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Abstract

Runtime software architectures (RSA) are architecture-level, dynamic representations of

running software systems, which help monitor and adapt the systems at a high abstraction

level. The key issue to support RSA is to maintain the causal connection between the

architecture and the system, ensuring that the architecture represents the current system,

and the modifications on the architecture cause proper system changes. The main challenge

here is the abstraction gap between the architecture and the system. In this paper, we

investigate the synchronization mechanism between architecture configurations and system

states for maintaining the causal connections. We identify four required properties for such

synchronization, and provide a generic solution satisfying these properties. Specifically,

we utilize bidirectional transformation to bridge the abstraction gap between architecture

and system, and design an algorithm based on it, which addresses issues such as conflicts

between architecture and system changes, and exceptions of system manipulations. We

provide a generative tool-set that helps developers implement this approach on a wide class

of systems. We have successfully applied our approach on JOnAS JEE system to support it

with C2-styled runtime software architecture, as well as some other cases between practical

systems and typical architecture models.

Key words: software architecture, bidirectional transformation, runtime system

management

1. Introduction

Nowadays, IT systems are required to be continuously available whereas the systems are

running, their environments and user requirements are constantly changing. This calls for the

system management at runtime to find and fix defects, adapt to the changed environments,
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or meet new requirements (France and Rumpe, 2007; Kramer and Magee, 2007). Currently,

many mainstream platforms have provided management APIs for retrieving and updating

the system state at runtime (Sicard et al., 2008), but direct management upon these low-

level APIs is not an easy task. First, the management API reflects the system in a solution

space, requiring the knowledge of platform implementation. Second, the APIs are designed

for general-purpose management, and thus are usually too tedious and complicated for a

particular management activity.

To control the management complexity, many researchers propose to utilize software ar-

chitecture for runtime management (Oreizy et al., 1998; Garlan et al., 2004; Sicard et al.,

2008). They represent the running system as a dynamic architecture model, which has a

causal connection with the system state. That means if the system state evolves, the archi-

tecture configuration will change accordingly. And similarly, if the architecture configuration

is modified, the system will change accordingly, too. Thanks to this causal connection, man-

agement agents (human administrators or automated management services) can monitor and

control the system by reading and writing this abstract architecture model, utilizing mature

architecture-based techniques (such as architecture manipulation languages and architecture

analysis (Blair et al., 2009)) to make high-level management decisions at runtime. We name

such architecture models as Runtime Software Architectures (RSA, Huang et al. (2006)).

There are many approaches to RSA-based runtime management. These approaches

reveal the usage and advantage of RSA, but their mechanisms for maintaining causal con-

nection are tightly-coupled with the target system, requiring the systems to be implemented

according to specific styles (Oreizy et al., 1998; Blair et al., 1998) or instrumented with

specific management capabilities (Huang et al., 2006; Garlan et al., 2004). Due to the tight

coupling, these approaches cannot be directly applied on the existing systems that are al-

ready implemented without consideration of RSA, because it is tedious and error-prone to

instrument them with RSA-enabling code.

In this paper, we focus on providing RSA support to the existing systems. The key issue is

to maintain the casual connection based on the general-purpose management API provided

by the target system. We sum up this issue as a synchronization between architecture

model and system state, and identify four required properties for such synchronization,

namely consistency, non-interference introspection, effective reconfiguration, and stability.

These properties are necessary for management agents to use the synchronized architecture

model for monitoring and controlling the system.

However, there are some challenges to implement such synchronization.

1. There is an abstraction gap between the system state and the architecture model. The
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system state is determined by the implementation of the target platform, located in

the solution space, while the architecture model is determined by the management

requirements, located in the problem space. To represent the system in the proper

perspective, the architecture model and the system state usually have heterogeneous

forms and asymmetric contents, and thus it is not easy to determine the effect of

architecture changes on the system side, and vice versa.

2. Since the architecture and the system are changing simultaneously, the synchronization

has to deal the conflicts between architecture modifications and system changes.

3. The system modifications through the API do not always lead to the expected effects.

The synchronization needs to handle such modification exceptions properly, in order

to prevent the management agents from getting the inaccurate information for the

running system and thus making wrong decisions.

In this paper, we present a generic approach to synchronize architecture models and

running systems, satisfying the above properties. To address the above challenges, we use

bidirectional model transformations to propagate changes across the abstraction gap between

architecture and system, employ a two-phase execution to filter out conflicts in the changes,

and employ a three-way check to identify modification exceptions. We provide a generative

tool-set to assist developers in implementing this approach on a wide class of systems.

Developers need only provide high-level specifications about the system and the required

architecture style, including two meta-models to specify what constitutes the architecture

model and the running system, a model transformation to specify their relation, and a

declarative specification about how to retrieve and update the system state, and our tool-

set automatically generates the required synchronizer to support RSA on this system. The

contributions of this paper can be summarized as follows.

• We formalize the generic synchronization between architecture models and running

systems, and define a set of required properties for such synchronization.

• We provide an architecture-system synchronization algorithm based on bidirectional

transformation, satisfying the above requirements.

• We provide a generative tool-set to assist developers in implementing the approach on

a wide scope of systems, supporting RSAs on them.

We have applied this approach to several practical systems, including JOnAS/JEE and
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Figure 1: A client/server styled runtime architecture for a PLASTIC-based mobile system

PLASTIC1. These case studies demonstrate the feasibility, efficiency and wide applicability

of our approach and tool-set.

This work is based on a series of our earlier approaches. We utilize the code generation

approach for wrapping low-level management APIs (Song et al., 2009, 2010). The idea of

using model transformation to achieve synchronization was discussed in Xiong et al. (2009b).

The rest of this paper is structured as follows. Section 2 illustrates the basic concepts

of RSA. Section 3 discusses the synchronization for maintaining causal connection. Section

4 presents our synchronization approach based on bidirectional model transformation, and

Section 5 introduces our generative tool-set to help implementing this approach. Section 6

describes our case studies. Section 7 summarizes related work and Section 8 concludes this

approach.

2. Runtime software architecture

2.1. An illustrative example

The right part of Figure 1 shows a simple mobile computing system for file transmission,

which we construct upon the PLASTIC Multi-radio Networking Platform (IST STREP

Project, 2008). As shown in the figure, three devices are currently registered on a central

desktop, which pushes files into these devices via different types of connections, including

Wi-Fi, Bluetooth and wired cable. At runtime, the administrator may wish to monitor what

devices are registered, and how they are connected. He also needs to reconfigure the system,

e.g. when the Wi-Fi signal is too weak for the first device, he could switch the connection

into Bluetooth.

1The tool-set and the artifacts used in the case studies can be found in our project website: http:

//code.google.com/p/smatrt
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The left part of Figure 1 is an architecture model conforming to the Client/Server archi-

tecture style (Garlan et al., 2004). The Clients stand for the devices, the Server stands

for the desktop computer, and the Links stand for the connections between them. Admin-

istrators could add or remove clients, change connection types. If they find a client that

needs further maintenance, they add a be-careful mark on it..

To support the management activities mentioned above, the architecture model must

have a causal connection (Blair et al., 1998) with the running system. The architecture

model must change as the system changes. For example, if a device unregisters itself, the

corresponding client element in the architecture will disappear. Similarly, the architecture

modifications must cause correct system changes. For example, if the administrator switches

a link type, the real network connection will be reset.

2.2. A formal description of runtime software architecture

The above example illustrates three elements of RSA, i.e., the architecture model, the

system state, and the causal connection. This section discusses these elements in detail,

with the help of a simple formal description.

2.2.1. Architecture models

Architecture models are constituted of a set of model elements (like clients and servers).

These elements have attributes, and refer to other elements. The types of architecture

elements in our example are shown in the left part of figure 2: A root element typed as

Structure contains several Servers and Clients, which connect with each other through

Links. An architecture configuration is a set of element instances conforming to these

element types. Model manipulations (like adding a component or changing an attribute

value) change the model from one configuration to another.

We use A to stand for the set of all possible architecture configurations (which is de-

termined by the meta-model), and use ∆A ⊆ A × A to denote all possible changes from

one architecture configuration to another. Following Alanen and Porres (2003), we present

the model changes as a composition of primitive model modifications, including creating or

deleting an element, and getting or setting a property. From this point of view, model differ

(− : A×A→ ∆A) finds a set of primitive modifications to represent the changes, and model

merge (+ : A × ∆A → A) execute the modifications to get a new model. For architecture

models, the effect of modifications is predictable, i.e., δ = a′ − a⇒ a+ δ = a′.

2.2.2. Runtime system states

According to Sicard et al. (2008), a running system is constituted of system elements,

like the devices and the desktop computer. The system elements may have local states (like
5
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Figure 2: The definition of architecture and system elements for the running example

the connection type), or be associated with each other. The type of system states (like

what elements exists, their local state values, and the references between them) can be also

defined by a meta-model, as shown in Figure 2. Similar to architecture models, we use S

and ∆S to stand for the system meta-model and all possible changes. The changes may be

caused by the system itself, or by manipulations from outside.

For the above example, reading and modifying the system state can be performed through

the PLASTIC API. To see all the devices from the desktop computer, we could invoke the

API on the desktop to get all registered MNClients, each of which stands for a device

connected to this desktop. We can invoke getActualNetworkQoS on a MNClients to see its

connection, and invoke activateBestNetwork on it to change the type2.

Unlike architecture models, manipulations on running systems are not always predictable,

i.e., δ = s′ − s 6⇒ s + δ = s′. The modifications may have no effect or side effect. For

example, if we modify a device’s network into Bluetooth but the device is suddenly outside

the coverage of the desktop’s Bluetooth signal, then this manipulation has no effect. If we

delete (disconnect) the network between the desktop and the first device, then the device

itself is also unreachable from the desktop, and thus the resulting system changes also include

a side effect that is a deletion of the device. The reason for this is that the APIs usually do

not reflect the complete system state. We abstract a running system as a tuple: (S,E, σ),

with S, the system meta-model, E, the set of environment (e.g. the device is out of the

Bluetooth range), and σ, the state transition function: σ : S × E ×∆S −→ S, standing for

2 Originally, PLASTIC only open the interface for resetting networks according to a set of QoS require-

ments. To simplify our example, we altered it a bit to open the capability for switching networks directly

by types.
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transformation CS2PLA(arc:CS,sys:PLASTIC){
key Structure{name};...key Device{name};    
top relation StructServer2Desktop{

tmpName:String;
enforce domain arc strt:Structure{name=tmpName,

server=svr,client=clnt:Client{},link=lnk:Link{}};
enforce domain arc svr:Server{name=tmpName};
enforce domain sys dsktp:Desktop{name=tmpName, device=dvc:Device{}};
where{ClientLink2Device(svr,clnt,lnk,dvc);}; }   

relation ClientLink2Device{
tmpName:String; tmpType:String;
enforce domain arc svr:Server{};
enforce domain arc clnt:Client{name=tmpName};
enforce domain arc lnk:Link{client=clnt,server=svr,type=tmpType};
enforce domain sys dvc:Device{name=tmpName, type=tmpType}; } }

relation

Figure 3: The relation between architecture and system

the system logic (e.g. if a network-link is removed, the device also disappears). For a current

state s ∈ S, in the current environment ε ∈ E, and after the execution of a manipulation

δ ∈ ∆SM
, the result σ(s, ε, δ) is the subsequent state of this system.

2.2.3. Causal connections

Chan and Chuang (2003) and Sicard et al. (2008) refined the concept of “causal connec-

tion” into the following two requirements.

• Correct Introspection. No matter how system changes, the management agents

could always get the correct system state through the architecture model.

• Correct Reconfiguration. Management agents could directly modify the architec-

ture model, and the modifications will dynamically cause the correct system change.

Here the correctness depends on a given relation between the architecture configuration

and the system state R ⊆ A×S. When (a, s) ∈ R, we say that architecture a and system s

are consistent, or a is a reflection of s. For our illustrative example, this consistency relation

embodies the information like “if there is a device in the system, there must be a client

in the architecture model with the same name, and vice versa”. We illustrate this relation

using a QVT transformation as shown in figure 3. It defines that the Structure and the

Server together map to the Desktop; A Client and its connected Link together map to a

Device.
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3. Maintaining causal connections by architecture-system synchronization

We defined the Architecture-System Synchronization (ASS) according to a relation R,

for a system σ, and under the environment ε, as a function:

Synch(R,ε,σ) : A× A× S −→ A× S

The first two inputs are architecture configurations before and after management agent’s

modification. The third input is the current system state. The outputs are the synchronized

architecture configuration and system state.

3.1. The four properties

In order to satisfy the two requirements above (i.e. introspection and reconfiguration),

we use a series of properties to constrain the synchronization behavior. Specifically, for any

(ao, ac, sc) ∈ A× A× S if

Synch(R,ε,σ)(ao, ac, sc) = (as, ss)

then we require the results (as and ss) to satisfy the following propositions.

Property 1. (Consistency)
(as, ss) ∈ R

First of all, we require the synchronized architecture configuration (as) and system state

(ss) to be consistent, so that Management Agents (MAs) could use the resulted architecture

configuration to deduce the current system state and the modification effect.

Property 2. (Non-interfering introspection)

ao = ac =⇒ ss = sc

Consistency alone does not ensure correct introspection. For example, suppose that in

ao and ac, the types of the first links are all Wi-Fi, and in sc, the corresponding connection

type has changed to Bluetooth. In this situation, the ASS could choose to change the real

network type back to Wi-Fi. Although this result satisfies consistency, the MA will not get

the genuine system state, but the one polluted by ASS. Therefore, we require that if the

architecture is not modified, the ASS cannot change the system.

Property 3. (Effective reconfiguration)

ac − ao ⊆ as − ao
8



Similarly, consistency is not enough for correct reconfiguration. For example, if the MA

modifies the link from Wi-Fi to Bluetooth and in the current system the connection is still

Wi-Fi, then to satisfy consistency, the ASS could ignore the architecture modification and

leave the current system unchanged (that means the result is (ao, sc)). To ensure correct

reconfiguration, we require that all the MA’s modifications (i.e. ac− ao) remain in the final

architecture change (i.e. as − ao).

Property 4. (Stability)

(ac, sc) ∈ R =⇒ as = ac ∧ ss = sc

Finally, we add an extra property to guarantee that, when the current architecture model

and system state are already consistent, the ASS leave them unchanged. This property

prevents irrelevant system changes from interfering the architecture model. It also allows

the MAs to record some extra information on the architecture model. For example, the MAs

could change the layout of the architecture model or mark some part of it to make it more

intuitive, and since this change does not have any relation with the running system, this

property ensures that the synchronization does not break the layout.

3.2. The challenges

There are several challenges to implement an architecture-system synchronization that

satisfies the above properties.

First, the architecture model and the system structure are heterogeneous and asymmetric.

Heterogeneity means that the relation between architecture and system is not a simple one-

to-one mapping between architecture and system elements. In our example, the link elements

in the architecture model do not have corresponding system elements. They just represent of

the connection type of the devices. Asymmetry means that the architecture and the system

may all contain some information which is not relevant to the other side. For example, the

“be careful” mark on the client elements does not have any counterpart in the real system.

Due to the heterogeneity and asymmetry, it is challenging to propagate changes correctly

from the system to the architecture and vice versa. And moreover, according to the Stability

property, we also have to identify the irrelevant information and keep it unchanged during

the synchronization.

Second, the architecture and system changes may happen simultaneously, and thus these

changes may conflict. For example, if the MA changes the type of the first link, and in the

meantime, the first device is closed. Then if the ASS still propagates the architecture mod-

ification, it will invoke the management API to reset the network of this inexistent device,
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and cause unexpected results. If such conflicts are not properly handled, the synchronization

may even cause harmful invocations to the management API.

Third, the system modifications are not predictable for the ASS, because it cannot get

complete system information from the management API. If the exceptions are not properly

handled, the synchronization results may be inconsistent. For example, if the MA changes

the first link to Bluetooth, the proper system change is to switch the connection type of the

first device. If this switching operation fails, to ensure consistency, the ASS should catch

the exception and roll back the modification of link type.

4. Architecture-system synchronization based on bi-transformation

This section presents our approach to implementing architecture-system synchroniza-

tion. Aiming at the three challenges discussed in the last section, our main ideas can be

summarized as follows.

• We utilize bidirectional transformation and model comparison to translate changes

between architecture and system.

• We employ a two-phase execution to filter out conflicting changes, preventing them

from harming the system.

• We add a validating read after changing the system to get the actual effects of the

system modifications, in order to construct a consistent architecture model even in the

presence of modification exceptions.

In this section, we first introduce the enabling techniques of our approach. Then we ex-

plain the algorithm on our illustrative example. Finally, we evaluate the algorithm according

to the four properties (Section 3.1).

4.1. Enabling techniques

Bidirectional transformation. Bidirectional transformation uses one relation between two

sets of models (i.e. two meta-models) to derive two directions of transformations between

them. Formally speaking, according to Stevens (2007), for two meta-models M and N , and

a relation R ⊆M ×N , the bi-transformation is constituted of two functions:

−→
R : M ×N −→ N
←−
R : M ×N −→M
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Figure 4: Sample for model difference

“
−→
R looks at a pair of models (m,n) and works out how to modify n so as to enforce the

relation R: it returns the modified version. Similarly,
←−
R propagates changes in the opposite

direction.” (Stevens, 2007). Note that the transformation requires two parameters, because

the relation between the two models is not bijective, i.e., for m ∈ M , there may exist more

than one n ∈ N satisfying (m,n) ∈ R. This is because each of the models may contain the

information that is not reflected in the other one. Detail discussions and examples could be

found in Czarnecki et al. (2009).

Model difference and merge. Model difference denoted by “-” compares two models to get

the difference between them, i.e. − : M×M −→ ∆M . It represents the calculated difference

as a set of primitive model operations (Alanen and Porres, 2003). Model merge denoted by

“+” executes the difference into a model to get a new model, i.e. + : M × ∆M −→ M .

For example, the top half of Figure 4 shows two models and the difference between them,

and in the bottom half, we merge this difference with another model: the delete operation

eliminates client2, but the set operation has no effect, because the target element client1

does not exists in this model.

System-model adaptation. The model transformation and difference techniques are based

on standard models, usually the models conforming to the OMG’s MOF standard (OMG,

2006). We assume the architecture models already conform to MOF standard, because more

and more people choose MOF-based languages, like UML, to describe architecture models,

and there are tools to convert architecture models in other languages into MOF-compliant

ones (Cuadrado and Molina, 2009). But for system state, since most systems only provide

ad hoc management APIs, we need a system-model adapter to support reading and writing

the system state in a model-based way. Specifically, when reading, this adapter returns a

MOF-compliant model that reflects the current system state. By contrast, when writing, it
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Figure 5: Synchronization algorithm

Input: ao and ac, the original and current architecture model

Output: as the synchronized architecture, and δl the failed modifications

Side-effect: changing system state from so into sc

1 Modification recognition:

2 sc
read←− adapter; *get the system’s "current state"

3 s′o ←
−→
R (ao, sc); *get system model reflecting the original arch.

4 s′c ←
−→
R (ac, sc); *get system model reflecting the modified arch.

5 δd ← s′c−s′o; *the "desired system change" reflecting MA’s modification

6 Two-phase execution:

7 sd ← sc + δd; *attempt to execute the change" to the static model

8 δv ← sd − sc; *the "valid change" that passes the attempt

9 adapter write←− δv *executing the valid change to the system

10 Result feedback:

11 ss
read←− adapter *retrieve the synchronized state (ss = σ(sc, ε, δv) )

12 as ←
←−
R (ac, ss); *get the "final architecture"

13 Effectiveness Check:

14 δm ← ac − ao; *get the MA’s "modification"

15 δa ← as − ao; *get the "actual arch change" after synchronization

16 δl ← δm − δa; *get the "lost change", and warn the MA

generates the proper invocation of the management API according to the model operation,

changing the system state.

4.2. The synchronization algorithm

Figure 4.2 shows our algorithm in pseudo-code. It takes two architecture configurations

before and after modification (ao and ac, respectively) as inputs. It propagates the architec-

ture modifications into the current system, and reflects the new system state as the output

architecture configuration (as). This algorithm has four steps. We first calculate what the

architecture modifications mean on the system side. Then we use a two-phase execution to

filter out conflicting changes, and execute the valid ones on the system. After the execution,

we fetch the result system state, and feed it into the architecture. Finally, we check the

result to see if all the MA’s architecture modifications are successfully executed.

12



sample:Structre

phone:Client

mark=null

ao

pda:Client

mark=null

tab:Client

mark=null

server:Server

bluetooth wi‐fi cable

sample:Structre

phone:Client

mark=null

pda:Client

mark=care

tab:Client

mark=null

server:Server

wi‐fi wi‐fi wi‐fi

sample:Structre

phone:Client

mark=null

pda:Client

mark=care

server:Server

wi‐fi wi‐fi

server:Desktop

phone:Device

network=bluetooth

pda:Device

network=wi‐fi

tab:Device

network=cable

server:Desktop

phone:Device

network=wi‐fi

pda:Device

network=wi‐fi

tab:Device

network=wi‐fi

Server:Desktop

phone:Device

network=wi‐fi

pda:Device

network=wi‐fi

Server:Desktop

phone:Device

network=wi‐fi

pda:Device

network=wi‐fi

asac

so' sc' sd ss
server:Desktop

phone:Device

network=bluetooth

pda:Device

network=wi‐fi

tab:Device

network=wi‐fi

sc

Figure 6: Sample architecture model and system state

To explain this algorithm intuitively, we use a synchronization scenario on our mobile

computing system, as shown in Figure 6. The top half of this figure illustrates the evolution

of the architecture configuration during the execution of this algorithm, and the bottom half

illustrates the evolution of system state. The original architecture model ao contains one

server and three clients. The MA resets two links into Wi-Fi, and add a be-careful mark on a

client. The modification result is ac. In the meantime, the system has changed into sc, with

one device disappearing (shown by dashed lines and grayed text). Note that the architecture

modification and the system change conflict, i.e., the MA changed the type of the third link,

but the corresponding device (tab) does not exist in the system any more. We expect the

resulting architecture model (as) to reflect the system change (a client deleted) and keep

the non-conflicting architecture modifications (the type of the first link and the mark of

the second one). The resulting system state (ss) contain the effect of this architectural

modifications (i.e. having the first network changed into Wi-Fi).

Step 1: Modification Recognition. Our first step is to recognize the meaning of the

MA’s architecture modifications on the system side. We first read the system-model adapter

to get the current system state and preserve it as a system model sc (as shown in Figure 6,

marked as sc). Then, we use this system model as a reference to transform the original and

modified architecture models (i.e. ao and ac, respectively) into two system models (s′o and

s′c). These two system models are not the representations of the real original and current
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system states, but the images of the two architecture models. We compare these two images,

and get the difference as follows:

[ set (phone , network , bluetooth , wi-fi),

set (tab , network , cable , wi-fi) ]

This difference is the meaning of the MA’s architecture modifications (resetting two link

types) in the system side, and we name it as the desired system changes (δd) by the MA.

Step 2: Two-phase execution. Our second step is to execute the desired system

modifications into the running system. Due to the conflicts between architecture and system

changes, the desired modifications may contain some invalid modifications, like setting the

network type of the tab device. We cannot directly execute these modifications into the

system, and thus we employ a “two-phase” execution: the first phase filters out the invalid

modifications, and the second phase executes the valid ones. Specifically, in the first phase,

we execute the desired modifications on the system model sc. Since this execution is not

performed on the real system, the invalid modification does not harm the system. Moreover,

according to the behavior of the model merge (Alanen and Porres, 2003), this modification

does not change the model. After this “fake” execution, we get a system model which records

the desired and valid system state by the MA (see sd in Figure 6). We compare this model

with sc again, and get the valid modifications, i.e.

[ set (phone , network , bluetooth , wi-fi) ]

Finally, in the second step, we invoke the system adapter to execute this valid modification

(δv) into the real system. Notice that currently we check the validity in a simple way:

Checking if the modifications are syntactically meaningful to the current system state. We

plan to introduce OCL into system meta-model to specify semantical constraints, in the

future.

Step 3: Result feedback. Our third step is to propagate the original system change

(the disappearance of the cable device) and the actual effect of the system modification

(setting phone’s network to Wi-Fi) into the architecture model. We use the adapter again

to read the system state. This state is the real modification result determined by the system

state before synchronization (sc), the system logic (σ) and the current environment (ε). If

this modification is executed successfully, the retrieved system model is like ss in Figure 6.

Then we use the backward transformation to transform this final system state into the

architecture side, as the resulted architecture model. In order to preserve the irrelevant

architecture modifications (like marking the “pda” client), we use the modified architecture

model (sc) as the basis to perform this transformation.

Step 4: Effectiveness check. We cannot always ensure the effective reconfiguration
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property (we discuss this later in Section 4.4). So we employ an extra step to check what

architecture modifications have not been successfully propagated. We first compare ao and

ac, and the difference is constituted of the original architecture modifications from the MA

(δm).

[ set (link1 , type , bluetooth , wi-fi),

set (link3 , type , cable , wi-fi),

set (pda , mark , null , care) ]

Then we compare ao with as, and the difference reflects the actual architecture evolution

(δa).

[ set (link1 ,type , bluetooth , wi-fi),

set (link3 , type , cable , wi-fi),

delete (tab) ]

Finally, we calculate the relative complement of δa in δs, to see which expected modifications

do not remain in the actual effect:

[ set (link3 , type , cable , wi-fi)]

We warn the MA about this “lost modification”, so that the MA could choose to re-try this

modification or to find a substitute solution.

4.3. Assumptions

Our algorithm depends on the following assumptions.

First, we assume that a pair of forward and backward transformations
−→
R and

←−
R satisfy

two basic properties of bi-transformation (Stevens, 2007). The first property is Correctness.

That means the relation R holds on the transformation results: (m,
−→
R (m,n)) ∈ R ∧

←−
R ((m,n), n) ∈ R. The second property is Hippocraticness. That means the transformations

do nothing for the already consistent models: (m,n) ∈ R =⇒
−→
R (m,n) = n ∧

←−
R (m,n) = m

Second, we assume the model difference and merge (like Line 14 or Line 7, but not for

the reading and writing on system states through adapters) to be deterministic (Alanen and

Porres, 2003): ∀m,m′ ∈ M, δ ∈ ∆M .δ = m′ − m =⇒ m′ = m + δ In addition, we also

require the modifications to be idempotent, i.e. ∀m ∈ M, δ ⊆ ∆M .m + δ + δ = m + δ. For

MOF-based models, to satisfy idempotency, we require the multiple properties to be unique

and unordered (Xiong et al., 2009a).

Finally, we assume that the environment does not change during a synchronization pro-

cess3. This assumption is not difficult to satisfy in practical situations. On the one hand,

3a duration after the MA modifies the architecture and launches the synchronization, and before they

get the resulted architecture configuration. We do not require the environment to be stable during the time

when MA modifies the architectures
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most system changes concerned by MAs do not happen frequently, like components added

or parameter changed. On the other hand, as a fully automated process, the synchroniza-

tion spends much less time, comparing with the time for MAs to make their management

decision. For the systems where the casual violation of this assumption is not acceptable,

developers could utilize an environment lock before each synchronization process. This as-

sumption does not prevent multi-objective management: Different management agents could

utilize different RSA of the same system, and perform management activities simultaneously,

providing that the synchronization processes do not overlap.

4.4. Discussion about the algorithm and the properties

We evaluate this algorithm according to the four properties we discussed before. In

summary, this algorithm satisfies three properties in any situations, and satisfies “effective

reconfiguration” when the MA’s modification intention is reachable at the current system.

The algorithm satisfies Consistency, i.e. (as, ss) ∈ R. After the final backward transfor-

mation (Line 12), as and ss has the following relation: as =
←−
R (ac, ss). According to the

“Correctness” property of bi-transformation, (as, ss) ∈ R.

It satisfies Stability: (ac, sc) ∈ R⇒ as = ac ∧ ss = sc. Since ac and sc are consistent, i.e.

(ac, sc) ∈ R, the “Hippocraticness” property of bi-transformation ensures that the forward

transformation (Line 4) results s′c = sc. δd changes some state into sc (Line 5), and thus

executing δd on some state will also return sc, so finally, δv = φ. Since we assume that the

environment is stable, executing an empty modification will not cause the system to change,

and thus we get ss = sc. For the other part of Stability, since ss = sc ∧ (ac, sc) ∈ R ⇒
(ac, ss) ∈ R, the “Hippocraticness” property also ensures the backward transformation does

not change the architecture, and thus we get ac = as.

It satisfies Non-interfering Introspection: ao = ac ⇒ ss = sc. ao = ac means that the

two transformations in Lines 2 and 3 has the same inputs. The deterministic transformation

produces the same outputs, i.e. so = sm, and thus in Line 5, δd = ∆(so, sm) = φ. Similar to

the above discussion, this empty change will cause no effect on the current system, and so

ss = sc.

It satisfies Effective Reconfiguration, if the MA’s desired system modification is reachable

for the current system. We first explain the premise. The desired system modification (δd

in Line 5) is the intention of MA’s architecture modification. We say the desired system

modification is reachable for the current system, if we can successfully effect this modification

in the current system. Formally, a reachable modification δ ∈ ∆S for the current system

(s, ε, σ) must satisfies σ(s, ε, δ) = s+ δ.

Due to space limitation, we give only an informal proof for this theorem. We divide MA’s
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architecture modification (δm = ac−ao in Line 14) into two parts, say δm = δms∪δmi. δms is

significant to the system (like changing the link type), and the desired system modification

δd is the image of δms in the system side. According to the premise, after the adapter reading

and writing, the δd will be merged into the current system, and is contained in the resulted

system state ss. In the backward transformation, ac contains δms and as contains its image.

This implies that the transformation does not need to break δms to make as consistent with

ss, and thus as still contains δms. The other part, the δmi, is insignificant to the system (like

marking a device). These modifications will never break the consistency between architecture

and system. According to the “Hippocraticness” property, the backward transformation will

keep this modification in as. As a result, the whole δm remains in the resulted architecture

as, and thus ac − ao ⊆ as − ao.
In practical situations, we cannot ensure that the MA’s modification is always reachable

for the current system. First, MA needs a relatively long time to make modification decisions.

During this time, the system may change and making the MA’s modification outdated.

Second, for some specific system logic and environment, the modifications will fail or cause

side-effects, and MAs cannot predict that. It is usually a big burden if we constrain the MA to

only perform reachable modifications. As a result, in this paper, we choose a simpler solution:

we allow MA to perform any modification, and after synchronization, we inform them about

the violations to this property (the “effectiveness check” step). Such violations help MAs

understand the current system, and find reasonable modifications through attempts.

5. Generating synchronizers for legacy systems

We developed a tool-set named SM@RT to help developers in implementing our synchro-

nization approach on different systems to provide runtime software architectures for them.

As a generative tool-set (shown in Figure 7), from the developer’s specifications about the

system and the architecture (Layer 3), the tool-set (Layer 2) automatically generates the

synchronizer (Layer 1) to maintain causal connection between the architecture and the sys-

tem at runtime (Layer 0). We design this generative tool-set in two steps.

First, we provide a generic implementation of the synchronization algorithm discussed in

Section 4. This engine is independent of architecture styles and running systems. To make

this generic engine works for a specific legacy system and a specific architecture style, we

need to customize it with the following artifacts (recall the algorithm in Figure 4.2):

1. the architecture and system meta-models that guide model comparison,

2. the relation between them to guide the transformations,

3. the system adapter for manipulating the system state, and
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Figure 7: Overview of SM@RT toolset

4. the XMI parser to read and write the architecture model

Our second step is to assist developers in providing these customization artifacts. For

the first two artifacts, we choose the MOF model and the QVT transformation language

for developers to specify the meta-models and the relation, respectively. But since writing

the adapters and the parsers from scratch is tedious and error-prone, we provide further

assistance for the last two artifacts. We automatically generate XMI parsers from the

architecture meta-model, and automatically generate the adapter from the system meta-

model and a declarative specification of the management API, which we name as “access

model”.

In summary, the SM@RT tool-set has two main parts: a generic synchronization engine,

and two generation tools. It also contains some auxiliary tools, like the graphical editor for

specifying MOF meta-models and the textual editor for the access models. In the rest of

this section, we briefly present our implementation of the two major parts.

5.1. Implementing the generic synchronization engine

We implement the synchronization algorithm in Figure 4.2 using a set of existing model

processing tools based on Eclipse Modeling Framework (EMF: Budinsky et al. (2003)),

which can be regarded as an implementation for Essential MOF (EMOF: OMG (2008), a

core subset of MOF standard).

We choose an open source QVT transformation engine, the mediniQVT (ikv++, 2009),

to implement the bidirectional transformations. mediniQVT is implemented on the EMF
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framework, and uses the EMF generated Java classes to manipulate models. It is a com-

plete QVT implementation, supporting the expressive power defined by QVT language, and

satisfying the properties we require as assumptions.

We apply a model comparison engine that we have developed before (Xiong et al., 2009a)

to implement the model different and merge. This comparison engine is also implemented

on the EMF framework, conforming to the definition by Alanen and Porres (2003). As an

experimental tool, our comparison engine has some constraints on the meta-models, i.e. any

classes must have an ID attribute and the multi-valued references are not ordered.

To work for a specific system, this generic implementation can be customized by two

meta-models defining the architecture and system, and a QVT transformation specifying

their relation. The meta-models and the QVT transformation for our running example are

shown in Figure 2 and Figure 3. The attributes marked with stars are the IDs of the classes.

5.2. Generating specific XMI parsers and system adapters

The generator for XMI parsers takes the architecture meta-model as an input, and pro-

duces the parser automatically. We implement this generator by directly reusing the EMF

code generation facility.

The generator for system adapters takes as inputs the system meta-model and an “access

model”, and produces the adapter. This generator is an achievement of our previous work

(Song et al., 2009), and in this paper, we just briefly introduce its input and output.

To generate the adapter for a specific system, we require developers to provide an “access

model” to specify how to invoke the system’s management API. An access model is a set

of items, each of which defines a piece of code that implements a primitive manipulation

operation (get, set ,create, etc.) on a specific kind of system data (Device, Network, ect).

Figure 5.2 shows one of the items in the access model for PLASTIC, defining how to “get

a device’s connection type”. The meta element (Line 2) indicates the type of target system

element. The manipulation (Line 3) indicates the primitive operation, and the Java code

(Lines 4-8) shows how to invoke the API. The logic for this API invocation is as follows: We

get the instance of MNClient for this device, retrieve its QoS information, and return the

network type from the information4.

From the access model, our generator automatically produces the system adapter. The

adapter maintains an EMF compliant model at runtime, and external programs (like our

4As mentioned before, we revise PLASTIC a bit to add “network type” as a new QoS value, and let the

PLASTIC framework to choose network directly by type. Note that this revision is not a necessary part for

applying our approach. We did it just for making this example straightforward
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Figure 8: Excerpt of access model for PLASTIC

1 @Map

2 @MetaElement=Device::Network

3 @Manipulation=Get

4 @CodeFragment=@Begin

5 MNClient mnc=(MNClient)$core;

6 QoSInfo qos=mnc.getActualNetworkQoS();

7 $result=qos.getNetworkType();

8 @End @EndMap

synchronization engine) use the standard operations to manipulate this runtime model, like

copying the runtime model to a common static model (the read operation in the algorithm

in Figure 4.2), or executing the modifications to the runtime model (the write operation).

In the background, the adapter synchronizes the model state with the system state at real

time, so that the external programs could always get the current system state, and their

modifications on the runtime model will immediately be executed to the real system. More

details about this low-level real-time synchronization could be found in our previous paper

(Song et al., 2009).

6. Case studies

We have applied our approach on several practical systems, providing RSA support for

them. These cases illustrate its feasibility and validity, as well as the development efficiency

for implementing it. In the following of this section, we first describe a C2-JOnAS case in

detail. Then we present other cases briefly, and summarize all the cases.

6.1. C2-JOnAS

Our first case study is to provide C2-styled runtime architecture for JOnAS. Here JOnAS

(OW2 Consortium, 2008) is an open source JEE application server, while C2 (Oreizy et al.,

1998) is an architecture style aiming at the runtime evolution of UI-centric systems. Since

many JEE applications are UI-centric, it is a natural idea to use C2-styled architecture

models for managing JOnAS-based systems.

We prepare the four inputs as shown in Figure 9, to let the SM@RT tool-set generate the

synchronizer. We defined the architecture meta-model (Figure 9(a)) following the description

of C2 style (Oreizy et al., 1998), where Architectures contain several Components and

Connectors, which link to each other through above and below associations. We defined

the system meta-model (Figure 9(b)) according to the JOnAS document. We care about the
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Figure 9: Specifications for generating C2-JOnAS synchronizer

EJBs, JDBCDataSources and WebModules running on a system, and a set of their attributes.

We defined the access model (Figure 9(c)) by studying the sample code for using JOnAS

management API (Hanson, 2004). We wrapped the Java code for deploying and un-deploying

EJBs, data sources and web modules, and for getting and setting their attributes. The pop-

up diagram shows a sample item for invoking getAttribute method of JMX to get all kinds

of attributes. Finally, we defined a QVT transformation to connect the architecture and

system meta-models. We use five QVT relations to reflect all types of management elements

to components. Figure 9(d) shows one of these relations. It specifies that a Component maps

to a JDBCDataSource, if and only if they had the same name, and the Component links to a

Connector named “jdbc”.

The generated synchronizer maintains a C2-styled runtime architecture for a JOnAS

system. For this case, the target system is a JOnAS server deployed with a Java Pet Store

(JPS) application (Sun, 2002). We launch the synchronization engine with an empty model

as the initial architecture. After the first synchronization, we obtain an architecture model

showing the current structure of the running JPS. The left snapshot of Figure 10 shows

this model opened in a graphical C2 architecture editor, after a manual adjustment of the

layout. At this time, the area inside the red dashed frame is empty. This system contains one

component (HSQL1) to provide the data, several other components to organize and aggregate

the data (such as CatalogEJB and ShoppingCartEJB), and finally one component to present
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Figure 10: Snapshots of C2-based JEE management

the data (petstore). We use the following two management scenarios to further show how

to use the RSA and how the synchronizer works.

We first use a simple experiment to show how to use this RSA to tune system parameters

at runtime: We write a script to continuously request the SignOn component, and we soon

notice that the Pool Size of HSQL1 becomes 50, which means the data source’s connection

pool is full. So we change the Max Pool to 100 and launch the synchronizer. After a while,

we launch the synchronizer again, and the Pool Size exceeds 50. That means the database’s

maximal pool size has been successfully enlarged. Then we set Max Pool to 20000, but after

synchronization, this value becomes 9999 (the upper limit of connection pool supported by

this version of HSQL), and we receive a notification warning us that the change did not

succeed, suggesting us for further actions like rolling back the modification.

Our second scenario simulates the runtime evolution case used by Oreizy et al. (1998).

We want to add RSS (Really Simple Syndication) capability into JPS at runtime to sup-

port subscription of pet information. Following the typical C2-based evolution scenario, we

add ProductArtist and ItemArtist components for organizing the raw data as products (a

product represents a pet breed Sun (2002)) and items (same breed of pets from different sell-

ers are regarded as different items), respectively, and add the rss component for formatting

the data as an RSS seed. These new components are shown inside the red box in Figure 10.

We implement these components as two EJBs and one web module, and then launch the

synchronizer, which automatically deploys them onto the JOnAS server. Now we can sub-

scribe an RSS seed with all items via “http://localhost/rss” (top-right of Figure 10). After
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that, we find the item information is too tedious, and want to see if the product information

will be better. We just change the link above rss from ItemArtist to ProductArtist, and

launch the synchronization again. The system behavior is changed immediately, and we get

an RSS seed with different contents, from the same address (bottom-right of Figure 10).

6.2. Client/Server-JOnAS

The second case study is a combination of the first one and the running example. We pro-

vide a Client/Server-styled RSA for JOnAS, where the server represents the data source and

the clients represent the EJBs interacting with this data source. The server and the clients

all have a resource attribute, which represent the data source’s max connection pool and

the EJB’s instances amount, respectively. This RSA is useful for database administrators

to see how the data source interacts with other components.

To construct the synchronizer, we directly reuse the meta-model we have defined for

Client/Server style (Figure 3), and the meta-model and access model for JOnAS (Figure 9).

We write a new QVT transformation to specify that Server maps to J2EEDataSource,

and Client maps to the EJB that depends on this data source, and their attributes map

correspondingly. This QVT transformation has 56 lines in total.

We perform a self-adaptation scenario on this RSA, imitating the one presented by

Garlan et al. (2004). We specify the self-adaptation rule using an extended version of OCL

(Song et al. (2007)).

context Server do

let sum:Real=self.link->

collect(e|e.client.consumption)->sum()

in sum > self.resource => self.resource <- sum

At the architecture level, this rule means that if a server’s resource is less than the sum

of all its clients’ consumption, then enlarge this server’s resource. We input this rule to

the extended OCL engine, and execute “synchronize, OCL-execute, synchronize” every five

minutes. The effect on JOnAS system is automatically enlarging the data source’s connec-

tion pool, when the sum of EJB’s instance size (an instance implies a potential database

connection) exceeds the data source’s maximal connection pool size.

6.3. Other case studies

Besides the running example on PLASTIC, and the above two cases on JOnAS, we also

performed several other cases on different platforms, implementing different kinds of RSAs.

We perform these cases based on the system adapters we have generated in our earlier work

(Song et al., 2009).
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Table 1: Summary of the cases. For each target system, we list the platform name, the size of system

meta-model (the total number of model elements, including classes, attributes, associations), and the size

of access model (lines of code). For the architecture, we list the name of style or ADL, and the size of

architecture meta-model (for the last two cases, we reuse the existing ADL and tools, without defining

meta-models). Then we list the size of QVT (lines of code), and the approximate upper bound of time spent

(in seconds) for a single synchronization. Finally, we briefly describe the type of management activities we

have tried on these RSAs.

Target System Architecture QVT Time Usage

# platform mm acc style mm max

1 PLASTIC 6 547 C/S 15 15 0.5 dynamic configuration

2 JOnAS 61 237 C2 29 157 2 runtime evolution

3 JOnAS 61 237 C/S 17 56 1 self-adaptation

4 BCEL 29 124 UML - 139 6 reverse engineering

5 SWT 43 178 ABC - 104 1 dynamic configuration

Jar-UML. We wrap the BCEL (Byte Code Engineering Library, http://jakarta.apache.org/bcel/)

API to reflect the class structure inside a Jar file, and write a QVT transformation to map

this Java-specific class structure with the UML class diagram. This case is a reproduction of

the Jar2UML tool(http://ssel.vub.ac.be/ssel/research/mdd/jar2uml ). It is a weakened case of RSA,

since it only supports the introspection of class structures, without reconfiguration.

Eclipse-GUI. The target system for this case is any Eclipse window (views, editors, di-

alogs, etc.). We generate a system adapter to reflect the SWT widgets (buttons, text box,

containers, etc.) constituting the window. The architecture model is a generic GUI model

constituted of components connected with composition relations. Using this RSA, develop-

ers can change the attributes of the widgets dynamically, such as the text, the background

color, etc. They can also add or remove widgets into the window at runtime.

6.4. Summary and discussion

Table 1 lists all the cases we have introduced in this paper. In this section, we summarize

these cases to evaluate and discuss our RSA approach in three aspects. We first discuss the

application scope of this approach, including what target systems it applies to and what kind

of RSA usages it supports. Then we evaluate how this approach supports these RSA usages

on the target systems, emphasizing on how the four properties (Section 3.1) are embodied

in these cases. Finally, we show its practicability, i.e. it is easy to implement this approach

on different systems, and the implementations have acceptable performance.
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6.4.1. Application scope

This approach applies to a wide range of target systems. According to Table 1, we have

applied it on four different kinds of systems, covering enterprise (JOnAS), desktop (SWT),

and mobile computing systems (PLASTIC). Actually, whether it applies to a particular

system depends on whether we can construct the adapter for this system, and Song et al.

(2009) has revealed that we can generate adapters for a wide range of systems.

This approach supports typical RSA usages. The above cases reproduces several typical

RSA usages presented in classical literatures (like the runtime evolution in Oreizy et al.

(1998), and the self-adaptation in Garlan et al. (2004)) and the ordinary usages (like reversing

the class structure of jar files or dynamically configuring the GUI). With this conclusion, we

can expect that this approach has the potential to support a wide range of RSA usage.

The usage of RSA depends on the capability of the management API. We realize runtime

evolution and self-adaptation on JOnAS, because its JMX API supports deploying compo-

nents and configuring their parameters at runtime. On the contrary, we do not support

changing the UML model reflected from Jar files, because BCEL does not support changing

the class structures. That means the RSA usage is mainly limited by the capability of the

management APIs. This limitation is reasonable, for the current goal of this approach is

to help management agents to utilize the existing management capabilities of the target

systems in an RSA-based way, but not to instrument the systems with new management

capabilities. Actually, the usage is also influenced by the adapter and the QVT relation.

However, we have showed that we can generate the strong enough adapters to wrap all

the provided management capabilities (Song et al., 2009), and we also believe that as the

standard transformation language, QVT is capable of relating the system with any archi-

tecture model (this could also be demonstrated weakly by the cases, because we define all

the required relations as QVT rules, in very small sizes).

6.4.2. Evaluation about the four properties

This section evaluates if we provide the right RSAs for runtime management. We have

define the right RSA by four properties, and proved that our approach satisfies these prop-

erties. The cases further demonstrate that these properties are necessary and important for

RSA-based runtime management.

Obviously, in all the cases, the synchronization satisfies Consistency, otherwise the rea-

soning upon the RSA is meaningless. Notice that even the modification has exceptions,

like we assign a too big value to the pool size in case #2, the resulted architecture is also

consistent with the resulted system state. This ensures the management agents always plan

their activities based on the genuine current system state.
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Non-Interfering Introspection ensures that all the system changes are reflected imme-

diately. Therefore, in the self-adaptation case (#3) the adaptation engine observes the

situation of too many resource consumptions on time, to make proper changes

The synchronizer satisfies Effective Reconfiguration for the reasonable architecture mod-

ifications, like the change of maximal pool size to 100 and the addition of components. But

the change of maximal pool size to 20000 is not effectively reconfigured to the system. This

is not the fault of the synchronizer, but because we, as the administrator, performed an

invalid modification. The synchronizer raises a warning to help us notice and analyze this

failure.

Finally, the synchronizer satisfies Stability, and thus the tuning on the architecture layout

(case #2) is preserved after the synchronizations. This property also allows the management

activities to be performed step by step. Take the evolution scenario in case #2 as an example,

we can first add a component without connecting it with any connectors. At this step, the

relation is not broken, and thus we can still execute the synchronization to see the system

changes, before we go on to finish configuring this new component.

6.4.3. Implementation efficiency and execution performance

This section discusses how much effort is required to implement RSA on a particular

system, and how it works in practical environment.

The major benefit of our approach is that it enables developers to efficiently implement

runtime architecture on existing systems. The case studies highlight this benefit. The RSA

we provide for JOnAS is not a trivial one: It reflects 6 kinds of management elements

(supporting adding and removing most of them) and 54 kinds of attributes (with 12 of them

writable), but to implement it, we only defined four model-level specifications (as shown in

Figure 9), with 90 model elements and 394 lines of code in total. The whole work takes us

only 2 full days, from study, specification to debugging. The generated code contains 27024

lines of code. The other cases also use inputs in small sizes to generate complex code. By

contrast, a case study in the Rainbow project costs 102K lines of manual code (Garlan et al.,

2004), and the case in C2 project costs 38K lines of code (Oreizy et al., 1998). Although

the cases and the contrasts are not directly matched, the code size at least reveals that our

generative tool-set could save developers’ effort. The efficiency depends on the complexity

of RSA usages, as well as the type of the target platform. For commercial solutions, like

JOnAS and SWT, we write small code for a big architecture meta model (bigger architecture

supports more powerful management capabilities), in contrast with the academics prototype

platform like PLASTIC.

The cases also reveal the potential of reuse supported by our approach. For case #3, we
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reuse the system specifications on JOnAS (case #2), and add only two attributes on the C/S

architecture meta-model (case #1). Reuse will further increase the efficiency to implement

our approach.

The performance of this synchronizer is acceptable for human participant runtime man-

agement. We define acceptable performance with the reference to the existing and widely

used runtime management tools. For JOnAS, the official runtime management interface is

a web-based management console, the jonasAdmin. Using this default console, after each

modification, the administrator has to wait about 1 second (depending on the environment)

before the page is refreshed. For Java class structure, using eclipse JDT, it also takes about

1 second to expend the full structure of a medium-sized package (1000 classes). Since these

tools are already widely used in practical runtime management, and also considering the

delay of human decision, we regard the synchronization time around 1 second as accept-

able for manual runtime management. From this point of view, case #1, #2 and #5 are

acceptable. For case #1 and case #5, the average synchronization time for all kinds of archi-

tecture changes is 0.31 and 0.85 second, respectively. For case #2, the synchronization time

varies for different kinds of architecture changes. For example, changing the pool size and

adding the RSS components (case #1) take 0.75 and 1.37 seconds in average. Case #4 takes

longer time: Constructing the UML model from scratch for a large Jar file (bcel.jar itself)

with 1155 classes takes 5.62 seconds on average. The good news is that for such reverse

engineering task, we do not often need to construct the system architecture. However, for

automated management, like case #3, the performance is not ideal: The self-adaption loop

takes 0.81 second in average. That means the self-adaptation loop has to be performed in a

much longer interval, in order to avoid too heavy system burden. So currently, our approach

is only proper to the automated management scenarios which handle the not-so-frequent

system changes.

There are complex factors that affect the performance of synchronizers.

First, the execution time of synchronization process is constituted of the time spent

on QVT transformation and the API invocations. The latter plays the leading role in the

current cases. For example, the difference of the two scenarios in case #1 (0.75s vs 1.37s)

is caused by the fact that deploying an EJB costs 0.6s while setting an attributes is almost

transient. Similarly, case #4 takes so much time mainly because it had to invoke the BCEL

for so many times to collect the information about the one thousand classes. Alternatively,

the time spent by the model transformation is almost constant for the existing cases (between

0.5 to 1 second).

Second, the performance is affected by both the complexity (the size of meta-models and

the QVTs) and the scale (the size the final architecture model for a specific scenario) of the
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RSA. The current cases show that the scale is more important (case # 4 takes much more

time than others). We have tested mediniQVT with complex QVT rules, and found that

the execution time becomes unacceptable when the QVT rules reach 1000 lines. But so far,

the RSA cases do not require so complex relations.

7. Related Work

Using software architecture for runtime management is a hot topic in the recent decade,

and much work has been devoted to the high-level representation and utilization of RSA,

and the low-level mechanisms for maintaining causal connection between an architecture

model and a running system.

For the representation and utilization of RSA, Kramer and Magee (1990) first propose

to represent system structures as nodes and links, and allow people to manage the system

by adding, removing or replacing these nodes and links. Oreizy et al. (1998) propose a

layered architecture style named C2 to support runtime evolution of GUI-centric systems.

Garlan et al. (2004) propose using RSA for policy-driven self-adaptation, and their policies

originate from the design time architecture constraints. Oreizy et al. (2008) surveyed many

relevant approaches, and summarized several typical architecture styles. Huebscher and

McCann (2008) also surveyed several approaches, focusing on the ones that use RSA for

self-adaptation. In this paper, we do not focus on a specific representation or usage of RSA,

but the generic approach to implement RSAs in different styles, supporting different usages.

Current approaches employ different mechanisms to maintain the causal connections

between architecture models and running systems. We roughly classify the mechanism into

three kinds, according to their degree of coupling with the target systems. First, some

early approaches require the target systems to be developed with built-in RSA support.

For example, Oreizy et al. (1998) require their target systems to developed under the Java-

C2 framework. To use Fractal architecture at runtime (Bruneton et al., 2004), the system

classes must implement the interfaces defined by Fractal. This requirement limits their

applicability in practice. Second, some approaches allow the target systems to be developed

under industrial standards, but enhance their runtime platforms (middlewares) with RSA

mechanisms. These approaches are also known as “reflective middleware”, covering many

mainstream component models, like DynamicTAO (Kon et al., 2000) and OpenORB (Blair

et al., 2002) for CORBA, and PKUAS (Huang et al., 2006) for JEE. The problem here is

that these platforms are not yet well accepted in practice, and thus few existing systems are

constructed on them. Third, some researchers try to insert probes and effectors into existing

systems to collect runtime data, organize them as architecture model, and effect architecture
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modifications (Garlan et al., 2004; Schmerl et al., 2006). But since most existing systems

are not designed for code-level evolution, inserting code into them, if possible, is usually

tedious and unsafe. Our approach is close to the third type in that we also seek to provide

a generic mechanism for existing systems, but we choose a safer way, utilizing the low-level

management APIs provided by the existing systems.

Another advantage of our approach is its ease of application: To bridge the abstraction

gap between architecture and system, developers only need to provide a declarative spec-

ification about their relation. Some approaches embed similar ideas. Chan and Chuang

(2003) allow developers to map detailed system events into abstract architecture events

using a simple event composition language, and Schmerl et al. (2006) develop a more so-

phisticated language to map events. Taking the specification, their event transformation

engines causally connect the architecture and system during runtime. In this paper, we

choose model transformation language for specifying state-based (not event-based) relations

between architectures and systems, which is proper to the way of manipulating system states

through active APIs invocations (not by passive event notifications).

Our general solution for architecture-system synchronization has its root in the research

on bidirectional transformation (Czarnecki et al., 2009) and model synchronization (Vogel

et al., 2009). We applied this technique to a novel field, i.e. synchronizing a common model

(the architecture) with a dynamically changing model (the system), and thus we meet some

new challenges like conflicting changes.

8. Conclusion

In this paper, we presented a synchronization approach to maintaining runtime software

architectures for a wide range of existing systems. We applied bidirectional model transfor-

mation to bridge the abstraction gap between architecture models and system states, and

adapted bi-transformation to handle conflicting changes and identify modification failures.

This approach satisfies a set of well-defined properties, i.e. Consistency, Non-interfering

introspection, Effective reconfiguration, and Stability, which ensure the validity of the RSAs

for runtime management. We also provided a generative tool-set to assist developers in im-

plementing this approach on different running systems. We applied our approach to provide

RSAs for some practical systems.

Our approach requires the target systems to have low-level management capabilities,

usually some kinds of management APIs. It could also utilize other forms of management

capabilities, such as configuration files, system commands, etc. provided that people could

define how to manipulate them as pieces of code. But in this paper, we use only man-
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agement APIs as examples. Since runtime management becomes an important concern for

modern systems, more and more systems provide such low-level management capabilities.

Our approach is an effort to link such existing low-level management capabilities with the

research on architecture-based runtime management. An issue here is how to help develop-

ers determine if the management API is sufficient for a particular architectural adaptation.

We have an approach to analyze the capability of system API (Song et al., 2010), and we

plan to provide a QVT analysis support to find out if the architecture operations used by

the architecture adaptation is included in API capability.

Currently, our approach cares only about the structural part of RSA. That means after

each synchronization, the resulted architecture configuration is a snapshot of the current

system state. In future, we will investigate how to analyze a series of such snapshots to

obtain the behavioral models for the system.
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