
Introduction to
Software Verification and Validation

SEI Curriculum Module SEI-CM-13-1.1

December 1988

James S. Collofello
Arizona State University

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the module author.

James S. Collofello
Computer Science Department
Arizona State University
Tempe, Arizona 85287

Copyright © 1988 by Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

131153089

Introduction to

Software Verification and Validation

Foreword Contents

SEI curriculum modules document and explicate software Capsule Description 1
engineering topics. They are intended to be useful in a Philosophy 1
variety of situations—in the preparation of courses, in the

Objectives 1planning of individual lectures, in the design of curricula,
and in professional self-study. Topics do not exist in Prerequisite Knowledge 2
isolation, however, and the question inevitably arises how

Module Content 3one module is related to another. Because modules are
written by different authors at different times, the answer Outline 3
could easily be “not at all.” In a young field struggling to Annotated Outline 3
define itself, this would be an unfortunate situation.

Glossary 14
The SEI deliberately employs a number of mechanisms to

Teaching Considerations 16achieve compatible points of view across curriculum mod-
ules and to fill the content gaps between them. Modules Suggested Schedules 16
such as Introduction to Software Verification and Valida- Exercises and Worked Examples 16
tion is one of the most important devices. In this latest

Bibliography 17revision, Professor Collofello has more modules to inte-
grate into a coherent picture than when we released his
first draft more than a year ago—modules on quality as-
surance, unit testing, technical reviews, and formal verifi-
cation, as well as less directly related modules on specifi-
cation, requirements definition, and design. We believe
you will find this curriculum module interesting and use-
ful, both in its own right and by virtue of the under-
standing of other modules that it facilitates.

— Lionel E. Deimel
Senior Computer Scientist, SEI

SEI-CM-13-1.1 iii

Introduction to Software Verification and Validation

Module Revision History

Version 1.1 (December 1988) General revision
Approved for publication

Version 1.0 (October 1987) Draft for public review

iv SEI-CM-13-1.1

Introduction to
Software Verification and Validation

is available in the curriculum module Unit TestingCapsule Description
and Analysis [Morell88]. An additional module is
planned addressing integration and system testing is-Software verification and validation techniques are
sues. With regard to the other V&V approaches, in-introduced and their applicability discussed. Ap-
depth modules are currently available on technicalproaches to integrating these techniques into com-
review techniques (The Software Technical Reviewprehensive verification and validation plans are also
Process [Collofello87]) and proof of correctnessaddressed. This curriculum module provides an
(Formal Verification of Programs [Berztiss88]).overview needed to understand in-depth curriculum

modules in the verification and validation area. This module also addresses planning considerations
for V&V processes, including the selection and inte-
gration of V&V techniques throughout the software
evolution process.

Philosophy

This module provides a framework for understand-
ing the application of software verification and Objectives
validation (V&V) processes throughout the software
evolution process. Typical products of this process This module and its subordinate, in-depth modules,
are identified, along with their possible V&V objec- is intended to support the the goal of preparing pro-
tives. The V&V process consists of numerous tech- fessional software engineering students to analyze
niques and tools, often used in combination with one the V&V objectives and concerns of a particular
another. Due to the large number of V&V ap- project, examine the project’s constraints, plan a
proaches in use, this module cannot address every comprehensive V&V strategy that includes the se-
technique. Instead, it will analyze five categories of lection of techniques, track the progress of the V&V
V&V approaches. These are: activity, and assess the effectiveness of the tech-

niques used and that of the overall V&V plan. Typi-• technical reviews,
cally, the educational objectives of the software en-• software testing,
gineering educator teaching V&V topics will be

• proof of correctness (program verifica- more modest.
tion),

Possible objectives for the material treated in this• simulation and prototyping, and curriculum module are given below.
• requirements tracing.

The student will be able to
For each category, some representative techniques

Knowledgewill be identified and assessed. Since the traditional
focus of software V&V activity has been software • Define the terminology commonly util-
testing, this category encompasses by far the largest ized in the verification and validation
number of techniques. Thus, in this module, the area.
software testing category will be further refined to • Identify representative techniques for theexpose the major testing techniques. Further depth

five categories of V&V approaches.of coverage of techniques applicable to unit testing

SEI-CM-13-1.1 1

Introduction to Software Verification and Validation

Comprehension Prerequisite Knowledge
• Explain the theoretical and practical

limitations of V&V approaches. This module assumes that students have had experi-
ence as members of a team working on a substantial• Describe the V&V objectives for typical
software development project. This experience isproducts generated by the software
essential to understanding the importance of soft-evolution process.
ware review techniques and integration approaches

Application for verification and validation. Students should also
understand the purpose of specifications and how to• Perform particular V&V techniques.
interpret them. A one-semester software engineer-

Analysis ing course can provide the necessary background.
• Determine the applicability and likely ef-

Additional knowledge that enhances the students’fectiveness of V&V approaches for par-
learning experience is that resulting from exposureticular products of the software evolution
to a variety of types of systems: real-time systems,process.
expert systems, etc. This knowledge may help stu-

Synthesis dents appreciate the complexity of V&V issues, as
well as provide them with additional insights into• Develop an outline for a V&V plan for a
the applicability of various V&V approaches.project that reflects understanding of

V&V objectives, integration of tech- Depending upon the level of coverage to be ac-
niques, problem tracking, and assessment corded proof of correctness, some background in
issues. formal logic may be helpful.

Evaluation
• Assess the effectiveness of a V&V plan

with respect to its objectives.

2 SEI-CM-13-1.1

Introduction to Software Verification and Validation

Module Content

(viii) Failure AnalysisOutline
(ix) Concurrency Analysis

I. Introduction (x) Performance Analysis
1. Terminology 3. Proof of Correctness
2. Evolving Nature of Area 4. Simulation and Prototyping

II. V&V Limitations 5. Requirements Tracing
1. Theoretical Foundations V. Software V&V Planning
2. Impracticality of Testing All Data 1. Identification of V&V Goals
3. Impracticality of Testing All Paths 2. Selection of V&V Techniques
4. No Absolute Proof of Correctness a. Requirements

III. The Role of V&V in Software Evolution b. Specifications
1. Types of Products c. Designs

a. Requirements d. Implementations
b. Specifications e. Changes
c. Designs 3. Organizational Responsibilities
d. Implementations a. Development Organization
e. Changes b. Independent Test Organization

2. V&V Objectives c. Software Quality Assurance
a. Correctness d. Independent V&V Contractor
b. Consistency 4. Integrating V&V Approaches
c. Necessity 5. Problem Tracking
d. Sufficiency 6. Tracking Test Activities
e. Performance 7. Assessment

IV. Software V&V Approaches and their
Applicability
1. Software Technical Reviews

Annotated Outline2. Software Testing
a. Levels of Testing

I. Introduction(i) Module Testing
1. Terminology(ii) Integration Testing

The evolution of software that satisfies its user ex-(iii) System Testing
pectations is a necessary goal of a successful soft-

(iv) Regression Testing ware development organization. To achieve this
goal, software engineering practices must be appliedb. Testing Techniques and their Applicability
throughout the evolution of the software product.(i) Functional Testing and Analysis
Most of these software engineering practices attempt

(ii) Structural Testing and Analysis to create and modify software in a manner that max-
imizes the probability of satisfying its user expec-(iii) Error-Oriented Testing and Analysis
tations. Other practices, addressed in this module,

(iv) Hybrid Approaches actually attempt to insure that the product will meet
these user expectations. These practices are collec-(v) Integration Strategies
tively referred to as software verification and(vi) Transaction Flow Analysis
validation (V&V). The reader is cautioned that ter-

(vii) Stress Analysis minology in this area is often confusing and conflict-

SEI-CM-13-1.1 3

Introduction to Software Verification and Validation

ing. The glossary of this module contains complete pose testing or analysis procedure can be used to
definitions of many of the terms often used to dis- prove program correctness. A proof of this result is
cuss V&V practices. This section attempts to clarify contained in his text [Howden87].
terminology as it will be used in the remainder of the

2. Impracticality of Testing All Datamodule.

For most programs, it is impractical to attempt toValidation refers to the process of evaluating soft-
test the program with all possible inputs, due to aware at the end of its development to insure that it is
combinatorial explosion [Beizer83, Howden87]. Forfree from failures and complies with its require-
those inputs selected, a testing oracle is needed toments. A failure is defined as incorrect product be-
determine the correctness of the output for a partic-havior. Often this validation occurs through the util-
ular test input [Howden87].ization of various testing approaches. Other inter-

mediate software products may also be validated, 3. Impracticality of Testing All Paths
such as the validation of a requirements description

For most programs, it is impractical to attempt tothrough the utilization of a prototype.
test all execution paths through the product, due to a

Verification refers to the process of determining combinatorial explosion [Beizer83]. It is also not
whether or not the products of a given phase of a possible to develop an algorithm for generating test
software development process fulfill the require- data for paths in an arbitrary product, due to the
ments established during the previous phase. Soft- inability to determine path feasibility [Adrion86].
ware technical reviews represent one common ap-

4. No Absolute Proof of Correctnessproach for verifying various products. For example,
a specifications review will normally attempt to ver-

Howden claims that there is no such thing as anify the specifications description against a require-
absolute proof of correctness [Howden87]. Instead,ments description (what Rombach has called “D-
he suggests that there are proofs of equivalency, i.e.,requirements” and “C-requirements,” respectively
proofs that one description of a product is equivalent

[Rombach87]). Proof of correctness is another tech-
to another description. Hence, unless a formal spec-nique for verifying programs to formal specifica-
ification can be shown to be correct and, indeed,tions. Verification approaches attempt to identify
reflects exactly the user’s expectations, no claim ofproduct faults or errors, which give rise to failures.
product correctness can be made [Beizer83, How-
den87].2. Evolving Nature of Area

III. The Role of V&V in Software EvolutionAs the complexity and diversity of software prod-
ucts continue to increase, the challenge to develop

The evolution of a software product can proceed innew and more effective V&V strategies continues.
many ways, depending upon the development approachThe V&V approaches that were reasonably effective
used. The development approach determines the spe-on small batch-oriented products are not sufficient
cific intermediate products to be created. For anyfor concurrent, distributed, or embedded products.
given project, V&V objectives must be identified forThus, this area will continue to evolve as new re-
each of the products created.search results emerge in response to new V&V chal-

lenges. 1. Types of Products

II. V&V Limitations To simplify the discussion of V&V objectives, five
types of products are considered in this module.The overall objective of software V&V approaches is
These types are not meant to be a partitioning of allto insure that the product is free from failures and
software documents and will not be rigorously de-meets its user’s expectations. There are several theo-
fined. Within each product type, many differentretical and practical limitations that make this objective
representational forms are possible. Each represen-impossible to obtain for many products.
tational form determines, to a large extent, the ap-
plicability of particular V&V approaches. The in-1. Theoretical Foundations
tent here is not to identify V&V approaches ap-

Some of the initial theoretical foundations for testing plicable to all products in any form, but instead to
were presented by Goodenough and Gerhart in their describe V&V approaches for representative forms
classic paper [Goodenough75]. This paper provides of products. References are provided to other
definitions for reliability and validity, in an attempt sources that treat particular approaches in depth.
to characterize the properties of a test selection strat-

a. Requirementsegy. A mathematical framework for investigating
testing that enables comparisons of the power of

The requirements document (Rombach [Rom-testing methods is described in [Gourlay83]. How-
bach87]: “customer/user-oriented requirements”den claims the most important theoretical result in
or C-requirements) provides an informal state-program testing and analysis is that no general pur-
ment of the user’s needs.

4 SEI-CM-13-1.1

Introduction to Software Verification and Validation

b. Specifications a. Correctness

The specifications document (Rombach: “design- The extent to which the product is fault free.
oriented requirements” or D-requirements) pro-

b. Consistencyvides a refinement of the user’s needs, which
must be satisfied by the product. There are many The extent to which the product is consistent
approaches for representing specifications, both within itself and with other products.
formal and informal [Berztiss87, Rombach87].

c. Necessity
c. Designs

The extent to which everything in the product is
The product design describes how the specifica- necessary.
tions will be satisfied. Depending upon the devel-

d. Sufficiencyopment approach applied in the project, there may
be multiple levels of designs. Numerous possible

The extent to which the product is complete.design representation approaches are described in
Introduction to Software Design [Budgen88]. e. Performance

d. Implementations The extent to which the product satisfies its per-
formance requirements.“Implementation” normally refers to the source

code for the product. It can, however, refer to IV. Software V&V Approaches and their
other implementation-level products, such as de- Applicability
cision tables [Beizer83].

Software V&V activities occur throughout the evolu-
e. Changes tion of the product. There are numerous techniques

and tools that may be used in isolation or in combi-Changes describe modifications made to the prod-
nation with each other. In an effort to organize theseuct. Modifications are normally the result of error
V&V activities, five broad classifications of ap-corrections or additions of new capabilities to the
proaches are presented. These categories are not meantproduct.
to provide a partitioning, since there are some tech-

2. V&V Objectives niques that span categories. Instead, the categories rep-
resent a practical view that reflects the way most of the

The specific V&V objectives for each product must V&V approaches are described in the literature and
be determined on a project-by-project basis. This used in practice. Possible combinations of these ap-
determination will be influenced by the criticality of proaches are discussed in the next section.
the product, its constraints, and its complexity. In
general, the objective of the V&V function is to in- 1. Software Technical Reviews
sure that the product satisfies the user needs. Thus,

The software technical review process includes tech-everything in the product’s requirements and specifi-
niques such as walk-throughs, inspections, andcations must be the target of some V&V activity. In
audits. Most of these approaches involve a grouporder to limit the scope of this module, however, the
meeting to assess a work product. A comprehensiveV&V approaches described will concentrate on the
examination of the technical review process and itsfunctional and performance portions of the require-
effectiveness for software products is presented inments and specifications for the product. Ap-
The Software Technical Review Process [Collofello-proaches for determining whether a product satisfies
88].its requirements and specifications with respect to

safety, portability, usability, maintainability, ser- Software technical reviews can be used to examine
viceability, security, etc., although very important all the products of the software evolution process.
for many systems, will not be addressed here. This In particular, they are especially applicable and nec-
is consistent with the V&V approaches normally de- essary for those products not yet in machine-
scribed in the literature. The broader picture of processable form, such as requirements or specifi-
“assurance of software quality” is addressed else- cations written in natural language.
where [Brown87].

2. Software Testing
Limiting the scope of the V&V activities to func-

Software testing is the process of exercising a prod-tionality and performance, five general V&V objec-
uct to verify that it satisfies specified requirementstives can be identified [Howden81, Powell86a].
or to identify differences between expected and ac-These objectives provide a framework within which
tual results [IEEE83a].it is possible to determine the applicability of

various V&V approaches and techniques.

SEI-CM-13-1.1 5

Introduction to Software Verification and Validation

a. Levels of Testing • System test plans must be developed
and inspected with the same rigor as

In this section, various levels of testing activities, other elements of the project.
each with its own specific goals, are identified

• System test progress must be plannedand described. This listing of levels is not meant
and tracked similarly to other ele-to be complete, but will illustrate the notion of
ments of the project.levels of testing with particular goals. Other pos-

sible levels of testing not addressed here include • System tests must be repeatable.
acceptance testing, alpha testing, beta testing, etc.

(iv) Regression Testing[Beizer84].

Regression testing can be defined as the proc-(i) Module Testing
ess of executing previously defined test cases

Module (or unit) testing is the lowest level of on a modified program to assure that the soft-
testing and involves the testing of a software ware changes have not adversely affected the
module or unit. The goal of module-level test- program’s previously existing functions. The
ing is to insure that the component being tested error-prone nature of software modification de-
conforms to its specifications and is ready to be mands that regression testing be performed.
integrated with other components of the prod- Some examples of the types of errors targeted
uct. Module testing is treated in depth in the by regression testing include:
curriculum module Unit Testing and Analysis • Data corruption errors. These er-
[Morell88]. rors are side effects due to shared

data.(ii) Integration Testing
• Inappropriate control sequencing

Integration testing consists of the systematic errors. These errors are side effects
combination and execution of product compo- due to changes in execution se-
nents. Multiple levels of integration testing are quences. An example of this type of
possible with a combination of hardware and error is the attempt to remove an item
software components at several different from a queue before it is placed into
levels. The goal of integration testing is to the queue.
insure that the interfaces between the compo-

• Resource contention. Examples ofnents are correct and that the product compo-
these types of errors are potentialnents combine to execute the product’s func-
bottlenecks and deadlocks.tionality correctly.

• Performance deficiencies. These
(iii) System Testing include timing and storage utilization

errors.System testing is the process of testing the inte-
grated hardware and software system to verify An important regression testing strategy is to
that the system meets its specified require- place a higher priority on testing the older ca-
ments [IEEE83a]. Practical priorities must be pabilities of the product than on testing the new
established to complete this task effectively. capabilities provided by the modification [Pet-
One general priority is that system testing must schenik85]. This insures that capabilities the
concentrate more on system capabilities rather user has become dependent upon are still in-
than component capabilities [Beizer84, Mc- tact. This is especially important when we
Cabe85, Petschenik85]. This suggests that sys- consider that a recent study found that half of
tem tests concentrate on insuring the use and all failures detected by users after a modifi-
interaction of functions rather than testing the cation were failures of old capabilities, as a
details of their implementations. Another pri- result of side effects of implementation of new
ority is that testing typical situations is more functionality [Collofello87].
important that testing special cases [Petsche-
nik85, Sum86]. This suggests that test cases be Regression testing strategies are not well-
constructed corresponding to high-probability defined in the literature. They differ from de-
user scenarios. This facilitates early detection velopment tests in that development tests tend
of critical problems that would greatly disrupt to be smaller and diagnostic in nature, whereas
a user. regression tests tend to be long and complex

scenarios testing many capabilities, yet pos-
There are also several key principles to adhere sibly proving unhelpful in isolating a problem,
to during system testing: should one be encountered. Most regression

• System tests should be developed and testing strategies require that some baseline of
performed by a group independent of product tests be rerun. These tests must be
the people who developed the code.

6 SEI-CM-13-1.1

Introduction to Software Verification and Validation

supplemented with specific tests for the recent tions to be tested. Some limited success in
modifications. Strategies for testing modifica- automating this process has been obtained for
tions usually involve some sort of systematic some more rigorous specification techniques.
execution of the modification and related areas. These results are described in [Morell88].
At a module level, this may involve retesting

(ii) Structural Testing and Analysismodule execution paths traversing the modifi-
cation. At a product level, this activity may Structural testing develops test data based upon
involve retesting functions that execute the the implementation of the product. Usually
modified area [Fisher77]. The effectiveness of this testing occurs on source code. However, it
these strategies is highly dependent upon the is possible to do structural testing on other
utilization of test matrices (see below), which representations of the program’s logic. Struc-
enable identification of coverage provided by tural testing and analysis techniques include
particular test cases. data flow anomaly detection, data flow

coverage assessment, and various levels of pathb. Testing Techniques and their Applicability
coverage. A classification of structural testing

(i) Functional Testing and Analysis approaches and a description of representative
techniques is presented in [Morell88] and inFunctional testing develops test data based
Glenford Myers’ text [Myers79].upon documents specifying the behavior of the

software. The goal of functional testing is to Structural testing and analysis are applicable to
exercise each aspect of the software’s specified module testing, integration testing, and regres-
behavior over some subset of its input. How- sion testing. At the system test level, structural
den has developed an integrated approach to testing is normally not applicable, due to the
testing based upon this notion of testing each size of the system to be tested. For example, a
aspect of specified behavior [Howden86, How- paper discussing the analysis of a product con-
den87]. A classification of functional testing sisting of 1.8 million lines of code, suggests
approaches and a description of representative that over 250,000 test cases would be needed to
techniques is presented in [Morell88]. satisfy coverage criteria [Petschenik85]. At the

module level, all of the structural techniquesFunctional testing and analysis techniques are
are applicable. As the level of testing increasesapplicable for all levels of testing. However,
to the integration level, the focus of the struc-the level of specified behavior to be tested will
tural techniques is on the area of interface anal-normally be at a higher level for integration
ysis [Howden87]. This interface analysis mayand system-level testing. Thus, at a module
involve module interfaces, as well as interfaceslevel, it is appropriate to test boundary con-
to other system components. Structural testingditions and low-level functions, such as the
and analysis can also be performed on designscorrect production of a particular type of error
using manual walk-throughs or design simula-message. At the integration and system level,
tions [Powell86a].the types of functions tested are normally those

involving some combination of lower-level Structural testing and analysis techniques are
functions. Testing combinations of functions very effective in detecting failures during the
involves selection of specific sequences of in- module and integration testing levels. Beizer
puts that may reveal sequencing errors due to: reports that path testing catches 50% of all er-

• race conditions rors during module testing and a total of one-
third of all of the errors [Beizer84]. Structural• resource contention
testing is very cumbersome to perform without• deadlock tools, and even with tools requires considerable

• interrupts effort to achieve desirable levels of coverage.
Since structural testing and analysis techniques• synchronization issues
cannot detect missing functions (nor someFunctional testing and analysis techniques are
other types of errors), they must be used ineffective in detecting failures during all levels
combination with other strategies to improveof testing. They must, however, be used in
failure detection effectiveness [Beizer84,combination with other strategies to improve
Girgis86, Howden80, Selby86].failure detection effectiveness [Beizer84,

Girgis86, Howden80, Selby86]. There are numerous automated techniques to
support structural testing and analysis. Most ofThe automation of functional testing tech-
the automated approaches provide statementniques has been hampered by the informality of
and branch coverage. Tools for automatingcommonly used specification techniques. The
several structural testing techniques are de-difficulty lies in the identification of the func-
scribed in the papers cited in [Morell88].

SEI-CM-13-1.1 7

Introduction to Software Verification and Validation

(iii) Error-Oriented Testing and Analysis • Import/export representation er-
rors. This type of error occurs when

Error-oriented testing and analysis techniques parameters are of the same type, but
are those that focus on the presence or absense the meaning of the parameters is dif-
of errors in the programming process. A clas- ferent in the calling and called mod-
sification of these approaches and a description ules. For example, assume module A
of representative techniques is presented in passes a parameter Elapsed_Time, of
[Morell88]. type real, to module B. Module A

might pass the value as seconds,Error-oriented testing and analysis techniques
while module B is assuming theare, in general, applicable to all levels of test-
value is passed as milliseconds.ing. Some techniques, such as statistical meth-
These types of errors are difficult toods [Currit86], error seeding [Mills83], and
detect, although range checks and in-mutation testing [DeMillo78], are particularly
spections provide some assistance.suited to application during the integration and

system levels of testing. • Parameter utilization errors. Dan-
gerous assumptions are often made

(iv) Hybrid Approaches concerning whether a module called
will alter the information passed to it.Combinations of the functional, structural, and
Although support for detecting sucherror-oriented techniques have been investi-
errors is provided by some compilers,gated and are described in [Morell88]. These
careful testing and/or inspectionshybrid approaches involve integration of tech-
may be necessary to insure thatniques, rather than their composition. Hybrid
values have not been unexpectedlyapproaches, particularly those involving struc-
corrupted.tural testing, are normally applicable at the

module level. • Integration time domain/ computa-
tion errors. A domain error occurs

(v) Integration Strategies when a specific input follows the
wrong path due to an error in theIntegration consists of the systematic combi-
control flow. A computation errornation and analysis of product components. It
exists when a specific input followsis assumed that the components being inte-
the correct path, but an error in somegrated have already been individually ex-
assignment statement causes theamined for correctness. This insures that the
wrong function to be computed. Al-emphasis of the integration activity is on ex-
though domain and computation er-amining the interaction of the components
rors are normally addressed during[Beizer84, Howden87]. Although integration
module testing, the concepts applystrategies are normally discussed for imple-
across module boundaries. In fact,mentations, they are also applicable for inte-
some domain and computation errorsgrating the components of any product, such as
in the integrated program might bedesigns.
masked during integration testing if

There are several types of errors targeted by the module being integrated is as-
integration testing: sumed to be correct and is treated as

a black box. Examples of these types• Import/export range errors This
of errors and an approach for detect-type of error occurs when the source
ing them is presented in [Haley84].of input parameters falls outside of

the range of their destination. For Measures of integration coverage can be de-
example, assume module A calls fined in an analogous way to those defined by
module B with table pointer X. If A Miller [Miller77] for module-level coverage.
assumes a maximum table size of 10 Whereas Miller’s “C1” measure requires every
and B assumes a maximum table size statement to be executed, an “I1” measure for
of 8, an import/export range error oc- integration coverage might require every mod-
curs. The detection of this type of ule to be invoked during the integration test.
error requires careful boundary-value The “C2” measure, which requires each branch
testing of parameters. to be executed, might have an integration

• Import/export type compatibility coverage counterpart “I2” that requires each
errors. This type of error is attri- module to be invoked by all possible callers.
buted to a mismatch of user-defined An “I3” measure might require that each call in
types. These errors are normally de- every module be executed.
tected by compilers or code inspec-
tions.

8 SEI-CM-13-1.1

Introduction to Software Verification and Validation

In addition to module-level coverage, various interfaces to other modules not supporting the
interface coverage measures can be defined. thread, stubs are used. The initial threads to be
An “X0” measure requires each I/O interface tested normally correspond to the “backbone”
be utilized. This implies that passed parame- or “skeleton” of the product under test. (These
ters are referenced, as well as returned, param- terms are also used to refer to this type of inte-
eters. An “X1” measure requires that each out- gration strategy.) The addition of new threads
put variable of a module be set in all possible for the product undergoing integration pro-
assignments and that each input variable be ceeds incrementally in a planned fashion. The
used at all possible reference points. use of system verification diagrams for

“threading” requirements is described in
Several strategies for integration testing exist. [Deutsch82].
These strategies may be used independently or

(vi) Transaction Flow Analysisin combination. The primary techniques are
top-down, bottom-up, big-bang, and threaded

Transaction flow analysis develops test data tointegration, although terminology used in the
execute sequences of tasks that correspond to aliterature varies. Top-down integration at-
transaction, where a “transaction” is defined astempts to combine incrementally the compo-
a unit of work seen from a system user’s pointnents of the program, starting with the topmost
of view [Beizer84, McCabe85, Petschenik85].element and simulating lower level elements
An example of a transaction for an operatingwith stubs. Each stub is then replaced with an
system might be a request to print a file. Theactual program component as the integration
execution of this transaction requires severalprocess proceeds in a top-down fashion. Top-
tasks, such as checking the existence of thedown integration is useful for those compo-
file, validating permission to read the file, etc.nents of the program with complicated control

structures [Beizer84]. It also provides visibility The first step of transaction flow analysis is to
into the integration process by demonstrating a identify the transactions. McCabe suggests the
potentially useful product early. drawing of data flow diagrams after integration

testing to model the logical flow of the system.Bottom-up integration attempts to combine in-
Each transaction can then be identified as acrementally components of the program start-
path through the data flow diagram, with eaching with those components that do not invoke
data flow process corresponding to a task thatother components. Test drivers must be con-
must be tested in combination with other tasksstructed to invoke these components. As
on the transaction flow [McCabe85]. Informa-bottom-up integration proceeds, test drivers are
tion about transaction flows may also be ob-replaced with the actual program components
tained from HIPO diagrams, Petri nets, or otherthat perform the invocation, and new test
similar system-level documentation [Beizer84].drivers are constructed until the “top” of the

program is reached. Bottom-up integration is Once the transaction flows have been identi-
consistent with the notion of developing soft- fied, black-box testing techniques can be util-
ware as a series of building blocks. Bottom-up ized to generate test data for selected paths
integration should proceed wherever the driv- through the transaction flow diagram. Some
ing control structure is not too complicated possible guidelines for selecting paths follow:
[Beizer84].

• Test every link/decision in the trans-
action flow graph.Big-bang integration is not an incremental

strategy and involves combining and testing all • Test each loop with a single, double,
modules at once. Except for small programs, typical, maximum, and maximum-
big-bang integration is not a cost-effective less-one number of iterations.
technique because of the difficulty of isolating • Test combinations of paths withinintegration testing failures [Beizer84].

and between transaction flows.
Threaded integration is an incremental tech- • Test that the system does not do
nique that identifies major processing functions things that it is not supposed to do,
that the product is to perform and maps these by watching for unexpected se-
functions to modules implementing them. quences of paths within and between
Each processing function is called a thread. A transaction flows.
collection of related threads is often called a

Transaction flow analysis is a very effectivebuild. Builds may serve as a basis for test
technique for identifying errors correspondingmanagement. To test a thread, the group of
to interface problems with functional tasks. Itmodules corresponding to the thread is com-
is most applicable to integration and system-bined. For those modules in the thread with

SEI-CM-13-1.1 9

Introduction to Software Verification and Validation

level testing. The technique is also appropriate (viii) Failure Analysis
for addressing completeness and correctness is-

Failure analysis is the examination of thesues for requirements, specifications, and de-
product’s reaction to failures of hardware orsigns.
software. The product’s specifications must be

(vii) Stress Analysis examined to determine precisely which types
of failures must be analyzed and what the

Stress analysis involves analyzing the behavior product’s reaction must be. Failure analysis is
of the system when its resources are saturated, sometimes referred to as “recovery testing”
in order to assess whether or not the system [Beizer84].
will continue to satisfy its specifications.
Some examples of errors targeted by stress Failure analysis must be performed during each
tests include: of the product’s V&V activities. It is essential

during requirement and specification V&V ac-• potential race conditions
tivities that a clear statement of the product’s• errors in processing sequences response to various types of failures be ad-

• errors in limits, thresholds, or con- dressed in terms that allow analysis. The de-
trols designed to deal with overload sign must also be analyzed to show that the
situations product’s reaction to failures satisfies its speci-

fications. The failure analysis of implemen-• resource contention and depletion
tations often occurs during system testing.For example, one typical stress test for an
This testing may take the form of simulatingoperating system would be a program that re-
hardware or software errors or actual introduc-quests as much memory as the system has
tion of these types of errors.available.

Failure analysis is essential to detecting prod-The first step in performing a stress analysis is
uct recovery errors. These errors can lead toidentifying those resources that can and should
lost files, lost data, duplicate transactions, etc.be stressed. This identification is very system-
Failure analysis techniques can also be com-dependent, but often includes resources such as
bined with other approaches during V&V acti-file space, memory, I/O buffers, processing
vities to insure that the product’s specificationstime, and interrupt handlers. Once these
for such attributes as performance, security,resources have been identified, test cases must
safety, usability, etc., are met.be designed to stress them. These tests often

require large amounts of data, for which auto- (ix) Concurrency Analysis
mated support in the form of test-case genera-

Concurrency analysis examines the interactiontors is needed [Beizer84, Sum86].
of tasks being executed simultaneously within

Although stress analysis is often viewed as one the product to insure that the overall specifi-
of the last tasks to be performed during system cations are being met. Concurrent tasks may
testing, it is most effective if it is applied dur- be executed in parallel or have their execution
ing each of the product’s V&V activities. interleaved. Concurrency analysis is some-
Many of the errors detected during a stress times referred to as “background testing”
analysis correspond to serious design flaws. [Beizer84].
For example, a stress analysis of a design may

For products with tasks that may execute ininvolve an identification of potential bot-
parallel, concurrency analysis must be per-tlenecks that may prevent the product from sat-
formed during each of the product’s V&V acti-isfying its specifications under extreme loads
vities. During design, concurrency analysis[Beizer84].
should be performed to identify such issues as

Stress analysis is a necessary complement to potential contention for resources, deadlock,
the previously described testing and analysis and priorities. A concurrency analysis for im-
techniques for resource-critical applications. plementations normally takes place during sys-
Whereas the foregoing techniques primarily tem testing. Tests must be designed, executed,
view the product under normal operating con- and analyzed to exploit the parallelism in the
ditions, stress analysis views the product under system and insure that the specifications are
conditions that may not have been anticipated. met.
Stress analysis techniques can also be com-

(x) Performance Analysisbined with other approaches during V&V acti-
vities to insure that the product’s specifications

The goal of performance analysis is to insurefor such attributes as performance, safety,
that the product meets its specified perfor-security, etc., are met.

10 SEI-CM-13-1.1

Introduction to Software Verification and Validation

mance objectives. These objectives must be 4. Simulation and Prototyping
stated in measurable terms, so far as possible.

Simulation and prototyping are techniques forTypical performance objectives relate to re-
analyzing the expected behavior of a product. Theresponse time and system throughput [Beizer84].
are many approaches to constructing simulations and
prototypes that are well-documented in the litera-A performance analysis should be applied dur-
ture. For V&V purposes, simulations and proto-ing each of the product’s V&V activities. Dur-
types are normally used to analyze requirements anding requirement and specification V&V activi-
specifications to insure that they reflect the user’sties, performance objectives must be analyzed
needs [Brackett88]. Since they are executable, theyto insure completeness, feasibility, and tes-
offer additional insight into the completeness andtability. Prototyping, simulation, or other
correctness of these documents. Simulations andmodeling approaches may be used to insure
prototypes can also be used to analyze predictedfeasibility. For designs, the performance re-
product performance, especially for candidate prod-quirements must be allocated to individual
uct designs, to insure that they conform to the re-components. These components can then be
quirements. It is important to note that the utili-analyzed to determine if the performance re-
zation of simulation and prototyping as V&V tech-quirements can be met. Prototyping, simula-
niques requires that the simulations and prototypestion, and other modeling approaches again are
themselves be correct. Thus, the utilization of thesetechniques applicable to this task. For imple-
techniques requires an additional level of V&V acti-mentations, a performance analysis can take
vity.place during each level of testing. Test data

must be carefully constructed to correspond to
5. Requirements Tracingthe scenarios for which the performance re-

quirements were specified. Requirements tracing is a technique for insuring that
the product, as well as the testing of the product,3. Proof of Correctness
addresses each of its requirements. The usual ap-
proach to performing requirements tracing usesProof of correctness is a collection of techniques that
matrices. One type of matrix maps requirements toapply the formality and rigor of mathematics to the
software modules. Construction and analysis of thistask of proving the consistency between an algorith-
matrix can help insure that all requirements aremic solution and a rigorous, complete specification
properly addressed by the product and that the prod-of the intent of the solution [Adrion86, Powell86b].
uct does not have any superfluous capabilitiesThis technique is also often referred to as “formal
[Powell86b]. System Verification Diagrams areverification.” The usual proof technique follows
another way of analyzing requirements/modulesFloyd’s Method of Inductive Assertions or some
traceability [Deutsch82]. Another type of matrixvariant [Floyd67, Hantler76].
maps requirements to test cases. Construction and

Proof of correctness techniques are normally analysis of this matrix can help insure that all re-
presented in the context of verifying an implemen- quirements are properly tested. A third type of
tation against a specification. The techniques are matrix maps requirements to their evaluation ap-
also applicable in verifying the correctness of other proach. The evaluation approaches may consist of
products, as long as they possess a formal represen- various levels of testing, reviews, simulations, etc.
tation [Ambler78, Korelsky87]. The requirements/evaluation matrix insures that all

requirements will undergo some form of V&VThere are several limitations to proof of correctness
[Deutsch82, Powell86b]. Requirements tracing cantechniques. One limitation is the dependence of the
be applied for all of the products of the softwaretechnique upon a correct formal specification that
evolution process.reflects the user’s needs. Current specification ap-

proaches cannot always capture these needs in a for- V. Software V&V Planning
mal way, especially when product aspects such as

The development of a comprehensive V&V plan is es-performance, reliability, quality, etc., are considered
sential to the success of a project. This plan must be[Berztiss87, Rombach87]. Another limitation has to
developed early in the project. Depending on the de-do with the complexity of rigorously specifying the
velopment approach followed, multiple levels of testexecution behavior of the computing environment.
plans may be developed, corresponding to variousFor large programs, the amount of detail to handle,
levels of V&V activities. Guidelines for the contentscombined with the lack of powerful tools may make
of system, software, build, and module test plans havethe proof technique impractical [Beizer83, Korelsky-
been documented in the literature [Deutsch82, DoD87,87, Howden87, Powell86b].
Evans84, NBS76, IEEE83b]. These references also

More information on proof of correctness ap- contain suggestions about how to document other in-
proaches is contained in the curriculum module formation, such as test procedures and test cases. The
Formal Verification of Programs [Berztiss88]. formulation of an effective V&V plan requires many

SEI-CM-13-1.1 11

Introduction to Software Verification and Validation

considerations that are defined in the remainder of this d. Implementations
section.

The applicable techniques for accomplishing the
1. Identification of V&V Goals V&V objectives for implementations are techni-

cal reviews, requirements tracing, testing, and
V&V goals must be identified from the requirements proof of correctness. Various code review tech-
and specifications. These goals must address those niques such as walk-throughs and inspections ex-
attributes of the product that correspond to its user ist. At the source-code level, several static anal-
expectations. These goals must be achievable, ysis techniques are available for detecting imple-
taking into account both theoretical and practical mentation errors. The requirements tracing acti-
limitations [Evans84, Powell86a, Sum86]. vity is here concerned with tracing requirements

to source-code modules. The bulk of the V&V2. Selection of V&V Techniques
activity for source code consists of testing. Multi-

Once a set of V&V objectives has been identified, ple levels of testing are usually performed.
specific techniques must be selected for each of the Where applicable, proof-of-correctness tech-
project’s evolving products. A methodology for the niques may be applied, usually at the module
selection of techniques and tools is presented in level.
[Powell86b]. More specific guidelines for the selec-

e. Changestion of techniques applicable at the unit level of test-
ing are presented in [Morell88]. A mapping of some Since changes describe modifications to products,
of the approaches presented in Section IV of this the same techniques used for V&V during devel-
module to the products in Section III follows. opment may be applied during modification.

Changes to implementations require regressiona. Requirements
testing.

The applicable techniques for accomplishing the
3. Organizational ResponsibilitiesV&V objectives for requirements are technical re-

views, prototyping, and simulation. The review The organizational structure of a project is a key
process is often called a System Requirements planning consideration for project managers. An
Review (SRR). Depending upon the represen- important aspect of this structure is delegation of
tation of the requirements, consistency analyzers V&V activities to various organizations [Deutsch82,
may be used to support the SRR. Evans84, Petschenik85, Sum86]. This decision is

often based upon the size, complexity, and criticalityb. Specifications
of the product. In this module, four types of organi-

The applicable techniques for accomplishing the zations are addressed. These organizations reflect
V&V objectives for specifications are technical typical strategies for partitioning tasks to achieve
reviews, requirements tracing, prototyping, and V&V goals for the product. It is, of course, possible
simulation. The specifications review is some- to delegate these V&V activities in many other
times combined with a review of the product’s ways.
high-level design. The requirements must be

a. Development Organizationtraced to the specifications.

The development organization has responsibilityc. Designs
for participating in technical reviews for all of the

The applicable techniques for accomplishing the evolution products. These reviews must insure
V&V objectives for designs are technical reviews, that the requirements can be traced throughout the
requirements tracing, prototyping, simulation, and class of products. The development organization
proof of correctness. High-level designs that cor- may also construct prototypes and simulations.
respond to an architectural view of the product For code, the development organization has re-
are often reviewed in a Preliminary Design Re- sponsibility for preparing and executing test plans
view. Detailed designs are addressed by a Criti- for unit and integration levels of testing. In some
cal Design Review. Depending upon the repre- environments, this is referred to as Preliminary
sentation of the design, static analyzers may be Qualification Testing. The development organi-
used to assist these review processes. Require- zation also constructs any applicable proofs of
ments must be traced to modules in the architec- correctness at the module level.
tural design; matrices can be used to facilitate this

b. Independent Test Organizationprocess [Powell86b]. Prototyping and simulation
can be used to assess feasibility and adherence to An independent test organization (ITO) may be
performance requirements. Proofs of correctness, established, due to the magnitude of the testing
where applicable, are normally performed at the effort or the need for objectivity. An ITO enables
detailed design level [Dyer87]. the preparation for test activities to occur in paral-

12 SEI-CM-13-1.1

Introduction to Software Verification and Validation

lel with those of development. The ITO normally approach is very dependent upon the nature of the
participates in all of the product’s technical re- product and the process used to develop it. Tradi-
views and monitors the preliminary qualification tional integrated V&V approaches have followed the
testing effort. The primary responsibility of the “waterfall model” with various V&V functions al-
ITO is the preparation and execution of the located to the project’s development phases
product’s system test plan. This is sometimes [Deutsch82, DoD87, Evans84, Powell86a]. Alter-
referred to as the Formal Qualification Test. The natives to this approach exist, such as the Cleanroom
plan for this must contain the equivalent of a software development process developed by IBM.
requirements/evaluation matrix that defines the This approach is based on a software development
V&V approach to be applied for each requirement process that produces incremental product releases,
[Deutsch82]. If the product must be integrated each of which undergoes a combination of formal
with other products, this integration activity is verification and statistical testing techniques
normally the responsibility of the ITO as well. [Currit86, Dyer87]. Regardless of the approach se-

lected, V&V progress must be tracked. Require-
c. Software Quality Assurance ments/evaluation matrices play a key role in this

tracking by providing a means of insuring that eachAlthough software quality assurance may exist as
requirement of the product is addressed [Powell86b,a separate organization, the intent here is to iden-
Sum86].tify some activities for assuring software quality

that may be distributed using any of a number of 5. Problem Tracking
organizational structures [Brown87]. Evaluations
are the primary avenue for assuring software Other critical aspects of a software V&V plan are
quality. Some typical types of evaluations to be developing a mechanism for documenting problems
performed where appropriate throughout the encountered during the V&V effort, routing prob-
product life cycle are identified below. Other lems identified to appropriate individuals for correc-
types can be found in Assurance of Software tion, and insuring that the corrections have been per-
Quality [Brown87]. Evaluation types: formed satisfactorily. Typical information to be col-

lected includes:• internal consistency of product
• when the problem occurred• understandability of product
• where the problem occurred• traceability to indicated documents
• state of the system before occurrence• consistency with indicated documents
• evidence of the problem• appropriate allocation of sizing, timing

resources • actions or inputs that appear to have led to
occurrence• adequate test coverage of requirements

• description of how the system should• consistency between data definitions
work; reference to relevant requirementsand use

• priority for solving problem• adequacy of test cases and test proce-
dures • technical contact for additional informa-

tion• completeness of testing
Problem tracking is an aspect of configuration man-• completeness of regression testing
agement that is addressed in detail in the curriculum
module Software Configuration Management [To-d. Independent V&V Contractor
mayko87]. A practical application of problem track-

An independent V&V contractor may sometimes ing for operating system testing is presented in
be used to insure independent objectivity and [Sum86].
evaluation for the customer. The scope of activi-

6. Tracking Test Activitiesties for this contractor varies, including any or all
of the activities addressed for the Independent

The software V&V plans must provide a mechanismTest and Software Quality Assurance organiza-
for tracking the testing effort. Data must be col-tions [Deutsch82].
lected that enable project management to assess both
the quality and the cost of testing activities. Typical4. Integrating V&V Approaches
data to collect include:

Once a set of V&V objectives has been identified,
• number of tests executedan overall integrated V&V approach must be deter-
• number of tests remainingmined. This approach involves integration of tech-

niques applicable to the various life cycle phases as • time used
well as delegation of these tasks among the project’s • resources usedorganizations. The planning of this integrated V&V

SEI-CM-13-1.1 13

Introduction to Software Verification and Validation

combined and tested until the entire system has• number of problems found and the time
spent finding them been integrated [IEEE83a].

These data can then be used to track actual test
proof of correctnessprogress against scheduled progress. The tracking

information is also important for future test schedul- A formal technique to prove mathematically that
ing. a program satisfies its specifications [IEEE83a].

7. Assessment
regression testing

It is important that the software V&V plan provide Selective retesting to detect faults introducedfor the ability to collect data that can be used to
during modification of a system or system com-assess both the product and the techniques used to
ponent. Retesting to verify that modificationsdevelop it. Often this involves careful collection of
have not caused unintended adverse effects anderror and failure data, as well as analysis and classi-
that the modified system or system componentfication of these data. More information on assess-
still meets its specified requirements [IEEE83a].ment approaches and the data needed to perform

them is contained in [Brown87].
software technical review process

A critical evaluation of an object. Walk-
throughs, inspections and audits can be viewed
as forms of technical reviews [Collofello88].Glossary

system testingacceptance testing
The process of testing an integrated hardwareThe testing done to enable a customer to deter-
and software system to verify that the systemmine whether or not to accept a system
meets its specified requirements [IEEE83a].[IEEE83a].

testingcorrectness
The process of exercising a system or systemThe extent to which software is free from faults.
component by manual or automated means toThe extent to which software meets user expec-
verify that it satisfies specified requirements ortations [IEEE83a].
to identify differences between expected and ac-
tual results [IEEE83a].coverage

Used in conjunction with a software feature or unit
characteristic, the degree to which that feature or

Code that is meaningful to treat as a whole. Itcharacteristic is tested or analyzed. Examples
may be as small as a single statement or as largeinclude input domain coverage, statement
as a set of coupled subroutines [Morell88].coverage, branch coverage, and path coverage

[Morell88].
unit testing

The testing of a software unit.error
Human action that results in software containing

validationa fault [IEEE83a].
The process of evaluating software at the end of
its development process to ensure compliancefailure
with its requirements [IEEE83a]. Other productsIncorrect behavior of a program induced by a
besides code can be validated, such as require-fault [Howden87].
ments and designs, through the use of prototypes
or simulation [Howden87].fault

An accidental condition that causes a product to verification
fail. [IEEE83a].

The process of determining whether or not the
products of a given phase of a software devel-integration testing
opment process fulfill the requirements estab-

An orderly progression of testing in which soft- lished during the previous phase [IEEE83a]. Of-
ware elements, hardware elements, or both are

14 SEI-CM-13-1.1

Introduction to Software Verification and Validation

ten equated with proof of correctness, which
proves equivalency of programs to formal speci-
fications [Howden87].

SEI-CM-13-1.1 15

Introduction to Software Verification and Validation

Teaching Considerations

Suggested Schedules Exercises and Worked Examples

The nature of this module lends itself to several pos- Any course on software V&V requires worked ex-
sible uses, depending upon the topics of interest and amples and exercises illustrating the techniques
the depth of coverage desired. being taught. Some suggestions can be found in The

Software Technical Review Process [Collofello88],
Semester Course. This module can provide a Unit Testing and Analysis [Morell88], and Formal
framework for developing a graduate one-semester Verification of Programs [Berztiss88].
course on software verification and validation. The

A useful exercise for students taking an introductoryoutline of the module can be used to structure the
V&V course based on this module is the develop-syllabus for the course. The amount of time to be
ment of an integrated V&V plan for a project. Thespent on each topic will, of course, depend upon the
instructor can assign teams of students to projects.background and interests of the students and instruc-
Projects can address different application areas, pos-tor. It is recommended, however, that each V&V
sibly using different development approaches. Forapproach in the outline be addressed in the course, to
example, one team might address V&V issues for aninsure that the students have sufficient breadth to un-
expert system; another team might be concernedderstand the context for applying each approach and
with a robotics project developed with incrementalfor combining approaches where appropriate.
product releases. Presentations at the end of the

Overview Lectures. This module can also be used course can further enhance the learning experience
as a basis for an overview of the software V&V area. for all involved.
Such an overview could be presented in 2 to 3 one-
hour lectures. The overview could serve as the first
week’s lecture material for a course developed from
one of the more advanced curriculum modules in
this area, such as Unit Testing and Analysis. This
overview would also be valuable for management in
an industrial environment.

16 SEI-CM-13-1.1

Introduction to Software Verification and Validation

Bibliography

Adrion86 Brackett88
Adrion, W. R., M. A. Branstad, and J. C. Brackett, J. W. Software Requirements. Curriculum
Cheriavsky. “Validation, Verification and Testing of Module SEI-CM-19-1.0, Software Engineering Insti-
Computer Software.” In Software Validation, Verifi- tute, Carnegie Mellon University, Pittsburgh, Pa.,
cation, Testing, and Documentation, S. J. Andriole, Dec. 1988.
ed. Princeton, N. J.: Petrocelli, 1986, 81-123.

Brown87This survey describes and categorizes V&V tech-
Brown, B. J. Assurance of Software Quality. Curric-niques applicable throughout the product’s devel-
ulum Module SEI-CM-7-1.1, Software Engineeringopment cycle. Various testing techniques, as well
Institute, Carnegie Mellon University, Pittsburgh,as technical reviews and proof of correctness ap-

proaches, are addressed. Pa., July 1987.

Ambler78 Budgen88
Ambler, A. L., et al. “Gypsy: A Language for Budgen, D. Introduction to Software Design. Cur-
Specification and Implementation of Verifiable riculum Module SEI-CM-2-2.0, Software Engineer-
Programs.” Proc. ACM Conf. on Language Design ing Institute, Carnegie Mellon University, Pitts-
for Reliable Software. New York: ACM, 1978, burgh, Pa., Nov. 1988.
1-10.

Collofello87
Beizer83 Collofello, J. S. and J. Buck. “The Need for Soft-
Beizer, B. Software Testing Techniques. New York: ware Quality Assurance during the Maintenance
Van Nostrand, 1983. Phase.” IEEE Software 4, 5 (Sept. 1987), 46-51.

This text provides comprehensive coverage of sev- This paper describes the need for thorough regres-
eral testing techniques, with an emphasis on struc- sion testing during software maintenance. Results
tural approaches. Information is also presented on of an extensive analysis of failures detected in a
database-driven test design and state-based testing. new release of a large system are presented. The
The text collects practical approaches and demon- results suggest strongly that existing features must
strates them well with examples. undergo careful regression testing, since almost half

of all failures in the new release occurred on exist-
ing features of the system that worked fine beforeBeizer84
the modification.Beizer, B. Software System Testing and Quality

Assurance. New York: Van Nostrand, 1984.
Collofello88

This text begins with an introduction to general test- Collofello, J. S. The Software Technical Review
ing techniques and then proceeds to integration and Process. Curriculum Module SEI-CM-3-1.5, Soft-
system testing approaches. Techniques for design- ware Engineering Institute, Carnegie Mellon Univer-
ing security, recovery, configuration, stress, and

sity, Pittsburgh, Pa., June 1988.performance tests are presented in detail.

Currit86Berztiss87
Currit, P. A., M. Dyer, and H. D. Mills. “CertifyingBerztiss, A. Formal Specification of Software. Cur-
the Reliability of Software.” IEEE Trans. Softwarericulum Module SEI-CM-8-1.0, Software Engineer-
Eng. SE-12, 1 (Jan. 1986), 3-11.ing Institute, Carnegie Mellon University, Pitts-

burgh, Pa., Oct. 1987. This paper describes a statistical approach to
reliability projection. It presents a procedure for
estimating the mean-time-to-failure for softwareBerztiss88
systems. The approach is based on selecting testBerztiss, A., M. A. Ardis. Formal Verification of
cases that reflect statistical samples of user opera-Programs. Curriculum Module SEI-CM-20-1.0,
tions. This paper provides another perspective onSoftware Engineering Institute, Carnegie Mellon testing that should be addressed after the students

University, Pittsburgh, Pa., Dec. 1988. have studied both structural and functional testing

SEI-CM-13-1.1 17

Introduction to Software Verification and Validation

methods. The paper also is targeted to an incremen- This text is written for managers to provide them
tal development methodology that provides a nice with a framework for managing software testing.
contrast to the typical waterfall testing approaches. Test planning is emphasized and described for the

software development process. Other managerial
issues, such as how to motivate the work force, areDeMillo78
also presented. The text concludes with a fictionalDeMillo, R. A., R. J. Lipton and F. G. Sayward.
account of what can go wrong on a project if the“Hints on Test Data Selection: Help for the Prac- test planning is poorly done.

ticing Programmer.” Computer 11 (April 1978).

This paper is also included in [Miller81]. It intro- Fisher77
duces the idea of mutation testing. It can be used as Fisher, K. F. “A Test Case Selection Method for the
an example of error-oriented testing and analysis. Validation of Software Maintenance Modifications.”
Significant other work in the mutation analysis area Proc. IEEE COMPSAC. Long Beach, Calif.: IEEE
at a more advanced level can be found in other Computer Society Press, 1977.
papers by DeMillo.

This paper describes a strategy for performing
regression testing of a software component. TheDeutsch82
strategy is based upon retesting execution pathsDeutsch, M. S. Software Verification and Valida-
through the changed area of the component. Othertion: Realistic Project Approaches. Englewood
types of possible regression testing strategies areCliffs, N. J.: Prentice-Hall, 1982. also described.

This text presents an integrated approach to soft-
ware V&V. A systematic approach to software in- Floyd67
tegration utilizing threads is also presented in detail. Floyd, R. W. “Assigning Meanings to Programs.”
Example outlines for test plans at each level of test- Proc. Symp Applied Math. Providence, R. I.: Ameri-
ing are also provided. The book also contains chap- can Math. Society, 1967, 19-32.
ters addressing organizational issues such as the
role of configuration management, software quality A classic paper in the program verification area that
assurance, and independent test organizations. is heavily referenced.

DoD87 Girgis86
DoD. Military Standard for Defense System Soft- Girgis, M. R. and M. R. Woodward. “An Experi-
ware Development. DOD-STD-2167A, U. S. De- mental Comparison of the Error Exposing Ability of
partment of Defense, 1987. Program Testing Criteria.” Proc. Workshop on Soft-

ware Testing. Washington, D. C.: IEEE ComputerIncluded in this standard are descriptions of the
Society Press, 1986, 64-73.V&V requirements that must be followed for de-

fense system software development. This standard This paper describes an experiment in which weak
follows a waterfall model and can thus provide a mutation testing, data flow testing, and control flow
framework for integrating V&V approaches. testing were compared in terms of their failure de-

tection ability for FORTRAN programs. The paper
can be used to reinforce the idea that testing strat-Dyer87
egies should be thought of as complementary ratherDyer, M. “A Formal Approach to Software Error
than competing methods.Removal.” J. Syst. and Software 7, 2 (June 1987),

109-114.
Goodenough75

This paper describes the Cleanroom software devel- Goodenough, J. B. and S. L. Gerhart. “Toward a
opment process developed by the IBM Federal Sys- Theory of Test Data Selection.” IEEE Trans. Soft-tems Division. This process replaces traditional

ware Eng. SE-1, 2 (June 1975), 156-173.testing models with a new process that combines
program verification techniques with statistical test- This paper is also included in [Miller81]. The paper
ing. Data are presented that indicate that the meth- examines the theoretical and practical role of testing
od may be more effective than structural unit test- in software development. Definitions for reliability
ing. and validity are presented, in an attempt to charac-

terize the properties of a test selection strategy.
Evans84
Evans, M. W. Productive Software Test
Management. New York: John Wiley, 1984.

18 SEI-CM-13-1.1

Introduction to Software Verification and Validation

Gourlay83 Howden86
Gourlay, J. S. “A Mathematical Framework for the Howden, W. E. “A Functional Approach to Program
Investigation of Testing.” IEEE Trans. Software Testing and Analysis.” IEEE Trans. Software Eng.
Eng. SE-9, 6 (Nov. 1983), 686-709. SE-12, 10 (Oct. 1986), 997-1005.

This paper develops a mathematical framework for This paper provides a summary of some of the
testing that enables comparisons of the power of major research contributions contained in Howden’s
testing methods. This paper should be read after the text [Howden87]. An integrated approach to testing
Goodenough and Gerhart paper, since it attempts to combining both static and dynamic analysis meth-
build upon and clarify some of their results. ods is introduced, along with a theoretical foun-

dation for proving both its effectiveness and effi-
ciency. This paper should be read after both staticHaley84
and dynamic analysis test methods have beenHaley, A. and S. Zweben. “Development and Appli-
studied.cation of a White Box Approach to Integration

Testing.” J. Syst. and Software 4, 4 (Nov. 1984),
Howden87309-315.
Howden, W. E. Functional Program Testing and

This paper describes how the concept of domain Analysis. New York: McGraw-Hill, 1987.
and computation errors can be applied during inte-

This text expands upon the author’s papergration testing. Some examples of these types of
[Howden86], providing details and proofs of his in-errors and approaches for detecting them are
tegrated approach to testing.presented.

IEEE83aHantler76
IEEE. Standard Glossary of Software EngineeringHantler S. L. and J. C. King. “An Introduction to
Terminology. ANSI/IEEEStd729-1983, Institute ofProving the Correctness of Programs.” ACM Com-
Electrical and Electronics Engineers, 1983.puting Surveys 8, 3 (Sept. 1976), 331-53.

This paper is also included in [Miller81]. The paper IEEE83bpresents, in an introductory fashion, a technique for
IEEE. Standard for Software Test Documentation.showing the correctness of a program. The paper
ANSI/IEEEStd829-1983, Institute of Electrical andalso helps define the relationship between proofs of
Electronics Engineers, 1983.correctness and symbolic execution.

Korelsky87Howden80
Korelsky, T., M. Shoji, R. A. Platek andHowden, W. E. “Applicability of Software Valida-
C. Shilepsky. Verification Methodology Evaluation.tion Techniques to Scientific Programs.” ACM
RADC-TR-86-239, Rome Air Development Center,Trans. Prog. Lang. and Syst. 2, 3 (July 1980),
1987.307-320.

This paper is also included in [Miller81]. It describes McCabe85an analysis of a collection of programs whose faults
McCabe, T. J. and G. G. Schulmeyer. “System Test-were known, in order to identify which testing tech-
ing Aided by Structured Analysis: A Practicalniques would have detected those faults. The paper
Experience.” IEEE Trans. Software Eng. SE-11, 9provides a good example of error analysis, as well
(Sept. 1985), 917-921.as motivation for integrated V&V approaches.

This paper extends the ideas of Structured Analysis
Howden81 to system acceptance testing. Data flow diagrams
Howden, W. E. “A Survey of Static Analysis are used to form the basis for integrating modules
Methods.” In Tutorial: Software Testing and Vali- together to form transaction flows. A test

traceability matrix is then defined, which maps testdation Techniques, E. Miller and W. E. Howden,
cases to transaction flows and their correspondingeds. Los Alamitos, Calif.: IEEE Computer Society
functionality.Press, 1981, 101-115.

This survey describes a variety of static analysis Miller77
techniques applicable to requirements, designs, and

Miller, E. F., Jr. “Program Testing: Art Meetscode. Formal and informal analysis techniques are
Theory.” Computer 10, 7 (July 1977), 42-51.presented. Symbolic execution is also introduced,

along with some examples.

SEI-CM-13-1.1 19

Introduction to Software Verification and Validation

This paper describes some of the history of software Verification, Testing and Documentation, S. J.
testing and how the field continues to evolve. Ex- Andriole, ed. Princeton, N. J.: Petrocelli, 1986,
isting test methodologies are briefly addressed. A 3-77. Also available from National Bureau of Stan-
hierarchy of testing measures is also presented. dards, as NBS Publication 500-98, Nov. 1982.

This paper begins with an overview of a waterfallMiller81
model for software development. Within theE. Miller and W. E. Howden, eds. Tutorial: Soft- model, V&V activities are identified and described

ware Testing and Validation Techniques, 2nd Ed. for each development phase. A framework for inte-
Los Alamitos, Calif.: IEEE Computer Society Press, grating V&V techniques is then presented. The
1981. paper concludes with an in-depth analysis of V&V

planning issues, including several example plans for
various levels of V&V technology.Mills83

Mills, H. D. Software Productivity. Boston: Little,
Powell86bBrown, 1983.
Powell, P. B. “Software Validation, Verification and
Testing Technique and Tool Reference Guide.” InMorell88
Software Validation, Verification, Testing, andMorell, L. J. Unit Testing and Analysis. Curriculum
Documentation, S. J. Andriole, ed. Princeton, N. J.:Module SEI-CM-9-1.1, Software Engineering Insti-
Petrocelli, 1986, 189-310.tute, Carnegie Mellon University, Pittsburgh, Pa.,

Dec. 1988. This paper describes thirty techniques and tools for
performing V&V activities. Each description in-

Myers79 cludes the basic features of the technique or tool, an
example, an assessment of its applicability, and theMyers, G. J. The Art of Software Testing. New York:
time required to learn it. Program verification isJohn Wiley, 1979.
described in detail, along with various review and

A well written text that carefully explains practical testing approaches. Requirements tracing is also
approaches to testing modules utilizing functional presented as an important V&V technique.
and structural techniques.

Rombach87
NBS76 Rombach, H. D. Software Specification: A
NBS. Guidelines for Documentation of Computer Framework. Curriculum Module SEI-CM-11-1.0,
Programs and Automated Data Systems. Federal In- Software Engineering Institute, Carnegie Mellon
formation Processing Standards Publication FIPS University, Pittsburgh, Pa., Oct. 1987.
PUB 38, National Bureau of Standards, Feb. 1976.

Selby86
Petschenik85 Selby, R. W. “Combining Software Testing Strate-
Petschenik, N. H. “Practical Priorities in System gies: An Empirical Evaluation.” Proc. Workshop on
Testing.” IEEE Software 2, 5 (Sept. 1985), 18-23. Software Testing. Washington, D. C.: IEEE Com-

puter Society Press, 1986, 82-90.This paper describes the system testing priorities
followed on a large Bell Communications Research This paper presents the results of a study comparing
product. The product continuously undergoes new code reading, functional testing, and structural test-
releases. The system testing methodology is based ing methods, along with their six pairwise combina-
on a set of priority rules. The first rule suggests that tions. The results suggest that combined ap-
testing the system’s capabilities is more important proaches are more effective than individual ap-
than testing its components. The second rule states proaches. This paper should be read by students
that testing old capabilities is more important than after the individual testing methods have been
testing new capabilities. The third rule implies that studied, to reinforce the idea that various combina-
testing typical situations is more important than tions of techniques must be employed to detect
testing boundary value cases. The rationale for faults.
these rules is developed in the paper, along with
discussion of practical experiences.

Sum86
Sum, R. N., R. H. Campbell, and W. J. Kubitz. “AnPowell86a
Approach to Operating System Testing.” J. Syst. and

Powell, P. B. “Planning for Software Validation, Software 6, 3 (Aug. 1986), 273-284.
Verification, and Testing.” In Software Validation,

20 SEI-CM-13-1.1

Introduction to Software Verification and Validation

This paper describes a practical approach that was
used to perform the system testing of an operating
system. A framework for systematic testing is de-
scribed that can be generalized to other types of
systems. Data are also presented suggesting the ef-
fectiveness of the approach. Sample test definition
forms, test matrices, and problem tracking memos
are included in the appendix.

Tomayko87
Tomayko, J. E. Software Configuration Manage-
ment. Curriculum Module SEI-CM-4-1.3, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa., July 1987.

SEI-CM-13-1.1 21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

