nized, proactive, and resource-efficient network operation. It
also integrates RabbitMQ for asynchronous and efficient mes-
saging between independent orchestrators. This orchestrated
approach provides each network slice within a domain with
a dedicated orchestrator, ensuring real-time data exchange,
proactive decision-making, and precise resource management,
thereby optimizing service delivery.

In Algorithm 1, we present a DDPG-based distributed
scaling algorithm with inter-domain message exchange for
optimizing network slice scaling in domain k. Our method-
ology integrates a sophisticated scaling algorithm, specifi-
cally DDPG, coupled with an LSTM-based traffic forecasting
model. This model analyzes historical data to predict future
data rate evolution, sharing these predictions with neighboring
domains to support more informed scaling decisions. The
algorithm operates continuously, divided into training and
evaluation phases. Initially, we set up the forecasting model,
DDPG actor, critic networks, and target networks’ parameters
(lines 1 to 4), followed by acquiring the current network state
(line 5). During the training phase (lines 7 to 27), a scaling
action is generated using the actor network (line 8), then
executed to obtain a new state s′, a reward rt, and a completion



Fig. 2: Data rate pattern in RAN and Core.

signal d (line 9); these are stored as a transition in the buffer D
(line 10). Upon reaching the update interval (lines 11 to 19), a
batch of size M is randomly sampled from buffer D (line 12),
and the target value is computed as per the equation in line
14. Subsequently, the critic network is updated using gradient
descent on the squared loss (line 15), and the actor network is
updated through gradient ascent (line 16). Target networks are
updated using Polyak averaging (line 18). Finally, the state is
refreshed (line 20), and upon reaching a terminal state (if done
is true), the environment is reset to a new initial state (lines 22
and 23). In the evaluation phase, we distinguish domains as
sender or receiver. For sender domains (lines 28 to 30), upon
reaching the forecasting threshold, we predict future data rate
values and transmit these forecasts to the receiver domain.
On the receiver domain’s side (lines 35 to 40), if we receive
a message, we extract the forecasted data rate values and we
update the state only if there’s an anticipated increase in traffic.
Subsequently, a scaling action is determined based on the actor
network’s learned policy. This action is then executed, and the
state is updated accordingly (lines 41 to 42).

V. SIMULATION RESULTS

To evaluate our solution, we simulated an E2E 5G network
with two domains: the Radio Access Network (RAN) and the
Core Domain, linked by virtual connections and hosting a
custom substrate network. An E2E slice was deployed across
these domains, featuring three adaptable Network Functions:
Central Unit (CU) and Distributed Unit (DU) in the RAN, and
a User Plane Function (UPF) in the Core. Given that CU and
DU scaling is less common in 5G deployments, our focus was
primarily on UPF scaling within the Core domain, with UPF
scaling parameters provided in Table I. During the validation
phase, NF parameters were altered to assess the robustness of
our approach.

Figure 2 illustrates the traffic pattern used for training and
validation, generated according to the model described in
subsection II-B. We generate a traffic for one week with daily
period (60×24 in minutes) and a weekly period with a higher
amplitude during the weekend (6th and 7th days). Added to
that a noise following a normal distribution ϵt ∈ N (0, 0.2).

Figure 3 shows the penalty and efficiency reward during
the learning phase. Initially, the agent shows bad efficiency
and penalty rewards. This can be explained by the period of

Algorithm 1: DRL-based Distributed Scaling Algo-
rithm.

1 begin
Input: s, k, τ , q, T, send, training

2 Initialize Forecasting model F with θF , σ, δ
3 Initialize Networks Critic Q and Actor µ with

parameters θQ, θµ, Reply buffer D
4 Initialize Target networks Q′, µ′

5 st = GetSimulationState (s, k)
6 while TRUE do
7 if training then
8 at = µ(st|θµ) + ϵ s.t ϵ ∼ N
9 rt, s

′, d = ExecuteAction (at)
10 Store (st, at, s

′, rt, d)→ D
11 if update time then
12 Sample B = {(st, at, s′, rt, d)} ←D
13 Compute targets
14 y = rt + γ(1− done)Q

′

θ(s
′, µ

′

θ(s
′))

Update Critic and Actor networks:
15 ∇θQ

1
|B|

∑
st,at,s′,rt,d

(Qθ(st, at)− y)2

16 ∇θµ
1

|B|
∑

st
Qθ(st, µθ)

17 Update target Networks :
18 θQ

′ ← τθQ + (1− τ)θQ
′

θµ
′ ← τθµ + (1− τ)θµ

′

19 end if
20 st ← s′

21 if d then
22 RestEnvironment ()
23 st = GetSimulationState (s, k)
24 end if
25 end if
26 else
27 dr = GetDataRate (s, k)
28 if len(dr) > σ and send then
29 drfr = FθF (dr, δ)
30 SendMessage (drfr, q)
31 end if
32 else
33 msg = (q)
34 if msg is not empty then
35 Extract forecasted data rate drfr
36 if drfr > dr then
37 st = UpdateState (st, drfr)
38 end if
39 end if
40 end if
41 at = µ(st|θµ)
42 rt, s

′, d = ExecuteAction (at); st ← s′

43 end if
44 end while
45 end



Phase cpumax cpucpb αUPF

Training 400 0.2 80%
Validation 500 0.4 80%

TABLE I: UPF parameters for training and validation.

(a)

(b)

Fig. 3: (a) Penalty reward per episode. (b) Use Efficiency
reward per episode.

exploration where the agent explore different actions including
prohibited ones, like deleting service or over-dimensioned
scaling actions (Fig. 3a). Over time, the agent gradually learns
to avoid these actions, allowing it to focus on resource usage
efficiency, which reaches near zero reward at the end of the
training (Fig. 3b).

In the validation phase, we assess the DRL agent’s per-
formance within a distributed scaling framework, facilitating
message exchange over a week. This setup allows us to
compare DRL-based scaling directly against the Horizontal
Pod Autoscaler (HPA) heuristic from Kubernetes, a reactive
method that scales according to the demand at each time
instance t. Our comparison focuses on the actions, and scaling
patterns of both methods. To further evaluate our method’s
effectiveness, we introduce two metrics: Loss Rate (LR),
indicating the percentage of data loss due to insufficient CPU
resources, and Resource Use Efficiency (RUE), measuring
CPU usage efficiency against incoming traffic relative to an
NF’s maximum CPU capacity, with the main objective is to
be close to the targeted threshold.

LR = max(
ReceivedData

MaxDataConsumption
− 1, 0) (9)

(a)

(b)

Fig. 4: (a) Sacling actions taken by DDPG. (b) Scaling actions
taken by HPA.

RUE =
cpucur

cpumax
∗ 100 (10)

In Figure 4, we illustrate the actions taken by the DDPG
agent and HPA algorithm on the UPF over a week. In 4a, we
observe that DDPG generates harmonized actions with steady
growth proportionally to the data rate fluctuations. In the other
side (Fig. 4b), HPA’s actions present significant oscillation
with frequent and successive creation and deletion actions.
This unstable behavior can be explained by the reactive nature
of the HPA algorithm which strives to match the data rate
fluctuations and its implications on the resource consumption.
On the other side, DDPG explore the traffic pattern and data
rate predictions exchanged between domains to generate more
accurate actions avoiding corrective actions. Consequently, we
have a compact action bound of [-5, 25] for DDPG while HPA
take bigger actions both in creation and deleting [-150, 100]
which is a huge performance enhancement.

Figure 5 presents the RUE values for both DDPG and
HPA algorithms. This results are the mean RUE value over
five weeks executions. We compare these methods in terms
of respecting the desired RUE threshold which is 80%. We
can see that DDPG consistently achieves an average RUE
close to the higher threshold, even during weekends where the
data rate is more important (last two days). In contrast, HPA
shows an average RUE around 90% even during weekdays
which present lower data rates. This indicates less efficient
resource utilization and less reliable since it fails to respect
the desired threshold. These results demonstrate the ability of



Fig. 5: RUE comparison between DDPG and HPA.

Fig. 6: Loss Rate comparison between DDPG and HPA.

DDPG’s to meet slice KPIs even when applied to scenarios
with different parameters than those used for training. We also
observe some days with suboptimal RUE levels (around 70%)
for DDPG. This can be attributed to the influence of forecasted
values on scaling actions. By exploiting messages from other
domains, the DDPG agent allocate slightly more resources
than necessary to anticipate future data rate increases.

In Figure 6, we illustrate the Loss Rate (LR) results from the
same five weeks trial for DDPG and HPA. The results reveal
a significant improvement in reducing packet loss during the
seven days with the DDPG agent compared to HPA. This
decrease is attributed to DDPG’s stable scaling strategy, which
maintains the right number of resources in response to traffic
fluctuations. In contrast, HPA shows a variable number of
instances due to its wide-ranging scaling actions, aiming to
align with the required number of instances to manage traffic,
which results in an increased loss rate.

VI. CONCLUSION

Multi-domain orchestration is a key challenge in 6G net-
works. It addresses the need to coordinate orchestration actions
across different network domains to ensure optimal perfor-
mance and reliability in end-to-end 6G networks. In this paper,
we present a new method for distributed NF scaling based
on deep reinforcement learning and message exchange. We
formulated NF scaling as an MDP and applied the deep
deterministic policy gradient (DDPG) algorithm to solve it.
This algorithm involves a training phase, where the agent
learns within one domain, and a testing phase, where it is

applied to a traffic forecasting and message distribution frame-
work. Our results show that our method outperforms the HPA
heuristic in terms of resource efficiency and loss rate. It also
offers a more stable and accurate scaling strategy following
traffic fluctuations. This research paves the way for further
investigation into complex AI-driven orchestration algorithms
to fulfill the distributed resource orchestration demands of 6G
networks.
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